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Abstract. The operator space L(L1), as a Banach lattice, can be decom-
posed into four bands: the Radon-Nikodym band, the Dunford-Pettis band,
the Rosenthal band, and the Enflo band. Thus, each operator in L(L1) can
be decomposed uniquely into the sum of four operators, so that each mem-
ber of the decomposition has a characterization in terms of natural videly
discussed operator-theoretic invariants in Banach space theory.
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This paper is based on work by Kalton ([12]), Bourgain ([3], [4]), Rosenthal ([14]),
and Enflo-Starbird ([8]). Section 1 mainly states the required notation and known
results, and Section 2 gives the results of this paper.

The main result of this paper is that each operator T ∈ L(L1) can be
uniquely written as a sum of operators which are respectively Radon-Nikodym,
non-representable Dunford-Pettis (we will describe this in more detail later), Rosen-
thal and Enflo. In fact, there exists a unique decomposition of L(L1)

L(L1) = LRN ⊕ LSDP ⊕ LR ⊕ LE

with the following properties:

(a) each subspace on the right is a band;
(b) T ∈ LRN iff T is Radon-Nikodym;
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(c) T ∈ LSDP iff T = 0 or T is Dunford-Pettis and for any 0 6= S ∈ L(L1)
with |S| 6 |T |, S is not Radon-Nikodym;

(d) T ∈ LR iff T = 0 or T is Rosenthal, and for any 0 6= S ∈ L(L1) with
|S| 6 |T |, S is Rosenthal;

(e) T ∈ LE iff T = 0 or T is Enflo and for any 0 6= S ∈ L(L1) with |S| 6 |T |,
S is Enflo.

In particular, we are going to show that the Enflo part of an operator in
L(L1) has a similar form to that given in Corollary 1.6.

1. PRELIMINARIES

Throughout this paper, Σ0 denotes the Lebesgue σ-algebra on [0, 1] and B denotes
the Borel σ-algebra on [0, 1]. For an arbitrary topological space K, B(K) is the
Borel σ-algebra on K, and U(K) is the σ-algebra of universally measurable sets.

In what follows, λ is the Lebesgue measure on [0, 1] and L1 = L1([0, 1], λ) is
the space of all equivalence classes of Lebesgue integrable functions on [0, 1]. Each
measure space (X,Σ, ν) in this paper will be taken to be a measure space with ν

purely non-atomic unless specially indicated. A purely non-atomic σ-subalgebra
A of Σ is a σ-subalgebra with ν|A purely non-atomic.

As usual, L∞ = L∞(λ) = (L1)∗ is the space of all bounded Lebesgue mea-
surable functions with the uniform convergence norm.

For a compact metric space K, C(K) is the space of bounded continuous
functions, and M(K) = C(K)∗, the space of regular Borel measures on K. B∗

is the weak* Borel σ-algebra on M [0, 1], and U∗ = U(M(K)). The subspace of
atomic measures in M [0, 1] is denoted by Ma, and the subspace of continuous
measures is denoted by Mc. Recall that

M [0, 1] = Ma ⊕Mc.

As usual, L(X,Y ) is the space of all bounded operators from a Banach space
X to a Banach space Y . If X = Y , then we denote L(X,Y ) by L(X).

For E ⊂ [0, 1], χE is the characteristic function of E. If T is an operator on
some space of functions on [0, 1], we denote TχE by TE.

The operator T |E on a space X of functions on [0, 1] is defined by

(T |E)(f) = T (f |E), for all f ∈ X.

If T is an operator on a space X of measurable functions with respect to some
σ-algebra Σ on [0,1], and A is a σ-subalgebra of Σ, then T |A is the restriction of
T to the space of all A-measurable functions that lie in X.
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A bush is a sequence of finite measurable partitions (En,i), i = 1, . . . ,mn,

n = 1, 2, . . . , of a measurable subset E0,1 of [0,1], such that:

(a) m0 = 1, λ(E0,1) > 0;

(b) for each n,
mn⋃
i=1

En,i = E0,1;

(c) for each n, En,i ∩ En,j = ∅ if i 6= j;
(d) for each n and each j, 1 6 j 6 mn+1, there is an i, 1 6 i 6 mn with

En+1,j ⊂ En,i;
(e) max

16i6mn

1(En,i) → 0 as n→∞.

A tree is a bush (En,i), 1 6 i 6 mn, n = 1, 2, . . . , in which mn = 2n

and En,i = En+1,2(i−1) ∪ En+1,2i. A binary tree is a tree (En,i) with λ(En,i) =
(1/2n)λ(E0,1) for all n and i. (∆n,i) denotes the usual binary tree on [0, 1), i.e.
∆n,i =

[
(i− 1)/2n, i/2n

)
.

Let T ∈ L(L1, X). Then T is Radon-Nikodym if there is a g ∈ L∞(X) such
that for each f ∈ L1

Tf =
∫
fg dλ.

T is Dunford-Pettis if T maps weakly compact subsets to relatively compact sub-
sets.

If T ∈ L(L1), then T is Enflo if it fixes a subspace which is isomorphic to L1;
T is Rosenthal if T is neither Enflo nor Dunford-Pettis. We will call an operator
T ∈ L(L1) which satisfies the condition (d) (resp. (e)) in the beginning of the
paper a pure Rosenthal (resp. Enflo) operator.

It is well known that the spaces L(L1), L(L∞), L(M(K)) and L(C(K)∗∗)
are order complete Banach lattices (see, e.g. [16] or [1]). We will use these facts
without mentioning them. Throughout this paper, T+ and T− denote the positive
part and the negative part of an operator T respectively, and |T | denotes the total
variation of T .

The following are some known results that we need. First, we state a repre-
sentation theorem by Kalton ([12]).

Theorem 1.1. Let K be a compact metric space, µ a probability measure
on K, and (X,Σ, ν) a measure space. Then

T : L1(K,B(K), µ) → L1(X,Σ, ν)

is a bounded linear operator iff it has the form

(1.1) Tf(x) =
∫
K

f(t) dµx(t) ν-a.e. x ∈ X
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where x→ µx is a Σ–B∗ measurable map of X into M(K), satisfying

(1.2) sup
µ(B)>0

1
µ(B)

∫
K

|µx|(B) dν(x) = M <∞.

In this case, ‖T‖ = M . The map x→ µx is unique up to sets of µ-measure zero.

Remark 1.2. Given a map x → µx satisfying (1.2), the operator in (1.1)
is well-defined, i.e. its definition is independent of the member chosen from an
equivalent class in L1(µ). In fact, for a µ-null set E and any n ∈ N, one can
choose an open set U with E ⊂ U and µ(U) < 1/n, and then∫

K

|µx|(E) dν(x) <
∫
K

|µx|(U) dν(x) < M/n→ 0,

and so
∫
K

|µx|(E) dν(x) = 0. Thus, if λ(E4F ) = 0, one has

µx(E) = µx(F ), λ-a.e.

Since the measurable simple functions are dense in L1(K,B(K), µ), it easily follows
that if f = g, λ-a.e., then ∫

f dµx =
∫
g dµx λ-a.e.

This is very important for later discussions.

Theorem 1.3. ([12]) Let K be a compact metric space. Then there exist U∗

measurable mappings bn : M(K) → R, (n ∈ N), U∗–B(K) measurable mappings
hn : M(K) → K, (n ∈ N), and a U∗–B∗ measurable mapping ϕ : M(K) →Mc(K)
such that

|bn(µ)| > |bn+1(µ)|, n ∈ N, µ ∈M(K);

hn(µ) 6= hm(µ), n 6= m, µ ∈M(K);

and

µ =
∞∑

n=1

bn(µ)δhn(µ) + ϕ(µ), µ ∈M(K).

