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Abstract. Recently, Aleksandrov measures have been used to find new for-
mulas for the essential norms of composition operators. Here it is shown
how these measures also provide information about the essential norm of the
difference of two composition operators. The utility of the Aleksandrov mea-
sure approach to the study of composition operators is illustrated in the final
section of this paper, where these measures are used to supply new proofs of
several known results.
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1. INTRODUCTION

Several theorems regarding composition operators have related properties of the
composition operator to the existence and size of the angular derivative of the
inducing function. An early example of this is the theorem which tells us that if a
holomorphic self-map of the unit disk has an angular derivative at any boundary
point, then its associated composition operator is not compact (see [17]). The
converse does not hold, and later Joel Shapiro discovered necessary and sufficient
conditions for compactness of such composition operators which involve properties
the Nevanlinna counting function (see [13]). Other conditions for compactness of
the composition operator, by D. Sarason, Shapiro, and C. Sundberg (see [10], [15])
involving the Aleksandrov measures corresponding to the inducing function, more
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directly generalize the angular derivative condition. In this paper we pursue further
the relationship between the properties of these measures, particularly the parts of
these measures singular with respect to Lebesgue measure, and the properties of
the related composition operators. It will be shown that the Aleksandrov measures
prove useful in providing new proofs for or even improving existing results of
Berkson, Shapiro, Sundberg, MacCluer, and Cowen, relating to essential norm
estimates for composition operators, and that the Aleksandrov measure approach
might be of further use in outstanding isolation problems, and other problems
involving composition operators.

Some general facts about composition operators are provided in Section 2,
including Shapiro’s formula for the essential norm of a composition operator. In
Section 4 we discuss the formula found by J. Cima and A. Matheson ([2]), ‖Cϕ‖2

e =
sup
λ∈∂D

‖µs
λ‖, and prove some generalizations to inequalities in the case when we

have combinations of more than one composition operator, after a description of
properties of the family of measures {µλ}, that we provide in Section 3. The main
theorems are used to discuss the question of compactness of the difference of two
composition operators in Section 5. Other related consequences of the various
Aleksandrov measure formulas are discussed in Section 6. New proofs are given
for several known results, and it is shown that this approach can provide sufficient
conditions for equality in an inequality found by Cowen ([3], Theorem 2.4).

Some notes on notation: throughout this paper we will use ϕ and ψ to
denote holomorphic self-maps of the unit disk D. As such, ϕ has boundary values
at almost every point on the unit circle ∂D, which can be defined by taking radial
(or nontangential) limits, and we will use ϕ (with argument on the unit circle) to
denote those, too. All integrals, unless otherwise specified, are on the unit circle.
Normalized Lebesgue measure on the unit circle will be denoted m.

2. COMPOSITION OPERATORS ON H2

A composition operator Cϕ, induced by a holomorphic self-map of the unit disk
ϕ, can be defined on many different Banach spaces of analytic functions by the
formula Cϕf = f ◦ ϕ. The study of composition operators thus can be seen
to involve significantly, and provide links between operator theory and analytic
function theory. Our analysis here will be confined to the behavior of composition
operators on the Hardy space H2, which can be defined as the space of all analytic
functions with square-summable Taylor coefficients. For our purposes, it will be
more useful to think of H2 as the space of analytic functions f on the unit disk
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D which have the property that lim
r→1−

1
2π

π∫
−π

|f(reiθ)|2dθ exists, and when it does,

this limit will be the square of the norm of the function f . As an operator on H2,

Cϕ is bounded. This is not at all obvious, but it is a very important fact which is

most easily seen as a consequence of Littlewood’s subordination principle (see [5],

Theorem 1.7 or [7]). The composition operator Cϕ is also bounded on the other

Hp spaces, as well as the Bergman spaces and others, but we will concentrate our

attention here to its action on H2, which has been a setting for many interesting

problems concerning composition operators. Additionally, the compactness of Cϕ
in H2 (or any Hp, 0 < p <∞) is equivalent to the compactness of Cϕ in all other

Hp; see [17], Theorem 6.1.

By the essential norm of a composition operator, we mean its distance, in the

operator norm, from the space of compact operators on H2. That is, the essential

norm ‖Cϕ‖e = inf
{
‖Cϕ − T‖ : T compact on H2

}
.

Shapiro, in [13], gives a formula for the essential norm of a composition

operator in purely function-theoretic terms.

