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Abstract. R.T. Powers has constructed a family of unital endomorphisms
of the hyperfinite II1 factor R, each of which has range a subfactor of index 2,
and each of which has no non-trivial invariant subalgebras. A cocycle con-
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Keywords: Endomorphism, commutant index, cocycle conjugacy, hyperfi-
nite II1 factor.

AMS Subject Classification: Primary 46L35; Secondary 46L40.

1. INTRODUCTION

An endomorphism σ on a unital C∗-algebra is called a shift if σ commutes with
the adjoint operation and if the scalar multiples of the identity form the only
proper C∗-subalgebra globally invariant under σ. Recently a number of papers has
appeared which investigate the structure of the cocycle conjugacy classes of shifts.
Cocycle conjugacy for shifts is an equivalence relation which is closely related to
the notion of outer conjugacy for automorphisms of von Neumann algebras. In the
situation when σ is a shift on B(H), σ(B(H)) is a type I subfactor. The dimension
of its commutant acts as a deficiency index and is easily shown to be a cocycle
conjugacy invariant. It is perhaps surprising that the structure of the conjugacy
classes of shifts on B(H) has proven to be quite complicated [1], [2], [12], [13], [14].
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For other factors N , the Jones index [N : σ(N)] plays an analogous role as
a cocycle conjugacy invariant for σ. In this paper we study a family of shifts on
the hyperfinite II1 factor R which are called binary shifts. A binary shift σ on R

has minimal deficiency index [R : σ(R)] = 2. As we describe below, there is a one
to one correspondence between conjugacy classes of binary shifts and sequences,
or bitstreams, a0 a1 a2 . . . of 0’s and 1’s which lack a certain symmetry property.
The construction of these shifts is related to, and was originally motivated by, the
construction of sequences of projections used by V. Jones to produce subfactors
of index 4 cos2(π/n), ([10], see the remark at the end of the next section).

Recently H. Narnhofer, E. Størmer, and W. Thirring have used examples of
automorphisms related to binary shifts to demonstrate that the tensor product
formula for the Connes-Størmer entropy may fail, i.e., there is an automorphism
α on R for which h(α⊗α) > h(α) + h(α) ([15], Corollary 4.3). For related results
on entropy and endomorphisms of R, see [5], [6] and [21].

In the case of binary shifts there is another important numerical invariant
for cocycle conjugacy. This is the first k for which σk(R) has a non-trivial relative
commutant in R. We shall call this k the commutant index for the binary shift
σ. From [10], Corollary 2.2.4 it follows that k > 2, and, at the other extreme,
there are known examples of binary shifts for which σk(R)c ∩ R is trivial for all
positive integers k. These are the binary shifts whose corresponding bitstreams
satisfy a certain aperiodicity condition. It is also known that for k = 3, 4, . . .,
the commutant index is not a complete cocycle conjugacy invariant, i.e., for each
such k there are shifts which share this index but which are not cocycle conjugate
[3], [7], [8], (see also [4]). The situation when k is infinite is not well understood:
indeed, it is not known whether there is only one or perhaps even uncountably
many equivalence classes of shifts with infinite commutant index.

In this paper we focus on those binary shifts which have commutant index 2.
We show below in Corollary 4.10 that any two binary shifts sharing this index are
cocycle conjugate. The proof of this result relies upon the use of the notion of
congruence for Toeplitz matrices over finite fields [16], Chapter IV. A pair A,B,
of n by n matrices with coefficients in a field F are said to be congruent if there
is an invertible matrix U such that U tAU = B (U t means transpose of U). It is
easily seen that congruence is an equivalence relation. For each binary shift σ of
commutant index 2 we define a sequence of Toeplitz matrices associated with σ.
We shall use a congruence result relating sequences of a pair of binary shifts to
produce an operator Y in the unitary group U(R) which implements the cocycle
conjugacy between the shifts.



Cocycle conjugacy classes of Powers shifts 179

This paper is organized as follows. In Section 2 we define binary shifts
and introduce some of the known results which are helpful in proving our main
result. In Section 3 we define, for every binary shift of commutant index 2, a
sequence of Toeplitz matrices associated with the shift. We review some of the
known results about the equivalence relation of congruence among square matrices,
and prove some results about congruence between sequences of Toeplitz matrices
corresponding to a pair of binary shifts of commutant index 2. In Section 4 we
prove our main result, Corollary 4.10. The reader may prefer to skim the technical
results in Section 3 and then read Section 4 prior to a careful reading of Section 3.

2. BINARY SHIFTS ON THE HYPERFINITE II1 FACTOR

In this section we review some known results about the structure of binary shifts
which we shall require to prove our main result in Section 4. The main references
for these results are [17], [20], [19]. The reader is referred to the end of this section
for a specific example of a binary shift.

Let F be the field consisting of two elements {0, 1}. Select a sequence, or
bitstream, of elements (a) = {an : n = 0, 1, 2, . . .} in F with the property that a0 =
0. Accordingly, let V = {v0, v1, . . .} be a sequence of hermitian unitary elements
which satisfy the commutation relations vjvk = (−1)ak−j vkvj for j 6 k. The set V

generates the algebra consisting of linear combinations, over the field of complex
numbers C, of ordered words in the vj ’s, where by an ordered word we refer to
any element of the form v = vk0

0 vk1
1 · · · vkn

n , for some n, and for k0, k1, . . . , kn ∈ F .
Note that by using the commutation relations, the product of any pair of ordered
words can be rewritten as a scalar multiple of an ordered word. In fact, if v′ =
vj0
0 vj1

1 · · · vjn
n is another ordered word, vv′ = ±vk0+j0

0 vk1+j1
1 · · · vkn+jn

n . Notice also
that either v∗ = v or v∗ = −v.

