NORMS OF SOME SINGULAR INTEGRAL OPERATORS AND THEIR INVERSE OPERATORS

TAKAHIKO NAKAZI and TAKANORI YAMAMOTO

Communicated by William B. Arveson

ABSTRACT. Let α and β be bounded measurable functions on the unit circle \mathbb{T} . Then the singular integral operator $S_{\alpha,\beta}$ is defined by $S_{\alpha,\beta}f=\alpha P_+f+\beta P_-f$, $(f\in L^2(\mathbb{T}))$ where P_+ is an analytic projection and P_- is a co-analytic projection. In this paper, the norms of $S_{\alpha,\beta}$ and its inverse operator on the Hilbert space $L^2(\mathbb{T})$ are calculated in general, using α,β and $\alpha\bar{\beta}+H^\infty$. Moreover, the relations between these and the norms of Hankel operators are established. As an application, in some special case in which α and β are nonconstant functions, the norm of $S_{\alpha,\beta}$ is calculated in a completely explicit form. If α and β are constant functions, then it is well known that the norm of $S_{\alpha,\beta}$ on $L^2(\mathbb{T})$ is equal to max $\{|\alpha|,|\beta|\}$. If α and β are nonzero constant functions, then it is also known that $S_{\alpha,\beta}$ on $L^2(\mathbb{T})$ has an inverse operator $S_{\alpha^{-1},\beta^{-1}}$ whose norm is equal to max $\{|\alpha|^{-1},|\beta|^{-1}\}$.

 $\begin{tabular}{ll} Keywords: Singular integral operators, & Hardy spaces, & Hankel operators, \\ & Toeplitz operators. \\ \end{tabular}$

 $AMS\ Subject\ Classification:\ Primary\ 45E10,\ 47B35;\ Secondary\ 46J15.$

1. INTRODUCTION

Let m denote the normalized Lebesgue measure on the unit circle $\mathbb{T} = \{\zeta : |\zeta| = 1\}$. That is, $dm(\zeta) = d\theta/2\pi$ for $\zeta = e^{i\theta}$. The inner product in the Hilbert space $L^2 = L^2(\mathbb{T})$ is given by

$$(f,g) = \int_{\mathbb{T}} f(\zeta) \overline{g(\zeta)} \, \mathrm{d}m(\zeta).$$

The norm in L^2 is given by $||f||_2 = \sqrt{(f,f)}$. By $L^{\infty} = L^{\infty}(\mathbb{T})$ we denote the space of bounded measurable functions. The norm in L^{∞} is given by $||f||_{\infty} = \operatorname{ess\,sup} |f|$. Let H^2 (resp. H^{∞}) be the Hardy space of functions $f \in L^2$ (resp. $f \in L^{\infty}$) whose negative Fourier coefficients are zero. Let $\overline{H_0^2}$ be the space of functions $f \in L^2$ whose nonnegative Fourier coefficients are zero. Then $L^2 = H^2 \oplus \overline{H_0^2}$. Let S be the singular integral operator defined by

$$(Sf)(\zeta) = \frac{1}{\pi i} \int_{\mathbb{T}} \frac{f(\eta)}{\eta - \zeta} d\eta$$
 (a.e. $\zeta \in \mathbb{T}$),

where the integral is understood in the sense of Cauchy's principal value (cf. [4], p. 12). If f is in L^1 , then $(Sf)(\zeta)$ exists for almost every ζ on \mathbb{T} , and Sf becomes a measurable function on \mathbb{T} . Let the analytic projection and the co-analytic projection be

$$P_{+} = \frac{I+S}{2}$$
, and $P_{-} = \frac{I-S}{2}$,

where I denotes the identity operator. If $\alpha, \beta \in L^{\infty}$, then the singular integral operator $S_{\alpha,\beta}$ on L^2 is defined by

$$S_{\alpha,\beta}f = \alpha P_+ f + \beta P_- f, \quad (f \in L^2).$$

Then $S_{1,1} = I$, $S_{1,-1} = S$, $S_{1,0} = P_+$ and $S_{0,1} = P_-$. The norm of $S_{\alpha,\beta}$ is defined by

$$||S_{\alpha,\beta}|| = \sup_{f \in L^2, ||f||_2 = 1} ||S_{\alpha,\beta}f||_2.$$

Since $||P_{+}|| = ||P_{-}|| = 1$, we have

$$||S_{\alpha,\beta}|| \le ||\alpha||_{\infty} + ||\beta||_{\infty} < \infty.$$

Hence, $S_{\alpha,\beta}$ is a bounded operator on L^2 . Furthermore, it is well known that

$$\max\{\|\alpha\|_{\infty}, \|\beta\|_{\infty}\} \leqslant \|S_{\alpha,\beta}\| \leqslant \left\|\sqrt{|\alpha|^2 + |\beta|^2}\right\|_{\infty}.$$

If α and β are constant functions, then it is well known and not difficult to establish that

$$||S_{\alpha,\beta}|| = \max\{|\alpha|, |\beta|\}$$

(cf. [3]). If α and β are nonconstant functions, then we will show in Section 2 that the formula of $||S_{\alpha,\beta}||$ is more complicated.

If $\varphi \in L^{\infty}$, then the Toeplitz operator T_{φ} is defined by $T_{\varphi}f = P_{+}(\varphi f)$, $(f \in H^{2})$. Its norm is equal to $\|\varphi\|_{\infty}$ (cf. [2], p. 179). The Hankel operator H_{φ} is

defined by $H_{\varphi}f = P_{-}(\varphi f)$, $(f \in H^{2})$. By the Nehari theorem [8] (cf. [9], p. 181), its norm is equal to $\inf\{\|\varphi - k\|_{\infty} : k \in H^{\infty}\}$. Hence,

$$||H_{\omega}|| \leqslant ||T_{\omega}|| \leqslant ||S_{\omega,1}||.$$

Though the norm of T_{φ} or H_{φ} is known, the norm of $S_{\varphi,1}$ is not known.

