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Abstract. In this note we study spectral properties of a block operator

matrix eA (see (1.1) below), where A and −D are m-accretive, and B, D

are bounded operators. Under an additional assumption, the spectrum of eA
consists of one part in the extended right and one part in the left half plane,
and the corresponding spectral subspaces allow representations by means of

angular operators. If the part of the spectrum of eA in the right half plane
is discrete, a half range completeness statement follows. As an essential tool
the quadratic numerical range of a block operator matrix is introduced.
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1. INTRODUCTION

In the paper [1] selfadjoint operators Ã in a Hilbert space H̃ = H× Ĥ, given by a
block operator matrix

(1.1) Ã =
(

A B

B∗ D

)
,

were considered under the assumption that the spectra of A and D are separated
and B,D are bounded operators. In [2] and in [6] these investigations were ex-
tended to the case that all entries are unbounded.

In this note the results of [1] are generalized to a nonselfadjoint situation. We
consider an operator Ã given by a block operator matrix (1.1) such that A and −D
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are m-sectorial (see [4]) and their numerical ranges have a positive distance from
the imaginary axis, and B is bounded. We prove in Section 3 that the imaginary
axis belongs to the resolvent set ρ(Ã). If the spaces H, Ĥ are not trivial, then the
spectrum σ(Ã) consists of some part σ−(Ã) in the left half plane and another part
σ+(Ã) in the right half plane (if A or D are unbounded, then σ+(Ã) or σ−(Ã)
may be empty, which implies that ∞ belongs to the extended spectrum of Ã).

As the main result of this note, it is shown in Section 4 that, if the operator
D is bounded, then the spectral subspaces L+ and L− corresponding to σ+(Ã)
and σ−(Ã) are supported on H and Ĥ, respectively; that is, e.g., L+ admits a
representation

L+ =
{(

x

K+x

)
: x ∈ H

}
with some bounded linear operator K+ from H into Ĥ. The invariance of L+ and
L− under Ã implies that K+ and the corresponding operator K− for L− satisfy
certain Riccati equations.

As in [1], this result is used in Section 5 in order to prove a half range
completeness statement: If σ+(Ã) is discrete, under certain assumptions, the first
components of a system of root vectors of Ã corresponding to σ+(Ã) (“half ” of
the spectrum of Ã) form a complete system in H. An example of an eigenvalue
problem of Sturm-Liouville type where this result can be applied is given at the
end of Section 5.

In order to locate the spectrum σ(Ã) of the block operator matrix Ã in
Section 3, we introduce the notion of the quadratic numerical range of a general
block operator matrix

Ã =
(

A B

C D

)
,

with closed operators A, D and bounded operators B, C in Section 2. This
quadratic numerical range is the set of all eigenvalues of the matrices (Ax,x)

‖x‖2
(Bx̂,x)
‖x̂‖‖x‖

(Cx,x̂)
‖x‖‖x̂‖

(Dx̂,x̂)
‖x̂‖2

 ,

where x ∈ D(A), x̂ ∈ D(D), x, x̂ 6= 0. It has some properties analogous to those of
the numerical range. We mention that the quadratic numerical range of a block
operator matrix Ã turns out to be especially useful in the particular case of a
selfadjoint operator Ã. This question will be considered elsewhere.
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2. QUADRATIC NUMERICAL RANGE

Let H and Ĥ be Hilbert spaces. We consider an operator Ã in the Hilbert space
H̃ = H× Ĥ given by a block operator matrix

(2.1) Ã =
(

A B

C D

)
,

where A and D are densely defined closed operators in H and Ĥ, respectively, and
the operators B ∈ L(Ĥ,H), C ∈ L(H, Ĥ) are bounded.

For the operator Ã we call the set

(2.2)

W 2

Ã
:=

{
λ ∈ C : det

( (Ax,x)
‖x‖2 − λ (Bx̂,x)

‖x̂‖‖x‖

(Cx,x̂)
‖x‖‖x̂‖

(Dx̂,x̂)
‖x̂‖2 − λ

)
= 0,

x ∈ D(A), x̂ ∈ D(D), x, x̂ 6= 0

}

the quadratic numerical range (with respect to the block operator representation
(2.1)).

Thus, for each element x̃ = (x, x̂)t ∈ H̃ such that x ∈ D(A), x̂ ∈ D(D),
x, x̂ 6= 0, two complex numbers λ1, λ2 are defined as the solutions of the quadratic
equation in (2.2), which are the eigenvalues of the matrix (Ax,x)

‖x‖2
(Bx̂,x)
‖x̂‖‖x‖

(Cx,x̂)
‖x‖‖x̂‖

(Dx̂,x̂)
‖x̂‖2

 ,

and W 2

Ã
is the set of all these solutions or of all these eigenvalues.

It is easy to see that, for a bounded operator Ã, the quadratic numerical
range is a bounded subset of C. It is also not difficult to see that the quadratic
numerical range consists of at most two connected sets. If B = 0 or C = 0, then
W 2

Ã
= WA ∪WD, where for a closed operator T in a Hilbert space, WT denotes

its numerical range,

WT :=
{

(Tx, x)
‖x‖2

: x ∈ D(T ), x 6= 0
}

.