Theorem 2.1. [Shapiro] For ϕ a holomorphic self-map of the unit disk,

‖Cϕ‖2
e = lim

|a|→1

Nϕ(a)
− log |a|

.

Here Nϕ(a) is the Nevanlinna counting function for ϕ, which can be defined

as
∑

ϕ(w)=a

log 1
|w| , and lim is used to denote the upper limit. This has the immedi-

ate corollary which gives necessary and sufficient conditions for compactness of a

composition operator.

Corollary 2.2. A composition operator Cϕ is compact on H2 if and only

if

lim
|a|→1

Nϕ(a)
− log |a|

= 0.
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3. THE MEASURES µλ

For any holomorphic self-map of the unit disk ϕ and λ ∈ ∂D, the real part

of the function λ+ϕ(z)
λ−ϕ(z) is a positive harmonic function which can be written

as Re
(
λ+ϕ(z)
λ−ϕ(z)

)
=
∫
P (ζ, z)dµλ(ζ) for some positive Borel measure µλ, where

P (ζ, z) = 1−|z|2
|ζ−z|2 is the Poisson kernel for z ∈ D. In this way we associate a

family of measures {µλ}λ∈∂D with the function ϕ. These measures have played

an interesting role in the study of the de Branges-Rovnyak space H(ϕ) (see [11],

Chapter III). They also provided the main basis for definition and study of “rela-

tive angular derivatives” by the author in [12]. The measures µλ have the following

properties:

(i) We have the Herglotz integral representation,

λ+ ϕ(z)
λ− ϕ(z)

=
∫
ζ + z

ζ − z
dµλ(ζ) + i Im

(
λ+ ϕ(0)
λ− ϕ(0)

)
.

(ii) All positive Borel measures on ∂D are associated with holomorphic func-

tions in this way.

(iii) The absolutely continuous part of µλ, denoted µa.c.
λ , is given by dµa.c.

λ =
1−|ϕ|2
|λ−ϕ|2 dm, where m is normalized Lebesgue measure on the unit circle.

(iv) For any λ, the measure µλ is singular if and only if ϕ is an inner function,

i.e., |ϕ| = 1 almost everywhere on ∂D.

(v) The norm of µλ is given by

‖µλ‖ =
∫

dµλ =
∫
P (ζ, 0)dµλ(ζ) = Re

(
λ+ ϕ(0)
λ− ϕ(0)

)
=

1− |ϕ(0)|2

|λ− ϕ(0)|2
.

(vi) The measure µλ has an atom at a point z0 on the unit circle if and only

if ϕ has an angular derivative at the point z0, and in this case µλ({z0}) = 1
|ϕ′(z0)| .

See [11], Theorem VI-7 or [12], Special Case 7.1, 7.3.

(vii) For µs
λ-a.e. ζ ∈ ∂D, the function ϕ(z) → λ as z → ζ nontangentially,

where µs
λ denotes the singular part of µλ.
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4. MAIN THEOREMS

In this section we will state and prove the main theorems of the paper. We will
begin by mentioning a result which was proved by Cima and Matheson in [2], which
provides the Aleksandrov measure formula for the essential norm of a composition
operator.

Theorem 4.1. ([2]) Let ϕ be a holomorphic self-map of the unit disk with
corresponding measures µλ, λ ∈ ∂D. Then

‖Cϕ‖2
e = sup

λ∈∂D
‖µs

λ‖.

This theorem has the immediate corollary.

Corollary 4.2. A composition operator Cϕ is compact on H2 if and only
if for all λ ∈ ∂D the measure µλ is absolutely continuous.

Indeed, this last corollary was originally proved in a totally different way by
Sarason, Shapiro, and Sundberg (see [10], [15]). It first demonstrated the use of
Aleksandrov measures to understand properties of composition operators. Cima
and Matheson, with their result above, provided the more direct proof, asked for
by Sarason in [11], p. 84, of the equivalence of the compactness conditions in Corol-
laries 4.2 and 2.2. This result, then, generalized the angular-derivative criterion
by providing necessary and sufficient conditions for compactness of a composi-
tion operator (in a way different from the generalization provided by Shapiro in
[13]). Using the notion of relative angular derivatives (see [12]), one can interpret
Corollary 4.2 as saying that Cϕ is compact on H2 if and only if ϕ has no angular
derivative “relative” to any inner function u.

