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Abstract. We study the existence of common invariant subspaces for semi-
groups of idempotent operators. It is known that in finite dimensions every
such semigroup is simultaneously triangularizable. The question of the ex-
istence of even one non-trivial invariant subspace is still open in infinite di-
mensions.

Working with semigroups of idempotent operators in Hilbert/Banach
vector space settings, we exploit the connection between the purely algebraic
structure and the operator structure to show that the answer is affirmative
in a number of cases.
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1. PRELIMINARIES

Much of the following is standard material in semigroup theory. A reference on
the subject is [5].

An element a of a set S is said to be idempotent with respect to an operation
◦ : S × S → S, if a ◦ a = a. A band is a semigroup of idempotents (the reference
to some fixed operation is implicit). A subband of a band is a subset that is closed
under the operation.

Suppose S is a band (with an operation ‘◦’). Define a relation ‘∼’ on S by:

a ∼ b⇐⇒
{
a ◦ b ◦ a = a;
b ◦ a ◦ b = b.

Then ‘∼’ is an equivalence relation.
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Let Ca stand for the ∼-equivalence class of a. Then each ∼-equivalence class
is a subband of S. We shall refer to the ∼-equivalence classes as components of S.

Define an operation ‘�’ on the set S/∼ of components of S by

Ca � Cb = Ca◦b.

This operation is well defined and S/ ∼ is an abelian (!) band under �.
Therefore the components of S/ ∼ are singletons. We refer to this band as the
band of components of S.

One simple consequence of S/ ∼ being abelian is that a free band on n

generators has 2n−1 components. For example, if S is a free band with generators
a, b and c then

S/∼= {Ca, Cb, Cc, Ca◦b, Ca◦c, Cb◦c, Ca◦b◦c}.

The following calculation illustrates the idea of the proof:

Ca◦b◦c◦b◦a◦b = Ca � Cb � Cc � Cb � Ca � Cb = (Ca)2 � (Cb)3 � Cc

= C(a2) � C(b3) � Cc = Ca � Cb � Cc = Ca◦b◦c.

In fact more is true about finitely generated bands: a particular case of
the celebrated theorem of Green and Rees ([3]) states that every free band on n

generators is finite. Consequently all finitely generated bands are finite.
The next definition is implicit in standard semigroup texts (for example [5]).

Define a relation ‘- ’ on a band S by:

a- b⇐⇒ a ◦ b ◦ a = a.

Then ‘- ’ is a pre-order (i.e. is reflexive and transitive) on S. We refer to
‘- ’ as the band pre-order on S. Clearly:

a ∼ b⇐⇒
{
a- b;
b- a.

It follows that ‘- ’ is a partial order exactly when all components of S are
singletons. Therefore the band pre-order on S/∼ is a partial order. We denote it
by ‘�’ and refer to it as the band order on S/∼. It is easy to see that that

Ca � Cb ⇐⇒ a- b.

Let us also agree that � ≺ � will stand for
{

� - (�) �;
� 6∼ (6=) � .



Reducible semigroups of idempotent operators 37

With respect to the operation of S the band pre-order has two useful prop-
erties which we state in terms of the band order on the abelian (!) band of
components of S (we make both ◦ and � implicit notation from now on):

(∗)
Ca � Cb

Ca � Cc

}
=⇒ Ca � CbCc;

(∗∗) CaCb � Ca, for every a, b ∈ S.

One more property deserves mention. It is clear that CaCbCa = Ca, whenever
a- b (i.e. aba = a). Restated without use of components this says that abd = ad

whenever a ∼ d- b. Equivalently (via property (∗)):

ab1b2 · · · bmd = ad whenever a ∼ d- b1, b2, . . . , bm.

We refer to this as the sandwich property.
Since property (∗) states that S/∼ , together with its band order, is a lower

semi-lattice (with CaCb being the ‘meet’ of Ca and Cb), it is natural to ask whether
every (abstract) lower semi-lattice is order isomorphic to (S/∼ ,�), for some band
S. The answer is affirmative. Indeed, every lower semi-lattice can be considered
to be an abelian band with the operation induced by its ‘meet’.

We restrict our attention to vector space and Hilbert space settings. Most
of our Hilbert space results have obvious Banach space generalizations (with ap-
propriate quotients used in place of orthogonal compliments).

All Hilbert spaces (H) in this paper are assumed to be over the field C
of complex numbers. All vector spaces (V) are taken to be over a field F of
characteristic 0, unless stated otherwise. The copy of the set of rational numbers
naturally imbedded in F is taken to have the usual order. With this in mind, for
example, a reference to ‘non-negative integers’ in F is self-explanatory. We do not
deal with the trivial Hilbert/vector space {0} explicitly.

By an operator we mean either a linear transformation (in vector space set-
ting) or a bounded linear transformation (in Hilbert space setting), depending on
the context. The set of all operators from a Hilbert space H1 to a Hilbert space
H2 is denoted by B(H1,H2), or simply by B(H1), if H1 = H2. The notation is
similar in vector space setting, except we use L insted of B. We write I and 0 for
the identity and the zero operators, respectively.

In most of this paper (except for the last section) we restrict our attention to
bands of operators on Hilbert/vector spaces under the operation of composition
(i.e. operator multiplication). We refer to these bands as operator bands. It is
worth observing that if S is an operator band containing I and 0, then 0-T - I,
for every T ∈ S.

The rest of notation and terminology is standard.
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2. INTRODUCTION

The goal of this paper is to study the existence of a non-trivial (closed, in Hilbert
space setting) common invariant subspace for a semigroup of idempotent operators.
Sets of operators possessing such a subspace are often called reducible.

This research is part of an ongoing program to find convenient necessary and
sufficient conditions for reducibility of semigroups within various classes of oper-
ators (for example: idempotent, nilpotent, quasinilpotent, compact etc.). Some
of the questions can be answered by passing to associated algebras and using the
existing machinery (for example, Lomonosov’s technique).

A number of results have been obtained in Hilbert space setting that re-
late the reducibility of semigroups to various spectral conditions satisfied by the
elements of the semigroup.

In this paper we approach the problem from a more algebraic point of view:
we explore the connection between the component structure of a band and its
reducibility.

We will start by demonstrating that bands with finitely many components
are always reducible (with special block-upper-triangular structure). Since bands
in finite dimensions are shown to be of this type, this recovers and generalizes a
theorem from [6] which states that bands in finite dimensions are always triangu-
larizable.

We proceed to show that bands with finitely many components possess a uni-
formly bounded non-negative-integer valued ‘faithful’ trace which extends linearly
to a trace on the algebra generated by the band.

This trace is consequently used to obtain a number of results about spans and
convex hulls of general operator bands. For example: a span of an operator band
contains only algebraic operators, while (under appropriate assumptions about the
field) elements of a convex hull are never nilpotent and their spectrum is a subset
of [0,1].

Continuing without restriction on the number of components, we prove,
among other things, that if, in a Hilbert space setting, a span of an operator
band contains a non-zero compact operator, then the band is reducible. This ex-
tends a theorem from [6] stating that an operator band containing a finite-rank
element is reducible.

The last section of the paper deals with representing abstract bands as op-
erator bands in finite dimensions.
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3. OPERATOR BANDS WITH FINITELY MANY COMPONENTS

Operator bands in finite dimensions. We begin by exposing the relationship
that exists between the band pre-order and the canonical trace function in finite
dimensions. The reader should keep in mind that for finite-rank idempotents the
trace and rank coincide (so that the trace is a non-negative integer).

The essence of our first theorem is that components of an operator band in
finite dimensions are simply the maximal subbands with constant trace (rank).

Theorem 3.1. If S is an operator band acting on a finite-dimensional vector
space and A ∈ S, then

{B ∈ S | tr(AB) = tr(A) = tr(B)}

is the component of S containing A.

Proof. Rank coincides with the trace for any finite-rank idempotent.

Claim. For all A,B ∈ S : tr(AB) = tr(A) ⇐⇒ A-B. Indeed, if tr(AB) =
tr(A), then

rank(A) = tr(A) = tr(AB) = tr(ABA) = rank(ABA).

Since ran(ABA) ⊂ ran(A) and ker(A) ⊂ ker(ABA), it follows that ran(ABA) =
ran(A) and ker(A) = ker(ABA) by the Rank-Nullity Theorem. Therefore ABA =
A. Conversely, if A-B then

tr(A) = tr(ABA) = tr(AB).