In this paper, we consider the operator $S_{\alpha,\beta}$ on L^2 for functions $\alpha, \beta \in L^{\infty}$. In Section 2, we give the formula of the norm of $S_{\alpha,\beta}$ on L^2 for $\alpha, \beta \in L^{\infty}$, which involves lower bounds over the algebra H^{∞} . It is a little surprising that the norm of the singular integral operator $S_{\alpha,\beta}$ is related to the norm of the Hankel operator $H_{\alpha\bar{\beta}}$ for some special α and β . In Section 3, we also give the formula of the norm of the inverse operator of $S_{\alpha,\beta}$ on L^2 for $\alpha,\beta \in L^{\infty}$, which involves upper bounds over the algebra H^{∞} . If $S_{\alpha,\beta}$ is invertible, then ess $\inf_{\mathbb{T}} \left(\min \{ |\alpha|, |\beta| \} \right) > 0$. When $\varphi = \alpha/\beta$ and ess $\inf_{\mathbb{T}} \left(\min \{ |\alpha|, |\beta| \} \right) > 0$,

$$S_{\alpha,\beta} = \beta S_{\varphi,1} = \beta (P_{+}\varphi P_{+} + P_{-})(I + P_{-}\varphi P_{+}).$$

Then $I + P_{-}\varphi P_{+}$ is invertible and $(I + P_{-}\varphi P_{+})^{-1} = I - P_{-}\varphi P_{+}$ (cf. [9], p. 393). Hence, $S_{\alpha,\beta}$ is invertible if and only if $\min\{\text{ess}\inf_{\mathbb{T}} |\alpha|, \text{ess}\inf_{\mathbb{T}} |\beta|\} > 0$ and $T_{\alpha/\beta}$ is invertible.

The first author (cf. [7]) calculated essentially the norm of the inverse operator of T_{φ} on H^2 . We will show in Section 3 that the formula of the norm of the inverse operator of T_{φ} is similar to the formula of the norm of the inverse operator of $S_{\alpha,\beta}$. The second author (cf. [11]) considered the norm of $S_{\alpha,\beta}$ on the weighted space $L^2(T,W)$ with a weight function W on \mathbb{T} , and proved the Feldman-Krupnik-Markus theorem ([3]) using the Cotlar-Sadosky lifting theorem ([1]) when α and β are constant functions.

2. NORM OF THE OPERATOR $S_{\alpha,\beta}$

If $\alpha, \beta \in L^{\infty}$, then the following inequality is well known and not difficult to establish:

$$\max\{\|\alpha\|_{\infty}, \|\beta\|_{\infty}\} \leqslant \|S_{\alpha,\beta}\| \leqslant \left\|\sqrt{|\alpha|^2 + |\beta|^2}\right\|_{\mathcal{A}}.$$

We should mention that

$$\max\{\|\alpha\|_{\infty}, \|\beta\|_{\infty}\} = \left\| \frac{|\alpha|^2 + |\beta|^2}{2} + \sqrt{0 + \left(\frac{|\alpha|^2 - |\beta|^2}{2}\right)^2} \right\|^{\frac{1}{2}},$$

and

$$\left\| \sqrt{|\alpha|^2 + |\beta|^2} \right\|_{\infty} = \left\| \frac{|\alpha|^2 + |\beta|^2}{2} + \sqrt{|\alpha\bar{\beta} - 0|^2 + \left(\frac{|\alpha|^2 - |\beta|^2}{2}\right)^2} \right\|_{\infty}^{\frac{1}{2}}.$$

It is not difficult to establish that

$$||S_{\alpha,\beta}||^2 \le \left\| \frac{|\alpha|^2 + |\beta|^2}{2} + \sqrt{|\alpha\bar{\beta} - k|^2 + \left(\frac{|\alpha|^2 - |\beta|^2}{2}\right)^2} \right\|_{\infty},$$

for any $k \in H^{\infty}$. The following theorem gives the formula for the computation of the norm of the operator $S_{\alpha,\beta}$.

Theorem 2.1. Let $\alpha, \beta \in L^{\infty}$. Then

$$||S_{\alpha,\beta}||^2 = \inf_{k \in H^{\infty}} \left\| \frac{|\alpha|^2 + |\beta|^2}{2} + \sqrt{|\alpha\bar{\beta} - k|^2 + \left(\frac{|\alpha|^2 - |\beta|^2}{2}\right)^2} \right\|_{\infty}.$$

The infimum is attained.

Proof. For any $k \in H^{\infty}$, we define the quantity M_k according to

$$M_k = \left\| \frac{|\alpha|^2 + |\beta|^2}{2} + \sqrt{|\alpha\bar{\beta} - k|^2 + \left(\frac{|\alpha|^2 - |\beta|^2}{2}\right)^2} \right\|_{\infty}.$$

We prove that $||S_{\alpha,\beta}||^2 \geqslant \inf\{M_k : k \in H^\infty\}$. Let $\gamma = ||S_{\alpha,\beta}||$. Then

$$||S_{\alpha,\beta}f||_2 \le \gamma ||f||_2, \quad (f \in L^2).$$

Let
$$W_1 = \gamma^2 - |\alpha|^2$$
, $W_2 = \gamma^2 - |\beta|^2$ and $W_3 = \gamma^2 - \alpha \bar{\beta}$. Then

$$(W_1 f_1, f_1) + (W_2 f_2, f_2) + 2 \operatorname{Re}(W_3 f_1, f_2) \ge 0,$$

 $(f_1 \in H^2, f_2 \in \overline{H_0^2})$. By the Cotlar-Sadosky lifting theorem ([1]), $W_1 \ge 0, W_2 \ge 0$, and there exists a $g \in H^{\infty}$ such that

$$|W_3 - g|^2 \leqslant W_1 W_2.$$

Hence, $\gamma \geqslant \max\{|\alpha|, |\beta|\}$ and

$$|\gamma^2 - \alpha \bar{\beta} - q|^2 \leqslant (\gamma^2 - |\alpha|^2)(\gamma^2 - |\beta|^2).$$

Let $k_0 = \gamma^2 - g$. Then $k_0 \in H^{\infty}$ and $|\gamma^2 - \alpha \bar{\beta} - g| = |\alpha \bar{\beta} - k_0|$. Hence,

$$0 \leqslant (\gamma^2 - |\alpha|^2)(\gamma^2 - |\beta|^2) - |\alpha\bar{\beta} - k_0|^2$$

= $\gamma^4 - (|\alpha|^2 + |\beta|^2)\gamma^2 + |\alpha\beta|^2 - |\alpha\bar{\beta} - k_0|^2$.