There is a well-defined linear functional tr which is defined on the algebra
A of linear combinations of ordered words by tr(I) = 1, tr(v) = 0 for any non-
trivial ordered word in the generators vj . It is easy to verify that tr is tracial, i.e.,
tr(AB) = tr(BA) for any A,B ∈ A.

Theorem 2.1. ([17], Lemma 3.3; [20], Theorem 2.3) The functional tr is
a positive linear tracial functional on A. A is simple if and only if the sequence
. . . , a2, a1, a0, a1, a2, . . . is not periodic. Hence in the aperiodic case, the GNS
representation induced on A by tr is a faithful representation of A whose weak
closure is isomorphic to the hyperfinite II1 factor R.

From now on we shall consider only those bitstreams which are aperiodic
in the sense of the theorem. We shall also suppress the notation of the GNS
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representation induced by tr and identify the elements of A with their image in R

under the representation.
It is straightforward to show that there is a unital endomorphism σ defined

on ordered words by σ(v) = vk0
1 vk1

2 · · · vkn
n+1 and extended to all of A by linearity.

This endomorphism has a unique extension to R which we also denote by σ. We
refer to endomorphisms on R constructed in this way as binary shifts.

Theorem 2.2. ([17]) The mapping defined by σ(vj) = vj+1, j = 0, 1, 2, . . .

has a unique extension to a shift on R. The image σ(R) of R is a subfactor of R

of Jones subfactor index 2, i.e., [R : σ(R)] = 2.

Let An, n = 0, 1, 2, . . . be the subalgebra of R generated by v0, v1, . . . , vn.
It is easy to see that An is an algebra of dimension 2n+1 (the number of ordered
words in the generators v0 through vn). Let dn be the dimension of the center of
An. Then dn = 2cn for some cn ∈ {0, 1, 2, . . .} ([19], Theorem 5.4). In fact, the
algebra An decomposes as the direct sum of dn copies of 2mn by 2mn matrices,
where mn = 1

2 (n + 1− cn).

Definition 2.3. We refer to the sequence {c0, c1, . . .} as the center sequence
for the shift σ corresponding to the bitstream a0 a1 · · ·.

Theorem 2.4. (Unimodality condition) ([19], Theorem 5.4; cf., [9], Theo-
rem 15.6) The center sequence consists of a disjoint union of infinitely many finite
strings of the form 1 2 3 · · · m− 1 m m− 1 · · · 2 1 0. The value of m may vary in
the sequence.

Since the theorem implies that cn = 0 for infinitely many n, so that An is a
matrix algebra for infinitely many n, the following result is immediate.

Corollary 2.5. ([19], Corollary 5.5) The uniform closure of the algebra⋃
An is a UHF algebra of type 2∞.

Theorem 2.6. ([19], Lemma 6.2) Let n be an index for which cn = 0 and
such that, for some k, cn+j = j for 0 6 j 6 k. Then there is a word z =
vk0
0 vk1

1 · · · vkn+1
n+1 which generates the center of An+1. The word z has the property

that k0 = kn+1 = 1. Moreover, z is “flip-symmetric” in the sense that z =
v

kn+1
0 vkn

1 · · · vk0
n+1. For 1 6 j 6 k, the center of An+j is the algebra of dimension

2j generated by the words z, σ(z), . . . , σj−1(z).

Now suppose we have a pair β, σ of binary shifts on the hyperfinite II1 factor.
We say that β and σ are conjugate if there is an automorphism γ of R such that
σ = γ ◦β ◦γ−1. We say that β and σ are cocycle conjugate if there exists a unitary
element Y in U(R) such that Ad(Y ) ◦ σ and β are conjugate.
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Theorem 2.7. ([17], Theorem 3.6) A pair of binary shifts are conjugate if
and only if their corresponding sequences of hermitian unitary generators satisfy
the same commutation relations, i.e., β and σ are conjugate if and only if they
correspond to the same bitstream sequence in F .

As in the introduction we define the commutant index for a binary shift
to be the first integer k for which the subfactor σk(R) has a non-trivial relative
commutant index in R, or to be ∞ if no such k exists. (Note that σk(R) =
{vk, vk+1, . . .}′′.) It is straightforward to verify that the commutant index is a
cocycle conjugacy invariant ([17], Theorem 3.10).

Theorem 2.8. ([20], Corollary 2.4) A binary shift has finite commutant
index if and only if the bitstream a0 a1 · · · has the property that for some p the
subsequence ap ap+1 · · · of the bitstream is periodic.

We shall require the following result about binary shifts with finite commu-
tant index.