Theorem 1.4. ([12]) Let K be an infinite Polish space, µ a probability mea-
sure on K, and (X,Σ, ν) a measure space. Then

T : L1(K,B(K), µ) → L1(X,Σ, ν)
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is a bounded linear operator iff it has the form

(1.3) Tf(x) =
∞∑

n=1

an(x)f(σn(x)) +
∫
K

f(s)dρx(s)

where
(i) an : X → R is Borel measurable with |an(x)| > |an+1(x)| ν-a.e.;
(ii) σn : X → K is Σ–B measurable with σn(x) 6= σm(x), m 6= n, x ∈ X;
(iii) x→ ρx is Σ–B∗ measurable from X into M(K) with ρx ∈Mc(K) ν-a.e.;

(iv) sup
µ(B)>0

1
µ(B)

[ ∞∑
n=1

∫
σ−1

n (B)

|an(x)|dν(x) +
∫
X

|ρx|(B) dν(x)
]

= M <∞.

In this case, ‖T‖ = M .

Remark 1.5. By Kalton ([12]), one also has

T±f(x) =
∞∑

n=1

a±n (x)f(σn(x)) +
∫
K

f(s) dρ±x (s)

and

|T |f(x) =
∞∑

n=1

|an(x)|f(σn(x)) +
∫
K

f(s) d|ρx|(s).

On the right side of (1.3), we denote the first part by Ta and the second part
by Tc, and call them the purely atomic part and the purely continuous part of T ,
respectively. If T has only purely atomic part (resp. purely continuous part), then
we say that T is purely atomic (resp. purely continuous).

By Theorem 1.4, if x→ νx represents Ta, then for almost all x ∈ X, νx has
the form

(1.4) νx =
∞∑

n=1

an(x)δσn(x).

Conversely, if x → νx represents an operator T ∈ L(L1(K,B(K), µ), L1(X,Σ, ν))
such that νx has the form (1.4) for almost all x ∈ X, then by the proof of Theo-
rem 1.4 in [12], T is purely atomic.

We thus have the following corollary (cf. [15]).

Corollary 1.6. With the notation of Theorem 1.4, every bounded linear
operator

T : L1(K,B(K), µ) → L1(X,Σ, ν)
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can be uniquely written as
T = Ta + Tc.

Moreover, one has
|T | = |Ta|+ |Tc| = |T |a + |T |c

where Ta has the form
Ta =

∑
n

An

with
Anf(x) = an(x)f(σn(x)).

In Corollary 1.6,
∑
n
An is the strong `1-sum. This means that there exists a

K < ∞, such that for all f ∈ L1(µ),
∑
‖Anf‖ 6 K‖f‖ and Taf =

∑
Anf . It is

known that
K 6 ‖T‖,

and each An maps disjoint functions to disjoint functions, i.e. if |f | ∧ |g| = 0, a.e.,
then |Anf | ∧ |Ang| = 0, a.e. ([15]). We call such operators atoms.

We can also write Ta as
Ta =

∑
n

′
An,

where
∑′ denotes the pointwise sum of operators, which is defined as follows.

For 1 6 p 6 ∞, fn ∈ Lp, n = 1, 2, . . ., we say that
∑
n

′
fn exists if the pointwise

sum
∑
|fn(x)| belongs to Lp; then

∑
n

′
fn denotes the pointwise (a.e.) sum of f ′ns,

which of course belongs to Lp. For a sequence of operators (Tn) ⊂ L(Lp), we say
that

∑
n

′
Tn exists if

∑′
Tnf exists for all f ∈ Lp. In this case, it follows easily from

the closed graph theorem that

f →
∑

n

′
Tnf

defines a bounded linear operator on Lp.
We note that:

(i) if Tn ∈ L(Lp), n = 1, 2, . . . , are such that
∑
n

′
Tn exists, then also

∑
n

′
T ∗n

exists, and
(∑

n

′
Tn

)∗
=

∑
n

′
T ∗n ;

(ii) given Tn ∈ L(L1), n = 1, 2, . . . , then if
∑

n Tn is a strong `1-sum, then∑
n

′
Tn exists, and if the Tn’s are all positive, the converse is true.
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Let La = La(L1(K,B(K), µ), L1(X,Σ, ν)) denote the set of all purely atomic
operators, and Lc = Lc(L1(K,B(K), µ), L1(X,Σ, ν)) the set of all purely continu-
ous operators. Then by Corollary 1.6, both La and Lc are 1-complemented closed
ideals (and so are projection bands) of L(L1), and

(1.5) L(L1(K,B(K), µ), L1(X,Σ, ν)) = La ⊕ Lc

(see [9]).

Definition 1.7. Let T : L1 → L1 be a bounded linear operator, and B =
(En,i) be a bush of subsets of [0,1]. Define

λT (B) = lim
n

max
i
|TEn,i|.

In particular, if B = (∆n,i) we denote λT (B) by λT .
If A is the σ-algebra generated by B = (En,i) we also denote λT (B) by

λT (A).
The function λT (B) is called the Enflo-Starbird maximal function with re-

spect to the bush B, and λT is simply called the Enflo-Starbird maximal function.
The existence of the limit in the definition was proved in [8]. Later, we will show
that λT is exactly the function |a1| with a1 as in Theorem 1.4, and thus λT (A) is
independent of the choice of the generating bush.

T is said to be sign-preserving if there exists a set S of positive measure and
a δ > 0, so that

‖Tf‖ > δ

for all f with ∫
f dµ = 0 and |f | = χS a.e.

This definition was initially given by Rosenthal ([15]).

Theorem 1.8. ([15]) Let T ∈ L(L1). Then the following are equivalent:
(i) T has an atomic part;
(ii) λT is a non-zero element in L1;
(iii) T is sign preserving;
(iv) there is a set S with λ(S) > 0 so that T |S is an isomorphism.

Theorem 1.9. ([8]) T ∈ L(L1) is Enflo iff λT (B) 6= 0 for some bush B.

Theorem 1.10. ([14]) There exists an operator in L(L1) which is neither
Dunford-Pettis nor Enflo. In other words, the Rosenthal operators exist.

Bourgain ([4]) shows that the space of all Dunford-Pettis operators in L(L1)
is a solid sublattice. To prove this, he gives the following:
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Proposition 1.11. For T : L1 → L1, the following are equivalent:

(i) T is a Dunford-Pettis operator;

(ii) T1p is compact for 1 < p 6 ∞;

(iii) T1∞ is compact.

(1p : Lp → L1, 1 < p 6 ∞, are the canonical maps.)

To show that all Dunford-Pettis operators form a band, we need some results
from the theory of Banach lattices.

Let X,Y be vector spaces and B(X,Y ) be the vector space of all bilinear
forms on X × Y . Define the bilinear form x⊗ y on B(X,Y ) by

x⊗ y(f) = f(x, y).

Then, the canonical map

χ : (x, y) → x⊗ y

is a bilinear map from X × Y into B(X,Y )∗. The linear span of χ(X × Y ) in
B(X,Y )∗ is called the tensor product of X and Y , and is denoted by X ⊗ Y .

If X and Y are Banach spaces, one can define different norms on X ⊗ Y .
What we need here is the so-called ε-norm, which is defined as

‖u‖ε = sup{|(x∗ ⊗ y∗)(u)| : (x∗, y∗) ∈ Ba(X∗)×Ba(Y ∗)}.

In this paper, a bounded linear operator T : L∞ → L1 is called integral if

bT ∈ (L∞ ⊗ε L
∞)∗,

where bT is defined by

bT (f, g) = 〈Tf, g〉, f, g ∈ L∞.

