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1. INTRODUCTION

Throughout this paper, H and K are complex Hilbert spaces and 〈·, ·〉 stands for
the inner product in both of them. B(H,K) (B(H) when K = H) is the Banach
space of all (bounded linear) operators from H into K. A ∈ B(H) is self-adjoint if
A = A∗ (A∗ is the conjugate operator of A); and A is positive, denoted by A > 0,
if A is self-adjoint with spectrum falling in the interval [0,∞) (or equivalently,
〈Ax, x〉 > 0 for all x ∈ H). For any positive integer n, H(n) denotes the direct sum
of n copies of H. It is clear that every operator A ∈ B(H(n), K(m)) can be written
in an n × m operator matrix A = (Aij)i,j with Aij ∈ B(H,K), i = 1, 2, . . . ,m;
j = 1, 2, . . . , n; we will write AT = (Aij)T for the transpose matrix of (Aji)i,j and
A(n) for (Aij) ∈ B(H(n), K(n)) with Aii = A and Aij = 0 if i 6= j. If Φ is a linear
map from B(H) into B(K), we can define a linear map Φn: B(H(n)) → B(K(n))
by Φn((Aij)) = (Φ(Aij)). Recall that Φ is said to be positive (resp. hermitian-
preserving) if A ∈ B(H) is positive (resp. self-adjoint) implies that Φ(A) is positive
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(resp. self-adjoint). If Φn is positive we say Φ is n-positive; if Φn is positive
for every integer n > 0, we say that Φ is completely positive. Obviously, Φ is
completely positive ⇒ Φ is positive ⇒ Φ is hermitian-preserving. Φ is called
an elementary operator if there are two finite sequences {Ai}n

i=1 ⊂ B(H,K) and

{Bi}n
i=1 ⊂ B(K,H) such that Φ(X) =

n∑
i=1

AiXBi for all X ∈ B(H).

Unlike completely positive linear maps, the structure of positive linear maps
on C∗-algebras is drastically nontrivial even for the finite dimensional case ([1]–[3],
[14]–[15]). Since every linear map from B(H) into B(K) is an elementary operator
in the finite dimensional case, it might be appropriate to centralize our attention
firstly on elementary operators when we attempt to give some thorough descrip-
tion of the structure of positive linear maps. The global structures of hermitian-
preserving and completely positive elementary operators are quite clear. In fact
we have the following result.

Theorem 1.1. Let Φ =
n∑

i=1

Ai(·)Bi be an elementary operator from B(H)

into B(K). Then
(i) Φ is hermitian-preserving iff there are C1, . . . , Cr ∈ [A1, . . . , An] such

that

Φ =
r∑

i=1

εiCi(·)C∗i ,

where εi ∈ {−1, 1};
(ii) Φ is completely positive iff there are C1, . . . , Cr ∈ [A1, . . . , An] such that

Φ =
r∑

i=1

Ci(·)C∗i .

Here we use notation [S] for the linear span of the set S. Theorem 1.1 (i)
and (ii) were established by dePillis ([15]) and Choi ([1]), respectively, for the
finite dimensional case. For the general case, see Mathieu ([12]) and Hou ([6]). It
is useful to notice that, by a result in [5], the operator set {C1, . . . , Cr} can be
chosen so that it is linearly independent.

The main purpose of this paper is to establish a global structure theorem
for positive elementary operators in terms of local linear combination. We find
that this characterization is much helpful in some sense for us to understand the
differences of these three kinds of elementary operators. Our results and method
allow us to give several simple criteria to ensure a positive elementary operator to
be completely positive, one of them strengthens a result announced in [13].
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2. A CHARACTERIZATION OF POSITIVE ELEMENTARY OPERATORS

Before stating the main result in this section, we need some definitions.