Let r(Ã) be the set of points of regular type of Ã, that is, λ ∈ r(Ã) is
equivalent to

‖(Ã− λ)x̃‖ > γλ‖x̃‖, x̃ ∈ D(Ã),

for some γλ > 0.
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Theorem 2.1. For the quadratic numerical range W 2

Ã
the following inclu-

sions hold:
σp(Ã) ⊂ W 2

Ã
, C \ r(Ã) ⊂ W 2

Ã
.

Proof. Let λ ∈ σp(Ã). Then there exists a nontrivial vector (x, x̂)t ∈ H̃, x ∈
D(A), x̂ ∈ D(D), such that

(2.3)
(A− λ)x + Bx̂ = 0,

Cx + (D − λ)x̂ = 0.

Suppose first that x, x̂ 6= 0. Taking the inner product of the first (second, respec-
tively) equation in (2.3) with x (x̂, respectively), we find that the system(

(Ax, x)− λ‖x‖2 (Bx̂, x)

(Cx, x̂) (Dx̂, x̂)− λ‖x̂‖2

)(
ζ1

ζ2

)
= 0

has the solution ζ1 = 1, ζ2 = 1, hence

det

(
(Ax, x)− λ‖x‖2 (Bx̂, x)

(Cx, x̂) (Dx̂, x̂)− λ‖x̂‖2

)
= 0.

But this equation is equivalent to the equation in the definition (2.2) of W 2

Ã
, and

hence λ ∈ W 2

Ã
. Now let x̂ = 0. Then (A− λ)x = 0, Cx = 0, and hence

det

 (Ax,x)
‖x‖2 − λ (Bx̂′,x)

‖x̂′‖‖x‖

(Cx,x̂′)
‖x‖‖x̂′‖

(Dx̂′,x̂′)
‖x̂′‖2 − λ

 = det

 0 (Bx̂′,x)
‖x̂′‖‖x‖

0 (Dx̂′,x̂′)
‖x̂′‖2 − λ

 = 0

for all x̂′ ∈ D(D), x̂′ 6= 0, which implies λ ∈ W 2

Ã
. The case x = 0 is analogous.

More generally, if λ0 6∈ r(Ã), then there exists a sequence (x̃n)∞1 ⊂ H̃,
x̃n = (xn, x̂n)t, xn ∈ D(A), x̂n ∈ D(D), ‖x̃n‖ = 1, such that ‖(Ã − λ0)x̃n‖ → 0
for n →∞, that is,

(A− λ0)xn + Bx̂n = fn,

Cxn + (D − λ0)x̂n = f̂n,

where (fn)∞1 ⊂ H, (f̂n)∞1 ⊂ Ĥ, ‖fn‖ → 0, ‖f̂n‖ → 0 for n → ∞. Suppose first
that lim inf

n→∞
‖xn‖ > 0, lim inf

n→∞
‖x̂n‖ > 0. Without loss of generality we can assume

‖xn‖ > 0, ‖x̂n‖ > 0 for n = 1, 2, . . .. Then

(Axn, xn)
‖xn‖2

− λ0 +
(Bx̂n, xn)
‖xn‖2

=
(fn, xn)
‖xn‖2

,

(Cxn, x̂n)
‖x̂n‖2

+
(Dx̂n, x̂n)
‖x̂n‖2

− λ0 =
(f̂n, x̂n)
‖x̂n‖2

.
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We introduce the polynomials

dn(λ) :=det

 (Axn,xn)
‖xn‖2 − λ (Bx̂n,xn)

‖xn‖2

(Cxn,x̂n)
‖x̂n‖2

(Dx̂n,x̂n)
‖x̂n‖2 − λ

=det

 (Axn,xn)
‖xn‖2 − λ (Bx̂n,xn)

‖x̂n‖‖xn‖

(Cxn,x̂n)
‖xn‖‖x̂n‖

(Dx̂n,x̂n)
‖x̂n‖2 − λ

 .

Then fn, f̂n → 0 for n →∞ implies

dn(λ0) = det

 (fn,xn)
‖xn‖2

(Bx̂n,xn)
‖xn‖2

(f̂n,x̂n)
‖x̂n‖2

(Dx̂n,x̂n)
‖x̂n‖2 − λ0

→ 0, n →∞.

For each n, dn is a monic quadratic polynomial in λ. If λ1
n, λ2

n are the zeros of dn,
then λ1

n, λ2
n ∈ W 2

Ã
and dn(λ) = (λ− λ1

n)(λ− λ2
n). As dn(λ0) → 0 for n → ∞, we

have λ1
n → λ0 or λ2

n → λ0 for n →∞ and thus λ0 ∈ W 2

Ã
.

Let lim inf
n→∞

‖x̂n‖ = 0, without loss of generality x̂n → 0 for n →∞, ‖xn‖ > 0

for n = 1, 2, . . . . If we define λn := (Axn,xn)
‖xn‖2 and choose x̂′n ∈ Ĥ, x̂′n 6= 0, such that

(Cxn, x̂′n) = 0 for n = 1, 2, . . . , then

det

 (Axn,xn)
‖xn‖2 − λn

(Bx̂′n,xn)
‖x̂′n‖‖xn‖)

(Cxn,x̂′n)
‖xn‖‖x̂′n‖

(Dx̂′n,x̂′n)
‖x̂′n‖2

− λn

 = det

 0 (Bx̂′n,xn)
‖x̂′n‖‖xn‖

0 (Dx̂′n,x̂′n)
‖x̂′n‖2

− λn

 = 0,

that is, λn ∈ W 2

Ã
. As x̂n → 0 and fn → 0 for n →∞, the relation

((A− λ0)xn, xn)− (Bx̂n, xn) = (fn, xn)

implies λn → λ0. The case lim inf
n→∞

‖xn‖ = 0 is analogous. This proves the theo-
rem.