The integral norm ‖T‖i of T is defined by

‖T‖i = ‖bT ‖.

Recall that an operator T : L∞ → L1 is regular if T has the form T = T+ − T−

with both T+ and T− positive. The space of all such operators is denoted by
Lr(L∞, L1).
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Theorem 1.12. ([16])
(i) Lr(L∞, L1) is an AL-space with the integral norm.
(ii) If T is positive, then ‖T‖i = ‖T‖.

Since L(L1) is a Banach lattice, if we define i∞ : L∞ → L1 to be the canonical
map, then for each T ∈ L(L1),

Ti∞ = T+i∞ − T−i∞,

i.e., any operator of the form Ti∞ is a member of Lr(L∞, L1). In order to apply
the lattice property of Theorem 1.12, we need the following facts about AL-spaces.

Theorem 1.13. Let X be an AL-space. Then:
(i) X is order complete, that is, for each non-empty majorized set M ⊂ X,

supM exists in X.
(ii) Each upward directed (6) norm bounded family in X converges in norm.

2. THE RESULTS OF THIS PAPER

Lemma 2.1. Let K be a compact metrix space, µ ∈ M(K) and B(µ) be the
band generated by µ. Then

B(µ) = L1(K,µ) = {ν ∈M(K) : ν � µ},

and both B(µ) and B(µ)⊥ are weak*-Borel subsets of M(K).

Proof. Let O be a countable base of the topology on K consisting of balls.
For each m, k and disjoint U1, . . . , Un ∈ O with

|µ|
( ⋃

16j6n

Uj

)
<

1
m+ k

,

write
V (U1, . . . , Un,m, k) =

{
ν ∈M(K) : |ν|

( ⋃
16j6n

Uj

)
<

1
m

}
Then V (U1, . . . , Un,m, k) is a weak*-Borel set, and so is the set

A =
⋂
m

⋃
k

⋂
(U1,...,Un)

V (U1, . . . , Un,m, k).

We claim that
A = B(µ).
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In fact, if ν ∈ B(µ), then ν 6 µ. Thus for each m, there exists a k such that
for any open sets U1, . . . , Un, with

|µ|
( ⋃

16j6n

Uj

)
<

1
m+ k

,

one has
|ν|

( ⋃
16j6n

Uj

)
<

1
m
.

This implies ν ∈ A.
Conversely, if ν ∈ A, let ν = ν1 +ν2, where |ν1| � |µ| and |ν2| ⊥ |µ|. Assume

|ν2| 6= 0; then there exists a Borel set E such that

|ν2|(E) > 0, |µ|(E) = 0.

Choose m such that
1
m
< |ν2|(E).

Then, by the definition of A, there exists a k such that

ν ∈
⋂

(U1,...,Un)

V (U1, . . . , Un,m, k).

Since ν2 ⊥ µ, we can choose U1, . . . , Un ∈ O, such that

|µ|
( ⋃

16j6n

Uj

)
<

1
m+ k

and
|ν2|

(
E4

( ⋃
16j6n

Uj

))
< |ν2|(E)− 1

m
.

Then, by the definition of V (U1, . . . , Un,m, k), one has

|ν2|
( ⋃

16j6n

Uj

)
6 |ν|

( ⋃
16j6n

Uj

)
6

1
m
,

and so

|ν2|(E) < |ν2|
(
E4

( ⋃
16j6n

Uj

))
+ |ν2|

( ⋃
16j6n

Uj

)
< |ν2|(E),

which is a contradiction. Hence ν2 = 0 and ν = ν1 ∈ B(ν). This proves that B(µ)
is a weak*-Borel set.
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For the second part, let O1, . . . , On ∈ O with

|µ|
( ⋃

16j6n

Oj

)
> |µ| − 1

k
.

Define
V (O1, . . . , On,m, k) =

{
ν : |ν|

( ⋃
16j6n

Oj

)
<

1
m

}
and

B =
⋂
m

⋂
k

⋃
(O1,...,On)

V (O1, . . . , On,m, k).

Then, since for each ν ∈ B(µ)⊥ there is a Borel set E such that

|µ|E = ‖µ‖ and |ν|E = 0,

one has that for fixed k,m there exist open sets O1, . . . , On, such that

|µ|
( ⋃

16j6n

Oj

)
> ‖µ‖ − 1

k

|ν|
( ⋃

16j6n

Oj

)
<

1
m
.

Thus
ν ∈

⋃
(O1,...,On)

V (O1, . . . , On,m, k).

Fix an m. Then, since for each k there exists a V (O1, . . . , On,m, k) which
contains ν, we have

ν ∈
⋂
k

⋃
(O1,...,On)

V (O1, . . . , On,m, k),

and since this holds for each m, we have ν ∈ B. So B(µ)⊥ ⊂ B.
On the other hand, if ν 6∈ B(µ)⊥, then |ν| ∧ |µ| 6= 0, and so there exists a

Borel set F with |µ|(F ) 6= 0 such that

|µ|(E) 6= 0 ⇔ (|ν| ∧ |µ|)(E) 6= 0

for all Borel subset E ⊂ F . Choose m such that

(|ν| ∧ |µ|)(F ) >
1
m
.
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Since |ν| ∧ |µ| 6 |µ|, there exists a k such that for all Borel sets G

|µ|(G) <
1
k
⇒ |ν ∧ µ|(G) < |ν ∧ µ|(E)− 1

m
.

It follows that

|µ|
( ⋃

16j6n

Oj

)
> |µ| − 1

k
⇒ |ν|

( ⋃
16j6n

Oj

)
>

1
m

for O1, . . . , On ∈ O. Thus ν 6∈
⋃

(O1,...,On)

V (O1, . . . , On,m, k) for all k, and so

ν 6∈ B. This shows that B ⊂ B(µ)⊥.

Lemma 2.2. Let K be a compact metric space, and let ϕ be as in Theorem
1.3. Then for any Borel measure µ on K, there exist U∗–B∗ measurable mappings
ϕ1 : M(K) → B(µ) and ϕ2 : M(K) → B(µ)⊥ such that ϕ = ϕ1 + ϕ2.

Proof. Let M(K) × L1(µ) take the product weak*-topology on M(K) ×
M(K). Consider the map τ : M(K)× L1(µ) →M(K) defined by

τ(ν, f) → ν − f dµ.

It is w*-continuous and so is a Borel map. Let

A = (2Ba (M(K))× 2Ba (L1(µ)) ∩ τ−1(Ba (M(K))

and let τ ′ = τ |A. Then since Ba (M(K))× {0} ⊂ A,

τ ′ : A→ Ba (M(K))

is a surjection. By Lemma 2.1, B = τ ′−1(Ba (B(µ)⊥)) is a Borel subset of A, and
so is a Suslin space.

Define σ : B → Ba (M(K)) by

σ(ν, f) = ν;

then σ is a weak*-continuous surjection. Thus, by Theorem 2.2 in [12] (a conse-
quence of Kuratowski-Ryll-Nardzewski selection theorem), there is a U∗–B∗ mea-
surable map

h : Ba (M(K)) → B,

such that
σ(h(ν)) = ν.
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Let h(ν) = (ν, f), and
ψ(ν) = τ ′(h(ν)) = ν − f dµ;

thus
(ν − f dµ) ⊥ µ.

Then ψ : Ba (M(K)) → B(µ)⊥ is U∗–B∗ measurable. Since

M(K) = B(µ)⊗B(µ)⊥,

if Q is the band projection of M(K) onto B(µ)⊥, then ψ is in fact the restriction
of Q to Ba (M(K)). Thus Q is U∗–B∗ measurable. Let ϕ1 = (I −Q)ϕ, ϕ2 = Qϕ,
and the conclusion follows.