This proves the claim.
Since tr(AB) = tr(BA), a symmetric argument shows that

tr(AB) = tr(B) ⇐⇒ B-A.

Theorem 3.2. The canonical trace is constant on components of an operator
band acting on a finite-dimensional vector space and is strictly monotonic with
respect to the band pre-order.

Proof. That canonical trace is constant on components follows from Theo-
rem 3.1.

If A-B in S, then

tr(A) = tr(ABA) = tr(BA) = rank(BA) 6 rank(B) = tr(B)

and consequently the trace is monotonic with respect to the band pre-order.
To show that it is strictly monotonic, suppose that A-B and tr(A)=tr(B).

Then
tr(B) = tr(A) = tr(ABA) = tr(BA).

Therefore B-A (see Theorem 3.1), so that A ∼ B.
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A non-{0} component C of a band S is called minimal when it is a minimal
non-{0} element in the commutative band of components of S with respect to the
band order.

Theorem 3.3. Every non-{0} band of operators on a finite-dimensional vec-
tor space has at least one minimal non-{0} component.

Proof. Consider a component on which the trace takes its least non-zero
value. This component is a minimal non-{0} component by Theorem 3.2.

Rectangular bands of operators. A simple way to pass from finite-dimen-
sional framework to infinite-dimensional one is by first considering bands with
particularly simple component structure. Presently we consider bands of operators
that have only one component. Such bands are called rectangular.

For a band S of operators on a vector space V, write:

ran(S) =
∨

A∈S
ran(A)

and

ker(S) =
⋂

A∈S
ker(A).

If H is a Hilbert space write ran(S) for the closure of ran(S) in the norm
topology.

Since many of the proofs for the non-topological claims presented below can
be easily adapted to the presence of topology, we shall be content with stating the
topological claims without proof in such situations.

Theorem 3.4. If S is a rectangular band of operators on a vector space V,
then:

ran(S) = V
ker(S) = {0}

}
=⇒ S = {I}.

For a band S ⊂ B(H) replace ‘ ran(S) = V’ by ‘ ran(S) = H’ (and recall that for
any idempotent A, ran(A) and ker(A) are closed complementary subspaces).

Proof. Suppose A ∈ S. We shall show that A = I.
Since A is idempotent, V = ran(A)⊕ ker(A). With respect to this decompo-

sition A has matrix form (
I 0
0 0

)
.
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Every element B ∈ S satisfies: 
ABA = A

B = (BA)(AB)
B2 = B.

Therefore every B has matrix form(
I X

Y Y X

)
,

for some X,Y such that XY = 0.
If by way of contradiction, A 6= I, i.e. ker(A) 6= {0}, then there is some B0

in S such that Y0 6= 0 (recall that ran(S) = V is assumed). Therefore XY0 = 0,
for every B ∈ S (since the north-west block of BB0 must be I). Consequently(

0
y

)
∈ ker(S)

for any non-zero column y of Y0. This shows that ker(S) 6= {0}. Contradiction.

Theorem 3.5. Suppose S is a non-{0} rectangular band of operators on a
vector space V. Write:

V1 = ker(S) ∩ ran(S),

V2 = any complement of V1 in ran(S),

V3 = any (possibly {0}) complement of ran(S) in V.

Then there exist sets Ω ⊂ L(V2,V1) and Λ ⊂ L(V3,V2) such that S has matrix
form

S =


 0 A AB

0 I B

0 0 0

∣∣∣A ∈ Ω, B ∈ Λ


with respect to V = V1 ⊕ V2 ⊕ V3.

Rectangular bands S ⊂ B(H) have the same operator matrix form with re-
spect to H = H1 ⊕H2 ⊕H3, where

H1 = ker(S) ∩ ran(S),

H2 = H1
⊥ ∩ ran(S),

H3 = ran(S)
⊥
.

Proof. Suppose S is a non-{0} rectangular band of operators on a vector
space V. It is worth noting that V1,V3 cannot be {0} at the same time, unless
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S = {I} (Theorem 3.4). It is also clear that V2 6= {0} because S 6= {0}. Every
element of S has matrix form  0 ∗ ∗

0 ∗ ∗
0 0 0


with respect to the decomposition V = V1 ⊕ V2 ⊕ V3. Observe that the set of all
(2,2) block-entries from these matrices is a rectangular band (call it T) in L(V2).
The fact that each element of S acts as an identity on its own range implies that
the span of the images of V1 ⊕ V2 (= ran(S)) under elements of S is V1 ⊕ V2.
Consequently, ran(T) = V2. At the same time, ker(T) = {0}. (Indeed: the only
vectors an idempotent transformation sends into its own kernel are those already
in the kernel.) Apply Theorem 3.4 to conclude that T = {I}.

The matrix  0 A C

0 I B

0 0 0


is idempotent exactly when C = AB. Therefore

S ⊂


 0 A AB

0 I B

0 0 0

∣∣∣A and B are arbitrary

 .

Let

Ω =

A ∈ L(V2,V1)
∣∣∣
 0 A AB

0 I B

0 0 0

 ∈ S, for some B


and

Λ =

B ∈ L(V3,V2)
∣∣∣
 0 A AB

0 I B

0 0 0

 ∈ S, for some A

 .

It is clear that

S ⊂


 0 A AB

0 I B

0 0 0

∣∣∣A ∈ Ω, B ∈ Λ

 .

For the reverse inclusion, note that if A ∈ Ω and B ∈ Λ are arbitrary, then
there exist T,Q ∈ S such that

T =

 0 A AC

0 I C

0 0 0

 and Q =

 0 D DB

0 I B

0 0 0

 .
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Consequently:

QT =

 0 A AB

0 I B

0 0 0

 ∈ S,

as needed.

We say that an operator band on a vector space V is maximal rectangular if
it is not properly contained in any other rectangular operator band on V.

Corollary 3.6. Suppose S is a maximal rectangular operator band on a
vector space V. Define V1,V2,V3 as in Theorem 3.5. Then S has matrix form

S =


 0 A AB

0 I B

0 0 0

∣∣∣A and B are arbitrary


with respect to the decomposition V = V1 ⊕ V2 ⊕ V3.

Maximal rectangular bands in B(H) have the same operator matrix form with
respect to the decomposition of the Hilbert space given in Theorem 3.5.

Proof. Simply note that
 0 A AB

0 I B

0 0 0

∣∣∣A and B are arbitrary


is a band. The rest is by Theorem 3.5 and maximality.

Corollary 3.7. Every maximal rectangular band in B(H) contains an or-
thogonal projection.

Operator bands with several components. The first goal of this section is
to demonstrate that every band of operators in finite dimensions has finitely many
components. The second goal is to explore the ‘converse’. What we show is that
operator bands with finitely many components exhibit certain finite-dimensional
behaviour. For example: such bands have special block-upper-triangular structure
(with finitely many blocks) and they possess a non-negative-integer-valued ‘faith-
ful’ trace that extends to a (linear) trace on the algebra generated by the band
and which behaves not unlike the canonical trace (present in finite dimensions)
with respect to the component structure of the band.

We say that a set of operators on a vector space is reducible if it has a common
non-trivial invariant subspace. In the case of bounded operators on a Hilbert space
‘reducibility’ is defined in terms of non-trivial closed invariant subspaces. The term
irreducible is self-explanatory.

The first result is common knowledge and is stated here as a reminder.
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Lemma 3.8. If a non-zero algebra ideal I in an algebra A of operators on a
vector space V is reducible, then so is A. Moreover the spaces ran(I) and ker(I)
defined by:

ran(I) =
∨

T∈I

ran(T )

and
ker(I) =

⋂
T∈I

ker(T ),

are always invariant under A.
Similar results hold for bounded operators on a Hilbert space, with ran(I)

replacing ran(I).

Proof. That ker(I) and ran(I) are invariant under A is an easy exercise. In
verifying the other claim we may assume ker(I) = {0}. In this case, if W is a
non-trivial invariant subspace of I, then the span of {T (w)

∣∣T ∈ I, w ∈ W} is a
non-{0} invariant subspace for A.

A non-empty subset J of a band S is said to be a band ideal in S if AT ∈ J

and TA ∈ J, for all A ∈ S and T ∈ J.
Note that the span of an operator band ideal is an algebra ideal in the algebra

generated by the band.