Later we will need the following well-known result connected with the nu-
merical range of a closed operator. Here and throughout this note we assume that
arg z ∈ (−π, π] for complex numbers z ∈ C.

Lemma 2.2. Let T be a closed operator in a Hilbert space. Assume that its
numerical range WT is contained in a sector ∆T = {z ∈ C : | arg z| 6 θT } for
some θT , 0 < θT < π

2 . Then there exists a constant C > 0 such that

‖(T − z)−1‖ 6
C

|z|
, <(z) 6 0, z 6= 0.

Proof. Let z ∈ C with <(z) 6 0, z 6= 0. If π
2 6 arg z 6 π

2 + θ, then

‖(T − z)−1‖ 6
1

dist(z,WT )
6

1
|z| cos

(
π
2 + θT − arg z

) 6
1

|z| cos θT
.
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The case −π
2 − θT 6 arg z 6 −π

2 is analogous. If | arg z| > π
2 + θT , then

‖(T − z)−1‖ 6
1

dist(z,WT )
6

1
|z|

.

3. BLOCK OPERATOR MATRICES WITH SEPARATED SPECTRUM

In the sequel we consider a block operator matrix (2.1) of the particular form

(3.1) Ã =
(

A B

B∗ D

)
,

that is, we assume C = B∗. Additionally to the assumptions of Section 2, we
suppose:

(α) The operator A is boundedly invertible and its numerical range WA is
contained in the set

{z ∈ C : | arg z| 6 θA, <(z) > α}

for some θA, 0 < θA < π
2 , and α > 0.

(δ) The operator D is boundedly invertible and its numerical range WD is
contained in the set

{z ∈ C : | arg z| > π − θD, <(z) 6 −δ}

for some θD, 0 < θD < π
2 , and δ > 0.

This means that the operators A and −D are m-sectorial (see [4], Chapter
V, Section 3) and that their numerical ranges have a positive distance from the
imaginary axis. We mention that the role of the imaginary axis can be taken over
by any other vertical line in the complex plane.

Lemma 3.1. Let a, b, c and d be complex numbers such that <(a) > 0,
<(d) < 0 and bc > 0. Then the matrix

A =
(

a b

c d

)
has eigenvalues λ1, λ2 such that:

(i) <(λ1) > <(a), <(λ2) 6 <(d);
(ii) min{=(a),=(d)} 6 =(λ1),=(λ2) 6 max{=(a),=(d)};
(iii) λ1,−λ2 ∈ {z ∈ C : | arg z| 6 max{| arg a|, π − | arg d|}.
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Proof. (We thank Mrs. A. Luger for communicating this proof to us.) We
can suppose that =(a) > 0 (otherwise we consider the matrix A∗) and that

(3.2) arg a > π − | arg d|

(otherwise in the following considerations we start from d instead of a). The
assumption (3.2) implies

(3.3)
∣∣∣∣=(a− d)
<(a− d)

∣∣∣∣ 6 tan(arg a).

The eigenvalues λ1, λ2 satisfy the equation

(a− λ)(d− λ)− t = 0, t = bc > 0.

We consider them as functions of t:

λ1,2(t) =
a + d

2
±
(

(a− d)2

4
+ t

) 1
2

.

If we decompose λ1,2(t) and a+d
2 in real and imaginary parts, λ1,2(t) = x(t)+ iy(t)

and a+d
2 = β + iγ, then we find

(x(t)− β)2 − (y(t)− γ)2 =
1
4
<(a− d)2 + t,(3.4)

(x(t)− β)(y(t)− γ) =
1
8
=(a− d)2.(3.5)

The last relation shows that the eigenvalues λ1(t), λ2(t) lie on a hyperbola with
centre β + iγ = a+d

2 , and with the asymptotes =(z) = γ and <(z) = β parallel
to the real and imaginary axis, the right hand branch passing through a and the
left hand branch through d. From the identity (3.4) it follows that for 0 6 t 6 ∞
the eigenvalues λ1(t) fill the part of the right hand branch which extends from a

to +∞ + iγ, and the eigenvalues λ2(t) fill the part of the left hand branch from
d to −∞ + iγ. This implies (i) and (ii). In order to prove (iii), it is sufficient to
show that the derivatives of the hyperbola at d and at a are in modulus less than
tan(arg a). E.g. for the derivative at d it follows from (3.5)

ẏ(0)
ẋ(0)

= − y(0)− γ

x(0)− β
= −

=(d)− 1
2=(a + d)

<(d)− 1
2<(a + d)

= −=(d− a)
<(d− a)

,

which is in modulus less than tan(arg a) by (3.3). The lemma is proved.
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Theorem 3.2. Suppose the assumptions (α) and (δ) are satisfied and define

∆ := {z ∈ C : | arg z| 6 max{θA, θD}}.

Then

σ(Ã) ⊂ {z ∈ (−∆) : <(z) 6 −δ} ∪ {z ∈ ∆ : <(z) > α} =: ∆̃.