The next result is the first step of the proof of the main theorems in this
paper.

Proposition 2.3. With the same hypothesis as in Theorem 1.4, T is a
bounded linear operator iff it has the form

Tf(x) =
∞∑

n=1

an(x)f(σn(x)) +
∫
K

f(s) dρx(s) +
∫
K

f(s)gx(s) dµ(s), a.e.

where for all n, an and σn are as in Theorem 1.4, and
(i) x → gx dµ is Σ–B∗ measurable from [0, 1] to M(K) with gx ∈ L∞(µ),

a.e.;
(ii) x→ ρx is Σ–B∗ measurable from [0, 1] to Mc(K) with ρx ⊥ µ, a.e.

Proof. Consider L1(K,B(K), µ) as a band in M(K). Then the conclusion
follows by Theorem 1.4 and Lemma 2.2.

Remark 2.4. Let

LRN = LRN(L1(K,B(K), µ), L1(X,Σ, ν))

be the space of all representable operators, and

Ls = Ls(L1(K,B(K), µ), L1(X,Σ, ν))

be the space of all operators T satisfying that, if X → µx is the Kalton repre-
sentation for T as in Theorem 1.1, then µx ⊥ λ for almost all x ∈ [0, 1]. By [9],
both Ls and LRN are 1-complemented closed ideals (and so are projection bands)
in L(L1(K,B(K), µ), L1(X,Σ, ν)), and

(2.1) L(L1(K,B(K), µ), L1(X,Σ, ν)) = LRN ⊕ Ls.
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Thus, each T ∈ L(L1(K,B(K), µ), L1(X,Σ, ν)) can be uniquely written as

T = TRN + Ts

with TRN ∈ LRN and Ts ∈ Ls. Moreover,

(2.2) |T | = |TRN|+ |Ts| = |T |RN + |T |s.

By Proposition 2.3, the related band projections are weak*-Borel maps.

We call TRN the Radon-Nikodym part (or representable part) of T and Ts the
singular part of T . It is easy to see that Ts is exactly the sum of the first two parts
in the equations of Proposition 2.3, and TRN is the third part. LRN and Ls are
called the Radon-Nikodym band and the singular band of L(L1), respectively.

The next several lemmas are used to split off a non-Enflo part from the
singular part of the operators in L(L1), which we do in Proposition 2.13.

Lemma 2.5. Suppose T ∈ L(L1). Let B = (En,i) be a bush on [0, 1]. For
fixed n, i, let

Bn,i = B ∩ En,i = {En,i ∩ Em,j : m, j are arbitrary}.

Then for every m,
λT (B) = max

j
λT (Bm,j)

where λT (·) is the Enflo-Starbird maximal function.

Proof. Since for n > m,

gn(B) = max
i
|TEn,i| > max

i
{|TEn,i| : En,i ⊂ Em,i} = gn(Bm,i),

by the definition of λT (·), we have

λT (E) > max
j
λT (Bm,j) a.e.

On the other hand, for almost all t and every δ > 0, if n is large enough, then

λT (B)(t) < gn(B)(t) +
δ

2
and

gn(Bm,j) < λT (Bm,j)(t) +
δ

2
.

Thus

λT (B)(t) < max
i
|TEn,i(t)|+

δ

2
= max

j
max

i
{|TEn,i(t)| : En,i ⊂ Em,j}

6 max
j
λT (Bm,j)(t) + δ.

Since δ is arbitrary,
λT (E)(t) 6 max

j
λT (Em,j)(t).

The lemma is proved.
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Lemma 2.6. Suppose T ∈ L(L1). Then

λT = |a1|, a.e.,

where a1 is as in Theorem 1.4 (i), and

λT = λ|T | = max(λT+ , λT−).

Proof. Let an, σn, n = 1, 2, . . . , be as in Theorem 1.4, and T = Ta + Tc be
as in Corollary 1.6. Then

max
i
|T∆n,i| 6 max

i
|Ta∆n,i|+ max

i
|Tc∆n,i|.

By the definition of Tc and Theorem 1.4 (iii), we obtain

max
i
|Tc∆n,i| → 0, a.e.

Thus λT 6 λTa , a.e.
Now by Corollary 1.6, there exists a K <∞, such that∑

‖Anf‖ 6 K‖f‖, for all f ∈ L1.

So by the definition of An’s and by the bounded convergence theorem,∑
n

|an(x)| <∞

for almost all x ∈ [0, 1]. Fix such an x ∈ [0, 1] with

λT (x) 6 λTa(x),

and let Fn,i = {k : σk(x) ∈ ∆n,i}. Then since by Theorem 1.4 (ii),

σk(x) 6= σj(x), if k 6= j,

one has

max
i
|Ta∆n,i|(x) = max

i

∣∣∣∣∣ ∑
k∈Fn,i

ak(x)

∣∣∣∣∣ 6 max
i

∑
k∈Fn,i

|ak(x)|.

But since for k 6= j, there exists an n, such that

σk(x) ∈ ∆n,ik
, σj(x) ∈ ∆n,ij

and ∆n,ik
∩∆n,ij

= ∅,
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one has
max

i

∑
k∈Fn,i

|an(x)| → max
n
|an(x)| = |a1(x)|,

and so
λT (x) 6 |a1(x)|.

On the other hand, let σ1(x) ∈ ∆n,in
, i = 1, 2, . . . . Then

λT (x) = lim
n

max
i
|T∆n,i(x)| > lim

n
|T∆n,in

(x)|

> |a1(x)| − lim
n

∣∣∣∣∣ ∑
i 6=k∈Fn,in

ak(x)

∣∣∣∣∣− lim |Tc∆n,in(x)| = |a1(x)|.

The first part of the lemma follows.
The second part of the lemma follows by the remark after Theorem 1.4.

Lemma 2.7. Let T ∈ L(L1). Suppose that B1 and B2 are two bushes on
[0, 1] that generate the same atomless σ-algebra A on a subset A of [0, 1]. Then

λT (B1) = λT (B2) a.e.

Hence λT (A) is well defined.

Proof. Through a linear isometry between L1-spaces, we can suppose A = B.
Thus, we need only show that, for any bush B = (En,i) on [0, 1] which generates
B, the following holds:

λT (B) = λT = |a1| a.e.

But again, through a linear isometry on L1 into L1, we can suppose that all En,i

are intervals. Then, replacing (∆n,i) by (En,i), we can repeat word for word the
argument in the proof of last lemma.

We have already defined the purely atomic part Ta and the purely continuous
part Tc for T ∈ L(L1(K,B(K), µ), L1(X,Σ, ν)) with K a compact metric space.
Generally, if (X1,Σ1, ν1) is a separable non-atomic probability space, it is well
known that L1(X1,Σ1, ν1) is linearly isometric to L1. In particular, the isometry
can be realized through an isomorphism between measure algebras (see, e.g., [11]),
which we call a regular isometry. Such an isometry maps characteristic functions
to characteristic functions, and so is also a lattice isomorphism.

Now let S : L1(X1,Σ1, ν1) → L1 be a regular isometry. For T ∈ L(L1(X1,

Σ1, ν1), L1(X,Σ, ν)), define

Ta = (TS−1)aS and Tc = (TS−1)cS.
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Then
T = Ta + Tc.

Moreover, Ta and Tc are unique. In fact, if S : L1(X1,Σ1, ν1) → L1 is another
linear isometry, let

T ′a = (TS′−1)aS′ and T ′c = (TS′−1)cS′.