Theorem 2.9. ([20], Corollary 2.4) Suppose σ is a binary shift with fi-
nite commutant index k. Then the von Neumann algebra σk(R)c ∩ R is a two-
dimensional algebra generated by a word w in the hermitian unitary generators
{v0, v1, . . .} of σ. In fact, w has the form vr0

0 vr1
1 · · · vrm

m , for some m, where r0 = 1
(and where we assume that m has been chosen so rm = 1).

We finish this section by deriving a useful result about the center sequence
of a binary shift of commutant index 2.

Theorem 2.10. Let m be as above, and let M > m be such that CM = 0.
Then for n > M , cn = 0 if n is odd and cn = 1 if n is even.

Proof. Suppose there is a first integer n > M such that cn = 2. Then by
Theorem 2.6 there are words z and σ(z) in the center 3(An) of An such that
z = vk0

0 vk1
1 · · · vkn−1

n−1 and k0 = 1. Hence σ(z) is an ordered word which begins
with v1 and commutes with w. Since w commutes with σ(z) and also with σ2(R),
it follows that w also commutes with v1. But then w commutes with v1, v2, . . .,
so that w commutes with all of σ(R), a contradiction since σ(R)c ∩ R = CI, by
[10]. Hence by contradiction, cn 6 1. By Theorem 2.4, the center sequence must
therefore be of the form 1 0 1 0 · · · or 0 1 0 1 · · · for n > M . Since dim(An) = 2n+1,
An can be isomorphic to a matrix algebra only if n is odd, whence cn = log2(3(An))
can be 0 only if n is odd.



182 Geoffrey L. Price

Remark 2.11. In the sequel we shall have occasion to refer to the following
fixed binary shift. We shall also use the same notation introduced here. Consider
the bitstream 0 1 0 0 · · · and let τ be the corresponding shift on R. Then τ has
hermitian unitary generators which we shall write as u0, u1, . . .. The bitstream
dictates that a pair of generators uj , uk will anticommute if |j − k| = 1 and will
commute otherwise. It is easy to see that τ has commutant index 2, τ2(R)c ∩R =
{u0}′′. (It is also easy to see that this is the only binary shift with commutant
index 2, up to conjugacy, where m = 0 as in Theorem 2.9.) We shall refer to τ

as the Jones shift. This name stems from the observation that the sequence of
projections ej = 1

2 (I + uj) satisfies the identities ejek = ekej for |j − k| 6= 1, and
ejej±1ej = 1

2ej as in [10], Theorem 4.1.1.

3. TOEPLITZ MATRICES AND CONGRUENCE

In this section and throughout the remainder of the paper we shall assume that
τ is the Jones shift on the hyperfinite II1 factor R, with corresponding bitstream
0 1 0 0 0 0 · · ·, and with hermitian unitary operators {u0, u1, . . .} which generate R

and on which τ satisfies τ(uj) = uj+1. As discussed in the remark at the end of
the previous section, τ is a binary shift with commutant index 2.

From now on we use σ to denote a fixed binary shift on R with commutant
index 2, with bitstream a0 a1 a2 · · · distinct from 0 1 0 0 0 0 · · ·, with hermitian
unitary generators, {v0, v1, . . .} satisfying {v0, v1, . . .}′′ = R, and with word w =
vr0
0 vr1

1 · · · vrm
m (where we assume rm = 1) generating the relative commutant of

σ2(R) in R. As remarked at the end of the previous section, since a0 a1 a2 · · · is
distinct from 0 1 0 0 0 0 · · ·, m > 0.

R.T. Powers and the author have shown (unpublished) that there are count-
ably many non-conjugate binary shifts of commutant index 2 on R. In fact we
have shown that for any integer m > 2, there are precisely 2m−2 distinct vectors
of the form (r0, r1, . . . , rm) over F , with r0 = rm = 1, such that

(i) for some bitstream a0 a1 a2 · · · with corresponding shift σ and generators
{v0, v1, . . .}, the word vr0

0 · · · vrm
m generates σ2(R)c ∩R, and

(ii) the shifts of commutant index 2 induced by distinct vectors are non-
conjugate.

In this section we also introduce some notation and terminology in order to
establish some connections between a number of the results cited in the previous
section and of some results which pertain to sequences of Toeplitz matrices with
coefficients in the field F . We shall also briefly review some of the well-known
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results regarding the equivalence relation of congruence between a pair of square
matrices over F . In the following section these results will be used to establish
Theorem 4.9 showing that σ and τ are cocycle conjugate

For any non-negative integer n, let A be any n + 1 by n + 1 matrix over F .
It will be convenient for us always to label the columns of A so that the initial
column of A is the 0th column and the last is the nth column. Similarly for the
rows of A. Let Fn be the vector space of dimension n + 1 consisting of column
vectors of the form x = (x0, x1, . . . , xn)t (where t denotes transpose). We view A

as acting as a linear transformation on the vector space Fn via the mapping by
left multiplication by A, i.e., x → Ax.

For j = 0, 1, . . . , n, let ej be the column vector which has a 1 in the jth
position and 0’s elsewhere. If n < s it will often be convenient to view Fn as a
subspace of the vector space F s, and therefore ej may be viewed simultaneously
as an element of both Fn and F s.

We use F∞ to denote the infinite-dimensional vector space consisting of
infinitely long column vectors (x0, x1, . . .)t over F which are finitely non-zero. In
the obvious way we may view Fn as a subspace of F∞ for any n ∈ N. It will
occasionally be useful to speak of linear transformations on F∞. In particular, we
use S to denote the shift which satisfies Sej = ej+1 for all non-negative j, and
which extends by linearity to all of F∞.