Proof. First we show that W 2

Ã
⊂ ∆̃. To this end consider for x ∈ D(A), x̂ ∈

D(D), x, x̂ 6= 0, the matrix

 (Ax,x)
‖x‖2

(Bx̂,x)
‖x̂‖‖x‖

(B∗x,x̂)
‖x‖‖x̂‖

(Dx̂,x̂)
‖x̂‖2

 .

According to the assumptions (α) and (δ), it has all the properties of the matrix

A in Lemma 3.1. Hence its eigenvalues are in ∆̃ which implies W 2

Ã
⊂ ∆̃ and

hence W 2

Ã
⊂ ∆̃. According to Theorem 2.1 we have C \ r(Ã) ⊂ W 2

Ã
and conse-

quently C \ ∆̃ ⊂ r(Ã). On the other hand, C \ ∆̃ consists of only one component,

hence the theorem will be proved if we show that at least one point λ0 of this

component belongs to ρ(Ã). To this end we choose λ0 on the imaginary axis suf-

ficiently large in modulus. According to Lemma 2.2 we can choose λ0 such that

‖B(D − λ0)−1B∗(A− λ0)−1‖ < 1. Then λ0 ∈ ρ(Ã) as

(A− λ0 −B(D − λ0)−1B∗)−1 = (A− λ0)−1(I −B(D − λ0)−1B∗(A− λ0)−1)−1

exists and is a bounded everywhere defined operator. The theorem is proved.

Remark 3.3. If the numerical ranges of A and D are even contained in half

strips, say WA ⊂ {z ∈ C : a1 6 =(z) 6 a2, <(z) > α} and WD ⊂ {z ∈ C :

d1 6 =(z) 6 d2, <(z) 6 −δ}, then the spectrum of Ã is contained in the set

{z ∈ C : min{a1, d1} 6 =(z) 6 max{a2, d2}, <(z) 6 −δ or <(z) > α}.
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4. INVARIANT SUBSPACES

In the sequel we consider a block operator matrix Ã as in (3.1) which satisfies the
assumptions of Section 3 and for which D is bounded. Note that in this case the
assumption (δ) is fulfilled if there exists a δ > 0 such that

<(D) 6 −δ.

From Theorem 3.2 it follows that σ(Ã) splits into the two disjoint subsets

σ−(Ã) := σ(Ã) ∩ {z ∈ (−∆) : <(z) 6 −δ},

σ+(Ã) := σ(Ã) ∩ {z ∈ ∆ : <(z) > α}.

Here, as A and hence also Ã can be unbounded, σ+(Ã) can be empty. Since D is
a bounded operator, σ−(Ã) is bounded. Let

P−(Ã) := − 1
2πi

∫
Γ−

(Ã− z)−1 dz

be the corresponding Riesz projection. Here Γ− is a positively oriented Jordan
contour in {z ∈ C : <(z) < 0} surrounding σ−(Ã). If we define the projection

P+(Ã) := I − P−(Ã),

then we have a decomposition H̃ = L−+̇L+ into the spectral subspaces

L− := P−(Ã)H̃, L+ := P+(Ã)H̃,

and
σ(Ã|L−) = σ−(Ã), σ(Ã|L+) = σ+(Ã).

Here Ã|L+ is, in fact, the restriction of Ã to D(Ã) ∩L+ and has its values in L+.
If H 6= {0}, then L+ 6= {0}, even if σ+(Ã) = ∅.

Lemma 4.1. We have

− 1
2πi

i∞∫
−i∞

(Ã− z)−1 dz =
1
2

(
P−(Ã)− P+(Ã)

)
.

Proof. Let r0 > 0 be such that σ−(Ã) ⊂ {z ∈ C : <(z) < 0, |z| < r0}. Then
we have

− 1
2πi

ir∫
−ir

(Ã− z)−1 dz = P−(Ã) +
1

2πi

3π
2∫

π
2

(Ã− reit)−1 ireit dt, r > r0.
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The lemma is proved if we show that

(4.1)
1

2πi

3π
2∫

π
2

(Ã− reit)−1 ireit dt −→ −1
2
I, r →∞,

strongly in H̃ as I = P−(Ã) + P+(Ã). From

(4.2)

Ã− z =

(
I B(D − z)−1

0 I

)(
A− z −B(D − z)−1B∗ 0

0 D − z

)
·

·

(
I 0

(D − z)−1B∗ I

)
,

it follows

(4.3)

(Ã− z)−1

=

(
M(z) −M(z)B(D − z)−1

−(D − z)−1B∗M(z) (D − z)−1 + (D − z)−1B∗M(z)B(D − z)−1

)

for z ∈ ρ(Ã) where

M(z) := (A− z −B(D − z)−1B∗)−1.