Suppose Ta − T ′a 6= 0; then (Ta − T ′a)S
−1 6= 0 is purely atomic, and (Tc − T ′c)S

−1

is purely continuous (if it is not zero). Thus

0 6= (Ta − T ′a)S
−1 + (Tc − T ′c)S

−1 = (Ta + Tc − T ′a − T ′c)S
−1 = (T − T )S−1 = 0.

which is a contradiction. So Ta = T ′a. Similarly, Tc = T ′c.
Thus we can call Ta and Tc the purely atomic part and the purely continuous

part of T , respectively. By the definition of Ta and Corollary 1.6, Ta has the form

Ta =
∑′

An,

where An is an atom for each n and the sum is a strong `1-sum.

Lemma 2.8. Let L1(Xi,Σi, µi), i = 1, 2, 3, be separable and atomless, and

Ti : L1(Xi,Σi, µi) → L1(Xi+1,Σi+1, µi+1), i = 1, 2

be purely atomic. Then T = T2T1 is purely atomic.

Proof. First suppose L1(Xi,Σi, µi) = L1, i = 1, 2. Let the maps t → µt,
t ∈ [0, 1], and x→ νx, x ∈ X3, represent T1 and T2 respectively. Then by (1.4)

µt =
∑

n

an(t)δσn
(t), λ-a.e.

νx =
∑
m

bm(x)δτm
(x), µ3-a.e.

(for the definitions of an, bm, σn, τm, n,m = 1, 2, . . ., see Theorem 1.4). Then it is
easy to check that

x→
∑
m,n

an(τm(x))bm(x)δσn◦τm(x)

represents T2T1, and so by the note below (1.4), T = T2T1 is purely atomic.
Now suppose L1(X2,Σ2, µ2) = L1 and S = T2 is a regular isometry. Let

S1 : L1(X1,Σ1, ν1) → L1
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be a regular isometry; then, by definition, T 1S−1
1 is purely atomic. Let

T = ST1S
−1
1 = Ta + Tc;

then, since S is a lattice isomorphism as well as a linear isometry,

S−1Tc = 0 ⇒ Tc = 0.

Hence T is purely atomic which implies that ST1 is purely atomic.
Generally, let S1 : L1(Xi,Σi, µi) → L1, i = 1, 2, be regular isometries. Then

TiS
−1
i , i = 1, 2, are purely atomic, and so by the previous argument, the maps

T2S
−1
2 : L1 → L1(X3,Σ3, µ3)

and
S2T1 : L1(X1,Σ1, µ1) → L1

are purely atomic. Hence,

(T2S
−1
2 )(S2T1S

−1
1 ) = (T2T1)S−1

1 : L1 → L1(X3,Σ3, µ3)

is purely atomic, and so T2T1 is purely atomic (by definition).

Lemma 2.9. Let A be an atomless σ-subalgebra of Σ0 on [0, 1], and E ∈ Σ0

with 1 > λ(E) > 0. Let σ(A, E) be the σ-algebra generated by A ∪ {E}. Then

(T |A)a = (T |σ(A, E))a|A.

Proof. Let A(E) = A ∩ E = {F ∩ E : F ∈ A}, and define the operator
SE : L1(A) → L1(A(E)) by

SEf = f |E, f ∈ L1(A).

Then, to prove the lemma, we need only to show that

(2.3) (T |A)a = (T |A(E))aSE + (T |A(Ec))aSEc .

First we note that each of the operators T |A, (T |A(E))SE , (T |A(Ec))SEc is
an operator from L1(A) into L1, and

(T |A) = (T |A(E))SE + (T |A(Ec))SEc .

Let S : L1(A) → L1 be a regular isometry; then

(T |A)S−1 = (T |A(E))SES
−1 + (T |A(Ec))SEcS−1
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where (T |A)S−1, (T |A(E))SES
−1, (T |A(Ec))SEcS−1 ∈ L(L1). By (1.5), one has

[(T |A)S−1]a = [(T |A(E))SES
−1]a + [(T |A(Ec))SEcS−1]a,

and
[(T |A)S−1]aS = [(T |A(E))SES

−1]aS + [(T |A(Ec))SEcS−1]aS.

By definition, the last equality is the same as

(T |A)a = [(T |A(E))SE ]a + [(T |A(Ec))SEc ]a.

Thus, to show that (2.3) holds, we need only to show

[(T |A(E))SE ]a = (T |A(E))aSE

[(T |A(Ec))SEc ]a = (T |A(Ec))aSEc .

We are going to show the first equality, and then the second one can be similarly
obtained.

Consider the following equality

(T |A(E))SE = (T |A(E))aSE + (T |A(E))cSE .

Since SE is purely atomic, by Lemma 2.8, so is (T |A(E))aSE . On the other hand,
let B = (En,i) be an arbitrary bush which generates A; then B0 = (En,i ∩E) is a
bush which generates A(E). Since

max
i
|[(T |A(E))cSE ](En,i)| = max

i
|(T |A(E))c(E ∩ En,i)|, i = 1, 2, . . . ,

by the definition of an Enflo-Starbird function, one has

λ(T |A(E))cSE
(B) = λ(T |A(E))c(B0).

But, by Theorem 1.8, λ(T |A(E))c(B0) = 0, λ-a.e., so

λ(T |A(E))cSE
(B) = 0, λ-a.e.

Again by Theorem 1.8, (T |A(E))cSE is purely continuous. By the uniqueness of
the representation in Theorem 1.4, the conclusion follows.

Remark 2.10. The equation (2.3) is also true for arbitrary finite partitions
of [0, 1].

For a fixed atomless σ-subalgebra A, we now present a certain sub-band
LA contained in LE, consisting of T with |T |A purely atomic. We first define the
operation T → TA corresponding to the band projection, and later verify the band
properties.
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Lemma 2.11. Let T ∈ L(L1), and let A be an atomless σ-subalgebra of Σ0.
Then there exists a TA ∈ L(L1) such that:

(i) TA|A is purely atomic;
(ii) (T − TA)|A is purely continuous;
(iii) TA± = (T±)A.

Proof. If λT (A) = 0, this is trivial. So suppose λT (A) 6= 0.
First suppose that T is positive, and let A(E) be as in Lemma 2.9. Define

Tn,i = (T |A(∆n,i))aS∆n,i .

Then Tn,i ∈ L(L1(A), L1), and

Tn,i =
∑

{Tm,j : ∆m,j ⊂ ∆n,i}

for all 1 6 i 6 2n, n = 1, 2, . . . . Define

TA∆n,i = Tn,i∆n,i.

Then TA induces an operator in L(L1). In fact, for any function f of the form
f =

∑
16k6m

αkχ∆nk,ik
with αk ∈ R, define

TAf =
∑

16k6m

αkTA∆nk,ik
.

Then, by (2.3), it is easy to see that TA is a linear operator on X, the linear span
of {∆n,i}, with ‖TA‖ 6 ‖T‖. Since X is dense in L1, TA can be extended to an
operator in L(L1).

Now since
TA∆n,i 6 T∆n,i.

one has
TA 6 T.

By the definition of TA, for f ∈ L1(A),

TA(f) = T0,1(f) = (T |A)a(f),

so TA|A is purely atomic, i.e., TA satisfies (i). Since (T − TA)|A = T |A − TA|A,
(T − TA)|A is purely continuous, and (ii) is proved. Since T is positive, (iii) is
trivial.
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For the general case, consider T+ and T− respectively. Let

TA = (T+)A − (T−)A.