Suppose

$$\gamma^2 \leqslant \frac{|\alpha|^2 + |\beta|^2}{2} - \sqrt{|\alpha\bar{\beta} - k_0|^2 + (\frac{|\alpha|^2 - |\beta|^2}{2})^2}$$

on some measurable subset E of \mathbb{T} . Since

$$\gamma^2 \geqslant \max\{|\alpha|^2, |\beta|^2\} = \frac{|\alpha|^2 + |\beta|^2}{2} + \left|\frac{|\alpha|^2 - |\beta|^2}{2}\right|$$

on \mathbb{T} , we have

$$\left| \frac{|\alpha|^2 - |\beta|^2}{2} \right| + \sqrt{|\alpha \bar{\beta} - k_0|^2 + \left(\frac{|\alpha|^2 - |\beta|^2}{2}\right)^2} \leqslant 0$$

on E. This implies that $|\alpha| - |\beta| = |\alpha \bar{\beta} - k_0| = 0$ on E. Hence,

$$\gamma^2 \geqslant \max\{|\alpha|^2, |\beta|^2\} = \frac{|\alpha|^2 + |\beta|^2}{2} + \sqrt{|\alpha\bar{\beta} - k_0|^2 + \left(\frac{|\alpha|^2 - |\beta|^2}{2}\right)^2}$$

on E. Therefore,

$$\gamma^2 \geqslant \frac{|\alpha|^2 + |\beta|^2}{2} + \sqrt{|\alpha\bar{\beta} - k_0|^2 + (\frac{|\alpha|^2 - |\beta|^2}{2})^2}$$

on \mathbb{T} . Hence $M_{k_0} \leqslant \gamma^2$. Since $\gamma = ||S_{\alpha,\beta}||$, we have

$$\inf_{k \in H^{\infty}} M_k \leqslant M_{k_0} \leqslant ||S_{\alpha,\beta}||^2.$$

We prove that $||S_{\alpha,\beta}||^2 \leq \inf\{M_k : k \in H^{\infty}\}$. This is the easy direction of the theorem. For any $k \in H^{\infty}$, we have

$$(kf_1, f_2) = 0, \quad (f_1 \in H^2, f_2 \in \overline{H_0^2}).$$

Since

$$\frac{|\alpha|^2+|\beta|^2}{2}+\sqrt{|\alpha\bar{\beta}-k|^2+\left(\frac{|\alpha|^2-|\beta|^2}{2}\right)^2}\leqslant M_k,$$

we have

$$(M_k - |\alpha|^2)(M_k - |\beta|^2) \geqslant \left(\sqrt{|\alpha\bar{\beta} - k|^2 + \left(\frac{|\alpha|^2 - |\beta|^2}{2}\right)^2} - \frac{|\alpha|^2 - |\beta|^2}{2}\right) \times \left(\sqrt{|\alpha\bar{\beta} - k|^2 + \left(\frac{|\alpha|^2 - |\beta|^2}{2}\right)^2} + \frac{|\alpha|^2 - |\beta|^2}{2}\right) = |\alpha\bar{\beta} - k|^2.$$

Hence,

$$M_{k} \|f_{1} + f_{2}\|_{2}^{2} - \|\alpha f_{1} + \beta f_{2}\|_{2}^{2}$$

$$= \|\sqrt{M_{k} - |\alpha|^{2}} f_{1}\|_{2}^{2} + \|\sqrt{M_{k} - |\beta|^{2}} f_{2}\|_{2}^{2} - 2\operatorname{Re}(\alpha \bar{\beta} f_{1}, f_{2})$$

$$\geq 2 \|\sqrt{M_{k} - |\alpha|^{2}} f_{1}\|_{2} \|\sqrt{M_{k} - |\beta|^{2}} f_{2}\|_{2} - 2\operatorname{Re}((\alpha \bar{\beta} - k) f_{1}, f_{2})$$

$$\geq 2 \int_{\mathbb{T}} \left(\sqrt{M_{k} - |\alpha|^{2}} \sqrt{M_{k} - |\beta|^{2}} - |\alpha \bar{\beta} - k|\right) |f_{1} f_{2}| dm \geq 0.$$

Hence, for any $k \in H^{\infty}$,

$$||S_{\alpha,\beta}f||_2^2 \leqslant M_k ||f||_2^2, \quad (f \in L^2).$$

Therefore,

$$\inf_{k \in H^{\infty}} M_k \leqslant M_{k_0} \leqslant ||S_{\alpha,\beta}||^2 \leqslant \inf_{k \in H^{\infty}} M_k.$$

Hence the equalities hold, and the infimum is attained by $k = k_0$. This completes the proof.

REMARK 2.2. Let $\alpha, \beta \in L^{\infty}$, let $\varphi = \alpha \bar{\beta}$, and let $\psi = (|\alpha|^2 - |\beta|^2)/2$. Then

$$\left\|S_{\alpha,\beta}\right\|^2 = \inf_{k \in H^{\infty}} \left\| \sqrt{|\varphi|^2 + \psi^2} + \sqrt{|\varphi - k|^2 + \psi^2} \right\|_{\infty}.$$

The infimum is attained. If $|\alpha| = |\beta|$, then $\psi = 0$. Hence

$$||S_{\alpha,\beta}||^2 = \inf_{k \in H^{\infty}} |||\varphi| + |\varphi - k||_{\infty}.$$

COROLLARY 2.3. If $|\alpha|$ and $|\beta|$ are constant functions, then

$$||S_{\alpha,\beta}||^2 = \frac{|\alpha|^2 + |\beta|^2}{2} + \sqrt{||H_{\alpha\bar{\beta}}||^2 + (\frac{|\alpha|^2 - |\beta|^2}{2})^2}.$$

Proof. It follows from Theorem 2.1 that

$$||S_{\alpha,\beta}||^{2} = \inf_{k \in H^{\infty}} \left\| \frac{|\alpha|^{2} + |\beta|^{2}}{2} + \sqrt{|\alpha\bar{\beta} - k|^{2} + \left(\frac{|\alpha|^{2} - |\beta|^{2}}{2}\right)^{2}} \right\|_{\infty}$$
$$= \frac{|\alpha|^{2} + |\beta|^{2}}{2} + \sqrt{\left(\inf_{k \in H^{\infty}} ||\alpha\bar{\beta} - k||_{\infty}\right)^{2} + \left(\frac{|\alpha|^{2} - |\beta|^{2}}{2}\right)^{2}}.$$

By the Nehari theorem ([8]), this proves the corollary.