For the proof of (4.1) we first consider the left upper corner of the matrix
(Ã− reit)−1reit + I and show that

(4.4) ‖
(
M(reit)reit + I

)
x‖ → 0, r →∞,

uniformly in t ∈
[

π
2 , 3π

2

]
for x ∈ H. Using Lemma 2.2 and

(4.5) ‖(D − z)−1‖ 6
2
|z|

, |z| > 2‖D‖,

we find

M(reit)reit + I = (A− reit −B(D − reit)−1B∗)−1reit + I

= (I − (A− reit)−1B(D − reit)−1B∗)−1(A− reit)−1reit + I

= (A− reit)−1reit + I + O
(

1
r

)
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uniformly in t ∈
[

π
2 , 3π

2

]
. Hence there exists a C̃ > 0 such that

‖
(
M(reit)reit + I

)
x‖ 6 ‖

(
(A− reit)−1reit + I

)
x‖+

C̃

r
‖x‖

= ‖(A− reit)−1Ax‖+
C̃

r
‖x‖ 6

C

r
‖Ax‖+

C̃

r
‖x‖

uniformly in t ∈
[

π
2 , 3π

2

]
by Lemma 2.2 which proves (4.4). From (4.4) it follows

(4.6) ‖M(reit)reitx‖ 6 K

with some constant K > 0 uniformly in t ∈
[

π
2 , 3π

2

]
for x ∈ H. For the off-diagonal

elements of (Ã− reit)−1reit + I we have

‖M(reit)B(D − reit)−1reitx̂‖ 6 ‖
(
M(reit)reit + I

)
B(D − reit)−1x̂‖

+ ‖B(D − reit)−1x̂‖ → 0, r →∞,

uniformly in t ∈
[

π
2 , 3π

2

]
for x̂ ∈ Ĥ by (4.4) and (4.5). Furthermore,

‖(D − reit)−1B∗M(reit)reitx‖ → 0, r →∞,

uniformly in t ∈
[

π
2 , 3π

2

]
for x ∈ H by (4.5) and (4.6). For the right lower corner

of (Ã− reit)−1reit + I we have

‖
(
(D − reit)−1reit + (D − reit)−1B∗M(reit)B(D − reit)−1reit + I

)
x̂‖

6
1
r
2‖D‖ ‖x̂‖+

1
r
‖B∗‖ ‖M(reit)reitB(D − reit)−1x̂‖ → 0, r →∞,

uniformly in t ∈
[

π
2 , 3π

2

]
for x̂ ∈ Ĥ. Summarizing, we obtain that all the com-

ponents in the matrix representation of (Ã − reit)−1reit + I tend strongly to 0
uniformly for t ∈

[
π
2 , 3π

2

]
and hence

(
1

2πi

3π
2∫

π
2

(Ã− reit)−1 ireit dt +
1
2
I

)
x̃ =

1
2π

3π
2∫

π
2

(
(Ã− reit)−1reitx̃ + x̃

)
dt → 0,

r →∞, for x̃ ∈ H̃. The lemma is proved.

As Ã is not supposed to be selfadjoint, the spectral subspaces L− and L+

need not be orthogonal. However, the block operator matrix Ã∗ adjoint to Ã given
by

Ã∗ =
(

A∗ B

B∗ D∗

)
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fulfills the assumptions of the present section as well. Hence P−(Ã∗) and P+(Ã∗)
are defined, and Ã∗ has the spectral subspaces

L∗− := P−(Ã∗)H̃, L∗+ := P+(Ã∗)H̃.

Lemma 4.2. L⊥− = L∗+, L⊥+ = L∗−.

Proof. We have

L⊥− = R(P−(Ã))⊥ = ker(P−(Ã)∗) = ker(P−(Ã∗))

= ker(I − P+(Ã∗)) = R(P+(Ã∗)) = L∗+

as σ−(Ã∗) = σ−(Ã) and hence P−(Ã)∗ = P−(Ã∗) (see [4], Chapter III, Theo-
rem 6.22 and (6.25)). The proof of the second statement is similar.

Now we are ready to show that the spectral subspaces L− and L+ of Ã can
be represented by means of angular operators. For 1 6 p 6 ∞, we denote by Sp

the von Neumann–Schatten classes of linear operators in H (see [3]); in particular,
S∞ is the class of all compact operators and S1 is the class of all nuclear or trace
class operators.

Theorem 4.3. There exist bounded linear operators K− ∈ L(Ĥ,H) and
K+ ∈ L(H, Ĥ) such that:

(i) The spectral subspaces L− and L+ have the representations

L− =
{(

K−x̂

x̂

)
: x̂ ∈ Ĥ

}
, L+ =

{(
x

K+x

)
: x ∈ H

}
.

(ii) The operator K− has the property R(K−) ⊂ D(A) and K−,K+ satisfy
the Riccati equations

K−B∗K− −B −AK− + K−D = 0 on Ĥ,

K+BK+ −B∗ −DK+ + K+A = 0 on D(A).

(iii) The restriction Ã|L− is unitarily equivalent to the operator D + B∗K−

in the Hilbert space
(
Ĥ, [ · , · ]∧

)
where

[x̂, ŷ]∧ :=
(
(I + K∗

−K−)x̂, ŷ
)
, x̂, ŷ ∈ Ĥ.

There is a γ̂ > 0 such that

<[(D + B∗K−)x̂, x̂]∧ 6 −γ̂[x̂, x̂]∧, x̂ ∈ Ĥ.
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(iv) The restriction Ã|L+ is unitarily equivalent to the operator A+BK+ in
the Hilbert space

(
H, [ · , · ]

)
where

[x, y] :=
(
(I + K∗

+K+)x, y
)
, x, y ∈ H.

There is a γ > 0 such that

<[(A + BK+)x, x] > γ[x, x], x ∈ D(A).