Then, since 0 6 (T±)A 6 T± and T+ ∧ T− = 0, one has

(T+)A ∧ (T−)A = 0.

Since TA can be uniquely written as

TA = TA
+ − TA

−

with TA+ ∧ TA− = 0, one must have that TA± = (T±)A. This proves (iii).

Let B = (En,i) be any bush which generates A. Then

|(T − TA)En,i| 6 |T+ − (T+
) A|En,i + |T− − (T−)A|En,i = |T − TA|En,i.

Thus, by definition of the Enflo-Starbird function,

0 6 λ(T−TA)(B) 6 λT+−(T+)A(B) + λT−−(T−)A(B) = 0.

This proves (ii).
It remain to show (i). Let S : L1(A) → L1 be a regular isometry; then

(TA|A)S−1 = (TA+|A)S−1 − (TA−|A)S−1.

Let x → ν±x be the map from [0,1] into M [0, 1] which represents (TA±|A)S−1

respectively; then by (1.4), for almost all x ∈ [0, 1], ν±x has the forms

ν±x =
∞∑

n=1

a±n (x)δσ±n (x),

where for each n, a±n and σ±n satisfy the conditions in Theorem 1.4. Thus, the
map

x→
∞∑

n=1

a+
n (x)δσ+

n
(x)−

∞∑
n=1

a−n (x)δσ−n (x)

represents (TA|A)S−1, and so by the note below (1.4), (TA|A)S−1 is purely atomic.
By the definition of (TA|A)a, TA|A is purely atomic.
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Remark 2.12. (i) For a given atomless σ-subalgebra A of Σ0, let T = EA
be the conditional expectation operator relative to A, and An be the algebra
generated by A ∪

{
∆n,i : 1 6 i 6 1/2n

}
. Then one has

T = TA = TAn
, n = 1, 2, . . . .

In fact, in this case, let Tn,i be as in the proof of the lemma; then

Tn,i = TAn
|∆n,i.

(ii) For a given arbitrary operator T ∈ L(L1),

TA = lim
n

(T |An)aEAn

where the limit exists in the strong operator topology.
(iii) It is possible that TA 6= 0 but TA|A = 0. For example, let S :

L1[0, 1/2] → L1 be an isometry, R : L1[1/2, 1] → L1[0, 1/2] be the translation
operator defined by

Rf(x) = f

(
x− 1

2

)
, f ∈ L1

[
1
2
, 1

]
,

and define T : L1 → L1 by

Tf = S

(
f

∣∣∣ [
0,

1
2

])
− SR

(
f

∣∣∣ [
1
2
, 1

])
.

Take A = {E ∪RE : E ∈ Σ0 ∩ [1/2, 1]}. Then T = TA 6= 0, but TA|A = 0.

Lemma 2.13. Let A be a given atomless σ-subalgebra of Σ0, and LA be
the set of all operators of the form T = TA with TA satisfying the conditions in
Lemma 2.11. Then:

(i) L(A) is a band in L(L1);
(ii) T ∈ LA iff |T | is purely atomic on L1(A);
(iii) for each T ∈ (LA)⊥, T |A is purely continuous.

Proof. (i) If T, S ∈ LA, then by Lemma 2.11, T± + S± is purely atomic on
L1(A). Since 0 6 (T + S)± 6 T± + S±, by (1.5), (T + S)± is purely atomic on
L1(A). This shows that LA is a linear subspace of L(L1). A similar argument
shows that LA is an ideal of L(L1). Finally, let {Tα : α ∈ D} be a majorized
upward directed family of positive operators in LA, and suppose that

T = sup
α
Tα
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exists in L(L1). If T is not purely atomic on L1(A), i.e., (T |A)c 6= 0, then there
exists an α ∈ D such that (T |A)c ∧ (Tα|A) 6= 0. By (1.5), (T |A)c ∧ (Tα|A) is
purely atomic. But

λ(T |A)c∧(Tα|A)(A) 6 λ(T |A)c = 0,

a contradiction to Theorem 1.9.
(ii) If T ∈ LA, then by Lemma 2.11, |T | is purely atomic on L1(A). Con-

versely, if |T | is purely atomic on L1(A), then by (1.5) (through a regular isometry),
0 6 T± 6 |T | is purely atomic on L1(A). Thus, by Lemma 2.11, TA = T , i.e.
T ∈ LA.

(iii) Let T ∈ (LA)⊥. Assume (T |A)a 6= 0. Let S : L1(A) → L1 be a regular
isometry; then, by the definition of (T |A)a, (TS−1)a 6= 0. By Theorem 1.8,

λTS−1 6= 0,

which is equivalent to saying that λT |A 6= 0 (since S is an isometry). Let B =
(En,i) be any bush which generates A; then by definition,

λT |A = lim
n

max
i

∣∣(T |A)(En,i)
∣∣ = lim

n
max

i
|TEn,i| 6 lim

n
max

i
|T |En,i = λ|T |(A).

Thus λ|T |(A) 6= 0, which implies that λT+(A) 6= 0 or λT− 6= 0. By Lemma 2.11 (iii),
TA 6= 0. But TA ∈ LA and |TA| 6 |T |, a contradiction to the assumption that
T ∈ (LA)⊥.

Let LNE be the set of all non-Enflo operators. We shall show next that LNE

is a band. It then follows from Proposition 2.15 below that LE = (LNE)⊥.

Lemma 2.14. LNE is a band of L(L1).

Proof. Let T1, T2 ∈ LNE; then for any bush B = (En,i),

max
i
|(T1 + T2)En,i| 6 max

i
|T1En,i|+ max

i
|T2En,i|,

and so by the definition of the Enflo-Starbird maximal function, one has

λT1+T2(B) 6 λT1(B) + λT2(B).

By Theorem 1.9,
λT1(B) = λT2(B) = 0,

so λT1+T2(B) = 0, which implies that T1 + T2 ∈ LNE. This shows that LNE is a
linear subspace of L(L1).
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Suppose T ∈ LNE, S ∈ L(L1) and |S| 6 |T |. By a result in [8], |T | is a
non-Enflo operator, so for any given bush B,

λ|S|(B) 6 λ|T |(B) = 0

and so S ∈ LNE. This shows that LNE is an ideal of L(L1).
Finally, let {Tα : α ∈ D} be a majorized upward directed family of positive

operators in LNE, and assume that T = sup
α
Tα exists in L(L1). If T is an Enflo

operator, then by Theorem 1.9, there is a bush B such that

λT (B) 6= 0.

Let A be the (atomless) σ-subalgebra of Σ0 generated by B; then by Lemma 2.11,
TA 6= 0 and 0 6 TA 6 T . But then there exists at least one α ∈ D such that
TA ∧ Tα 6= 0. Since

0 6 TA ∧ Tα 6 Tα

TA ∧ Tα is non-Enflo, and so is purely continuous on L1(A). But by Lemma 2.13,
TA ∧ Tα ∈ LA, a contradiction.

Let Lu = Ls ∩ LNE; then by (2.1) and Lemma 2.14, it is easy to see that

(2.4) L(L1) = LRN ⊕ Lu ⊕ LE.

The bands LE,LNE, and Lu are called the Enflo band, the non-Enflo band and the
singular continuous band respectively.

Proposition 2.15. Let T ∈ L(L1). Then T can be uniquely written as,

(2.5) T = TE + Tu + TRN,

where
(i) TE =

∞∑
n=1

Tn, with
∑
n
Tn `

1-strongly convergent, such that for each n there

exists a non-atomic subalgebra An of Σ0, such that T±n |An is purely atomic, and
such that for all m < n T±n |Am is purely continuous and Tn ⊥ Tm.