COROLLARY 2.4. Let $\alpha, \beta \in L^{\infty}$. Then

$$||S_{\alpha,\beta}||^2 \le \max\{||\alpha||_{\infty}^2, ||\beta||_{\infty}^2\} + ||H_{\alpha\bar{\beta}}||.$$

Proof. It follows from the easy direction of Theorem 2.1 that

$$||S_{\alpha,\beta}||^{2} \leqslant \inf_{k \in H^{\infty}} \left\| \frac{|\alpha|^{2} + |\beta|^{2}}{2} + \sqrt{|\alpha\bar{\beta} - k|^{2} + \left(\frac{|\alpha|^{2} - |\beta|^{2}}{2}\right)^{2}} \right\|_{\infty}$$

$$\leqslant \inf_{k \in H^{\infty}} \left\| \frac{|\alpha|^{2} + |\beta|^{2}}{2} + |\alpha\bar{\beta} - k| + \left|\frac{|\alpha|^{2} - |\beta|^{2}}{2}\right| \right\|_{\infty}$$

$$= \inf_{k \in H^{\infty}} \left\| \max\left\{|\alpha|^{2}, |\beta|^{2}\right\} + |\alpha\bar{\beta} - k| \right\|_{\infty}$$

$$\leqslant \max\left\{\|\alpha\|_{\infty}^{2}, \|\beta\|_{\infty}^{2}\right\} + \inf_{k \in H^{\infty}} \|\alpha\bar{\beta} - k\|_{\infty}.$$

By the Nehari theorem ([8]), this proves the corollary.

REMARK 2.5. If $\alpha \bar{\beta} \in H^{\infty}$, then the infimum in Theorem 2.1 is attained by $k = \alpha \bar{\beta}$. In this case,

$$||S_{\alpha,\beta}|| = ||\max\{|\alpha|, |\beta|\}||_{\infty} = \max\{||\alpha||_{\infty}, ||\beta||_{\infty}\}.$$

Hence the equality holds in Corollary 2.4 because $||H_{\alpha\bar{\beta}}|| = 0$. By Corollary 2.3, if $|\alpha| = |\beta| = \text{constant}$, then the equality holds in Corollary 2.4.

By Corollary 2.4, if $\varphi \in L^{\infty}$ and $\|\varphi\|_{\infty} \leq 1$, then $\|S_{\varphi,1}\|^2 \leq 1 + \|H_{\varphi}\|$. By Corollary 2.3, if $|\varphi| = 1$, then $\|S_{\varphi,1}\|^2 = 1 + \|H_{\varphi}\|$. If φ is a real function whose range consists of only two points, then the norm of $S_{\varphi,1}$ will be calculated in a completely explicit form in Corollary 2.7. For example, by Corollary 2.7, if E is a measurable subset of the unit circle $\mathbb T$ satisfying 0 < m(E) < 1, then $\|S_{\chi_E,1}\| = 2/\sqrt{3}$. It is well known that $\|H_{\chi_E}\| = 1/2$. In this case, $\|S_{\chi_E,1}\|^2 < 1 + \|H_{\chi_E}\|$. Hence the equality does not hold, in general, in Corollary 2.4. For the proof of Corollary 2.7 we need Lemma 2.6.

LEMMA 2.6. Let a and b be real numbers satisfying $a \neq b$. Then the equality

$$\frac{a^2+1}{2} + \sqrt{(a-x)^2 + \left(\frac{a^2-1}{2}\right)^2} = \frac{b^2+1}{2} + \sqrt{(b-x)^2 + \left(\frac{b^2-1}{2}\right)^2}$$

holds for some real number x if and only if |a+b| < 2. Then x is unique and it is given by

$$x = x_0 = \frac{2(a+b)(1-ab)}{4-(a+b)^2}.$$

Proof. Suppose the equality holds for x=0. Then $a^2=b^2$. Since $a\neq b$, we have a=-b. Hence |a+b|=0<2. Suppose the equality holds for some real number x satisfying $x\neq 0$. Then

$$\left\{\frac{b^2-a^2}{2}+\sqrt{(b-x)^2+\left(\frac{b^2-1}{2}\right)^2}\right\}^2=(a-x)^2+\left(\frac{a^2-1}{2}\right)^2.$$

It follows by direct computation that

$$2(b^2 - a^2)\sqrt{(x-b)^2 + \left(\frac{b^2 - 1}{2}\right)^2} = (b-a)\left\{4x - (a+b)(b^2 + 1)\right\}.$$

Since $a \neq b$, we have

$$2(a+b)\sqrt{(x-b)^2 + \left(\frac{b^2 - 1}{2}\right)^2} = 4x - (a+b)(b^2 + 1).$$

Hence,

$${4 - (a+b)^2} x^2 = 2(a+b)(1-ab)x.$$

Since $x \neq 0$, we have

$${4 - (a+b)^2}$$
 $x = 2(a+b)(1-ab)$.

If $(a+b)^2=4$, then ab=1. Hence $a^2=b^2=1$. Since $a\neq b$, we have a+b=0. This contradiction implies that $(a+b)^2\neq 4$. Hence,

$$x = \frac{2(a+b)(1-ab)}{4 - (a+b)^2}.$$

It follows by direct computation that

$$4x - (a+b)(b^2+1) = \frac{(a+b)\left\{(a-b)^2 + (b^2+ab-2)^2\right\}}{4 - (a+b)^2}.$$

Since $a \neq b$, we have

$$2\sqrt{(x-b)^2 + \left(\frac{b^2 - 1}{2}\right)^2} = \frac{(a-b)^2 + (b^2 + ab - 2)^2}{4 - (a+b)^2} > 0$$

because $(a-b)^2 > 0$. Hence, |a+b| < 2. This proof is reversible.

COROLLARY 2.7. Let E be a measurable subset of \mathbb{T} satisfying 0 < m(E) < 1, let a and b be real numbers, and let $\varphi = a\chi_E + b\chi_{E^c}$. Then

(i) If $\max\{a^2, b^2\} \ge 2 - ab$, then

$$||S_{\varphi,1}|| = \max\{|a|,|b|\}.$$

(ii) If $\max\{a^2, b^2\} < 2 - ab$, then

$$||S_{\varphi,1}||^2 = \frac{4(1-ab)}{4-(a+b)^2}.$$

Proof. We define the functions f(x) and g(x) according to

$$f(x) = \frac{a^2 + 1}{2} + \sqrt{(a - x)^2 + \left(\frac{a^2 - 1}{2}\right)^2},$$

and

$$g(x) = \frac{b^2 + 1}{2} + \sqrt{(b - x)^2 + \left(\frac{b^2 - 1}{2}\right)^2}.$$

For the real number x_0 defined in Lemma 2.6, it follows that

$$f(x_0) = g(x_0) = \frac{a^2 + 1}{2} + \sqrt{\left(\frac{(a-b)(a^2 + ab - 2)}{4 - (a+b)^2}\right)^2 + \left(\frac{a^2 - 1}{2}\right)^2}$$
$$= \frac{b^2 + 1}{2} + \sqrt{\left(\frac{(a-b)(b^2 + ab - 2)}{4 - (a+b)^2}\right)^2 + \left(\frac{b^2 - 1}{2}\right)^2} = \frac{4(1 - ab)}{4 - (a+b)^2}.$$