If for one (and hence for all) z ∈ ρ(A) the resolvent (A − z)−1 of A belongs to
some class Sp, 1 6 p 6 ∞, then the operators K− and K+ belong to the same
class Sp.

Proof. From the representation (4.3) and Lemma 4.1 it follows that

<(P+(Ã)− P−(Ã))11 = <

(
1
πi

i∞∫
−i∞

(A− z −B(D − z)−1B∗)−1 dz

)

= <

(
1
π

∞∫
−∞

(A− iη −B(D − iη)−1B∗)−1 dη

)
� 0

since for −δ < <(z) < α,

(4.7) <((A− z −B(D − z)−1B∗)x, x) > α̃(x, x), x ∈ D(A),

with some α̃ > 0 by the assumptions (α) and (δ). Here and in the following we
use the notation (Xij)2i,j=1 := X for the components of a block operator matrix
X in H̃ = H× Ĥ. On the other hand, <(P+(Ã) + P−(Ã))11 = I and hence

(4.8) <(P+(Ã))11 �
1
2
.

(i) Let x ∈ H be such that
(

x

0

)
∈ L−. Then P+(Ã)

(
x

0

)
= (I −

P−(Ã))
(

x

0

)
= 0 and thus (<(P+(Ã))11x, x) = 0. By (4.8) this implies x = 0.

Now consider a sequence
((

xn

x̂n

))∞
1

⊂ L− with xn ∈ H, x̂n ∈ Ĥ, ‖xn‖ =

1, n = 1, 2, . . . , and ‖x̂n‖ → 0 for n →∞. By Lemma 4.2,

0 =
(

P+(Ã∗)
(

xn

0

)
,

(
xn

x̂n

))
=
(
(P+(Ã∗))11xn, xn

)
+
(
(P+(Ã∗))21xn, x̂n

)
.
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The last term tends to 0 for n →∞ and hence

(
(P+(Ã∗))11xn, xn

)
→ 0, n →∞.

By means of the inequality (4.8) for Ã∗, we find ‖xn‖ → 0 for n →∞. This proves
that L− can be represented as

L− =
{(

K−x̂

x̂

)
: x̂ ∈ Ĥ′

}

where K− is a bounded linear operator from some closed subspace Ĥ′ of Ĥ into
H. It remains to be proved that Ĥ′ = Ĥ. To this end let ẑ ∈ Ĥ′

⊥
. Then ẑ = 0 as(

0
ẑ

)
∈ L⊥− =

{(
x

−K∗
−x

)
: x ∈ D(K∗

−)
}

.

The proof of the assertion for L+ is analogous. Here we have to use that

<(D − z −B∗(A− z)−1B) � 0

for −δ < <(z) < α instead of (4.7) and the representation

Ã−z=

(
I 0

B∗(A− z)−1 I

)(
A− z 0

0 D − z −B∗(A− z)−1B

)(
I (A− z)−1B

0 I

)

for z ∈ ρ(A) instead of (4.2) in order to obtain

(4.9) <(P−(Ã))22 �
1
2
.

(ii) Since P−(Ã) is a Riesz projection, L− = R(P−(Ã)) ⊂ D(Ã). On the
other hand,

D(Ã) =
{(

x

x̂

)
: x ∈ D(A), x̂ ∈ Ĥ

}
,

and hence the representation of L− according to (i) yields R(K−) ⊂ D(A).
The Riccati equations for K− and K+ follow from the invariance of the

subspaces L− and L+ under Ã and the representations of L− and L+ in (i).
(iii) The operator U− ∈ L(L−, (Ĥ, [ · , · ]∧)) defined by

U−

(
K−x̂

x̂

)
:= x̂, x̂ ∈ Ĥ,
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is isometric and bijective. Using the Riccati equation for K−, we find

Ã|L− = U−1
− (D + B∗K−)U−

and

<[(D + B∗K−)x̂, x̂]∧ = <
(
(I + K∗

−K−)(D + B∗K−)x̂, x̂
)

= <
(
(D + B∗K− + K∗

−(K−D + K−B∗K−))x̂, x̂
)

= <
(
(D + K∗

−AK− + B∗K− −K∗
−B)x̂, x̂

)
= <(Dx̂, x̂)−<(AK−x̂,K−x̂)

6 −γ̂(x̂, x̂)

for x̂ ∈ Ĥ with some γ̂ > 0 by the assumptions (α) and (δ).
(iv) The operator U+ ∈ L(L+, (H, [ · , · ])) defined by

U+

(
x

K+x

)
:= x, x ∈ H,

is isometric and bijective. The Riccati equation for K+ yields

Ã|L+ = U−1
+ (A + BK+)U+

and, similar as in the proof of (iii),

<[(A + BK+)x, x] = <(Ax, x)−<(DK+x, K+x) > γ(x, x)

for x ∈ D(A) with some γ > 0 by the assumptions (α) and (δ).
Finally, the Riccati equations for K− and K+ can be written in the form

K−B∗K− −B − (A− µ)K− + K−(D − µ) = 0,

K+BK+ −B∗ − (D − µ)K+ + K+(A− µ) = 0,

where µ ∈ C is arbitrary. If we choose µ ∈ ρ(A) and multiply the first relation from
the left hand side and the second equation from the right hand side by (A−µ)−1,
it follows that K− and K+ are in Sp if (A− µ)−1 is in Sp for some p, 1 6 p 6 ∞.
The theorem is proved.