Lemma 3.9. ([6]) Lemma 3.8 remains true if ‘algebra ideal’ is replaced by
‘band ideal’.

Proof. The span(J) of J is an algebra ideal in the algebra span(S). The
invariant subspaces of J and S coincide with those for span(J) and span(S) re-
spectively. A reference to Lemma 3.8 completes the proof.

Theorem 3.10. ([2]) A subset J of a band S is a band ideal in S if and
only if

(i) J is a union of components of S.
(ii) If C and D are components of S such that C ≺ D and D ⊂ J, then C ⊂ J.

The last theorem is best considered in terms of the band of components of
S. It is also curious to note that a union of band ideals is still a band ideal.

Lemma 3.11. If an operator band S on a vector space V has a minimal
non-{0} component then S is reducible. The same is true in Hilbert space setting.

Proof. Without loss of generality assume 0 ∈ S. If C is a minimal non-{0}
component of S (for non-triviality assume C 6= {I}), then C ∪ {0} is a band ideal
in S, by Theorem 3.10. By Proposition 3.4, either ran(C) or ker(C) is non-trivial.
Apply Theorem 3.9 to complete the proof.
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The ‘length’ of a chain of components of a band is the number of components
in the chain.

Lemma 3.12. Suppose S is a band such that all chains of its components
are bounded in length by n. If G is an image of S under a band homomorphism
ψ, then all chains of components of G are also bounded in length by n.

Proof. The proof is by contradiction. Suppose

C1 � C2 � C3 � · · · Cn+1

is a chain of components of G. Then there exist A1, A2, A3, . . . , An+1 in S such
that

ψ(A1) � ψ(A2) � ψ(A3) � · · · � ψ(An+1).

(Simply pick any Ai such that ψ(Ai) ∈ Ci.) Observe that

ψ(A1) = ψ(A1) ∼ ψ(A1)

ψ(A1A2) = ψ(A1)ψ(A2) ∼ ψ(A2)

ψ(A1A2A3) = ψ(A1)ψ(A2)ψ(A3) ∼ ψ(A3)
...

ψ(A1A2A3 · · ·AnAn+1) = ψ(A1)ψ(A2)ψ(A3) · · ·ψ(An)ψ(An+1) ∼ ψ(An+1).

Consequently:

A1 6∼ A1A2 6∼ A1A2A3 6∼ · · · 6∼ (A1A2A3 · · ·An+1),

because

ψ(A1) 6∼ ψ(A1A2) 6∼ ψ(A1A2A3) 6∼ · · · 6∼ (ψ(A1)ψ(A2)ψ(A3) · · ·ψ(An)ψ(An+1)).

It follows that

A1 � A1A2 � A1A2A3 � · · · � A1A2A3 · · ·An+1.

Restated in terms of components of S, the last statement clearly contradicts the
hypothesis of the lemma.

Recall that a set of operators is said to be triangularizable if it possesses a a
chain of common invariant subspaces which is maximal among chains of subspaces.
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Theorem 3.13. If an operator band S on a vector space V is such that all
chains of its components are bounded in length then S is triangularizable. The
same is true in a Hilbert space setting.

Proof. If a band S satisfies the hypothesis (without loss of generality
S 6= {0}), then it possesses a minimal non-{0} component. Therefore S is re-
ducible by Lemma 3.11.

If W is an invariant subspace for S and U is any complement of W in V and
PU is the projection alongW onto U , then {T |W

∣∣ T ∈ S} and {PUT |U
∣∣ T ∈ S} are

operator bands on W and U respectively. These bands are homomorphic images
of S and therefore the chains of components in these bands are still bounded in
length (Lemma 3.12). A standard application of Zorn’s Lemma completes the
proof.

Corollary 3.14. An operator band which has finitely many components is
reducible. This is true in both vector space and Hilbert space settings.

We are now in a position to recover the following theorem.

Theorem 3.15. ([6]) Every operator band on a finite-dimensional vector
space is triangularizable.

Proof. Every such non-{0} band possesses a minimal non-{0} component
(Theorem 3.3) and is therefore reducible (Lemma 3.11). The rest of the proof
follows the same steps as that for Theorem 3.13

Theorem 3.16. Every operator band S on a finite-dimensional vector space
V has finitely many components.

Proof. By Theorem 3.15 we may think of S as a band of n × n upper-
triangular matrices. Since the matrices are idempotent, the entries on their diag-
onals are either 0 or 1. For each A ∈ S we denote by ∆(A) the n × n diagonal
matrix whose diagonal is equal to that of A.

Claim. A ∼ B in S if and only if ∆(A) = ∆(B). Indeed, A ∼ B im-
plies ∆(A) = ∆(B) because the map T

∆7−→ ∆(T ) is a homomorphism on upper-
triangular matrices. Conversely if ∆(A) = ∆(B) then

∆(AB) = ∆(A) = ∆(B),

so that
tr(AB) = tr(A) = tr(B).

Therefore A ∼ B by Theorem 3.1, and the claim is proved.

Since the set of n × n, 0-1 diagonal matrices is finite, so is the number of
components of S.
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Given a block-upper-triangular (possibly infinite) operator matrix A, denote
by ∆(A) the block-diagonal matrix (of the same format as A), with the block-
diagonal equal to that of A. We shall refer to ∆(A) as the block-diagonal truncation
of A.

If S is a band of block-upper-triangular operator matrices, then the block-
diagonal truncation ∆(S) of S is the band (!) defined by:

∆(S) = {∆(A) | A ∈ S}.

With this set-up, let us write ∆ for the obvious band homomorphism from S
to ∆(S). It is clear that ∆(A) ∼ ∆(B) whenever A ∼ B. Therefore ∆ canonically
induces a band homomorphism ∆/∼ from S/∼ to (∆(S))/∼. (Think of ∆/∼ as
sending components of S to the corresponding components of ∆(S).)

Our next result shows that the component structure of a block-upper-triangu-
lar operator band S (with no restriction on the number of components) is com-
pletely determined by its block-diagonal truncation ∆(S).

Theorem 3.17. Suppose S is an operator band on a vector space V such
that S has a block-upper-triangular matrix form with respect to a decomposition

V = V1 ⊕ V2 ⊕ · · · ⊕ Vn ⊕ Vn+1 ⊕ · · · .

Then ∆/∼ is a band isomorphism. The same is true in Hilbert space setting.

Proof. What we are required to show is that ∆/ ∼ is injective. In other
words: if ∆(A) ∼ ∆(B) then A ∼ B (A,B ∈ S).

Claim. If A,B ∈ S satisfy ∆(A) = ∆(B), then A ∼ B.

Indeed, by symmetry it is enough to show that A-B. Note that A−ABA

is idempotent (this is true for any A and B in a band) and

∆(ABA) = ∆(A)∆(B)∆(A) = ∆(A).

It follows that ∆(A−ABA) = 0. In the next few lines we will show that all of this
implies that A − ABA = 0 (i.e. A-B). If we write Zm = V1 ⊕ V2 ⊕ · · · ⊕ Vm,
then Zm is invariant under S. Thus (A − ABA)|Zm

is still idempotent and is
represented by an m ×m block-matrix whose block-diagonal entries are all zero.
This implies that the operator is both idempotent and nilpotent. The only such
operator is 0. This shows that (A − ABA)|Zm

= 0, for all m ∈ N. Consequently
A−ABA = 0 as claimed.
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Thus

∆(A) ∼ ∆(B) =⇒ ∆(ABA) = ∆(A) =⇒ ABA ∼ A =⇒ ABA = A =⇒ A-B

and
∆(A) ∼ ∆(B) =⇒ B-A

by symmetry. Therefore A ∼ B, as required.

It is worth noting that the ideas in the proof above can be easily adapted to
other ‘reasonably discrete’ decompositions of the space.

Besides the information about the component structure of the band, the
block-diagonal truncation also carries complete information about the rank, in the
following sense:

Theorem 3.18. Suppose T is an idempotent operator on a vector space
V = V1⊕V2⊕ · · ·⊕Vn and T has block-upper-triangular matrix form with respect
to this decomposition. Then

T has finite rank ⇐⇒ ∆(T ) has finite rank.

In this case
rank(T ) = rank(∆(T )).