We prove (i). Since $\max\left\{a^2,b^2\right\}\geqslant ab$ and $\max\left\{a^2,b^2\right\}\geqslant 2-ab$, we have $\max\left\{a^2,b^2\right\}\geqslant 1$. It follows that $\max\left\{a^2,b^2,1\right\}=\max\left\{a^2,b^2\right\}$. Since $\|\varphi\|_{\infty}=\max\{|a|,|b|\}$ and $\max\left\{\|\varphi\|_{\infty},1\right\}\leqslant \|S_{\varphi,1}\|$, we have

$$\max \left\{ a^2, b^2 \right\} = \max \left\{ a^2, b^2, 1 \right\} \leqslant \|S_{\varphi, 1}\|^2.$$

Suppose a = b. Then φ becomes a constant function. Hence, by Remark 2.5,

$$||S_{\varphi,1}|| = \max\{|\varphi|, 1\} = \max\{|a|, |b|, 1\} = \max\{|a|, |b|\}.$$

Suppose $a \neq b$. Since 0 < m(E) < 1, we have

$$||S_{\varphi,1}||^{2} \leqslant \inf_{x \in \mathbb{R}} \left\| \frac{|\varphi|^{2} + 1}{2} + \sqrt{(\varphi - x)^{2} + \left(\frac{\varphi^{2} - 1}{2}\right)^{2}} \right\|_{\infty}$$
$$= \inf_{x \in \mathbb{R}} ||f(x)\chi_{E} + g(x)\chi_{E^{c}}||_{\infty} = \inf_{x \in \mathbb{R}} \left(\max\{f(x), g(x)\} \right).$$

By Lemma 2.6, if $|a+b| \ge 2$, then the equality f(x) = g(x) does not hold for any real number x. Hence, f(x) < g(x) or f(x) > g(x). Hence,

$$\inf_{x\in\mathbb{R}} \left(\max\{f(x),g(x)\} \right) = \max\{f(a),g(b)\}.$$

Since $f(a) = \max\{a^2, 1\}$ and $g(b) = \max\{b^2, 1\}$, we have

$$\max\left\{a^2, b^2\right\} \leqslant \|S_{\varphi, 1}\|^2 \leqslant \max\{f(a), g(b)\} = \max\left\{a^2, b^2, 1\right\} = \max\left\{a^2, b^2\right\}.$$

By Lemma 2.6, if |a+b| < 2, then the equation f(x) = g(x) has a unique solution $x = x_0$ which is given in Lemma 2.6. Hence, $f(x_0) = g(x_0)$. Without loss of generality, we assume a < b. If $a \le x_0 \le b$, then $\max \{a^2, b^2\} \le 2 - ab$. Since $\max \{a^2, b^2\} \ge 2 - ab$, we have $\max \{a^2, b^2\} = 2 - ab$. By this equality,

$$\begin{split} \max\left\{a^2, b^2\right\} &\leqslant \|S_{\varphi, 1}\|^2 \leqslant \inf_{x \in \mathbb{R}} \left(\max\{f(x), g(x)\} \right) \\ &= f(x_0) = g(x_0) = \frac{4(1-ab)}{4-(a+b)^2} = \max\left\{a^2, b^2\right\}. \end{split}$$

If $x_0 \leqslant a \leqslant b$ or $a \leqslant b \leqslant x_0$, then

$$\max \left\{ a^2, b^2 \right\} \leqslant \|S_{\varphi,1}\|^2 \leqslant \inf_{x \in \mathbb{R}} \left(\max \{ f(x), g(x) \} \right)$$
$$= \max \{ f(a), g(b) \} = \max \left\{ a^2, b^2, 1 \right\} = \max \left\{ a^2, b^2 \right\}.$$

We prove (ii). Suppose a = b. Then φ becomes a constant function and $\varphi = a = b$. Since $\max\{a^2, b^2\} < 2 - ab$, we have $a^2 = b^2 < 1$. By Remark 2.5,

$$||S_{\varphi,1}||^2 = \max\{\varphi^2, 1\} = \max\{a^2, 1\} = \max\{b^2, 1\} = 1.$$

Suppose $a \neq b$. It is sufficient to prove that $||S_{\varphi,1}||^2 = f(x_0) = g(x_0)$. Without loss of generality, we assume a < b. Since $\max \{a^2, b^2\} < 2 - ab$, we have $a^2 + b^2 < 2(2 - ab)$. Hence |a + b| < 2. Let f(x) and g(x) be functions defined in the proof of (i). By Lemma 2.6, the equation f(x) = g(x) has a unique solution $x = x_0$ which is given in Lemma 2.6. Hence, $f(x_0) = g(x_0)$. It follows by direct computation that

$$a - x_0 = \frac{(b-a)(a^2 + ab - 2)}{4 - (a+b)^2} < 0,$$

$$b - x_0 = \frac{(a-b)(b^2 + ab - 2)}{4 - (a+b)^2} > 0.$$

Hence, $a < x_0 < b$. By Theorem 2.1, there exists a $k_0 \in H^{\infty}$ such that

$$||S_{\varphi,1}||^{2} = \left\| \frac{|\varphi|^{2} + 1}{2} + \sqrt{|\varphi - k_{0}|^{2} + \left(\frac{|\varphi|^{2} - 1}{2}\right)^{2}} \right\|_{\infty}$$

$$= \inf_{k \in H^{\infty}} \left\| \frac{|\varphi|^{2} + 1}{2} + \sqrt{|\varphi - k|^{2} + \left(\frac{|\varphi|^{2} - 1}{2}\right)^{2}} \right\|_{\infty}$$

$$\leq \inf_{x \in \mathbb{R}} \left\| \frac{|\varphi|^{2} + 1}{2} + \sqrt{|\varphi - x|^{2} + \left(\frac{|\varphi|^{2} - 1}{2}\right)^{2}} \right\|_{\infty}$$

$$= \inf_{x \in \mathbb{R}} ||f(x)\chi_{E} + g(x)\chi_{E^{c}}||_{\infty} \leq \inf_{x \in \mathbb{R}} (\max\{f(x), g(x)\}).$$

Since $a < x_0 < b$, we have

$$\inf_{x \in \mathbb{R}} (\max\{f(x), g(x)\}) = f(x_0) = g(x_0).$$

Hence,

$$||S_{\varphi,1}||^2 \leqslant f(x_0) = g(x_0).$$

Then

$$f(x_0) = \frac{a^2 + 1}{2} + \sqrt{(a - x_0)^2 + \left(\frac{a^2 - 1}{2}\right)^2},$$
$$g(x_0) = \frac{b^2 + 1}{2} + \sqrt{(b - x_0)^2 + \left(\frac{b^2 - 1}{2}\right)^2}.$$