Definition 2.1. Let k, l ∈ N (the set of all natural numbers), and let
A1, . . . , Ak, and C1, . . . , Cl ∈ B(H,K). If, for each x ∈ H(n), there exists an l × k

complex matrix (αij(x)) (depending on x) such that

C
(n)
i x =

k∑
j=1

αij(x)A(n)
j x, i = 1, 2, . . . , l,

we say that (C1, . . . , Cl) is an n-locally linear combination of (A1, . . . , Ak), (αij(x))
is called a local coefficient matrix at x. Furthermore, if there exists a constant
M > 0, and a local coefficient matrix (αij(x)) at every x ∈ H(n) can be chosen
so that the norm ‖(αij(x))‖ of it is bounded by M , we say that (C1, . . . , Cl) is an
n-regular locally linear combination of (A1, . . . , Ak); if M 6 1, (C1, . . . , Cl) is an
n-contractive locally linear combination of (A1, . . . , Ak); if there is a matrix (αij)

such that Ci =
k∑

j=1

αijAj for all i, we say that (C1, . . . , Cl) is a linear combination

of (A1, . . . , Ak) with coefficient matrix (αij).
We will omit “n” in the case n = 1. Sometimes we also write {Ai}k

i=1 for
(A1, . . . , Ak).

Let BM (H,K) = {X ∈ B(H,K) : ‖X‖ 6 M}. It is clear that (C1, . . . , Cl)
is an n-locally linear combination (resp. contractive locally linear combination)
of (A1, . . . , Ak) iff there exists a map Ω : H(n) → B(C(k), C(l)) (resp. H(n) →
B1(C(k), C(l))) such that

(C
(n)
1 x · · · C

(n)
l x )T = Ω(x)(A

(n)
1 x · · · A

(n)
k x )T.

Here we agree to use (λij)(Tjk) for the product of two operator matrices ((λij)⊗
I)(Tjk) = (λijI)(Tjk) when (λij) is a numerical matrix.

Indeed, we will discuss in a more general setting.
For an infinite sequence A = (A1, . . . , An, . . .), we will denote by AT also

the formal transpose of A, that is,

AT =


A1
...

An
...

 .

If Ai ∈ B(H,K) and if both
∥∥∥ ∞∑

i=1

A∗i Ai

∥∥∥ and
∥∥∥ ∞∑

i=1

AiA
∗
i

∥∥∥ are finite, then both

A and AT are bounded operators from H(∞) into K and from H into K(∞),
respectively. The following lemma is critical for our purpose.
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Lemma 2.2. Let {Ai}∞i=1 and {Cj}∞j=1 ⊂ B(H,K) such that
∥∥∥ ∞∑

i=1

A∗i Ai

∥∥∥ <

∞,
∥∥∥ ∞∑

i=1

AiA
∗
i

∥∥∥ < ∞,
∥∥∥ ∞∑

j=1

C∗j Cj

∥∥∥ < ∞ and
∥∥∥ ∞∑

j=1

CjC
∗
j

∥∥∥ < ∞. Then, the follow-

ing statements are equivalent:

(i)
∞∑

i=1

AiPA∗i >
∞∑

j=1

CjPC∗j for all positive operators P ∈ B(H);

(ii)
∞∑

i=1

AiPA∗i >
∞∑

j=1

CjPC∗j for all rank-one projections P ∈ B(H);

(iii) there exists a map Ω : H → B1(l2) such that

CTx = Ω(x)ATx for every x ∈ H;

(iv)
∞∑

i=1

A∗i PAi >
∞∑

j=1

C∗j PCj for all positive operators P ∈ B(K);

(v) there exists a map Γ : K → B1(l2) such that

C∗y = Γ(y)A∗y for every y ∈ K.

Proof. It is obvious that (i) ⇒ (ii).
(ii) ⇒ (iii) Given any x ∈ H, without loss of generality, we may assume that

‖x‖ = 1, then Px = x⊗ x is a rank-one projection. From (ii) we have

(2.1)
∞∑

i=1

AiPxA∗i >
∞∑

j=1

CjPxC∗j .

Let

T =


A1Px · · · AiPx · · ·

0 · · · 0 · · ·
0 · · · 0 · · ·
...

. . .
...

. . .

 and S =


C1Px · · · CjPx · · ·

0 · · · 0 · · ·
0 · · · 0 · · ·
...

. . .
...