For n∈N, let Fn
0 be n-dimensional subspace of Fn spanned by {e1, e2, . . . , en},

and let F∞
0 be the span in F∞ of {e1, e2, . . .}.

Next we introduce notation to be used for elementary row and column op-
erations. Let i, j be distinct non-negative integers. For any n ∈ N satisfying
n > max{i, j} the notation Eij will be used to denote the elementary transforma-
tion, or elementary operator, which has 1’s along the main diagonal, a 1 in the
(i, j) position, and 0’s elsewhere. It is straightforward to verify that AEij is the
matrix obtained from A by adding the ith column of A to the jth column of A.
Similarly EijA is the matrix obtained by adding the jth row of A to the ith row
of A. Note that E−1

ij = Eij and that Et
ij = Eij .

Definition 3.1. (cf. [16], Chapter IV) Let n be a non-negative integer.
We say that a pair of n + 1 by n + 1 matrices A and B over F are congruent if
there exists an invertible n + 1 by n + 1 matrix U with coefficients in F such that
U tAU = B.

Note that if A is symmetric, i.e., At = A, then so is any matrix congruent
to A. By direct calculation we obtain the following useful lemma.
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Lemma 3.2. Suppose A is a symmetric matrix over F with 0 main diagonal.
If E is any elementary transformation, EtAE is a symmetric matrix with 0 main
diagonal.

In general it is an open question to determine whether a pair of matrices A

and B are congruent. For certain families of matrices, however, the answer is very
straightforward. The following theorem is adequate for our purposes. First we
need a definition.

Definition 3.3. For n ∈ N let Jn be the n + 1 by n + 1 triple diagonal
matrix with 1’s along the secondary diagonals and 0’s on the main diagonal. Let

J be the 2 by 2 matrix
[

0 1
1 0

]
= J1

Lemma 3.4. Jn has rank n if n is even and rank n + 1 if n is odd.

Proof. Clear.

Theorem 3.5. Let A be a symmetric matrix over F with 0’s along the main
diagonal. Then A has even rank. If rank(A) = 2q then A is congruent, via a
product of elementary transformations, to the matrix consisting of q copies of J

along the main diagonal and 0’s elsewhere. If B is also symmetric with 0 diagonal,
A and B are congruent if and only if they have the same rank.

Proof. From the proof of [16], Theorem IV.6, A is congruent via a product
of elementary matrices to a matrix with the desired form. It is obvious that
rank is preserved under congruence, so rank(A) = 2q. The remaining claim is a
restatement of [16], Theorem IV.11.

For n a non-negative integer let An be the n + 1 by n + 1 Toeplitz matrix
associated with the bitstream a0 a1 · · · and defined by

An =


a0 a1 a2 a3 · · · an

a1 a0 a1 a2 · · · an−1

a2 a1 a0 a1 · · · an−2

· · · · · · · ·
an an−1 an−2 · · · · a0

 .

Clearly An is symmetric and since a0 = 0, An has 0 main diagonal. Note that
Jn is the Toeplitz matrix corresponding to the bitstream 0 1 0 0 0 · · ·. Using the
commutation relations on the generators vj , j = 0, 1, 2, . . ., the following lemma is
easily verified.
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Lemma 3.6. An ordered word z = vk0
0 vk1

1 · · · vkn
n , is in the center of the

finite-dimensional von Neumann algebra An if and only if the vector (k0, . . . , kn)t

is in the kernel of the matrix An.

As a consequence of the lemma we see that the entries cn of the center
sequence for the shift σ coincide with the nullity of the matrix An.

Lemma 3.7. Let n > m and let w = vr0
0 vr1

1 · · · vrm
m , be the ordered word gen-

erating σ2(R)c ∩ R. Then if r = (r0, r1, . . . , rm, 0, . . . , 0)t, Anr = (∗, 1, 0, . . . , 0)t,
where ∗ may be either 0 or 1.

Proof. Since w commutes with v2, v3, . . ., one sees as in the previous lemma
that the dot products (modulo 2) of all but the first 2 rows of An with r is 0. On
the other hand, w anticommutes with v1: for if w were to commute with v1, w

would commute with σ(R) = {v1, v2, . . .}′′, a contradiction, since σ(R)c ∩R = CI

([10]). Since w anticommutes with v1 the corresponding dot product (modulo 2)
of the second row of An with r must be 1.

Proposition 3.8. For n > M (where M is as in Theorem 2.10) the matrices
An and Jn are congruent.

Proof. Both matrices are symmetric with 0 diagonal. By Theorem 2.10, cn

is 0 for n odd and 1 for n even. Hence An has rank n+1 for n odd and rank n for
n even. By Lemma 3.4, so does Jn, so by the preceding theorem An and Jn are
congruent.

We need to be more explicit about the type of elementary tranformations
used to realize the congruence just established. This is the goal of the next two
results.

Theorem 3.9. Let n be (an odd) positive integer for which An has full rank.
Then An is congruent to Jn via a product E of elementary operations Eij satisfying
i 6= 0 and j 6= 0.