If in Theorem 4.3 the operators A and D are selfadjoint, then K+ = −K∗
−,

which is immediate from the relation L+ = L⊥−. Thus, in the selfadjoint case the
assertions of Theorem 4.3 coincide with the respective statements established in
[1], Theorem 2.3, which were proved by a different method. Additionally, it was
shown therein that in this case K− and K+ are strict contractions. To prove a
generalization of this property, we use the following two results.
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Lemma 4.4. The operators I −K+K− and I −K−K+ are bijective.

Proof. Let x̂ ∈ ker(I −K+K−). Then x̂ = K+K−x̂,(
K−x̂

x̂

)
=

(
K−x̂

K+K−x̂

)
∈ L− ∩ L+ = {0}

and consequently x̂ = 0. Now let ẑ ∈ Ĥ. As H = L−+̇L+, there exist x ∈ H and
x̂ ∈ Ĥ such that (

0

ẑ

)
=

(
K−x̂ + x

x̂ + K+x

)
.

This implies ẑ = x̂ − K+K−x̂ ∈ R(I − K+K−). The proof for I − K−K+ is
analogous.

Proposition 4.5. The projections P−(Ã) and P+(Ã) have the matrix repre-
sentations

P−(Ã) =

(
−K−(I −K+K−)−1K+ K−(I −K+K−)−1

−(I −K+K−)−1K+ (I −K+K−)−1

)
,

P+(Ã) =

(
(I −K−K+)−1 −(I −K−K+)−1K−

K+(I −K−K+)−1 −K+(I −K−K+)−1K−

)
.

Proof. As P−(Ã) is the projection onto L− along L+, we have

P−(Ã) =

(
K−X K−Y

X Y

)

with operators X ∈ L(H, Ĥ) and Y ∈ L(Ĥ). From P−(Ã)|L+ = 0, it follows that

0 =

(
K−X K−Y

X Y

)(
x

K+x

)
=

(
K−(X + Y K+)x

(X + Y K+)x

)
, x ∈ H,

and hence X = −Y K+. Then P−(Ã)|L− = I reads(
K−x̂

x̂

)
=

(
−K−Y K+ K−Y

−Y K+ Y

)(
K−x̂

x̂

)
=

(
K−Y (−K+K− + I)x̂

Y (−K+K− + I)x̂

)
, x̂ ∈ Ĥ.

By Lemma 4.4, I −K+K− is invertible and hence

Y = (I −K+K−)−1, X = −(I −K+K−)−1K+.

This shows the representation of P−(Ã). The proof for P+(Ã) is analogous.
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Theorem 4.6. The operators K−K+ and K+K− are strict contractions in

H and Ĥ, respectively, that is,

‖K−K+‖ < 1, ‖K+K−‖ < 1.

Proof. From (4.8) and the preceding proposition it follows that

<((I −K−K+)−1) � 1
2
.

Consequently,

I � ((I −K−K+)−1 + (I − (K−K+)∗)−1

= (I −K−K+)−1(2I −K−K+ − (K−K+)∗)(I − (K−K+)∗)−1.

This implies

(I −K−K+)(I − (K−K+)∗) � 2I −K−K+ − (K−K+)∗

and hence

(K−K+)(K−K+)∗ � I,

which shows ‖K−K+‖ < 1. The proof of ‖K+K−‖ < 1 is analogous.

If A and D are selfadjoint, then it follows from Theorem 4.6 and from the

relation K+ = −K∗
− that

‖K−‖ = ‖K+‖ < 1.

5. HALF RANGE COMPLETENESS

Additionally to the assumptions (α) and (δ) we suppose now that A has a compact

resolvent. Then σ+(Ã) is discrete and ∞ is the only accumulation point as

σ+(Ã) = σ(Ã|L+) = σ(A + BK+)

by Theorem 4.3 where K+ is compact.

In the following we denote by P1 the projection from H̃ onto H. If λ ∈ σ(Ã),

then Lλ(Ã) denotes the root subspace of Ã at λ.
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Theorem 5.1. Suppose additionally to the assumptions (α) and (δ) that the
resolvent (A− z)−1 of A belongs to the class S1 for some z ∈ ρ(Ã). Then⋃

λ∈σ+(Ã)

P1Lλ(Ã) = H,

that is, the first components of the root vectors of Ã corresponding to the eigen-
values in the right half plane form a complete system in H.

Proof. Let λ0 ∈ σ+(Ã) and assume that {x̃0, x̃1, . . . , x̃h} ⊂ H̃ is a Jordan

chain of Ã at λ0. Then x̃j ∈ L+ and hence x̃j =
(

xj

K+xj

)
with xj ∈ H for

j = 0, 1, . . . , h by Theorem 4.3. Then the relation(
A− λ0 B

B∗ D − λ0

)(
xj

K+xj

)
=

(
xj−1

K+xj−1

)
, j = 0, 1, . . . , h,

implies that {x0, x1, . . . , xh} = {P1x̃0, P1x̃1, . . . , P1x̃h} is a Jordan chain of the
operator A + BK+ at λ0. Hence⋃

λ∈σ+(Ã)

P1Lλ(Ã) =
⋃

λ∈σ(A+BK+)

Lλ(A + BK+).