In the rest of this section, we will follow along the lines of Cima and Matheson
in [2], but consider the more general case of the essential norm of the difference of
two composition operators, and eventually, the essential norm of any linear combi-
nation of composition operators. These theorems are motivated by the theorems
in the work of B. MacCluer ([8], Theorems 2.2 and 3.1), which have the similar
goal of finding lower bounds for the essential norms of composition operator dif-
ferences or linear combinations, but which involve the angular derivative instead
of Aleksandrov measures. In Section 5 this relationship will be explored. The
theorems are also motivated by their relationship to the questions of isolation of
composition operators. In particular, these theorems are motivated by their use to
provide alternate proofs for some theorems of Shapiro and Sundberg ([16], Theo-
rem 2.3, Corollary 2.4) which give information about the isolation of composition
operators. These appear here in Section 6.
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For questions concerning the essential norms of differences or linear combina-
tions of composition operators, we will not be able to get exact answers, as we have
above for the essential norm of a single composition operator, but we will be able
to get better lower bounds than were available before, and from this derive better
information about the structure of the space of composition operators on H2.

Theorem 4.3. Let ϕ and ψ be holomorphic self-maps of the unit disk with
corresponding measures µλ and νλ, λ ∈ ∂D. If for some λ, µs

λ and νs
λ are mutually

singular, then
‖Cϕ − Cψ‖2

e > ‖µs
λ‖+ ‖νs

λ‖.

Proof. We begin the proof by noting that, as in [13], ‖T‖2
e > ‖Tfa‖2

2 for any
operator T on H2, where fa is the normalized reproducing kernel for a ∈ D, so

‖Cϕ − Cψ‖2
e > ‖(Cϕ − Cψ)fa‖2

2.

We can now write

(4.1)
‖(Cϕ − Cψ)fa‖2

2 = 〈(Cϕ − Cψ)fa, (Cϕ − Cψ)fa〉
= ‖Cϕfa‖2

2 + ‖Cψfa‖2
2 − 2Re〈Cϕfa, Cψfa〉

where 〈 · , · 〉 is the inner product in H2. As a → λ nontangentially, the first
two terms approach ‖µs

λ‖ and ‖νs
λ‖ — this was proved in the course of the proof

by Cima and Matheson of Theorem 4.1, but it can also be seen a corollary of
Lemma 4.4 below. The third term approaches zero, as we will show.

(4.2) |〈Cϕfa, Cψfa〉| =
∣∣∣∣∫ (1− |a|2)

(
1

1− aϕ(ξ)
1

1− aψ(ξ)

)
dm(ξ)

∣∣∣∣ .
The integral above is taken over the unit circle, and no matter how we divide the
unit circle into two (measurable) pieces E and Ec (the complement of E in ∂D),
we will have ∫

(1− |a|2)
(

1
1− aϕ(ξ)

1
1− aψ(ξ)

)
dm(ξ) =

∫
E

+
∫
Ec

,

and then we can write

(4.3)

∣∣∣∣∣
∫
E

+
∫
Ec

∣∣∣∣∣ 6
∣∣∣∣∣
∫
E

∣∣∣∣∣+
∣∣∣∣∣
∫
Ec

∣∣∣∣∣
6

(∫
E

1− |a|2

|1− aϕ(ξ)|2
dm(ξ)

∫
E

1− |a|2

|1− aψ(ξ)|2
dm(ξ)

) 1
2

+

(∫
Ec

1− |a|2

|1− aϕ(ξ)|2
dm(ξ)

∫
Ec

1− |a|2

|1− aψ(ξ)|2
dm(ξ)

) 1
2
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by the Cauchy-Schwarz inequality. The idea here is to split the unit circle into
two pieces, one where µs

λ is small, so the contribution from the first integral in
the products above is small, and the other where νs

λ is small, so the contribution
from the second integral is small. In order to proceed, we will need the following
lemma.

Lemma 4.4. Given any open arc E ⊂ ∂D, for which µλ does not have an
atom at the endpoints, we have∫

E

1− |a|2

|1− aϕ(ξ)|2
dm(ξ) → µs

λ(E) as a→ λ nontangentially.

Proof. We prove this by using the decomposition

(4.4)
∫
E

1− |a|2

|1− aϕ(ξ)|2
dm(ξ) =

∫
E

1− |aϕ(ξ)|2

|1− aϕ(ξ)|2
dm(ξ)− |a|2

∫
E

1− |ϕ(ξ)|2

|1− aϕ(ξ)|2
dm(ξ).