The same is true in Hilbert space setting.

Proof. Indeed, if T has finite rank then so do all of its compressions. Con-
versely, the proof is by induction on n. The result is trivially true for n = 1. The
inductive step relies entirely on the following claim:

Claim. If A =
(
E X

0 F

)
is idempotent and E,F have finite rank then A

has finite rank and

rank(A) = rank
(
E 0
0 F

)
.

Indeed, the fact that A is idempotent implies that X = EX + XF . Let R
stand for the matrix (

I −X
0 I

)
.

Then R is invertible and

RAR =
(
E 0
0 F

)
.

The required conclusions of the claim follow. The rest of the details of the inductive
proof is standard.
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The above theorem is also true when the space is decomposed into countably
many pieces. The proof is left to the reader.

The next theorem indicates that by studying block-upper-triangular bands
with special block-diagonal structure we cover a lot of ground.

Theorem 3.19. If a band S of operators on a vector space V has finitely
many components, then there exist complementary subspaces V1,V2, . . . ,Vm of
V (m is usually greater than the number of components), such that with respect
to the decomposition V = V1 ⊕ V2 ⊕ · · · ⊕ Vm all elements of S have a block-
upper-triangular matrix form, with each block on the diagonal being either 0 or I.
Components of S are those subsets that consist of all elements in S with the same
block-diagonal.

Similar results hold true in a Hilbert space setting.

Proof. Suppose S is a non-{0} operator band with finitely many components
acting on a vector space V. Without loss of generality assume 0 ∈ S. One of the
components of S (say C) must be a minimal non-{0} component.

Decompose V as W1⊕W2⊕W3, via Theorem 3.5, with ran(C) = W1⊕W2.
With respect to this decomposition C has matrix form

C =


 0 A AB

0 I B

0 0 0

∣∣∣A ∈ Ω, B ∈ Λ

 ,

for appropriate sets Ω and Λ. The set C ∪ {0}(= C0) is an ideal in S. This
implies that both ran(C0) and ker(C0) are invariant under S (Theorem 3.9), and
so is their intersection. Yet: ran(C0) = W1 ⊕ W2 and ran(C0) ∩ ker(C0) = W1.
Therefore all elements of S have block-upper-triangular matrix form with respect
to V = W1 ⊕W2 ⊕W3.

If D ∈ C and E ∈ S then ED ∼ DE-D. Since C is a minimal non-{0}
component, it follows that either ED ∼ D or ED = 0, i.e. either EDE = E or
EDE = 0. This implies that every element T of S has matrix form

T =

T11 ∗ ∗
0 (0 or I) ∗
0 0 T33

 .

The map (from S to L(W1)) that sends T to T11 is a band homomorphism whose
kernel contains C. It follows that {T11 | T ∈ S} = T is a band in L(W1) with
strictly fewer components than S.

Apply the same steps to T as were applied to S, and so obtain a decomposi-
tion of W1 into (at most) three parts, such that with respect to this decomposition
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elements of T have block-upper-triangular matrix form, with blocks on the diago-
nal being either 0 or I.

Do the same for the band R = {T33 | T ∈ S}. This is the the first stage of
the process of constructing the required decomposition of V.

Keep passing to the (1,1) and (3,3) compressions of bands constructed as
‘corners’ at the previous stage (T and R after the first stage, for example). After
each iteration the bands obtained have strictly fewer components than those at
the previous stage. Consequently this process will stop after finitely many steps.
Combine all intermediate decompositions in the obvious way to obtain the required
decomposition of V.

To verify the claim about the components, simply apply Theorem 3.17, keep-
ing in mind that for 0-I block-diagonal matrices ∼ is the same as equality.

A non-zero function τ : S → R on a band S is called a trace provided
τ(ab) = τ(ba), for all a, b ∈ S. We shall say that a trace τ is faithful if it satisfies:
τ(a) = 0 ⇔ a = 0.

It is clear from the definition that a trace is constant on the components of
S. Consequently there is an obvious bijection between traces on S and those on
∆(S). This bijection maps faithful traces to faithful traces (in both directions).

The next theorem should be compared to Theorem 3.1.

Theorem 3.20. If S is a band of operators on a vector space and S has
finitely many components, then S possesses a faithful bounded non-negative-integer-
valued trace τ such that

(i) τ extends to a linear trace τ̂ on the algebra generated by S, and τ̂(N) = 0
for every nilpotent N in the algebra.

(ii) For every A ∈ S

{B ∈ S | τ(AB) = τ(A) = τ(B)}.

is the component of S containing A.
The same is true in a Hilbert space setting.

Proof. Use Theorem 3.19 above to decompose the underlying space into
finitely many parts (say: m), so that with respect to this decomposition the ma-
trix for each element is block-upper-triangular and with each block on the diagonal
being either 0 or I. For A ∈ S define trace τ(A) to be the number of I’s on the
block-diagonal of A. That τ is a bounded non-negative-integer-valued band trace
is immediate. This band trace is faithful: if τ(A) = 0 then A is nilpotent (since
∆(A) = 0) and since A is idempotent it follows that A = 0. It remains to be
shown that τ posesses properties (i) and (ii).
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(i) Each element T of span(S) has matrix form

T =


t1I ∗ ∗ . . . ∗
0 t2I ∗ . . . ∗
0 0 t3I . . . ∗
...

...
...

...
...

0 0 0 . . . tmI

 ,

with respect to the decomposition above. Let ξ : span(S) 7−→ Mm(F) be the map

defined by:

ξ(T ) =


t1 0 0 . . . 0
0 t2 0 . . . 0
0 0 t3 . . . 0
...

...
...

...
...

0 0 0 . . . tm

 .

If we denote by ρ the canonical trace on Mm(F), then ρ◦ξ is a linear trace extending

τ to the algebra span(S). That this trace is zero on every nilpotent in span(S) is

clear, since such nilpotents have only zeros on the block-diagonal.

(ii) If A,B ∈ S then

τ(A) = τ(AB) ⇐⇒ τ(A) = τ(ABA) ⇐⇒ ∆(A) = ∆(ABA)

⇐⇒ ∆(A−ABA) = 0 ⇐⇒ A−ABA = 0 ⇐⇒ A-B.

(Here we once again used the facts that A − ABA is idempotent and that the

only block-upper-triangular idempotent (with finitely many blocks) that has a

zero block-diagonal is the zero operator.)

Since it follows by symmetry that

τ(B) = τ(AB) ⇐⇒ B-A,

the proof is complete.

A trace on a band S is said to be a band trace on S if it satisfies the condition

stated as part (ii) in Theorem 3.20.
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4. SPANS AND CONVEX HULLS OF OPERATOR BANDS

The existence of a well-behaved band trace for bands with finitely many compo-
nents (see Corollary 3.20) turns out to be a powerful tool which can be used for
arbitrary bands.

The next four results are true in both vector space and Hilbert space settings.

Theorem 4.1. Every operator in the linear span of (i.e. in the algebra
generated by) an operator band S is algebraic.

Proof. Suppose A1, A2, . . . , An ∈ S and B is a linear combination of A1,
A2, . . . , An. If S0 is the subband of S generated by A1, A2, . . . , An, then S0 has
finitely many components. Use Theorem 3.19 to decompose the underlying space
into finitely many parts, so that with respect to this decomposition the matrix
for each element of S0 is block-upper-triangular with each block on the diagonal
being either 0 or I. Then B has matrix form

B =


b1I ∗ ∗ . . . ∗
0 b2I ∗ . . . ∗
0 0 b3I . . . ∗
...

...
...

...
...

0 0 0 . . . bmI

 .

Apply the standard matricial inductive argument to show that
m∏

i=1

(B − biI) = 0.

Thus B is algebraic.

Theorem 4.2. If elements A1, A2, . . . , An of an operator band S are such
that A1 +A2 + · · ·+An is idempotent, then AiAj = 0, for all i 6= j.

Proof. If S0 is the subband of S generated by A1, A2, . . . , An, then S0 has
finitely many components. Let τ be a band trace on S0 provided by Corollary 3.20.
That

∑∑
i 6=j

AiAj = 0 follows from the fact that A1 +A2 + · · ·+An is idempotent.

Consequently
τ̂
(∑∑

i 6=j

AiAj

)
=
∑∑

i 6=j

τ(AiAj) = 0.