. . .


be operators from H(∞) into K(∞). The inequality (2.1) implies that TT∗ >

SS∗. So by [4] there exists a unique contraction X = (Xij) ∈ B(H(∞)) such that
kerX∗ ⊇ kerT and S = TX. Since ( 0 · · · 0 xi 0 · · · )T ∈ kerT for each
xi ∈ ker AiPx, we have X∗

ijxi = 0 for all j = 1, 2, . . .. Hence, kerX∗
ij ⊇ ker AiPx

for all i and j. It follows that Xij are operators of rank at most one and there
exist vectors yij ∈ H such that

Xij = x⊗ yij , i, j = 1, 2, . . . .
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Now S = TX leads to

( C1x · · · Cjx · · · )T = (C1Pxx · · · CjPxx · · · )T

=
( ∞∑

i=1

AiPxXi1x · · ·
∞∑

i=1

AiPxXijx · · ·
)T

=
( ∞∑

i=1

〈x, yi1〉Aix · · ·
∞∑

i=1

〈x, yij〉Aix · · ·
)T

.

Let ωji(x) = 〈x, yij〉 for i, j = 1, 2, . . ., and let Ω(x) = (ωji(x))j,i. Then we have

CTx = (C1x · · · Cjx · · · )T = Ω(x)(A1x · · · Aix · · · )T = Ω(x)ATx.

Moreover, since XijPx = 〈x, yij〉Px = ωij(x)Px, by regarding Ω(x) as an operator
from l2 into itself, we get

‖Ω(x)‖ = ‖Ω(x)⊗ Px‖ = ‖XP (∞)
x ‖ 6 ‖X‖ 6 1.

Therefore, (ii) holds implies that (iii) holds.
(iii)⇒ (iv) Assume that (iii) holds. Then for any x ∈ H, there is a contractive

matrix Ω(x) = (ωji(x))j,i ∈ B1(l2) such that

( C1x · · · Cjx · · · )T =
( ∞∑

i=1

ω1i(x)Aix · · ·
∞∑

i=1

ωji(x)Aix · · ·
)T

.

If P ∈ B(K) is a positive operator, then

〈( ∞∑
j=1

C∗j PCj

)
x, x

〉
=

∞∑
j=1

‖P 1
2 Cjx‖2 =

∞∑
j=1

∥∥∥ ∞∑
i=1

ωji(x)P
1
2 Aix

∥∥∥2

= ‖Ω(x)(P
1
2 A1 · · · P

1
2 Ai · · · )Tx‖2

6 ‖(P
1
2 A1 · · · P

1
2 Ai · · · )Tx‖2

=
∞∑

j=1

‖P 1
2 Aix‖2 =

〈( ∞∑
i=1

A∗i PAi

)
x, x

〉
,

that is, (iv) is true.
It is clear from above arguments that (iv) ⇒ (v) ⇒ (i).

To see further what happens when a hermitian-preserving elementary oper-
ator

Φ =
k∑

i=1

Ci(·)C∗i −
l∑

j=1

Dj(·)D∗
j

is completely positive, we need the following lemma.
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Lemma 2.3. Let {Ai}∞i=1 and {Cj}∞j=1 ⊂ B(H,K) with
∥∥∥ ∞∑

i=1

A∗i Ai

∥∥∥ < ∞,∥∥∥ ∞∑
i=1

AiA
∗
i

∥∥∥ < ∞,
∥∥∥ ∞∑

j=1

C∗j Cj

∥∥∥ < ∞ and
∥∥∥ ∞∑

j=1

CjC
∗
j

∥∥∥ < ∞. The following state-

ments are equivalent:

(i)
∞∑

i=1

A
(n)
i PA

(n)
i

∗
>

∞∑
j=1

C
(n)
j PC

(n)
j

∗
for all positive operators P ∈ B(H(n))

and every n = 1, 2, . . .;
(ii) there exists a contractive matrix Ω = (ωji)j,i ∈ B1(l2) such that

( C1 · · · Cj · · · )T = (ωji)j,i( A1 · · · Ai · · · )T.

Proof. (ii) ⇒ (i) Obvious by Lemma 2.2.
(i) ⇒ (ii) Let A = (A1 · · · Ai · · · ) and C = (C1 · · · Cj · · · ). Let

B = {Γ = (γji)j,iAT : Γ ∈ B1(l2) }.

It is clear that B is closed in the strong operator topology in B(H,K(∞)). Take
ε > 0. For any x1, . . . , xn ∈ H, let x = (x1 · · · xn ) ∈ H(n). It follows
from (ii) and Lemma 2.2, there exists an Ω(x) = (ωji(x)) ∈ B1(l2) such that
Ω(x)A(n)Tx = C(n)Tx. Therefore,

Ω(x)ATxk = CTxk for every k = 1, . . . , n.