Suppose there exists an $\varepsilon > 0$ such that $||S_{\varphi,1}||^2 \leq f(x_0) - \varepsilon$. Then

$$\left\| \frac{|\varphi|^2 + 1}{2} + \sqrt{|\varphi - k_0|^2 + \left(\frac{|\varphi|^2 - 1}{2}\right)^2} \right\|_{\infty} \leqslant \frac{a^2 + 1}{2} + \sqrt{(a - x_0)^2 + \left(\frac{a^2 - 1}{2}\right)^2} - \varepsilon.$$

Since $f(x_0) = g(x_0)$, we have $||S_{\varphi,1}||^2 \leq g(x_0) - \varepsilon$. Hence,

$$\left\| \frac{|\varphi|^2 + 1}{2} + \sqrt{|\varphi - k_0|^2 + \left(\frac{|\varphi|^2 - 1}{2}\right)^2} \right\|_{\infty} \leqslant \frac{b^2 + 1}{2} + \sqrt{(b - x_0)^2 + \left(\frac{b^2 - 1}{2}\right)^2} - \varepsilon.$$

Hence, there exists an $\varepsilon' > 0$ such that

$$|a - k_0| \leq |a - x_0| - \varepsilon'$$
 on E ,

$$|b - k_0| \leqslant |b - x_0| - \varepsilon'$$
 on E^c .

Since $a < x_0 < b$, we have $|a - x_0| + |b - x_0| = b - a$. If $|a - x_0| \ge |b - x_0|$, then

$$\begin{aligned} |2|a - x_0|\chi_{E^c} + a - k_0| &= |a\chi_E + (b + |a - x_0| - |b - x_0|)\chi_{E^c} - k_0| \\ &\leqslant |a - k_0|\chi_E + |b - k_0|\chi_{E^c} + (|a - x_0| - |b - x_0|)\chi_{E^c} \\ &\leqslant |a - x_0| - \varepsilon'. \end{aligned}$$

Hence, $\inf\{\|2\chi_{E^c} - k\|_{\infty} : k \in H^{\infty}\}\$ < 1. This is a contradiction (cf. [5], p. 198). If $|a - x_0| \le |b - x_0|$, then

$$\begin{aligned} |-2|b-x_0|\chi_E+b-k_0| &= |(a+|a-x_0|-|b-x_0|)\chi_E+b\chi_{E^c}-k_0| \\ &\leqslant |a-k_0|\chi_E+|b-k_0|\chi_{E^c}+(|b-x_0|-|a-x_0|)\chi_E \\ &\leqslant |b-x_0|-\varepsilon'. \end{aligned}$$

Hence, $\inf\{\|2\chi_E - k\|_{\infty} : k \in H^{\infty}\}\$ < 1. This is a contradiction (cf. [5], p. 198). These two contradictions imply that ε' must be zero. This contradiction implies that ε must be zero. Hence,

$$||S_{\varphi,1}||^2 = f(x_0) = g(x_0).$$

This completes the proof.

When a and b are complex numbers, we give Corollary 2.9. When $|\varphi|$ is not constant, Corollary 2.9 does not contain the completely explicit form of the norm of $S_{\varphi,1}$. For the proof of Corollary 2.9 we need Lemma 2.8.

Lemma 2.8. Let a and b be complex numbers, and let θ be a real number satisfying $\operatorname{Re}(e^{i\theta}(a-b)) = 0$. If the equality

$$\frac{|a|^2+1}{2}+\sqrt{|\mathrm{e}^{\mathrm{i}\theta}a-x|^2+\left(\frac{|a|^2-1}{2}\right)^2}=\frac{|b|^2+1}{2}+\sqrt{|\mathrm{e}^{\mathrm{i}\theta}b-x|^2+\left(\frac{|b|^2-1}{2}\right)^2}$$

holds for some real number x, then |a| = |b| and the equality holds for any real numbers x.

Proof. Suppose the equality holds for some real number x. Then

$$\left\{\frac{|a|^2-|b|^2}{2}+\sqrt{|\mathrm{e}^{\mathrm{i}\theta}a-x|^2+\left(\frac{|a|^2-1}{2}\right)^2}\right\}^2=|\mathrm{e}^{\mathrm{i}\theta}b-x|^2+\left(\frac{|b|^2-1}{2}\right)^2.$$

Since Re $(e^{i\theta}(a-b)) = 0$, we have

$$(|a|^{2} - |b|^{2})\sqrt{|e^{i\theta}a - x|^{2} + \left(\frac{|a|^{2} - 1}{2}\right)^{2}}$$

$$= 2\operatorname{Re}\left(e^{i\theta}(a - b)\right)x + |b|^{2} - |a|^{2} + \frac{(|b|^{2} - |a|^{2})(|a|^{2} - 1)}{2}$$

$$= \frac{(|b|^{2} - |a|^{2})(|a|^{2} + 1)}{2}.$$

Hence, |a| = |b| and the equality

$$|e^{i\theta}a - x|^2 = |e^{i\theta}b - x|^2$$

holds for any x because $Re(e^{i\theta}(a-b)) = 0$.

COROLLARY 2.9. Let E be a measurable subset of \mathbb{T} satisfying 0 < m(E) < 1, let a and b be complex numbers, and let $\varphi = a\chi_E + b\chi_{E^c}$. Then

(i) If θ is a real number satisfying $\operatorname{Re}(e^{i\theta}(a-b)) = 0$, then

$$||S_{\varphi,1}||^2 \le \max_{z=a,b} \left\{ \frac{|z|^2+1}{2} + \sqrt{\left(\text{Im}\left(e^{i\theta}z\right)\right)^2 + \left(\frac{|z|^2-1}{2}\right)^2} \right\}.$$

The equality does not hold in general.