It follows that τ(AiAj) = 0, for all i 6= j, because τ is non-negative-integer-valued.
Since τ is faithful, it must be that AiAj = 0, for all i 6= j, as claimed.

In the next two theorems we assume that the underlying field FQ is an ordered
field extension of the field Q of rational numbers.
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Theorem 4.3. If elements A1, A2, . . . , An of an operator band S on a vector
space V over a field FQ are such that p1A1 + p2A2 + · · · + pnAn is nilpotent, for
some positive field elements p1, p2, . . . , pn, then Ai = 0, for all i.

Proof. If S0 is the subband of S generated by A1, A2, . . . , An then S0 has
finitely many components. Let τ be a band trace on S0 provided by Corollary 3.20.
If p1A1 + p2A2 + · · ·+ pnAn is nilpotent, then

0 = τ̂
( n∑

i=1

piAi

)
=

n∑
i=1

piτ(Ai).

It follows that τ(Ai) = 0, for all i, because τ is non-negative-integer valued.

Theorem 4.3 is true in a Hilbert space setting even if ‘nilpotent’ is re-
placed with ‘quasinilpotent’. Indeed, this is a mere change of wording. In such a
case, if p1A1 + p2A2 + · · · + pnAn is quasinilpotent (for some positive constants
p1, p2, . . . , pn) then it is nilpotent, since it must be algebraic by Theorem 4.1.

Theorem 4.4. The spectrum of every element in the convex hull of an oper-
ator band S on a vector space V over a field FQ is a subset of the interval [0, 1]FQ .

Proof. Suppose A1, A2, . . . , An ∈ S and p1A1 + p2A2 + · · · + pnAn = C

is a convex combination of A1, A2, . . . , An. If S0 is the subband of S generated
by A1, A2, . . . , An then S0 has finitely many components. Use Theorem 3.19 to
decompose the underlying space into finitely many parts, so that with respect to
this decomposition the matrix for each element of S0 is block-upper-triangular
with each block on the diagonal being either 0 or I. The matrix for C is also
block-upper-triangular and each block on its diagonal is of the form αI, for some
α ∈ [0, 1]FQ . That the spectrum of C lies in [0, 1]FQ is now clear.

The next two technical results build towards Theorem 4.7, which states that
an operator band has finitely many components exactly when all operators in
its span are algebraic with degree bounded above. We begin with some simple
algebraic observations.

If a1, a2, . . . , an and b1, b2, . . . , bn are elements of an infinite field F such that
bi 6= 0 whenever ai = 0, then there exists c ∈ F such that ai 6= cbi, for all i.

Consequently, if d1, d2, . . . , dm and h1, h2, . . . , hm are elements of an infinite
field F such that hi 6= hj whenever di = dj , then there exists c ∈ F such that
d1 + ch1, d2 + ch2, . . . , dm + chm are all distinct. (Indeed, this is equivalent to
saying that dk − dl 6= c(hl − hk) for all k, l, and existence of a required c follows
from the last paragraph).



54 L. Livshits, G. MacDonald, B. Mathes and H. Radjavi

Lemma 4.5. Suppose M is a subspace of a vector space Fn, where F is an
infinite field. Then either M contains an n-tuple whose entries are all distinct, or
M⊂ {(r1, . . . , rn) ∈ Fn | ri = rj}, for some i, j.

Proof. The proof is by contradiction. Suppose M satisfies the hypothesis
but not the conclusion. Let x be an element in M with the maximal number (say
k; k < n) of distinct entries. By permuting, we may assume that x is of the form

x = (t1, t1, t3, . . . , tk+1, ∗, . . . , ∗),

where t1, t3, . . . , tk+1 are all distinct.
Since M 6⊂ {(r1, . . . , rn) ∈ Fn | r1 = r2}, there exists some y = (h1, h2,

h3, . . . , hn) ∈M such that h1 6= h2. Apply the remarks preceeding this lemma to
conclude that there exists some c ∈ F such that t1+ch1, t1+ch2, t3+ch3, . . . , tk+1+
chk+1 are all distinct. Then x+ cy is an element of M with at least k+ 1 distinct
entries. This contradicts the choice of x.

Corollary 4.6. If 2m 6 k and m 6 l and Z1, . . . , Zk are distinct l-tuples of
0’s and 1’s, and F is an infinite field, then spanF{Z1, . . . , Zk} contains an element
with at least m distinct entries.

Proof. The main part of the proof is the following:

Claim. After permuting the coordinates, if necessary, we may assume that
them-tuples Ẑ1, . . . , Ẑk obtained by chopping off the last l−m entries of Z1, . . . , Zk

satisfy:

{Ẑ1, . . . , Ẑk} 6⊂ {(r1, . . . , rm) ∈ Fm | ri = rj}, for any i, j.

Indeed, think of Z1, . . . , Zk as rows of a k × l, 0-1 matrix T . Permute coor-
dinates so as to collect equal columns of T together:

T =

(
C1 C1 · · · C1 C2 C2 · · · C2 · · · Cn Cn · · · Cn

)
,

with Ci 6= Cj , for i 6= j. Since there can be no more than 2n distinct 0-1 l-tuples
of the form (c1, . . . , c1, c2, . . . , c2, . . . , cn, . . . , cn) and Z1, . . . , Zk are of this form
and are distinct, it must be that k 6 2n. Yet 2m 6 k. Therefore m 6 n. By
permuting again we may assume

T =

(
C1 C2 · · · Cm ∗ · · · ∗

)
.
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Taking Ẑ1, . . . , Ẑk to be the rows of the matrix(
C1 C2 · · · Cm

)
concludes the proof of the claim.

Use Lemma 4.5 to conclude that spanF{Ẑ1, . . . , Ẑk} contains an m-tuple
whose entries are all distinct. This clearly implies that spanF{Z1, . . . , Zk} contains
an element with at least m distinct entries.

Theorem 4.7. For an operator band S the following are equivalent:
(i) S has finitely many components.
(ii) There exists an integer m such that every element of span(S) is algebraic

with a minimal polynomial of degree at most m.
The same is true in a Hilbert space setting.

Proof. (i) ⇒ (ii) See the proof of Theorem 4.1.
(ii) ⇒ (i) We prove the contrapositive. Suppose S does not satisfy (a).

Without loss of generality assume 0 ∈ S.

Claim. For every n there exists some k > n such that S has a subband with
k components.

Indeed, pick any elements A1, A2, . . . , An of S, all from different components.
If S0 is a subband of S generated by these elements, then S0 has at least n (and
at most 2n − 1) components (refer to the Preliminaries section), so the claim is
proved.

Let m be any natural number. Pick any k > 2m such that S has a subband
S0 with k components. Use Theorem 3.19 to decompose the underlying space into
finitely many (say l) parts, so that with respect to this decomposition the matrix
for each element of S0 is block-upper-triangular with each block on the diagonal
being either 0 or I. Observe that since k > 2m and the components of S0 are
distinguished by patterns of 0’s and I’s on the block-diagonal, it must be that
l > m.

Select elements B1, . . . , Bk ∈ S0, by choosing (without any restrictions) one
from each of the k components of S0. The patterns of 0’s and I’s on their block-
diagonals are all distinct. Apply the obvious modification of Corollary 4.6 to
conclude that some D ∈ spanF{B1, . . . , Bk} has matrix form

D =


d1I ∗ ∗ · · · ∗
0 d2I ∗ · · · ∗
0 0 d3I · · · ∗
...

...
...

...
...

0 0 0 · · · dlI

 ,
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where at least m of the di’s are distinct. Since d1, . . . , dl must be roots of the
minimal polynomial for D, the degree of such polynomial is at least m. On the
other hand D ∈ spanF(S) and the choice of m was arbitrary. It is now that clear
S does not satisfy (ii).

5. REDUCIBLE OPERATOR BANDS WITH INFINITELY MANY COMPONENTS

The following lemma is common knowledge and is stated here explicitly for reader’s
convenience.

Lemma 5.1. Suppose S is a semigroup of operators on a vector space V.
(i) If ∨

T∈S
ran(T |Z) 6= V,

for some non-{0} subspace Z of V, then S is reducible.
(ii) If PUSPW = {0}, for some projections PU and PW onto non-{0} sub-

spaces U and W of V, then S is reducible.
Topological analogues of these results are true in Hilbert space setting.