(ii) Tu has the form Tuf(x) =
∫
K

f(s)dρx(s) such that for almost all x, ρx ∈

Mc(K), ρX ⊥ λ and for each atomless σ-subalgebra A of Σ0, Tu|A is purely
continuous.

(iii) TRN is Radon-Nikodym, as defined below Proposition 2.3.
Furthermore, one has

(2.6) |T | =
∑

n

|Tn|+ |TRN|+ |Tu| =
∑

n

|T |n + |T |RN + |T |u.
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Proof. Let PRN : L(L1) → LRN, Pu : L(L1) → Lu and PE : L(L1) → LE be
band projections. Let

TRN = PRN(T ), Tu = Pu(T ) and TE = PE(T ).

Then it is easy to see that Tu satisfies (ii) and TRN satisfies (iii). By (2.4), we need
only show that TE has the form in (i).

By Lemma 2.13, for a given atomless σ-subalgebra A, there exists a band
projection PA : L(L1) → LA, and so for each S ∈ L(L1), one has PA|S| = |PAS|.

Let A = {A : A is an atomless σ-subalgebra of Σ0}, and let

α = sup
{∫

|PA(T )|1 dλ : A ∈ A
}
.

Claim. There exist operators T1, T2, . . . in L(L1), atomless σ-subalgebra
A1,A2, . . . and integers n1 < n2 < · · · with the following proporties:

(1)
n∑

k=1

T±k 6 T± and Tj ⊥ Tk, for all n, and all j < k 6 n;

(2) Tk|Ak is purely atomic and Tk|Ak−1 is purely continuous for all k > 1
and Tj ⊥ Tk = 0, all j, k, j 6= k;

(3) If Sn = T −
∑

k<n

Tk, then for all m and any atomless σ-subalgebra A,

∫
|(Sk)A|1 dλ 6

1
2m

α, for all k > nm.

In fact, let S0 = T ; then we can define Tn = PAn(Sn−1), n > 1, in the
following way: let n1 be the largest n ∈ N such that for each k < n there exists
Ak+1 ∈ A with ∫

|PAk−1(Sk)|1 dλ >
1
2
α.

Since, if this equality is satisfied for all k < n, one has

n− 1
2

α 6
∫ ∑

k<n

|PAk+1(Sk)|1 dλ 6
∫
|T |1 dλ,

such an n1 exists.
In general, assume that nm is defined. If there exists no σ-subalgebra A,

such that ∫
|PA(Snm

)|1 dλ >
1

2m+1
α,

we define nm+1 = nm; otherwise, take a subalgebra A = Anm+1 such that the
above inequality is satisfied, and define Tnm+1 = PAnm+1(Snm), and repeat an
argument similar to that in the first step to find nm+1.



28 Zhuxing Liu

Thus, we get sequences (Tn) ⊂ L(L1) and (nm) ⊂ N such that (3) is satisfied.
Since PAn

is a band projection for each n, by the definition of Tn’s, (1) is satisfied.
Condition (2) follows by Lemma 2.13 (iii) and the fact that Sn ∈ (LA1+· · ·+LAn)⊥

(note that we need not have LAj
⊥ LAk

for j 6= k).
Now (1) implies that

T ′ =
∞∑

n=0

Tn

is a strong `1-sum. Since for any i, there is no atomless σ-subalgebra A such that∫
|PA(T − T ′)|1 dλ >

1
2i
,

we have PA(T − T ′) = 0 for all A ∈ A. This implies T − T ′ ∈ LNE. So, to finish
the proof, we need only show T ′ ∈ LE.

Assume T ′ 6∈ LE. Without loss of generality, we can suppose that T is
positive. Since LNE is a band, T ′ can be uniquely written as

T ′ = S1 + S2,

with S1 ∈ LNE, S2 ∈ LE, S1, S2 > 0 and S1 6= 0. Since

0 6 S1 6 T ′ =
∑

n

Tn = sup
k

∑
n6k

Tn,

one has
S1 = sup

n

(
S1 ∧

∑
n6k

Tn

)
.

Thus, there exists a k < ∞, such that S1 ∧
∑

n6k

Tn 6= 0, and so there exists an

n 6 k such that S1 ∧ Tn 6= 0. But then, Tn|An has a purely continuous part,
contradicting Condition (i).

Finally, (2.6) follows by the fact that all operators PRN, Pu and PAn
, n =

1, 2, . . . are band projections.

Remark 2.16. In general, the Tn’s are not unique.

For T ∈ L(L1), let Tn, n = 1, 2, . . . , Tu and TRN be as in Proposition 2.15.
We will call each Tn, n = 1, 2, . . . a conditional atomic part, and call TRN, Tu the
Radon-Nikodym part and the singular continuous part, respectively. TE is, as we
defined in Section 1, the pure Enflo part. We also denote the part TRN + Tu by
TNE, and call it the non-Enflo part.

Next, we wish to give a further decomposition of Tu by using Theorems 1.11,
1.12 and 1.13.
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Lemma 2.17. LDP(L1), the space of all Dunford-Pettis operators, is a band
of L(L1).

Proof. The fact that LDP(L1) is a solid sublattice, i.e. an ideal, was shown
in [4]. To show that LDP is a band, we need only show that the supremum of
a majorized upward directed family {Sα : α ∈ D} of positive Dunford-Pettis
operators is still a Dunford-Pettis operator.

Suppose

S = sup
α
Sα ∈ L(L1).

Then (Sαi∞) is a subset of the regular operators in L(L∞, L1)+ dominated by
Si∞. Since Lr(L∞, L1) with the integral norm is an AL-space, and since every
AL-space is order complete,

S0 = sup
α
Sαi∞

exists in L(L∞, L1)+; since the continuity and the order continuity are the same
in AL-spaces, and S0 − Sα > 0, by Proposition 1.11 (i),

Sαi∞ → S0

in the integral norm, and hence in the operator norm. Thus, since Sαi∞ is compact,
so is S0. But S0 is dominated by Si∞, and S ∈ L(L1), so for each f ∈ (L∞)+,
one has

S0f 6 Si∞f,

and so

‖S0f‖1 6 ‖Si∞f‖1 = ‖Sf‖1.

Hence S0 induces an operator S′0 : L1 → L1 with

‖S′0‖1 6 ‖S‖1

and

Sα 6 S′0 6 S

in L(L1). By the definition of S,

S′0 = S,

and so Si∞ is compact. Thus, by Theorem 1.13, S is Dunford-Pettis.
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Proposition 2.18. Let T ∈ L(L1). Then T can be uniquely written as

T = TDP + TNDP

such that
(i) TDP is Dunford-Pettis;
(ii) for any 0 6= S ∈ L(L1), |S| 6 |TNDP|, S is not Dunford-Pettis;
(iii) |T | = |TDP|+ |TNDP|.

Proof. By Lemma 2.17, there exists a band projection PDP from L(L1) onto
LDP(L1). Let TDP = PDP(T ), and TNDP = (I − PDP)(T ); then TDP and TNDP

satisfy (iii). By the definition of LDP, TDP is Dunford-Pettis. Since TNDP ∈
LNDP = L⊥DP, there exists no S ∈ LDP with |S| 6 |TNDP|. So TNDP satisfies (ii).

TDP and TNDP will be called the Dunford-Pettis part and the non-Dunford-
Pettis part of T , respectively. LDP will be called the Dunford-Pettis band, and
LNDP the non-Dunford-Pettis band. We also denote

LSDP = Lu ∩ LDP, LR = Lu ∩ LNDP

and call them the singular Dunford-Pettis band and the Rosenthal band respec-
tively.