Thus

Ω(x)AT ∈ {X ∈ B(H,K(∞)) : ‖Xxk −CTxk‖ < ε for k = 1, . . . , n }.

But this means that every strong neighborhood of CT has a nonempty intersection
with B and hence, CT ∈ B. So, there exists an Ω ∈ B(l2) such that CT = ΩAT.

Theorem 2.4. Let {Ai}∞i=1 and {Cj}∞j=1 ⊂ B(H,K) with
∥∥∥ ∞∑

i=1

A∗i Ai

∥∥∥ < ∞,∥∥∥ ∞∑
i=1

AiA
∗
i

∥∥∥ < ∞,
∥∥∥ ∞∑

j=1

C∗j Cj

∥∥∥ < ∞ and
∥∥∥ ∞∑

j=1

CjC
∗
j

∥∥∥ < ∞. Let Φ : B(H) → B(K)

be a linear map defined by

Φ(X) =
∞∑

i=1

AiXA∗i −
∞∑

j=1

CjXC∗j

for every X ∈ B(H). Then
(i) Φ is positive iff there exists a map Ω : x ∈ H 7→ Ω(x) = (ωji(x))j,i ∈

B1(l2) such that
CTx = Ω(x)ATx
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for every x ∈ H.

(ii) Φ is completely positive iff there exists a contractive matrix Ω = (ωji)j,i ∈
B(l2) such that

CT = ΩAT.

Moreover, if I −Ω∗Ω is diagonalizable (in particular, if it is compact), then there
exists a sequence {Di}∞i=1 ⊂ B(H,K) such that

Φ(X) =
∞∑

i=1

DiXD∗
i

for every X ∈ B(H).

Proof. Since

Φn(X) =
∞∑

i=1

A
(n)
i XA

(n)
i

∗
−

∞∑
j=1

C
(n)
j XC

(n)
j

∗

for every X ∈ B(H(n),K(n)), by Lemma 2.2 and 2.3, we need only to prove the
second part of (ii). Now, we have, for any X ∈ B(H),

Φ(X) = AX(∞)A∗ −CX(∞)C∗ = AX(∞)A∗ −AΩTX(∞)Ω∗TA∗

= AX(∞)A∗ −AX(∞)ΩTΩ∗TA∗ = AX(∞)(I − Ω∗Ω)TA∗.

Since I − Ω∗Ω > 0 as ‖Ω‖ 6 1, the diagonalization of I − Ω∗Ω implies that there
is a sequence {di} with 0 6 di 6 1 and a unitary matrix Γ = (γij)i,j ∈ B(l2) such
that Γ∗(I − Ω∗Ω)TΓ = diag{d2

i }. Let E = ( E1 · · · Ej · · · ) = AΓ; then

Φ(X) = AX(∞)(I − Ω∗Ω)TA∗ = EΓ∗X(∞)(I − Ω∗Ω)TΓE∗

= EX(∞)Γ∗(I − Ω∗Ω)TΓE∗ =
∞∑

i=1

d2
i EiXE∗i .

Let Di = diEi, we get

Φ(X) =
∞∑

i=1

DiXD∗
i

for every X.

The following theorem gives a global structure characterization for positive
elementary operators.
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Theorem 2.5. Let Φ =
n∑

i=1

Ai(·)Bi be an elementary operator from B(H)

into B(K). Φ is m-positive iff there exist C1, . . . , Ck and D1, . . ., Dl in [A1, . . . , An]

with k+l 6 n such that (D1, . . . , Dl) is an m-contractive locally linear combination

of (C1, . . . , Ck) and

(2.2) Φ =
k∑

i=1

Ci(·)C∗i −
l∑

j=1

Dj(·)D∗
j .

Furthermore, Φ in (2.2) is completely positive iff (D1, . . . , Dl) is a linear combi-

nation of (C1, . . . , Ck) with a contractive coefficient matrix.

Note: Ci and Dj in (2.2) can be chosen so that {C1, . . . , Ck, D1, . . . , Dl} is

linearly independent.