Proof. (i) Either ⋂
T∈S

ker(T ) 6= {0}

or ∨
T∈S

ran(T |Z)

is a non-trivial invariant subspace for S. (ii) is an immediate consequence of (i).

Next we present (in more generality and with a new proof) a result from [6]
that we shall further extend in Theorem 5.10.

Theorem 5.2. ([6]) If an operator band S contains a non-zero finite-rank
operator then S is reducible. This is true in both vector space and Hilbert space
settings.

Proof. We will show that S contains a minimal non-{0} component and then
simply refer to Lemma 3.11 for the required conclusion. To this end, observe that if
0 6= A ∈ S is an operator of finite rank and B-A (i.e. BAB = B) in S, then B is
also of finite rank and rank(B) 6 rank(A). Moreover, methods of Theorem 3.2 can
be easily adapted to this situation (take two finite-rank idempotents at a time and
restrict them to a large enough common invariant finite-dimensional subspace)
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so that we can further infer that (E ≺ B) =⇒ (rank(E) < rank(B) ), for any
E,B-A.

Pick an element B0, B0 -A, of minimal non-zero rank. Then CB0 is a minimal
non-{0} component of S.

In the original proof of the theorem above, the problem was reduced to a
case when S contains a non-trivial finite-rank left divisor of zero and it was shown
that the existence of such an operator automatically implies the reducibility of S.

It turns out that the existence of any non-trivial (not necessarily finite-rank)
zero divisors in an operator band always entails reducibility.

Theorem 5.3. If an operator band S has non-trivial zero divisors then S is
reducible. This is true in both vector space and Hilbert space settings.

Proof. Suppose P,Q ∈ S are non-zero and PQ = 0. Then

QP = (QP )(PQ)(QP ) = 0.

Therefore PAQ = (PAQ)2 = PAQPAQ = 0, for all A ∈ S. Similarly QAP = 0,
for all A ∈ S.

The matrix of P with respect to the decomposition V = ran(P )⊕ ker(P ) is(
I 0
0 0

)
.

This, together with PQ = QP = 0, implies that the matrix of Q must be(
0 0
0 E

)
,

where E is an idempotent. Therefore with respect to the decomposition V =
ran(P )⊕ ker(E)⊕ ran(E), matrices of P and Q are I 0 0

0 0 0
0 0 0

 and

 0 0 0
0 0 0
0 0 I


respectively. Since PAQ = QAP = 0, for every A ∈ S, it follows that all elements
of S have the matrix form  ∗ ∗ 0

∗ ∗ ∗
0 ∗ ∗


with respect to the decomposition above. Since ran(P ) and ran(E) are non-trivial,
it follows that ∨

T∈S
ran(T |ran(E)) 6= V,

and the proof is complete by Lemma 5.1.
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The following lemma paves the way for the definition immediately following
it.

Lemma 5.4. If B-A are two elements of an operator band S, and the co-
dimension of ran(ABA) in ran(A) is n (an integer), then the co-dimension of
ran(EFE) in ran(E) is also n, for all F ∈ CB, E ∈ CA. This is true both in vector
space and Hilbert space settings.

Proof. Observe that the co-dimension of ran(ABA) in ran(A) is exactly the
rank of A−ABA. Similarly the co-dimension of ran(EFE) in ran(E) is the rank
of E − EFE.

Let S0 = CB ∪CA. Then S0 is a subband of S with at most two components.
Use Theorem 3.19 to decompose the underlying space into finitely many parts,
so that with respect to this decomposition the matrix for each element of S0 is
block-upper-triangular with each block on the diagonal being either 0 or I. It
easily follows that A− ABA and E − EFE will also have the same matrix form.
Thus (refer to the discussion preceeding Theorem 3.17 for notation)

rank(A−ABA) = rank(∆(A−ABA)) = rank(∆(A)−∆(A)∆(B)∆(A))

= rank(∆(E)−∆(E)∆(F )∆(E)) = rank(∆(E − EFE))

= rank(E − EFE),

as required. Here we made use of Theorem 3.18 and the fact that ∆(A) = ∆(E)
and ∆(B) = ∆(F ), which follows from Theorem 3.19.

If D ≺ C are two components of an operator band S such that the co-
dimension of ran(ABA) in ran(A) is non-zero and finite (say n), for some (and
therefore for all) B ∈ D, A ∈ C, then we say that there is a finite-dimensional gap
(of dimension n) between D and C.

Corollary 5.5. Suppose C ≺ D ≺ G are components of an operator band
S. Then the following are equivalent:

(i) There is a finite-dimensional gap (of dimension n) between C and G.
(ii) There are finite-dimensional gaps between C and D (of dimension k) and

between D and G (of dimension m).
In this case: n = m+ k.

Proof. If E ∈ C, F ∈ D, G ∈ G then GFG ∈ D and (GFG)E(GFG) ∈ G.
Clearly ran((GFG)E(GFG)) ⊂ ran(GFG) ⊂ ran(G). The rest of the proof is
trivial (via Lemma 5.4).
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We refer to components D ≺ C of a band S as consecutive, provided no
component G of S satisfies:

D ≺ G ≺ C.

The next lemma sheds some light on the structure of many band ideals. The
reader is encouraged to pay particular attention to what takes place in the (2,2)
corners of the matrices involved.

Lemma 5.6. Suppose T is an element of an operator band S acting on a
vector space V. Let ST stand for the band ideal {Q ∈ S | Q-T}. Then:

(i) With respect to the decomposition V = ran(T )⊕ ker(T ) every element of
ST has matrix form (

E X

Y Y X

)
,

with some X,Y such that XY = 0 (and consequently (Y X)2 = 0) and X = EX,
Y = Y E.

(ii) Let (ST )11, (ST )21, (ST )12 and (ST )22 stand for the sets of operators
that appear as (1,1), (2,1), (1,2) and (2,2) entries (respectively) in the matrices for
elements of ST , with respect to the decomposition V = ran(T )⊕ ker(T ). Then

(a) (ST )11 is an operator band on ran(T),
(b) if Y1 ∈ (ST )21 and X2 ∈ (ST )12, then Y1X2 ∈ (ST )22 and consequently

(Y1X2)2 = 0.
The same is true in Hilbert space setting.

Proof. (i) The matrix of T with respect to the decomposition V = ran(T )⊕
ker(T ) is

T =
(
I 0
0 0

)
.

Suppose Q-T and the matrix for Q, with respect to the same decomposition, is(
A B

C D

)
.

From Q = QTQ = (QT )(TQ) it follows:

Q =
(
A B

C D

)
=
(
A 0
C 0

)(
A B

0 0

)
,

so that A is idempotent, B = AB, C = CA and D = CB. Therefore

Q =
(
A B

C D

)
=
(
A B

C CB

)
,
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which, together with the fact that Q is idempotent, implies BC = 0.
(ii) (a) (ST )11 is a band, because {TRT | R ∈ ST } is a subband of S.
(ii) (b) If Y1 ∈ (ST )21 and X2 ∈ (ST )12, then there exist Q1 and Q2 in ST

such that

Q1 =
(
E1 X1

Y1 Y1X1

)
and Q2 =

(
E2 X2

Y2 Y2X2

)
.

In particular, (Q1T )(TQ2) ∈ ST and

(Q1T )(TQ2) =
(
E1 0
Y1 0

)(
E2 X2

0 0

)
=
(
E1E2 E1X2

Y1E2 Y1X2

)
,

so that Y1X2 ∈ (ST )22.

Theorem 5.7. Suppose S is an operator band on a vector space V. If two
components of S ∪ {0, I} have a gap of dimension 1, 2 or 3 between them, then S
is reducible.

Proof. First of all, there is no harm in assuming that {0, I} ⊂ S. We may
also assume, again without loss of generality (see Corollary 5.5), that D ≺ C are
consecutive components of S with a gap of dimension 1, 2 or 3 between them.

If T is any element of C (note: T 6= 0) then {TA|ran(T ) | A-T} = S|T is a
unital operator band on ran(T ), containing 0. Then {TA|ran(T )

∣∣A ∈ D} ≺ {I},
and these are consecutive components of S|T with a gap of dimension 1, 2 or 3
between them (refer to Lemma 5.6). If S|T is reducible, then so is the band ideal
{A ∈ S | A-T} of S (use Lemma 5.6 and Lemma 5.1), and consequently so is S
(by Theorem 3.9).