Proof. By Proposition 3.8, An and Jn are congruent. Since An has full rank,
one of the entries ai, 1 6 i 6 n, must be non-zero. If a1 = 0 then replace An with
the congruent matrix E1iAnEi1 = Et

i1AnEi1, to obtain a congruent matrix with
1’s in the (0,1) and (1,0) positions. In order to eliminate any non-zero entries in the
(0, j) and (j, 0) positions (j > 1) multiply this matrix on the right by elementary
matrices of the form E1j and on the left by their transposes. We obtain a matrix
An1 congruent to An with initial (0th) row and column all 0’s except in the (1,0)
and (0,1) positions. If An1 has no 1’s in row 1 other than the (1,0) entry then
relabel An1 as An2 and move on to row 2 and column 2. Otherwise use elementary
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transformations of the form Ej2 or E2j with 3 6 j 6 n to obtain a matrix An2

congruent to An and of the form

0 1 0 0 0
1 0 1 0 0
0 1
0 0

∗
0 0


.

Hence An2 either has the form above or

0 1 0 0
1 0 0 0
0 0
0 0

∗
0 0


.

Continuing in this fashion, and using the fact that An has full rank, it is clear
that we can use products of elementary matrices of the required form to obtain a
matrix Ann congruent to An and having the form

Jk1 0
Jk2

. . .
0 Jkm

 .

Since n + 1 = rank(An) =
m∑

i=1

rank(Jki
), each of the matrices Jki

must have maxi-

mal rank. In particular, Jki has an even number of rows and columns. Since such
a Jki

is congruent to a matrix with J ’s along the main diagonal and 0’s elsewhere,
we may alter Ann using elementary column transformations of the prescribed form
to obtain a matrix Bn congruent to Ann (and hence, to An) and of the form

Jk1 0
J

J

J
. . .

0 J


.

Let R = Ek1+2,k1Ek1+4,k1+2 · · ·En,n−2. It is easy to check that RtBnR = Jn.
Hence we have shown that An is congruent to Jn using products of elementary
column transformations of the prescribed form.
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Theorem 3.10. Let p ∈ N be even, p > 2, and such that Ap−1 has full
rank p. Then there is a product Wp of elementary transformations Eij, i, j ∈
{1, 2, . . . , p}, i 6= p, such that W t

pApWp = Jp.

Proof. Since rank(Ap) = rank(Ap−1) = p, there is a single vector z =
(z0, . . . , zp)t spanning the kernel of Ap. By Theorem 2.6, z0 = 1 = zp. Hence
if E1 = Ez1

1pEz2
2p · · ·E

zp−1
p−1,p,

Et
1ApE1 =



a0 a1 a2 a3 · · · ap−1 a0

a1 a0 a1 a2 · · · ap−2 a1

a2 a1 a0 a1 · · · ap−3 a2

· · · · · · · · ·
ap−1 ap−2 ap−3 · · · · a0 ap−1

a0 a1 a2 ap−1 0


.

By the previous result there is a product E of elementary tranformations Eij (with
1 6 i, j 6 p− 1) such that EtAp−1E = Jp−1. Then

EtEt
1ApE1E =



0
1

Jp−1 0
·
·
·

0 1 0 0 · · · 0 0


.

Now letting E2 = E2pE4p · · ·Ep−2,p it is straightforward to show that

Et
2EtEt

1ApE1EE2 = Jp.

Set Wp = E1EE2.

Remark 3.11. For the remainder of this section and in the next section,
we choose a fixed even integer p > M , where M is as in Theorem 2.10. By
Theorem 2.10 and Lemma 3.6, for n > p, An has full rank n + 1 if n is odd and
rank n if n is even.

Theorem 3.12. Let M and p be as above. Then for each n > p, there is a
product Wn of elementary transformations such that:

(i) W t
nAnWn = Jn;

(ii) for any j 6 n, W−1
n+2ej = W−1

n ej and Wn+2ej = Wnej;
(iii) W−1

n e0 = e0 = Wne0;
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(iv) if 1 6 j 6 n, W−1
n ej and Wnej lie in the finite linear span of the vectors

{e1, e2, . . .};

(v) if 1 6 j 6 p, W−1
n ej and Wnej lie in the linear span of the vectors

{e1, . . . , ep};

(vi) if j > p, then both W−1
n ej and Wnej lie in the linear span of the vectors

{e1, . . . , ej}.

Proof. As above, let w = vr0
0 vr1

1 · · · vrm
m be the ordered word generating

σ2(R)c ∩ R. By Lemma 3.7, An(r0, r1, . . . , rm, 0, . . . , 0)t = (c, 1, 0, . . . , 0)t, (c is

either 0 or 1). Equivalently, the dot product in F of the row (a1a0a1a2 · · · an−1)

of An with (r0, r1, . . . , rm, 0, . . . , 0)t is 1, and the dot products of the subsequent

rows with this vector are 0. Enumerating the columns of An as c0, c1, . . . , cn, it is

clear from the dot product relations above that the linear combination rmcn−m +

rm−1cn−m+1 + · · ·+ r0cn is the column vector (0, 0, . . . , 0, 1, c)t. Let

En = Erm
n−m,nE

rm−1
n−m+1,n · · ·E

r1
n−1,n.