Now, by these definitions, and combining (2.1), (2.4) and Proposition 2.18,
we can give the decomposition on L(L1) which we have claimed at the beginning
of this section

(2.7) L(L1) = LRN ⊕ LSDP ⊕ LR ⊕ LE.

The following is the complete version of the main result of this paper.

Theorem 2.19. Each T ∈ L(L1) can be uniquely written as

T = TRN + TSDP + TR + TE,

where TRN is Radon-Nikodym, TSDP is singular Dunford-Pettis, TR is pure Rosen-
thal and TE is pure Enflo. All operators have norm 6 ‖T‖, or more precisely,

T± = T±RN + T±SDP + T±R + T±E ,

and so

|T | = |TRN|+ |TSDP|+ |TR|+ |TE| = |T |RN + |T |SDP + |T |R + |T |E.

Proof. This follows by Proposition 2.15 and 2.18.
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TR is the pure Rosenthal part of T as defined in Section 1, and we call TSDP

the singular Dunford-Pettis part.
By what we have shown up to now, it is easy to get the following.

Proposition 2.20. (i) [LRN ◦ L(L1)] ∪ [L(L1) ◦ LRN] ⊂ LRN;
(ii) [LSDP ◦ Ls] ∪ [Ls ◦ LSDP] ⊂ LRN ⊕ LSDP;
(iii) [LR ◦ (LR ⊕ LE)] ∪ [(LR ⊕ LE) ◦ LR] ⊂ LRN ⊕ LSDP ⊕ LR

(where A ◦B = {ST : S ∈ A, T ∈ B}).

Remark 2.21. By a result in [13] (or in [2]), for T ∈ LSDP there is always a
non-zero S ∈ LSDP, such that T ◦ S ∈ LSDP. By [14], there is a non-zero T ∈ LR

such that T 2 ∈ LR. In both cases, a convolution operator was considered. The
properties of such operators are closely related to the properties of the measures
involved. Using Proposition 2.20, we will give a decomposition of M [0, 1] into
some related bands.

Recall that a convolution operator in L(L1(G)), where G is a compact abelian
group, is an operator Tµ defined by Tµf = f ∗ µ, or more precisely,

Tµf(x) =
∫
f(xt)dµ(t) =

∫
f(t)dµ(x−1t), f ∈ L1(G),

where µ ∈M(G).
Identifying the points 0 and 1 in [0,1], one can regard [0,1] as the quotient

group of R modulo 1, which is isomorphic to the circle group T, and so they
have the same dual group Z. In this case, C[0, 1] is regarded as the space of
all continuous functions with f(0) = f(1), and the point measures δ1 and δ0 are
regarded as the same.

In [6], it was shown that µ̂ ∈ c0(Z) iff Tµ is Dunford-Pettis. By Theorem 2.19,
we obtain the following:

Theorem 2.22. Denote by MRN (resp. MDPS, MR or ME) the set of all
µ ∈M [0, 1] such that Tµ is a Radon-Nikodym operator (resp. a singular Dunford-
Pettis, a pure Rosenthal, or a pure Enflo operator). Then

M [0, 1] = MRN ⊕MSDP ⊕MR ⊕ME.

In fact, MRN, MSDP, MR and ME form an orthogonal band decomposition of
M [0, 1].

Proof. We have that M [0, 1] is an AL-space and, defining ϕ : M [0, 1] →
L(L1) by ϕ(µ) = Tµ for all µ ∈ M [0, 1], that ϕ is a lattice homomorphism. Now
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the conclusion follows immediately from Theorem 2.19 and the claim: if B is a

band in L(L1), then ϕ−1(B) is a band in M [0, 1].

In turn, since ϕ is a lattice homomorphism, it follows that fixing a band B

in L(L1), then ϕ−1(B) is a lattice ideal in M [0, 1]. Thus, let A be a non-empty

subset of ϕ−1(B) so that µ = supA exists in M [0, 1]; we need only to show that

µ ∈ ϕ−1(B). But since M [0, 1] is an AL-space, there exists a sequence in ϕ−1(B)

so that µn → µ is norm. Hence, since B is closed, and ϕ is continuous, ϕ−1(B) is

closed, so µ ∈ ϕ−1(B).

Remark 2.23 Note that the Fourier-Stieltjes transformation maps an AL-

space into an AM-space, and this map is not a lattice homomorphism. Also note

that by our main theorem and [14], MR is non-zero.

A measure inMSDP is sometimes called a Rajchman measure, and is discussed

in [10]. ME includes all singular idempotent measures. It looks like not very much

is known about the measures in MR.

For the last part of this paper, let us consider some useful facts on the Cantor

group 2N.

On 2N, the dual group consists of the set of Walsh functions {w1, w2, . . .}.
Regard {w1, w2, . . .} as the unit basis in `1 (i.e. ‖

∑
αiwi‖`1 =

∑
|αi|), and let

R : `1(wn) → C(2N) be the natural map. The Fourier-Stieltjes transformation can

be regarded as the adjoint map R∗ : M(K) → `∞(wn). Since the closed linear

span of (wn) equals L1(2N), R maps `1(wn) to a dense subspace of C(2N), and so

R∗ is an injection. Now, for f ∈ L1(2N,m), where m is the Haar measure on 2N,

R∗f(wn) is nothing but the n-th coefficient of the expansion of f with respect to

the biorthogonal system (wn) in L1(2N).

Using this, we wish to reveal some relations between an operator T ∈ L(L1)

and its representation measures, which we will do in a subsequent paper. Here,

we show only that MDP(2N) is a weak* Borel subset of M(2N), and since C[0, 1]

can be embedded into C(2N) in a natural way, the same is true for M [0, 1].

We need the following lemma.

Lemma 2.24. Ba c0 is a weak* Borel subset of BaL∞.

Proof. Let

An,k =
{
x ∈ Ba `∞ : |x(n)| 6 1

k

}
.
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Then An,k is a weak* close set of BaL∞, so Bm,k =
⋂

n>m

An,k is a weak* closed

set, and Ck =
⋃

m∈N
Bm,k is a weak* Baire-1 set. Let

D =
⋂
k∈N

Ck;

then D is a Baire-2 set. We show that Ba c0 = D.
First, if x ∈ c0, then for mk large enough,

|x(m)| 6 1
k
, for all m > mk,

i.e. x ∈ Bmk,m ⊂ Ck for each k, hence x ∈ D. Conversely, if x ∈ D, then x ∈ Ck

for each k, so there is mk such that x ∈ Bmk,m, and so, for m > mk, |x(m)| 6 1/k.
This holds for each k, hence x(m) → 0 as m→∞, i.e. x ∈ Ba c0.

Proposition 2.25. MDPS(2N) is a weak* Borel subset of M(2N).

Proof. Let R be as defined before Lemma 2.24; then R∗BaM(2N) is weak*
compact. Since R maps `1(wn) to a dense subspace of C(2N), R∗ is an injection.
Let Dn,i be the usual tree on 2N; then the characteristic function of Dn,i is contin-
uous and is contained in R`1(wn), so the linear span of all such functions in dense
in C(2N). By Lemma 2.24, c0(wn) ∩ R∗BaM(2N) is a weak* Borel set. So, since
R∗ is weak* continuous, the set

[(R∗)−1(c0 ∩R∗BaM(2N))] ∩ BaM(2N)

is weak* Borel, and is exactly the set

Ba(MDPS(2N)⊕MRN(2N)).

Thus, by Lemma 2.1,

BaMDPS(2N) = Ba (MDPS(2N)⊕MRN(2N)) ∩MRN(2N)⊥

is a weak* Borel set. The conclusion now trivially follows.
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