This argument shows that we may assume from the start that C = {I}.
Under such assumption, if Q is any element of D then the dimension of the gap
between D and {I} is the co-dimension of ran(Q) in V, i.e. the dimension of
ker(Q). This dimension is assumed to be 1, 2 or 3.

Fix any Q ∈ D. Our strategy is to show that the band ideal {A ∈ S |
A-Q} = SQ of S is reducible, and this will yield the same conclusion about S.
By part (i) of Lemma 5.6 all elements of SQ have the matrix form(

E X

Y Y X

)
with respect to the decomposition V = ran(Q)⊕ker(Q), with some X, Y such that
XY = 0. The entries in (1,1) position in these matrices form an operator band
(SQ)11 on ran(Q). The sets of operators that appear as (2,1), (1,2), (2,2) entries
in these matrices shall be denoted by (SQ)21, (SQ)12 and (SQ)22 respectively (just
as in Lemma 5.6).
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We treat the three possible dimensions of the gap as three separate cases.

Claim 1. dim(ker(Q)) = 1 (i.e. the gap has dimension 1).

In this case (SQ)22 is the set of nilpotent operators (Lemma 5.6) on a one-
dimensional space ker(Q), and therefore (SQ)22 = {0}. SQ is reducible by part
(ii) of Lemma 5.1.

Claim 2. dim(ker(Q)) = 2 (i.e. the gap has dimension 2).

Case (2a). Every element in (SQ)21 has either rank 0 or 2 (i.e is either zero
or is onto ker(Q)).

If (
E X

Y Y X

)
is an element of SQ then XY = 0. Consequently either Y = 0 or Y is onto ker(Q),
in which case X = 0. In either case Y X = 0. It follows that (SQ)22 = {0} and so
SQ is reducible by part (ii) of Lemma 5.1.

Case (2b). There exists Y0 ∈ (SQ)21 with rank(Y0) = 1.

Note that (Y0X) ∈ (SQ)22, for each X ∈ (SQ)12, and so (Y0X)2 = 0 (by
part (ii) of Lemma 5.6). Choose any vector f1 in ran(Y0) and extend it to a basis
{f1, f2} of ker(Q). With respect to this basis Y0X has the matrix form(

aX bX

0 0

)
,

for some aX , bX ∈ F. Clearly aX must be zero because (Y0X)2 = 0.
We have shown that Y0X|span(f1) = 0, for all X ∈ (SQ)12. Consequently∨

X∈(SQ)12

ran(X|span(f1)) 6= ran(Q),

which in turn implies that ∨
A∈SQ

ran(A|span(f1)) 6= V.

Therefore SQ is reducible by part (i) of Lemma 5.1.

Claim 3. dim(ker(Q)) = 3 (i.e. the gap has dimension 3).

Case (3a). There exists Y ∈ (SQ)21 with rank(Y ) = 1. (Use the same
argument as in Case (2b).)

Case (3b). There exists X ∈ (SQ)12 with rank(X) = 1. (The argument is
essentially symmetric to that of Case (2b).)
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Case (3c). Neither (SQ)12 nor (SQ)21 contains any operators of rank 1.
Suppose (

E X

Y Y X

)
is an element of SQ. Then XY = 0. If rank(X) = 0 or 3, then it must be that
Y X = 0 via the same argument as in Case (2a). If rank(X) = 2 then rank(Y ) 6 1
because XY = 0. Since rank(Y ) 6= 1, it must be that Y = 0, so that again
Y X = 0. We have shown again that (SQ)22 = {0}, so that SQ is reducible by part
(ii) of Lemma 5.1. The Claim 3 is proved. The proof is complete.

A much stronger result is true in Hilbert space setting. The following corol-
lary ([4]) to a result of Aupetit ([1]) turns out to be a key ingredient.

We write ‘r’ for the spectral radius.

Theorem 5.8. ([4]) For an algebra A of compact operators on a Banach
space X the following are equivalent:

(i) A is triangularizable.
(ii) r(AB) 6 r(A)r(B), for all A,B ∈ A.

Lemma 5.9. If S is an operator band on a vector space V then r(AB) 6

r(A)r(B), for all A,B ∈ spanF(S). The same is true in Hilbert space setting.

Proof. If A,B ∈ spanF(S) then

A = t1A1 + t2A2 + · · ·+ tnAn,

and
B = r1B1 + r2B2 + · · ·+ rmBm,

for some Ai, Bj ∈ S and some scalars ti, rj .
If S0 is the subband of S generated by A1, A2, . . . , An, B1, . . . , Bm then S0

has finitely many components. Use Theorem 3.19 to decompose V into finitely
many complementary subspaces, so that with respect to this decomposition the
matrix for each element of S0 is block-upper-triangular with each block on the
diagonal being either 0 or I. Matrices for A and B are of the form

A =


a1I ∗ ∗ · · · ∗
0 a2I ∗ · · · ∗
0 0 a3I · · · ∗
...

...
...

...
...

0 0 0 · · · apI

 , B =


b1I ∗ ∗ · · · ∗
0 b2I ∗ · · · ∗
0 0 b3I · · · ∗
...

...
...

...
...

0 0 0 · · · bpI

 ,
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for some scalars ai, bi. It follows that σ(A) = {a1, . . . , ap} and σ(B) = {b1, . . . , bp}
and σ(AB) = {a1b1, . . . , apbp}. Therefore

r(AB) = sup
16i6p

|aibi| 6
(

sup
16i6p

|ai|
)(

sup
16i6p

|bi|
)

= r(A)r(B)

as required.

Theorem 5.10. If S is an operator band in B(H) and the (non-closed) span
of S contains a non-zero compact operator K, then S is reducible.

Proof. First of all spanF(S) is an algebra. We will prove that spanF(S) is
reducible. Let JK stand for the algebra ideal of spanF(S) generated by K. By
Lemma 3.8 it is sufficient to show that JK is reducible.

It is clear that JK is an algebra of compact operators which (by Lemma 5.9)
satisfies (ii) of Theorem 5.8. It follows that JK is triangularizable.

Corollary 5.11. Suppose S is an operator band in B(H). If two distinct
components of S ∪ {0, I} have a finite-dimensional gap between them, then S is
reducible.

Proof. Without loss of generality assume {0, I} ⊂ S. If the gap between
components containing A and B has finite non-zero dimension (assume A ≺ B),
then A−ABA has finite rank.

Corollary 5.12. If an operator band S in B(H) has a component C that
is a maximal rectangular band in B(H), then S is reducible.

Proof. Non-trivial (i.e. not {I} or {0}) maximal rectangular bands always
contain distinct idempotents whose difference has finite rank (see Corollary 3.6).

An operator is said to be essentially self-adjoint if it is a sum of a compact
and a self-adjoint operators.

Lemma 5.13. If
(

0 X

Y Y X

)
in B(H1 ⊕H2) is essentially self-adjoint and

XY = 0, then X and Y are compact.

Proof. If the hypothesis holds then(
0 X

Y Y X

)
=
(
A B

B∗ C

)
+
(
K L

M N

)
,

for some operators A,B,C and some compact operators K,L,M,N . Since X =
B +L and Y = B∗ +M , it follows that 0 = XY = BB∗ + compact, so that BB∗

is compact. Use functional calculus and polar decomposition to conclude that B
is compact. Thus X and Y are compact, as required.
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Corollary 5.14. If an operator band S in B(H) has a component has con-
tains two essentially self-adjoint operators, then S is reducible.

Proof. Suppose A ∼ B in S are essentially self-adjoint operators. Then A

has the matrix form

A =
(
I Z

0 0

)
,

with respect to decomposition H = ran(A)⊕ ran(A)⊥. Since A− A∗ is compact,
it follows that Z is compact, because

A−A∗ =
(

0 Z

Z∗ 0

)
.

Note the operator T represented by the matrix(
I −Z
0 I

)

is invertible, with the inverse
(
I Z

0 I

)
, and is a compact perturbation of the

identity operator. Therefore A1 = TAT−1 and B1 − TBT−1 are still essentially
self-adjoint operators and

A1 =
(
I 0
0 0

)
, B1 =

(
I X

Y Y X

)
,

with respect to the decomposition above, for some Y,X such that XY = 0 (use
the fact that B1 = (B1A1)(A1B1) by sandwich property).