First we consider the second term on the right as a→ λ nontangentially. We use
the fact that

(1− |ϕ(ξ)|2) 1
2

1− aϕ(ξ)
− (1− |ϕ(ξ)|2) 1

2

1− λϕ(ξ)
=

(1− |ϕ(ξ)|2) 1
2

(1− λϕ(ξ))
(a− λ)ϕ(ξ)
(1− aϕ(ξ))

,

which tells us that the two L2 fractions from the left-hand side differ by an L2 func-
tion that approaches 0 pointwise for m-a.e. ξ, and which has norm that approaches
0 as a→ λ nontangentially (by dominated convergence, since

∣∣∣ (a−λ)ϕ(ξ)
(1−aϕ(ξ))

∣∣∣ 6 |a−λ|
1−|a| ,

which stays bounded as a→ λ nontangentially). Thus

(4.5)
∫
E

1− |ϕ(ξ)|2

|1− aϕ(ξ)|2
dm(ξ) →

∫
E

1− |ϕ(ξ)|2

|λ− ϕ(ξ)|2
dm(ξ) as a→ λ nontangentially.

For the first term on the right of (4.4), consider the measure 1−|aϕ(ξ)|2
|1−aϕ(ξ)|2 dm,

which we will call µa. We will show that µa → µλ weak∗ as a → λ. This is true
since for any Poisson kernel P (ξ, w) (for w ∈ D),∫

P (ξ, w)dµa(ξ) =
∫
P (ξ, w)

1− |aϕ(ξ)|2

|1− aϕ(ξ)|2
dm(ξ) =

1− |aϕ(w)|2

|1− aϕ(w)|2

→ 1− |ϕ(w)|2

|1− λϕ(w)|2
= Re

(
λ+ ϕ(w)
λ− ϕ(w)

)
=
∫
P (ξ, w)dµλ(ξ).

This then tells us that for any continuous function g on ∂D,

(4.6)
∫
g(ξ)dµa(ξ) →

∫
g(ξ)dµλ(ξ).
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Let E = (a, b) be the arc on the unit circle from eia to eib, whose endpoints are
not atoms of µλ. Now consider a family of continuous functions {gn} which take
values in [0, 1] and are 0 off E and 1 on the subarc En = (a+ 1

n , b−
1
n ) of E (for

n big enough for this to be nontrivial).∣∣∣∣∣
∫
χE(ξ)dµa(ξ)−

∫
χE(ξ)dµλ(ξ)

∣∣∣∣∣ 6
∣∣∣∣∣
∫
χE(ξ)dµa(ξ)−

∫
gn(ξ)dµa(ξ)

∣∣∣∣∣
+

∣∣∣∣∣
∫
gn(ξ)dµa(ξ)−

∫
gn(ξ)dµλ(ξ)

∣∣∣∣∣
+

∣∣∣∣∣
∫
gn(ξ)dµλ(ξ)−

∫
χE(ξ)dµλ(ξ)

∣∣∣∣∣.
We can choose n big enough that the first and third terms on the right above
are arbitrarily small, since each can be considered an integral over the region
Fn = (a, a + 1

n ) ∪ (b − 1
n , b) of a continuous function with values in [0, 1] with

respect to the measures µa or µλ — the measure µa is absolutely continuous, and
µλ has no atom at eia or eib, the endpoints of the arc E. The second term on the
right approaches zero as a→ λ by (4.6). We thus get, as a→ λ∫

χE(ξ)dµa(ξ) →
∫
χE(ξ)dµλ(ξ),

i.e., ∫
E

dµa(ξ) →
∫
E

dµλ(ξ) = µλ(E).

We now get the lemma by combining equation (4.4) with the convergences of each
piece of the right-hand side proved above. It should be noted that we can extend
this easily to any E ∈ ∂D that is a finite union of arcs, each as in the lemma.