Proof. If Φ is m-positive, then it is hermitian-preserving. Therefore, by

Theorem 1.1 (i), there exist operators Ci and Dj ∈ [A1, . . . , An], i = 1, . . . , k,

j = 1, . . . , l with k + l 6 n such that Φ =
k∑

i=1

Ci(·)C∗i −
l∑

j=1

Dj(·)D∗
j . Now it

is easy to see that the theorem is an immediate consequence of Theorem 2.4 by

considering finite sequences.

Denote by Mn the C∗-algebra of all n×n complex matrices. Since all linear

maps from Mn into Mm are elementary operators, the next corollary is trivial

from Theorem 2.5.

Corollary 2.6. A linear map Φ : Mn → Mm is positive iff there exist

m× n matrices C1, . . . , Ck and D1, . . . , Dl such that (D1, . . . , Dl) is a contractive

locally linear combination of (C1, . . . , Ck) and

Φ(X) =
k∑

i=1

CiXC∗i −
l∑

j=1

DjXD∗
j

for all X ∈Mn.

Remark 2.7. For the special case when {C1, C2, . . . , Cj , . . .} = {C, 0, . . . ,

0, . . .}, Lemma 2.2 and 2.3 were obtained in [7].
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3. WHEN POSITIVITY IMPLIES COMPLETE POSITIVITY

It is interesting to observe from the discussion in Section 2 that, for elementary op-
erators, the question when positivity ensures complete positivity may be reduced
to the question when regular locally linear combination implies linear combination.
This connection allows us to look more deeply into the relationship and the differ-
ence between positivity and complete positivity, and obtain some simple criteria
to check whether a positive elementary operator is completely positive. In fact,
as we will see, the length of an elementary operator turns out to play a decisive
role. One of the first results in this direction was proved by M. Mathieu ([11]): if
the length is one, i.e., if Φ(X) = AXB, then positivity already implies complete
positivity. In this section, we will show that if the length n is greater than one,
then [n

2 ]-positivity implies complete positivity. Recall that the notation [t] stands
for the integer part of a real number t.

If S ⊂ B(H,K), we will denote by SF the subset of all finite-rank operators
in S. The following lemma is taken from [8]. Though only the case of regular
locally linear combinations is needed for our purpose, we list both cases of locally
linear combinations and regular locally linear combinations for comparison.

Lemma 3.1. Let A1, . . . , Ak and C ∈ B(H,K). If any one of the following
conditions holds, then C ∈ [A1, . . . , Ak].

(i) C is a locally linear combination of A1;
(ii) C is a locally linear combination of (A1, . . . , Ak) and [A1, . . . , Ak]F =

{0};
(iii) C is a regular locally linear combination of (A1, A2);
(iv) C is a regular locally linear combination of (A1, . . . , Ak) and there is a

vector x ∈ H such that {Aix}k
i=1 is linearly independent;

(v) C is a regular locally linear combination of (A1, . . . , Ak) and
dim[A1, . . . , Ak]F 6 2.

Note: As pointed out in [7], there exist C and A1, A2 such that C is a locally
linear combination of (A1, A2) but C is not a linear combination of A1 and A2;
there exist C and (A1, A2, A3) such that C is a regular locally linear combination
of (A1, A2, A3) but C is not a linear combination of them.

Theorem 3.2. Assume that Φ =
k∑

i=1

Ai(·)Bi : B(H) → B(K) is a posi-

tive elementary operator. If any one of the following conditions hold, then Φ is
completely positive:

(i) k 6 3;
(ii) dim[A1, . . . , Ak]F 6 2 (or dim[B1, . . . , Bk]F 6 2);
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(iii) there exists a vector x ∈ H (or y ∈ K) such that {Aix}k
i=1 (or {Biy}k

i=1)
is linearly independent.

Proof. (i) Without loss of generality we may assume that both {A1, A2, A3}
and {B1, B2, B3} are linearly independent. Since Φ is positive, by Theorem 2.5,
there is a linearly independent set {D1, D2, D3} ⊂ [A1, A2, A3] and an integer l

with 1 < l 6 3 such that

Φ =
l∑

i=1

Di(·)D∗
i −

3∑
i=l+1

Di(·)D∗
i .

If l 6= 3, then D3 is a regular locally linear combination of D1 or (D1, D2). By ap-
plying Lemma 3.1 (i) or (iii), we get a contradiction that D3 is a linear combination
of D1 and D2. Hence, we must have l = 3, i.e.