It follows that
(

0 X

Y Y X

)
is essentially self-adjoint and consequently X and

Y are compact by Lemma 5.13. Thus B1−A1 is compact and so the same is true
for B −A. Apply Theorem 5.10 to complete the proof.

6. REPRESENTING ABSTRACT BANDS AS OPERATOR BANDS

The following result is certainly well known to those involved with semigroup
theory.

Theorem 6.1. Every abstract band is faithfully representable as an operator
band on a vector space over any field.

Proof. Suppose S is an abstract band. Without loss of generality we may
assume S is unital with an identity element e. (If S is not unital, imbed S in the
unital band S ∪ {e}, with the definition that ea = a = ae, for every a ∈ S.)
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For each a ∈ S, let Ma : S → S be the ‘left multiplication by a’. If F is any

field, let VS,F be the free vector space over F generated by S. Extend each Ma to

a linear transformation on VS,F and define map Φ : S → L(VS,F) by Φ(a) = Ma.

It is clear that Φ is injective because Ma(e) = a, for each a ∈ S. That Φ is

a homomorphism follows from the fact that MaMb = Mab on S and thus also on

VS,F.

Our next result is not a complete surprise. After all, we have gone to great

lengths in Section 2 in exposing the reader to much of the ‘finite-dimensional’ be-

haviour of the operator bands with finitely many components. One naturally hopes

that all bands with finitely many components are somewhat ‘finite-dimensional’

...

Theorem 6.2. Every rectangular band can be faithfully represented as an

operator band on a three-dimensional vector space over a large enough field.

Proof. Suppose S is a rectangular band and A ∈ S.

Claim. Every element B ∈ S admits a unique factorization B = CD, where

C ∈ SA = {TA | T ∈ S} and D ∈ AS = {AT | T ∈ S}.
Indeed, if B ∈ S then B = (BA)(AB) by the ‘sandwich property’ of rect-

angular bands. This insures the existence of the factorization. If B = CD is

any other factorization (besides B = (BA)(AB)) then (again via the sandwich

property)

C = CA = CDA = BA

and

D = AD = ACD = AB.

This gives ‘uniqueness’ and the claim.

Given a field F such that #F > Max(#(SA),#(AS)), choose any injective

maps µ : SA → F and η : AS → F with the property: µ(A) = 0 = η(A). Define

Ψ : S → M3(F) by:

Ψ(B) =

 0 µ(BA) µ(BA)η(AB)
0 1 η(AB)
0 0 0

 .
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Then Ψ is injective (use the claim above) and

Ψ(B)Ψ(D) =

 0 µ(BA) µ(BA)η(AB)
0 1 η(AB)
0 0 0


=

 0 µ(BDA) µ(BDA)η(ABD)
0 1 η(ABD)
0 0 0

 = Ψ(BD),

for every B,D ∈ S. Thus Ψ is a faithful representation.

Suppose that S is a band and G ⊂ S. We say that a subset F of G separates
the multiplication of G by S on the left provided that, for every choice of A and B
in S, the following is satisfied:

(AT = BT, for all T ∈ F) ⇒ (AT = BT, for all T ∈ G).

The corresponding ‘right-’ concept is defined accordingly.

Lemma 6.3. Suppose S is an operator band acting on an n-dimensional
vector space V and G ⊂ S. Then there is a subset F of G, with no more than n

elements, such that F separates the multiplication of G by S on the left and on the
right.

Proof. Since span(G) is n-dimensional, some finite subset F of G is a basis
for span(G). The conclusion follows.

As we have stated above, one naturally hopes that all bands with finitely
many components are somewhat ‘finite-dimensional’ ... Alas, such is not the case,
as far as representing such bands as operator bands on finite-dimensional vector
spaces goes.

Example 6.4. There exists a two-component band that cannot be faithfully
represented as an operator band on any finite-dimensional vector space.

Proof. Let us start by agreeing on the following notation:
(1) ∞ stands for N.
(2) ei stands for the i-th (i ∈ N) standard basis vector of C∞ and is considered

to be an element of M∞×1(C).
(3) Eii stands for the ii-th (i ∈ N) standard matrix unit in M∞×∞(C).
(4) Fi (i ∈ N) stands for the matrix in M∞×∞(C) every column of which is

ei, except for the i-th column, which is zero.
(5) I stands for the identify matrix in M∞×∞(C).
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(6) Ai (i ∈ N) stands for the block-matrix

Ai =


I 0 Eii ei

0 I Fi 0
0 0 0 0
0 0 0 0

 .

(7) Bi (i ∈ N) stands for the block-matrix

Bi =


I 0 Eii 0
0 I Fi ei

0 0 0 0
0 0 0 0

 .

(8) Ci (i ∈ N) stands for the block-matrix

Ci =


I 0 0 0
0 I 0 0
0 0 I ei

0 0 0 0

 .

Observe that Eiiei = ei, Eiiej = 0, Fiei = 0, and Fiej = ei, for all i 6= j.
The set S = {Ai | i ∈ N} ∪ {Bi | i ∈ N} ∪ {Ci | i ∈ N} is a band of linear

transformations on the vector space C∞⊕C∞⊕C∞⊕C∞. Its multiplication table
is shown below.∥∥ Ai

∣∣ Aj

∣∣ Bi

∣∣ Bj

∣∣ Ci

∣∣ Cj

∣∣
Ai

∥∥ Ai

∣∣ Aj

∣∣ Bi

∣∣ Bj

∣∣ Ai

∣∣ Bi

∣∣
Aj

∥∥ Ai

∣∣ Aj

∣∣ Bi

∣∣ Bj

∣∣ Bj

∣∣ Aj

∣∣
Bi

∥∥ Ai

∣∣ Aj

∣∣ Bi

∣∣ Bj

∣∣ Ai

∣∣ Bi

∣∣
Bj

∥∥ Ai

∣∣ Aj

∣∣ Bi

∣∣ Bj

∣∣ Bj

∣∣ Aj

∣∣
Ci

∥∥ Ai

∣∣ Aj

∣∣ Bi

∣∣ Bj

∣∣ Ci

∣∣ Cj

∣∣
Cj

∥∥ Ai

∣∣ Aj

∣∣ Bi

∣∣ Bj

∣∣ Ci

∣∣ Cj

∣∣
(i 6= j).

Components of S are C1 = {Ci | i ∈ N} and C2 = {Ai | i ∈ N} ∪ {Bi | i ∈ N}. It is
easy to see that C2 ≺ C1.

Claim. No finite subset of C2 separates multiplication of C2 by S on the right.
Indeed, if m ∈ N then{

AiCm = Bi = AiCm+1

BiCm = Bi = BiCm+1
, for all 1 6 i 6 m,

but {
AmCm = Am 6= Bm = AmCm+1

BmCm = Am 6= Bm = BmCm+1.
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Loosely: for each finite subset of C2 there is a (large enough) m such that the
subset cannot ‘tell the difference’ between Cm and Cm+1 multiplying C2 on the
right. But all of C2 always ‘knows the diference’ between being multiplied by Cm

and Cm+1 on the right. The claim is proved.
The desired conclusion follows from Lemma 6.3.

Example 6.5. For each n ∈ N there exists a finite two-components band
that cannot be faithfully represented as an operator band on any n-dimensional
vector space.

Proof. Under the setup of Example 6.4. let

G = {Ai | 1 6 i 6 n+ 2} ∪ {Bi | 1 6 i 6 n+ 2} ∪ {Ci | 1 6 i 6 n+ 2}.

Then G has two components:

D1 = {Ci | 1 6 i 6 n+ 2}

and
D2 = {Ai | 1 6 i 6 n+ 2} ∪ {Bi | 1 6 i 6 n+ 2}.

It is easy to see that D2 ≺ D1. If K is a subset of D2 containing no more than n

elements, then there exist i, j (1 6 i 6= j 6 n + 2), such that Ai, Bi, Aj , Bj 6∈ K.
Observe that {

AlCi = Bl = AlCj

BlCi = Bl = BlCj
, for all l 6= i, j,

but
AiCi = Ai 6= Bi = AiCj.

Therefore K does not separate multiplication of D2 by G on the right. The desired
conclusion follows again from Lemma 6.3.
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