Given ε > 0, we now use the fact that µs
λ ⊥ νs

λ to choose some open set
F ⊂ ∂D such that µs

λ(F ) > ‖µs
λ‖ − ε while at the same time νs

λ(F ) < ε. F is a
union of open arcs, so we can pick a finite collection of these arcs, whose union we
will call E, with µs

λ(F ) − µs
λ(E) < ε, and, by shrinking them a small amount if

necessary, we can be sure that none of these arcs has an endpoint at which µλ has
an atom. Ec is now a finite union of closed arcs (we can ignore any possible single
point sets), and has the property that µs

λ(E
c) < 2ε. With this E, we can see that

by the extended version of the lemma, as a → λ nontangentially, the right hand
side of the inequality (4.3) is at most

(µs
λ(E)νs

λ(E))
1
2 + (µs

λ(E
c)νs

λ(E
c))

1
2 < ‖µs

λ‖1/2ε
1
2 + ‖νs

λ‖1/2(2ε)
1
2 .

Since this holds for any ε > 0, we conclude that as a → λ nontangentially,
〈Cϕfa, Cψfa〉 → 0, and the theorem is proved.
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If for some λ ∈ ∂D, µs
λ and νs

λ are not mutually singular, but are different,
then we can still get a lower estimate for ‖Cϕ−Cψ‖2

e . If E is any arc (or finite set
of arcs) in ∂D, with µs

λ(E) 6= νs
λ(E), then we can use equations (4.1), (4.2), and

the Cauchy-Schwarz inequality, with the integrals all taken over the set E to get

‖Cϕ − Cψ‖2
e > ‖(Cϕ − Cψ)fa‖2

2

>
∫
E

1− |a|2

|1− aϕ(ξ)|2
dm(ξ) +

∫
E

1− |a|2

|1− aψ(ξ)|2
dm(ξ)

− 2

(∫
E

1− |a|2

|1− aϕ(ξ)|2
dm(ξ)

∫
E

1− |a|2

|1− aψ(ξ)|2
dm(ξ)

) 1
2

>

((∫
E

1− |a|2

|1− aϕ(ξ)|2
dm(ξ)

) 1
2

−

(∫
E

1− |a|2

|1− aψ(ξ)|2
dm(ξ)

) 1
2
)2

.

By the lemma, this last difference approaches (µs
λ(E)1/2 − νs

λ(E)1/2)2 as a → λ

nontangentially. This gives us

Theorem 4.5. If ϕ and ψ are holomorphic self-maps of the disk which have
corresponding measures µλ and νλ, λ ∈ ∂D, then for any λ and any set E that is
a finite union of arcs in ∂D whose endpoints do not contain atoms of the measures
µλ or νλ, we have

‖Cϕ − Cψ‖e > |µs
λ(E)

1
2 − νs

λ(E)
1
2 |.

In particular, unless µs
λ = νs

λ for all λ, we can find such a set E for which the
right side of the above is positive, and we will thus have

‖Cϕ − Cψ‖e > 0.

We can generalize the methods above to give a lower bound on the essential
norm of a linear combination of composition operators.

Theorem 4.6. Let ϕ1, . . . , ϕn be holomorphic self-maps of the disk, with cor-
responding measures µ1,λ, . . . , µn,λ. If for some λ ∈ ∂D, the measures µs

1,λ, . . . , µ
s
n,λ

are mutually singular, then∥∥∥ n∑
j=1

ajCϕj

∥∥∥2

e
> |a1|2‖µs

1,λ‖+ · · ·+ |an|2‖µs
n,λ‖.

Proof. First we write∥∥∥ n∑
j=1

ajCϕj

∥∥∥2

e
>
∥∥∥( n∑

j=1

ajCϕj

)
fa

∥∥∥2

2
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and ∥∥∥( n∑
j=1

ajCϕj

)
fa

∥∥∥2

2
=
〈( n∑

j=1

ajCϕj

)
fa,
( n∑
j=1

ajCϕj

)
fa

〉
= |a1|2‖Cϕ1fa‖2

2 + · · ·+ |an|2‖Cϕn
fa‖2

2

+
∑
i 6=j

aiaj〈Cϕi
fa, Cϕj

fa〉.

The first terms on the right approach |a1|2‖µs
1,λ‖ + · · · + |an|2‖µs

n,λ‖ as a → λ

nontangentially, and the remaining terms approach zero, as we showed earlier.

5. COMPACTNESS OF THE DIFFERENCE OF COMPOSITION OPERATORS

In [8], MacCluer gives several theorems regarding the essential norms of composi-
tion operator differences. One of them, [8], Theorem 2.2, tells us

Theorem 5.1. ([8]) Let ϕ : D → D and suppose that ϕ has finite angular
derivative at a point eiθ ∈ ∂D. Let ψ : D → D be holomorphic and consider Cϕ
and Cψ acting on H2. Then, unless both

ψ(eiθ) = ϕ(eiθ)

and
ψ′(eiθ) = ϕ′(eiθ),

we have ‖Cϕ − Cψ‖2
e > |ϕ′(eiθ)|−1.