Then

AnEn =



0
0
...
0
1

∗ · · · · · · · · · ∗ c


An−1

and therefore

Et
nAnEn =



0
0
...
0
1

0 0 · · · · · · · · · 0 1 0


.

An−1

We continue in this fashion, constructing products En−1, . . . , Ep+1 of elementary
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column matrices such that

Et
p+1Et

p+2 · · · Et
nAnEn · · · Ep+2Ep+1 =

... 0 0 · · · · · · · · · · · · · · · · · · 0

...
...

...

Ap

... 0 0 · · · · · · · · · · · · · · · · · · 0

... 1 0 · · · · · · · · · · · · · · · · · · 0
− − − −
0 · · · 0 1 0 1 0 0 · · · · · · · · · · · · 0
0 · · · 0 0 1 0 1 0 · · · · · · · · · · · · 0
0 · · · 0 0 0 1 0 1 0 · · · · · · · · · 0

· · ·
· · ·

· · ·
0 0 0 0 · · · · · · · · · · · · · · · 0 1 0 1
0 0 0 0 0 0 1 0



.

Call this matrix Bn. Next we consider the full rank matrix Ap−1 embedded in
Ap in the corner of the matrix above. Since rank(Ap−1) = rank(Ap) = p, we may
apply Theorem 3.10 to find Wp such that W t

pApWp = Jp. Also by the theorem, we
may assume that Wp is a product of elementary transformations Eij with 1 6 i,
j 6 p, and i 6= p. Since i 6= p, it follows that W t

pBnWp = Jp. This proves (i).
Note that Estej = ej +δtjes. By construction Wn is a product of elementary

transformations of the form Est, where neither s nor t is 0: properties (iii) and
(iv) follow from this observation.

Now suppose 1 6 j 6 p. Clearly W−1
p ej and Wpej are in the span of

{e1, . . . , ep}. But for n > p, Wn = EnEn−1 · · · Ep+1Wp, where Ek is a product of
elementary transformations of the form Eik, for some i ∈ {1, 2, . . . , k − 1}. Since
Eker = er whenever k > r, it is clear that Wnej = Wpej . Similarly, W−1

n ej =
W−1

p E−1
p+1 · · · E−1

n ej = W−1
p ep, giving (v).

If j > p, Wnej = EnEn−1 · · · Ej+1Wjej . Arguing as above it is clear that Wjej

lies in the span of {e1, . . . , ej} and that such a vector is fixed by Ej+1, . . . , En. Hence
Wnej = Wjej . Similarly, W−1

n ej = W−1
j E−1

j+1 · · · E−1
n ej = W−1

j ej . Hence we have
established condition (vi) and completed the verification of condition (ii).

Notation 3.13. As an application of the preceding result it makes sense to
speak of a transformation W on the linear space spanned by {e0, e1, . . .} which is
defined by Wej = lim Wnej .
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Using the proof of the preceding theorem we give some more detailed infor-
mation about the vectors Wej for j > p. For n > j,

Wnej = EnEn−1 · · · Ep+1Wpej = EnEn−1 · · · Ep+1ej = En · · · Ej+1Ejej = Ejej .

Recalling from above that Ej = Erm
j−m,jE

rm−1
j−m+1,j · · ·E

r1
j−1,j , we obtain Wej =

Ejej = (0, . . . , 0, rm, rm−1, . . . , r1, 1, 0, . . . , 0)t = rmej−m + rm−1ej−m+1 + · · · +
r1ej−1 + ej . This establishes the following result.

Corollary 3.14. Let p be as above. Let S be the shift defined on F∞ by
Sek = ek+1 for all k = 0, 1, 2, . . .. Then for any j > p, Wej+1 = SWej, i.e.,
WS = SW on the subspace of F∞ spanned by {ep+1, ep+2, . . .}.

4. QUADRATIC FORMS AND COCYCLE CONJUGACY

In this section we show how to use the results of the previous section to establish the
result that any binary shift with relative commutant index 2 is cocycle conjugate
to the Jones shift. As above, let τ be the Jones shift and let σ be any other binary
shift having relative commutant index 2.

Recall that any symmetric matrix A over a field gives rise to a quadratic
form on the vector space of the corresponding dimension via the inner product
(x, y) = xtAy. In particular, for n ∈ N we have a quadratic form corresponding
to the matrix An. It is easy to see that

(4.1) et
jAnek = ak−j ,

for j 6 k 6 n. This equation suggests that it is useful to construct a correspon-
dence between the generators vj and the standard basis vectors ej . Indeed let Wσ

be the subgroup of the unitary group U(R) generated by the words in the genera-
tors vj , let W̃σ be the quotient group Wσ/{±1}, and define a map λ : W̃σ → F∞

by λ(vk0
0 vk1

1 · · · vkn
n ) =

n∑
i=0

kiei = (k0, . . . , kn, 0, 0, . . . , )t. It is easy to check that λ

is an isomorphism. The result below follows immediately from Equation (4.1) and
the bilinearity of quadratic forms.

Lemma 4.1. A pair of words w = vk0
0 vk1

1 · · · vkn
n , w′ = vj0

0 vj1
1 · · · vjn

n commute
(respectively, anticommute) if and only if λ(w)tAnλ(w′) has the value 0 (respec-
tively, 1).