(ii) If |a| = |b|, then the equality holds for some θ in (i), and

$$\|S_{\varphi,1}\|^2 = \frac{|a|^2 + 1}{2} + \sqrt{\left(\frac{|a - b|}{2}\right)^2 + \left(\frac{|a|^2 - 1}{2}\right)^2}.$$

Proof. We prove (ii). Suppose a=b. Then φ becomes a constant function. Hence, by Remark 2.5,

$$||S_{\varphi,1}||^2 = \max\{|\varphi|^2, 1\} = \max\{|a|^2, 1\} = \frac{|a|^2 + 1}{2} + \sqrt{0 + \left(\frac{|a|^2 - 1}{2}\right)^2}.$$

Suppose $a \neq b$. Since $|\varphi| = |a| = |b|$, it follows from Corollary 2.3 that

$$||S_{\varphi,1}||^2 = \frac{|a|^2 + 1}{2} + \sqrt{||H_{\varphi}||^2 + \left(\frac{|a|^2 - 1}{2}\right)^2}.$$

Let

$$\psi = \frac{2\varphi - (a+b)}{a-b}.$$

Then

$$\psi = \begin{cases} 1 & \text{on } E; \\ -1 & \text{on } E^{c}. \end{cases}$$

Hence, $\inf\{\|\psi - k\|_{\infty} : k \in H^{\infty}\} = 1$ (cf. [5], p. 198). By the Nehari theorem ([8]),

$$||H_{\varphi}|| = \inf_{k \in H^{\infty}} ||\varphi - k||_{\infty} = \frac{|a - b|}{2}.$$

Hence,

$$||S_{\varphi,1}||^2 = \frac{|a|^2 + 1}{2} + \sqrt{\left(\frac{|a-b|}{2}\right)^2 + \left(\frac{|a|^2 - 1}{2}\right)^2}.$$

Since $a \neq b$, |a| = |b| and $\text{Re}(e^{i\theta}(a-b)) = 0$, it follows that there exist real numbers u and v such that

$$e^{i\theta}a = u + iv$$
 and $e^{i\theta}b = u - iv$.

Since |a| = |b|, we have

$$\left(\frac{|a-b|}{2}\right)^2 = \frac{|a|^2 - \text{Re}(a\bar{b})}{2} = \frac{u^2 + v^2 - (u^2 - v^2)}{2}$$
$$= v^2 = \left(\text{Im}(e^{i\theta}a)\right)^2 = \left(\text{Im}(e^{i\theta}b)\right)^2.$$

We prove (i). By (ii), it is sufficient to prove (i) when $|a| \neq |b|$. We define the functions f(x) and g(x) according to

$$f(x) = \frac{|a|^2 + 1}{2} + \sqrt{|e^{i\theta}a - x|^2 + \left(\frac{|a|^2 - 1}{2}\right)^2},$$

and

$$g(x) = \frac{|b|^2 + 1}{2} + \sqrt{|\mathrm{e}^{\mathrm{i}\theta}b - x|^2 + \left(\frac{|b|^2 - 1}{2}\right)^2}.$$

Since $|a| \neq |b|$, it follows from Lemma 2.8 that the equality f(x) = g(x) does not hold for any real number x. If |a| < |b|, then f(x) < g(x) because $\text{Re}(e^{i\theta}(a-b)) = 0$. Hence, by Theorem 2.1,

$$||S_{\varphi,1}||^{2} = \inf_{k \in H^{\infty}} \left\| \frac{|\varphi|^{2} + 1}{2} + \sqrt{|\varphi - k|^{2} + \left(\frac{|\varphi|^{2} - 1}{2}\right)^{2}} \right\|_{\infty}$$

$$\leq \inf_{x \in \mathbb{R}} \left\| \frac{|\varphi|^{2} + 1}{2} + \sqrt{|\varphi - e^{-i\theta}x|^{2} + \left(\frac{|\varphi|^{2} - 1}{2}\right)^{2}} \right\|_{\infty}$$

$$= \inf_{x \in \mathbb{R}} ||f(x)\chi_{E} + g(x)\chi_{E^{c}}||_{\infty} \leq \inf_{x \in \mathbb{R}} g(x) = g\left(\operatorname{Re}(e^{i\theta}b)\right)$$

$$= \frac{|b|^{2} + 1}{2} + \sqrt{\left(\operatorname{Im}(e^{i\theta}b)\right)^{2} + \left(\frac{|b|^{2} - 1}{2}\right)^{2}}.$$

Similarly, if |a| > |b|, then

$$||S_{\varphi,1}||^2 \le \frac{|a|^2 + 1}{2} + \sqrt{\left(\operatorname{Im}(e^{i\theta}a)\right)^2 + \left(\frac{|a|^2 - 1}{2}\right)^2}.$$

This completes the proof.

3. NORM OF THE INVERSE OPERATOR OF $S_{\alpha,\beta}$

The first author essentially gave Theorem 3.1 (cf. [7], Corollary 3). It is not difficult to establish that

$$\inf_{f \in H^2, ||f||_2 = 1} ||T_{\varphi}f||_2^2 \geqslant \operatorname{ess \, inf} \left(|\varphi|^2 - |\varphi - k|^2 \right),$$

for any $k \in H^{\infty}$. The following theorem gives the formula for the computation of the norm of the inverse operator of T_{φ} .

Theorem 3.1. Let $\varphi \in L^{\infty}$. Then

$$\inf_{f \in H^2, \, \|f\|_2 = 1} \|T_{\varphi}f\|_2^2 = \sup_{k \in H^{\infty}} \left(\operatorname{ess \, inf} \left(|\varphi|^2 - |\varphi - k|^2 \right) \right).$$

The supremum is attained. If T_{φ} is invertible, then the supremum is equal to $||T_{\varphi}^{-1}||^{-2}$.

Proof. For any $k \in H^{\infty}$, we define the quantity J_k according to

$$J_k = \operatorname*{ess\,inf}\left(|\varphi|^2 - |\varphi - k|^2\right).$$

We prove that $\inf\{\|T_{\varphi}f\|_{2}^{2}: f \in H^{2}, \|f\|_{2} = 1\} \leq \sup\{J_{k}: k \in H^{\infty}\}.$ Let $\varepsilon = \inf\{\|T_{\varphi}f\|_{2}: f \in H^{2}, \|f\|_{2} = 1\}.$ Then

$$\varepsilon ||f_1||_2 \leqslant ||T_{\varphi}f_1||_2, \quad (f_1 \in H^2).$$

Since $||T_{\varphi}f_1||_2^2 + ||H_{\varphi}f_1||_2^2 = ||\varphi f_1||_2^2$, we have

$$||H_{\varphi}f_1||_2^2 \leqslant \left(\left(|\varphi|^2 - \varepsilon^2\right)f_1, f_1\right).$$

Let $W_1=|\varphi|^2-\varepsilon^2$, $W_2=1$, $W_3=\varphi$. Since $(\varphi f_1,f_2)=(H_\varphi f_1,f_2)$, for any $f_1\in H^2$, $f_2\in \overline{H_0^2}$, we have

$$(W_1 f_1, f_1) + (W_2 f_2, f_2) + 2 \operatorname{Re}(W_3 f_1, f_2) \geqslant ||H_{\varphi} f_1||_2^2 + ||f_2||_2^2 + 2 \operatorname{Re}(H_{\varphi} f_1, f_2)$$