From this theorem, we can get the immediate corollary.

Corollary 5.2. If Cϕ − Cψ is a compact operator (on H2), then ϕ and ψ
must have angular derivatives at the same places on the unit circle, and at those
places the values of the angular derivatives must be the same.

From our point of view, we can use Theorem 4.5 to get the following.

Theorem 5.3. If Cϕ−Cψ is a compact operator, then we must have µs
λ = νs

λ

for all λ ∈ ∂D.

This theorem is a generalization of the previous one, since if µs
λ = νs

λ for all
λ ∈ ∂D, then ϕ and ψ have the same angular derivatives — wherever any µs

λ or
νs
λ has an atom, with magnitude the inverse of the magnitude of the atom.

The angular derivative condition mentioned above, though necessary for com-
pactness of the difference of two composition operators, is, by this last theorem,
not sufficient. The situation is seemingly quite similar to the compactness question
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for a single composition operator, in which the Aleksandrov measure condition was
both necessary and sufficient for compactness. In this case, however, the converse
to Theorem 5.3 is unknown. We need to have an upper bound to ‖Cϕ−Cψ‖2

e of a
form similar to the lower bound to prove the converse, which would then give us
an answer to a question raised in [16].

Conjecture 5.4. Given holomorphic self-maps of the disk ϕ and ψ, with
associated measures µλ and νλ, Cϕ−Cψ is a compact operator on H2 if and only
if µs

λ = νs
λ for all λ ∈ ∂D.

6. OTHER CONSEQUENCES OF THE MAIN THEOREMS

The Aleksandrov measure approach to the essential norm of a composition oper-
ator leads to several interesting inequalities and equalities, both by generalizing
some theorems, as we have shown above, and by providing new proofs to some the-
orems already known. We will begin by presenting new proofs for some theorems
by Shapiro and Sundberg in [16], Theorem 2.3, Corollary 2.4.

Theorem 6.1. For ϕ a holomorphic self-map of the disk, let E = {ζ ∈ ∂D :
|ϕ(ζ)| = 1}. Then ‖Cϕ‖2

e > m(E).

Proof. We can relate the size of E to properties of the corresponding family
{µλ}. The average (over all λ ∈ ∂D) of the norms of the measures µa.c.

λ is given by∫∫ 1−|ϕ(ζ)|2
|λ−ϕ(ζ)|2 dm(ζ)dm(λ). When we switch the order of integration, we can carry

out the inside integral for each λ. For any ζ in E, the integrand (and hence the
integral) is zero, whereas for any ζ not in E, the integral is the that of the Poisson
kernel for the point ϕ(ζ) (with |ϕ(ζ)| < 1), which has value 1. Therefore we have∫∫ 1−|ϕ(ζ)|2

|λ−ϕ(ζ)|2 dm(λ)dm(ζ) = 1 − m(E). The average value of the norm of µλ is

given by
∫ 1−|ϕ(0)|2
|λ−ϕ(0)|2 dm(λ), which is equal to 1. So we find that the average value

of ‖µs
λ‖ is just 1− (1−m(E)) = m(E). Since ‖Cϕ‖2

e = sup
λ∈∂D

‖µs
λ‖ > average‖µs

λ‖,

the theorem is proved.

Using Theorem 4.3, we can get a new proof for the similar lower bound for
the essential norms of the difference of two composition operators. The previous
theorem is an immediate corollary of the following.