Φ =
3∑

i=1

Di(·)D∗
i

is completely positive.
(ii) and (iii) can be treated similarly.

Corollary 3.3. If Φ =
k∑

i=1

Ci(·)C∗i −
l∑

j=1

Dj(·)D∗
j is positive but not com-

pletely positive, then
(i) k > 3;
(ii) there is at least one Dj which is not in [C1, . . . , Ck];
(iii) every Dj, j = 1, . . . , l, is a finite-rank perturbation of some linear com-

bination of {Ci}k
i=1.

Proof. (i) and (ii) are obvious. (iii) is a consequence of a result in [10] because
Dj is a locally linear combination of {Ci}.

Corollary 3.4. A non-completely positive linear map Φ : M2 → M2 is
positive iff it has the form

Φ =
3∑

i=1

Ci(·)C∗i −D(·)D∗,

where {C1, C2, C3, D} is linearly independent and D is a contractive locally linear
combination of (C1, C2, C3), i.e., for every x ∈ C(2), there exist scalars λ1(x),
λ2(x) and λ3(x) with |λ1(x)|2+ |λ2(x)|2+ |λ3(x)|2 6 1 such that Dx = λ1(x)C1x+
λ2(x)C2x + λ3(x)C3x.
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Using the above results one can construct with little difficulty examples of
elementary operators which are positive but not completely positive. For example,
let

C1 =
(

c1 0
0 c2

)
, C2 =

(
0 1
0 0

)
, C3 = C∗2 and D =

(
d1 0
0 d2

)
,

where ci and di ∈ C satisfy the condition that |ci| > |di| for i = 1, 2, 0 < |c1c2 −
d1d2| < 1 and c1d2 − c2d1 6= 0. Then

Φ =
3∑

i=1

Ci(·)C∗i −D(·)D∗

is positive on M2 but not completely positive.
Mathieu announced a result in [13] that an elementary operator

Φ =
n∑

i=1

Ai(·)Bi is completely positive iff Φ is n-positive. Using our method,

this result can be strengthened as follows.

Theorem 3.5. Let Φ =
n∑

i=1

Ai(·)Bi be an elementary operator from B(H)

into B(K) with n > 1, then Φ is completely positive iff it is
[

n
2

]
-positive.

To prove this theorem, we first need to investigate further the relation be-
tween local linear combinations and linear combinations of operators. Again, only
the case of regular locally linear combination is needed in the proof of Theo-
rem 3.5, but we give a thorough discussion in both cases of regular locally linear
combination and locally linear combination for comparison and completeness.

It is clear from Definition 2.1 that if C is an n-locally linear combination
(resp. n-regular locally linear combination) of {Ai}, then C is also an m-locally
linear combination (resp. m-regular locally linear combination) of {Ai} for all
1 6 m 6 n; and if C ∈ [A1, . . . , Ak], then C is an n-locally linear combination
(resp. n-regular locally linear combination) of {Ai} for all n = 1, 2, . . ..

Lemma 3.6. Let C,A1, . . . , An ∈ B(H,K). Then C ∈ [A1, . . . , An] iff C is
an

[
n+2

2

]
-locally linear combination of {A1, . . . , An}.

Proof. We need only to prove the “if” part. Supposing that C is an
[

n+2
2

]
-

locally linear combination of {Ai}n
i=1, we have to show that C is a linear combina-

tion of {Ai}n
i=1. We will do this by induction. Without loss of generality, assume

that {Ai}n
i=1 is linearly independent in the sequel.

It is clear that from Lemma 2.2 in [6] that the lemma holds for n = 1 and 2.
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Suppose that the assertion holds for all m with 1 6 m < n and C is an[
n+2

2

]
-locally linear combination of {Ai}n

i=1. Let

k = max{dim[A1x, . . . , Anx] : x ∈ H}.