Next we show how to construct a sequence {w0, w1, . . .} of words in the
generators u0, u1, . . . which have the same commutation relations as the generators
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of the binary shift σ. Suppose p ∈ N is as in Theorem 3.12. Suppose j 6 k are

non-negative integers. From (4.1) and Theorem 3.12, for any n > k,

aj−k = λ(vj)tAnλ(vk) = et
jAnek = et

j(W
t
n)−1JnW−1

n ek

= (W−1
n ej)tJnW−1

n ek = (W−1ej)tJn(W−1ek).

Define a mapping χ from vectors in F∞ to words in the generators of the Jones

shift, by setting χ
( n∑

i=0

kiei

)
= w = uk0

0 uk1
1 · · ·ukn

n . Define wj = χ(W−1ej),

j = 0, 1, 2, . . .. From the preceding lemma and calculation, the words wj sat-
isfy the same pairwise commutation relations as do the words vj . Also since Wn

is invertible for any n > p, it follows from parts (iii) and (vi) of Theorem 3.12

that {W−1e0,W
−1e1, . . . ,W

−1en} is a basis for the vector space spanned by

{e0, e1, e2, . . . , en}. Hence the von Neumann algebra {w0, . . . , wn}′′ coincides with

{u0, . . . , un}′′. Since W−1e0 = e0 from Theorem 3.12 (iii), w0 = u0. Also note

from the same corollary that for j > 1, wj is a word in the generators u1, u2, . . ..
Hence we have shown the following.

Lemma 4.2. The words wj = χ(W−1ej), j = 0, 1, 2, . . ., satisfy the same

pairwise commutation relations as do the words vj. Moreover the sequence
{w0, w1, . . .} generates R as a von Neumann algebra, i.e., {w0, w1, . . .}′′ = R.

Also w0 = u0 and for j > 1, wj ∈ {u1, . . .}′′ = τ(R).

As an important step in showing that the shifts σ and τ are cocycle conjugate,
we will show first that there exists a binary shift on R which takes wj , j = 0, 1, 2, . . .

to a scalar multiple of wj+1, and that this shift is cocycle conjugate to τ . The
linear transformation defined below plays a crucial role in this step.

Definition 4.3. Let ϕ be the linear transformation defined on the vector

space F∞
0 by ϕ(ej) = W−1SWS−1ej .

Lemma 4.4. ϕ is an invertible linear transformation on F∞
0 .

Proof. First it must be checked that ϕ actually maps F∞
0 into itself. ϕ(e1) =

W−1SWS−1(e1) = W−1SWe0 = (by Theorem 3.12 (iii)) W−1Se0 = W−1e1

which by Theorem 3.12 lies in F p
0 . For j > 1, ϕ(ej+1) = W−1SWej ∈ W−1(F∞

0 ) ⊂
F∞

0 , by Theorem 3.12 (iv). Hence ϕ(F∞
0 ) ⊂ F∞

0 . It is clear that ϕ is injective.

Surjectivity follows from parts (v) and (vi) of Theorem 3.12.

The following result is just a restatement of Corollary 3.14.
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Lemma 4.5. ϕ(ej) = ej for j > p.

Lemma 4.6. For any j, k > 1 and for n exceeding j, k, p, ϕ(ej)tJnϕ(ek) is 1
if |j − k| = 1, and is 0 otherwise.

Proof. By Theorem 3.12, for n > max{j, k, p}, ϕ(ej) and ϕ(ek) lie in the
linear space spanned by {e1, . . . , en−1}. Then

ϕ(ej)tJnϕ(ek) = (W−1SWS−1ej)tJn(W−1SWS−1ek)

= (W−1
n SWnS−1ej)tJn(W−1

n SWnS−1ek)

= (SWnej−1)t(W−1
n )tJn(W−1

n )(SWnek−1)

= (SWnej−1)tAn(SWnek−1).

It is easy to check, using the symmetry of An, (Sx)tAnSy = xtAny for any vectors
in the span of {e0, . . . , en−1}, so

ϕ(ej)tJnϕ(ek) = (Wnej−1)tAn(Wnek−1) = et
j−1(W

t
nAnWn)ek−1

= et
j−1Jnek−1 = et

jJnek.

It is clear from direct calculation that et
jJnek is 1 for |j − k| and 0 otherwise, and

we are done.

The mapping ϕ permits us to define an isomorphism on the subgroup τ(Wτ )
of U(R) of the words generated by {u1, u2, . . .}. For j = 1, 2, . . ., set yj = χ(ϕ(ej)).
Multiplying yj by

√
−1 if necessary, we may assume that the yj are hermitian

unitary elements of τ(Wτ ). Define a mapping π from ordered words u = uk1
1 · · ·ukn

n

in τ(Wτ ) to τ(Wτ ) by π(u) = yk1
1 · · · ykn

n . By the preceding lemma the yj ’s satisfy
the same commutation relations as do the uj ’s, and so it is not difficult to show that
π extends to a ∗-homomorphism on all of τ(Wτ ). Moreover, since ϕ is invertible
on F∞

0 , π is actually a ∗-isomorphism of this group.

Theorem 4.7. (cf. [19], Theorem 3.7) There is a unitary element Y ∈
τ(U(R)) such that, for all words z in τ(Wτ ), Ad(Y )(z) = ±π(z).