Theorem 6.2. ([16]) Let ϕ 6= ψ be holomorphic self-maps of the disk. Then

‖Cϕ − Cψ‖2
e > m(Eϕ) +m(Eψ),

where Eϕ = {ζ ∈ ∂D : |ϕ(ζ)| = 1} and Eψ = {ζ ∈ ∂D : |ψ(ζ)| = 1}.
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Proof. For m-a.e. λ ∈ ∂D, µs
λ is singular to νs

λ , since if they are not mutually
singular for a.e. λ, then we use the fact that ϕ(ζ) = λ for µs

λ a.e.-ζ and ψ(ζ) = λ

for νs
λ a.e.-ζ to deduce that

{
λ ∈ ∂D : ϕ−1(λ) ∩ ψ−1(λ) is nonempty

}
has positive

measure, thus {ζ ∈ ∂D : ϕ(ζ) = ψ(ζ)} has positive measure, which is impossible
for two unequal holomorphic functions. We can thus use Theorem 4.3 to tell us
that

‖Cϕ − Cψ‖2
e > sup

λ∈∂D,µs
λ
⊥νs

λ

(‖µs
λ‖+ ‖νs

λ‖)

> avg
λ∈∂D

(‖µs
λ‖+ ‖νs

λ‖)

= avg
λ∈∂D

‖µs
λ‖+ avg

λ∈∂D
‖νs
λ‖ = m(Eϕ) +m(Eψ).

The last step follows by the argument in the proof of Theorem 6.1.

Indeed, with the use of Theorem 4.6, we can even get a new proof of the
theorem from [16], Theorem 2.3, which gives a similar lower bound for the essential
norm of a linear combination of composition operators.

These theorems, as pointed out in [16], provide a generalization of a theorem
of Berkson ([1]), and can be used to show that if m(Eϕ) > 0, then Cϕ is isolated in
the space of composition operators acting on H2. This is clear, since its distance
in operator norm, and, in fact, its essential distance, from any other composition
operator is, by the theorem, bounded below by m(Eϕ)1/2.

A different sort of lower bound for the essential norm of a composition op-
erator is given by Cowen in [3], Theorem 2.4, along with a similar upper bound,
under the added condition of the continuity of ϕ′ on D. It also appears in [13],
Theorem 3.3. It is proved by Cima and Matheson in [2] as a corollary of the for-
mula for the essential norm of a composition operator. It is presented here to show
further uses of the Aleksandrov measure approach to essential norm inequalities.

Theorem 6.3. ([3]) Let δ(ω) =
∑{

|ϕ′(ζ)|−1 : ζ ∈ ∂D and ϕ(ζ) = ω
}
. Then

‖Cϕ‖2
e > sup {δ(ω) : ω ∈ ∂D} .

Proof. ([2]) This theorem is an immediate consequence of Theorem 4.1, since
the measure µω has atoms precisely at those points ζ ∈ ∂D with ϕ(ζ) = ω, for
which ϕ has an angular derivative, and the magnitude of each atom is just the
reciprocal of the absolute value of the angular derivative. Thus the sum of the
magnitudes of the atoms of µω is exactly δ(ω), so this is certainly 6 ‖µs

ω‖. The
theorem follows.
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It should be noted here that we also get information about when we have
equality in the theorem. If ϕ is univalent, or even of bounded valence, then each
measure µω has a singular part which consists of either at most a single atom
(in the univalent case), or some number of atoms (bounded by the valence). The
measure µω can have a nonatomic singular part only if ϕ has infinite valence near
some ω. If there is no nonatomic singular part of µω, then we have equality in
Theorem 6.3. Thus we see that though bounded valence for ϕ is sufficient for
equality, it is not necessary.

Finally, we can obtain very easily an exact expression for the essential norm
of the composition operator generated by an inner function. We get the same
answer, of course, as found by Shapiro in [13], Theorem 2.5, but with a different
simple proof.

Theorem 6.4. If ϕ is an inner function, then

‖Cϕ‖e =
[
1 + |ϕ(0)|
1− |ϕ(0)|

] 1
2

.

Proof. This follows from our formula for the essential norm of a composition
operator, since for an inner function ϕ, all of the measures µλ are singular. We
already know that

‖µλ‖ = Re
(
λ+ ϕ(0)
λ− ϕ(0)

)
=

1− |ϕ(0)|2

|λ− ϕ(0)|2

(this was proven in our list of properties of the µλ). The largest value of 1−|ϕ(0)|2
|λ−ϕ(0)|2

is taken when the denominator is as small as possible, i.e., λ is the boundary point
closest to ϕ(0) . We thus have

‖Cϕ‖2
e = sup

λ∈∂D
‖µs

λ‖ = sup
λ∈∂D

‖µλ‖ = sup
λ∈∂D

1− |ϕ(0)|2

|λ− ϕ(0)|2

=
1− |ϕ(0)|2

(1− |ϕ(0)|)2
=

1 + |ϕ(0)|
1− |ϕ(0)|

.
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