For sufficiently large ζ > 0, the operator A + BK+ + ζ is accretive, that is,
<((A + BK+ + ζ)x, x) > 0 for x ∈ D(A). If z ∈ ρ(A + BK+ + ζ), <(z) < 0, the
resolvent

(A + BK+ + ζ − z)−1 = (A− z)−1(I + (BK+ + ζ)(A− z)−1)−1

belongs to S1 as (A− z)−1 ∈ S1 according to the assumption. Then the statement
follows from [3], Chapter V, Theorem 2.3, applied to the dissipative operator
−i(A+BK++ζ)−1 as λ ∈ σ(A+BK+) if and only if− i

λ+ζ ∈ σ(−i(A+BK++ζ)−1)
and

Lλ(A + BK+) = L− i
λ+ζ

(−i(A + BK+ + ζ)−1), λ ∈ σ(A + BK+).

Example 5.2. We consider the λ-rational boundary eigenvalue problem

(5.1)
y′′ + λy +

q

u− λ
y = 0,

y(0)− βy′(0) = 0, y(1) = 0,

in L2(0, 1) where q, u ∈ C[0, 1], q > 0, <(u) < 0, and β ∈ C, <(β) > 0.
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Problems of this type with real-valued u and Dirichlet boundary conditions,
that is, β = 0, were studied in [5] and [1]. If we define ŷ := − q1/2

u−λy, then the
problem (5.1) is equivalent on ρ(u), which is the complement of the set of all
values of the continuous function u, to the λ-linear problem

(Ã− λ)ỹ = 0, ỹ ∈ D(Ã),

in L2(0, 1) × L2(0, 1) where Ã is a block operator matrix of the form (3.1) given
by

Ã :=

(
− d2

dx2 q
1
2

q
1
2 u

)
and

D(Ã) := {ỹ = (y, ŷ)t ∈ W 2
2 (0, 1)× L2(0, 1) : y(0)− βy′(0) = 0, y(1) = 0}.

In the following we prove that the operator Ã fulfills the assumptions of
Theorem 5.1. As <(u) < 0, the assumption (δ) is fulfilled with θD := π −
min

x∈[0,1]
| arg u(x)| < π

2 and δ := − max
x∈[0,1]

<(u(x)). The operator A in L2(0, 1)

given by

Ay := −y′′, D(A) := {y ∈ W 2
2 (0, 1) : y(0)− βy′(0) = 0, y(1) = 0}

is densely defined, closed, and it satisfies the assumption (α). Indeed, A is bound-
edly invertible, and

(5.2) (Ay, y) = β|y′(0)|2 +

1∫
0

|y′(x)|2 dx, y ∈ D(A).

First we show that <(Ay, y) > α for y ∈ D(A), ‖y‖ = 1, for some α > 0. From
(5.2) and the assumption <(β) > 0 it follows that

(5.3) <(Ay, y) = <(β)|y′(0)|2 +

1∫
0

|y′(x)|2 dx > 0, y ∈ D(A).

Now suppose that there exists a sequence (yn)∞1 ⊂ D(A), ‖yn‖ = 1, with
<(Ayn, yn) → 0 for n → ∞. Then y′n(0) → 0 and ‖y′n‖ → 0 for n → ∞ by
(5.3) and hence

|yn(x)− yn(0)| 6
x∫

0

|y′n(t)|dt 6
√

x

 x∫
0

|y′n(t)|2 dt

 1
2

6 ‖y′n‖ → 0, n →∞,
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uniformly for x ∈ [0, 1], and hence ‖yn‖ → 0 as yn(0) = βy′n(0) → 0 for n →∞, a
contradiction. Furthermore, (5.3) implies

|=(Ay, y)|
<(Ay, y)

=
|=(β)||y′(0)|2

<(β)|y′(0)|2 + ‖y′‖2
6
|=(β)|
<(β)

which proves that the numerical range WA of A is contained in a set {z ∈ C :
arg z 6 θA, <(z) > α} with θA = | arg β| < π

2 .
It remains to be shown that A−1 ∈ S1. In order to see this, we introduce the

selfadjoint operator A0 in L2(0, 1),

A0y := −y′′, D(A0) := {y ∈ W 2
2 (0, 1) : y(0) = 0, y(1) = 0}.

Its eigenvalues are the numbers µn := π2n2, n = 1, 2, . . . , hence A−1
0 ∈ S1. As the

difference A−1 −A−1
0 is a one-dimensional operator, it follows that A−1 ∈ S1.

Thus Theorem 5.1 can be applied to the operator Ã and we get:

Theorem 5.3. The spectrum σ+ of the eigenvalue problem (5.1) in the right
half plane is discrete, ∞ is its only accumulation point, and σ+ is contained in the
sector {

z ∈ C : | arg z| 6 max
{
π − min

x∈[0,1]
| arg u(x)|, | arg β|

}}
.

The root vectors corresponding to the eigenvalues in σ+ form a complete system
in L2(0, 1).

Proof. The theorem follows from Theorem 5.1 and from the fact that λ ∈
ρ(u) is an eigenvalue of the problem (5.1) if and only if it is an eigenvalue of Ã

and the first components of the corresponding Jordan chains of Ã coincide with
the Jordan chains of (5.1) at λ (compare [5], Proposition 1.2).
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5. H. Langer, R. Mennicken, M. Möller, A second order differential operator de-

pending nonlinearly on the eigenvalue parameter, Oper. Theory Adv. Appl.,
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