Proof. From the preceding paragraph π is a ∗-isomorphism on the group
τ(Wτ ) mapping words in the uj ’s to scalar multiples of words. Fix n > p and
even. By Lemma 4.5, π fixes uj for j > p, so π gives rise to an automorphism
of the finite-dimensional von Neumann subalgebra Bn = {u1, . . . , un}′′ on R. By
Theorem 2.10, Aq = {u0, . . . , uq}′′ is a type I factor for q sufficiently large and
odd, so Bn = τ(An−1) is a type I factor. Thus there exists a unitary element
Yn ∈ Bn such that π|Bn = Ad(Yn). Similarly, there exists a unitary element
Yn+2 ∈ Bn+2 such that π|Bn+2 = Ad(Yn+2). Then Y ∗

n Yn+2 ∈ Bc
n ∩ Bn+2. It is
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not difficult to show that this algebra is generated by the words u1u3 · · ·un−1un+1

and un+2. Note, however, that Yn+2 and Yn both commute with un+2 (since
Ad(Yn+2)(un+2) = un+2 and since Yn ∈ Bn). Hence Y ∗

n Yn+2 must be of the
form aI + bun+2, for some a, b ∈ C. Since Y ∗

n Yn+2 is unitary, |a|2 + |b|2 = 1 and
Re(ab̄) = 0. On the other hand,

un+1 = Ad(Yn+2)(un+1) = Yn(a + bun+2)un+1(ā + b̄un+2)Y ∗
n

= Ynun+1(a− bun+2)(ā + b̄un+2)Y ∗
n

= (|a|2 − |b|2)Ynun+1Y
∗
n + 2 Im(ab̄)Ynun+1un+2Y

∗
n ,

hence 0 = Im(ab̄) = Re(ab̄). If b = 0 then Yn is a scalar multiple of Yn+2. Then
Ad(Yn)|Bn+2 = Ad(Yn+2)|Bn+2 = π|Bn+2. Moreover, since Yn commutes with
un+3, un+4, . . . , we have in fact Ad(Yn) = π on all of R, so we may take Y = Yn. If
Yn = bYn+2un+2, then Ad(Yn)(un+1) = −Ad(Yn+2)(un+1) = −un+1 = −π(un+1),
and Ad(Yn)(un+j) = un+j = π(un+j) for j > 2. Hence Ad(Yn)(z) = π(z) for all
words z = U(Q) with n + 1 6∈ Q, and Ad(Yn)(z) = −π(z) if n + 1 ∈ Q, and once
again we may take Y = Yn.

Remark 4.8. See [19], Theorem 3.7 for a more explicit characterization of
the operator Y .

Theorem 4.9. Let Y be as in the previous theorem. The endomorphism
Ad(Y ) ◦ τ is a binary shift on R which is conjugate to σ. Hence σ and τ are
cocycle conjugate.

Proof. By Theorem 3.12, w0 = u0 = χ(W−1e0), and for j ∈ N, wj is a scalar
multiple of the word χ(W−1ej) in the generators ui, i ∈ N. The wj ’s satisfy the
same commutation relations wjwk = (−1)ak−j wkwj , as do the vj ’s.

We prove by induction that Ad(Y ) ◦ τ(wj) = ±wj+1. First,

Ad(Y ) ◦ τ(w0) = Y ∗u1Y = ±π(u1) = ±χ(ϕ(e1)) = ±χ(W−1SWS−1e1)

= ±χ(W−1SWe0) = ±χ(W−1Se0) = ±χ(W−1e1) = ±w1.

Suppose Ad(Y ) ◦ τ((wj) = ±wj+1 for 0 6 j 6 k − 1. Since τ ◦ χ = χ ◦ S,

Ad(Y ) ◦ τ(wk) = ±Ad(Y )(τ(χ(W−1ek))) = ±Ad(Y )(χ(SW−1ek))

= ±π(χ(SW−1ek)).

Since π ◦ χ|F∞
0 = ±χ ◦ ϕ|F∞

0 ,

Ad(Y ) ◦ τ(wk) = ±χ(ϕ(SW−1ek) = ±χ(W−1SWS−1(SW−1ek))

= ±χ(W−1ek+1) = ±wk+1.
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Hence the induction holds. By Theorem 3.12 and the paragraph preceding
Theorem 4.7, R = {w0, w1, . . .}′′, so Ad(Y ) ◦ τ is a binary shift. Since the gener-
ators ±wj of Ad(Y ) ◦ τ satisfy the same commutation relations as the generators
vj do for σ, Ad(Y ) ◦ τ is conjugate to σ by [17], Theorem 3.6.

Since cocycle conjugacy is an equivalence relation we have the following.

Corollary 4.10. If σ, ρ are binary shifts on R, each of which has commu-
tant index 2, then σ and ρ are cocycle conjugate.

Remark 4.11. As mentioned in the introduction, the commutant index of a
binary shift is a cocycle conjugacy invariant. In [19], R.T. Powers and the author
conjectured that a pair of binary shifts with finite commutant index are cocycle
conjugate if and only if

(i) they have the same commutant index, and
(ii) their center sequences coincide for all but finitely many entries (see Defi-

nition 2.3).
The second condition is automatically satisfied in commutant index 2 case

(Theorem 2.10).
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