Obviously, 1 6 k 6 n. We may assume that n > 3.
If k = 1, then {Aix,Ajx} is linearly dependent for every x ∈ H and every

pair (i, j) with i, j = 1, . . . , n. Hence, there must be a vector x◦ ∈ H and n vectors
y1, . . . , yn ∈ K such that {y1, . . . , yn} is linearly independent and Ai = x◦ ⊗ yi,
i = 1, . . . , n. (Here we have used the fact that if {Ax, Bx} is linearly dependent
for every vector x, then either {A,B} is linearly dependent or A = x◦ ⊗ f1 and
B = x◦ ⊗ f2. A proof of this fact may be found in [8]). Since C is a locally linear
combination of {Ai}, there exists a vector f ∈ K such that C = x◦ ⊗ f . It is

clear that {f}⊥ ⊇
n⋂

i=1

{yi}⊥ = [y1, . . . , yn]⊥. Therefore, f ∈ [y1, . . . , yn] and hence

C ∈ [A1, . . . , An].
If k = n, then there is a vector x◦ ∈ H such that {A1x◦, . . . , Anx◦} is linearly

independent and hence there are uniquely determined scalars αi such that

Cx◦ = α1A1x◦ + · · ·+ αnAnx◦.

Now, for any x ∈ H, C is a 2-locally linear combination of {Ai} since
[

n+2
2

]
> 2,

therefore there exist scalars λi depending on x such that

(
Cx◦
Cx

)
=


n∑

i=1

λiAix◦

∞∑
i=1

λiAix

 .

It follows that λi = αi, i = 1, . . . , n, and Cx =
n∑

i=1

αiAix for all x ∈ H. Hence,

C ∈ [A1, . . . , An].
If k = n− 1, without loss of generality we may assume that there is a vector

x◦ ∈ H such that {Aix◦}n−1
i=1 is linearly independent. Thus, there are uniquely

determined numbers λi, i = 1, . . . , n− 1, so that Anx◦ =
n−1∑
i=1

λiAix◦. Taking any

αi’s such that Cx◦ =
n∑

i=1

αiAix◦, we have

Cx◦ =
n−1∑
i=1

(αi + λiαn)Aix◦ =
n−1∑
i=1

γiAix◦.
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Because {A1x◦, . . . , An−1x◦} is linearly independent, γi are constants. Thus Cx◦
is of the form

(3.1) Cx◦ =
n−1∑
i=1

(γi − λit)Aix◦ + tAnx◦

with t ∈ C arbitrary. Since C is certainly a 2-locally linear combination of {Ai},
for any x ∈ H, by virtue of (3.1) and by taking x = ( x◦ x ) ∈ H(2), it is easy to
see that there is a t(x) ∈ C

such that

(3.2)

Cx =
n−1∑
i=1

(γi − λit(x))Aix + t(x)Anx

=
( n−1∑

i=1

γ1Ai

)
x + t(x)

(
An −

n−1∑
i=1

λiAi

)
x.

Let S =
n−1∑
i=1

γiAi and T = An −
n−1∑
i=1

λiAi; then (3.2) means that C − S is a

locally linear combination of T . So, we have C − S ∈ [T ] and hence C ∈ [S, T ] ⊆
[A1, . . . , An].

If 1 < k < n − 1, again we may assume that there exists a vector x◦ such
that {Aix◦}k

i=1 is linearly independent. Then, there exists a uniquely determined
k × (n− k) matrix (λij) such that

Ak+jx◦ =
k∑

i=1

λijAix◦, j = 1, . . . , n− k.

Since Cx◦ ∈ [A1x◦, . . . , Anx◦], it is clear that there exist scalars γ1, . . . , γk such
that Cx◦ is of the form

(3.3) Cx◦ =
k∑

i=1

(
γi −

n−k∑
j=1

λijtj

)
Aix◦ +

n−k∑
j=1

tjAk+jx◦

with ( t1 · · · tn−k ) ∈ C(n−k) arbitrary. Recall that C is a
[

n+2
2

]
-locally linear

combination of {Ai}n
i=1. By taking x = ( x◦ x1 · · · x[n

2 ] ) and using (3.3),
we observe that, for every (x1 · · · x[n

2 ] ) ∈ H([n
2 ]), there is a corresponding

( t1 · · · tn−k ) ∈ C(n−k) such that

(3.4) Cxr =
k∑

i=1

(
γi −

n−k∑
j=1

λijtj

)
Aixr +

n−k∑
j=1

tjAk+jxr
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for all r = 1, . . . ,
[

n
2

]
. Let

(3.5) S =
k∑

i=1

γiAi and Tj = Ak+j −
k∑

i=1

λijAi, j = 1, . . . , n− k.

It follows from (3.4) that C−S is a
[

n
2

]
-locally linear combination of {T1, . . . , Tn−k}.

Now, since k > 2 and
[

n−k+2
2

]
6

[
n
2

]
, by the induction assumption, we conclude

that

C − S ∈ [T1, . . . , Tn−k]

and hence

C ∈ [S, T1, . . . , Tn−k] ⊂ [A1, . . . , An].

Corollary 3.7. C is a linear combination of {Ai}n
i=1 iff C is an n-locally

linear combination of {Ai}n
i=1.

As to the case of regular locally linear combination, we have

Lemma 3.8. Let A1, . . . , An and C ∈ B(H,K). Then C ∈ [A1, . . . , An] iff
C is a

[
n+1

2

]
-regular locally linear combination of {Ai}n

i=1.

Proof. Similar to the proof of Lemma 3.6, we need only to show the suffi-
ciency by induction on n. Lemma 3.1 says this is true for cases n = 1 or 2.

Assuming that the lemma holds for all m with 1 6 m < n and C is a[
n+1

2

]
-regular locally linear combination of {Ai}n

i=1, we have to show that C ∈
[A1, . . . , An]. We may regard n as an integer greater than 2, this assures that[

n+1
2

]
> 2.

Again, let k = max{dim[A1x, . . . , Anx] : x ∈ H}. It is clear from the proof
of Lemma 3.6 that if k = 1, n − 1, or n, then C ∈ [A1, . . . , An]. So we may
assume that 2 6 k 6 n − 2 and without loss of generality, there exists a vector
x◦ such that {Aix◦}k

i=1 is linearly independent. Thus, there are constants γi and
λij , i = 1, . . . , k, j = 1, . . . , n − k, such that Cx◦ is of the form as in (3.3) but
with |tj | 6 M for all j. By taking x = (x◦ x1 · · · x[n−1

2 ] ), one can get that,
for any ( x1 · · · x[n−1

2 ] ) ∈ H
([n−1

2 ]), there is a corresponding ( t1 · · · tn−k ) ∈
C(n−k) with |tj | 6 M such that (3.4) holds for every r = 1, . . . ,

[
n−1

2

]
. Let S

and Tj , j = 1, . . . , n − k, as that in (3.5); then C − S is a
[

n−1
2

]
-regular locally

linear combination of {Tj}n−k
j=1 . Note that

[
n−k+1

2

]
6

[
n−1

2

]
. Using the induction

assumption for n − k, we obtain that C − S is a linear combination of {Tj}n−k
j=1 ,

and hence, C is a linear combination of {Ai}n
i=1 as well.
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Corollary 3.9. C is a linear combination of {Ai}n
i=1 with n > 2 iff C is

a (n− 1)-regular locally linear combination of {Ai}n
i=1.

Remark 3.10. It is worthwhile to point out that Lemma 3.8 and Corol-
lary 3.9 hold true for linear maps on complex vector spaces, and Lemma 3.6 and
Corollary 3.7 hold true for both cases of real and complex vector spaces.

It is the time to prove Theorem 3.5.

Proof of Theorem 3.5. We may assume that both {Ai}n
i=1 and {Bi}n

i=1 are
linearly independent.

By Theorem 3.2 we may assume that n > 4. If Φ is
[

n
2

]
-positive, then by

Theorem 2.2, there exists a linearly independent set {Ci}n
i=1 in [A1, . . . , An] and

a k > 3 such that

Φ =
k∑

i=1

Ci(·)C∗i −
n∑

i=k+1

Ci(·)C∗i .

We need only to prove k = n. If, on the contrary, k 6 n − 1, since Φ is
[

n
2

]
-

positive, we must have from Theorem 2.5 that Cn is a
[

n
2

]
-regular locally linear

combination of {Ci}. Because k 6 n − 1 and
[

k+1
2

]
6

[
n
2

]
, by Lemma 3.8, we

obtain a contradiction that Cn is a linear combination of {Ci}k
i=1. Therefore,

k = n and Φ is completely positive by virtue of Theorem 1.1 (ii).

Remark 3.11. By a similar argument as that in [9], one can see that Theo-
rem 3.2 ( suitably stated) and Theorem 3.5 still hold for the elementary operators
on a prime C∗-algebra A with Soc(A)6= {0}, where Soc(A) is the sum of all mini-
mal left ideals in A.
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