= $||H_{\varphi} f_1 + f_2||_2^2 \geqslant 0$,

 $(f_1 \in H^2, f_2 \in \overline{H_0^2})$. By the Cotlar-Sadosky lifting theorem ([1]), $W_1 \ge 0, W_2 \ge 0$, and there exists a $k_0 \in H^{\infty}$ such that

$$|W_3 - k_0|^2 \leqslant W_1 W_2.$$

Hence,

$$|\varphi - k_0|^2 \leqslant |\varphi|^2 - \varepsilon^2.$$

Since $\varepsilon = \inf\{\|T_{\varphi}f\|_2 : f \in H^2, \|f\|_2 = 1\}$, we have

$$\inf_{f \in H^2, \|f\|_2 = 1} \|T_{\varphi}f\|_2^2 \leqslant J_{k_0} \leqslant \sup_{k \in H^{\infty}} J_k.$$

We prove that $\inf\{\|T_{\varphi}f\|_2^2: f \in H^2, \|f\|_2 = 1\} \geqslant \sup\{J_k: k \in H^{\infty}\}$. This is the easy direction of the theorem. For any $k \in H^{\infty}$, $|\varphi|^2 - J_k \geqslant |\varphi - k|^2$ and $H_{\varphi - k} = H_{\varphi}$. Hence, for any $f_1 \in H^2$,

$$\begin{split} \|T_{\varphi}f_1\|_2^2 - J_k \|f_1\|_2^2 &= \|\varphi f_1\|_2^2 - \|H_{\varphi}f_1\|_2^2 - J_k \|\varphi f_1\|_2^2 \\ &= \left((|\varphi|^2 - J_k)f_1, f_1 \right) - \|H_{\varphi}f_1\|_2^2 \\ &\geqslant \left(|\varphi - k|^2 f_1, f_1 \right) - \|H_{\varphi - k}f_1\|_2^2 \\ &= \|(\varphi - k)f_1\|_2^2 - \|H_{\varphi - k}f_1\|_2^2 = \|T_{\varphi - k}f_1\|_2^2 \geqslant 0. \end{split}$$

Hence, for any $k \in H^{\infty}$,

$$||T_{\varphi}f_1||_2^2 \geqslant J_k||f_1||_2^2, \quad (f_1 \in H^2).$$

Therefore,

$$\sup_{k \in H^{\infty}} J_k \leqslant \inf_{f \in H^2, \|f\|_2 = 1} \|T_{\varphi} f\|_2^2 \leqslant J_{k_0} \leqslant \sup_{k \in H^{\infty}} J_k.$$

Hence the equalities hold, and the infimum is attained by $k=k_0$. This completes the proof. \blacksquare

Corollary 3.2. If $|\varphi|$ is a constant function, then

$$\inf_{f \in H^2, \|f\|_2 = 1} \|T_{\varphi}f\|_2^2 = |\varphi|^2 - \|H_{\varphi}\|^2.$$

Proof. It follows from Theorem 3.1 that

$$\begin{split} \inf_{f \in H^2, \, \|f\|_2 = 1} \|T_{\varphi} f\|_2^2 &= \sup_{k \in H^{\infty}} \left(\operatorname{ess\,inf} \left(|\varphi|^2 - |\varphi - k|^2 \right) \right) \\ &= |\varphi|^2 + \sup_{k \in H^{\infty}} \left(\operatorname{ess\,inf} \left(-|\varphi - k|^2 \right) \right) \\ &= |\varphi|^2 - \inf_{k \in H^{\infty}} \|\varphi - k\|_{\infty}^2. \end{split}$$

By the Nehari theorem ([8]), this proves the corollary. \blacksquare

Corollary 3.3. Let $\varphi \in L^{\infty}$. Then

$$\inf_{f \in H^2, \|f\|_2 = 1} \|T_{\varphi}f\|_2^2 \geqslant \operatorname{ess inf} |\varphi|^2 - \|H_{\varphi}\|^2.$$

Proof. It follows from the easy direction of Theorem 3.1 that

$$\inf_{f \in H^2, \, \|f\|_2 = 1} \|T_{\varphi}f\|_2^2 \geqslant \sup_{k \in H^{\infty}} \left(\operatorname{ess \, inf} \left(|\varphi|^2 - |\varphi - k|^2 \right) \right)$$

$$\geqslant \sup_{k \in H^{\infty}} \left(\operatorname{ess \, inf} |\varphi|^2 + \operatorname{ess \, inf} \left(-|\varphi - k|^2 \right) \right)$$

$$= \operatorname{ess \, inf} |\varphi|^2 + \sup_{k \in H^{\infty}} \left(\operatorname{ess \, inf} \left(-|\varphi - k|^2 \right) \right)$$

$$= \operatorname{ess \, inf} |\varphi|^2 - \inf_{k \in H^{\infty}} \|\varphi - k\|_{\infty}^2.$$

By the Nehari theorem ([8]), this proves the corollary.

If $\alpha, \beta \in L^{\infty}$, then the following inequality is well known and not difficult to establish.

$$\begin{split} \inf_{f \in L^2, \, \|f\|_2 = 1} \|S_{\alpha,\beta} f\|_2^2 &\leqslant \operatorname{ess\,inf} \left(\min \left\{ |\alpha|^2, |\beta|^2 \right\} \right) \\ &= \operatorname{ess\,inf} \left(\frac{|\alpha|^2 + |\beta|^2}{2} - \sqrt{0 + \left(\frac{|\alpha|^2 - |\beta|^2}{2} \right)^2} \right). \end{split}$$

It is not difficult to establish that

$$\inf_{f\in L^2,\, \|f\|_2=1}\|S_{\alpha,\beta}f\|_2^2\geqslant \operatorname{ess\,inf}\left(\frac{|\alpha|^2+|\beta|^2}{2}-\sqrt{|\alpha\bar{\beta}-k|^2+\left(\frac{|\alpha|^2-|\beta|^2}{2}\right)^2}\right),$$

for any $k \in H^{\infty}$. The following theorem gives the formula for the computation of the norm of the inverse operator of $S_{\alpha,\beta}$. The proof of the following theorem is essentially the same as the proof of Theorem 2.1.

Theorem 3.4. Let $\alpha, \beta \in L^{\infty}$. Then

$$\begin{split} &\inf_{f \in L^2, \|f\|_2 = 1} \|S_{\alpha,\beta} f\|_2^2 \\ &= \sup_{k \in H^{\infty}} \left(\operatorname{ess\,inf}_{\mathbb{T}} \left(\frac{|\alpha|^2 + |\beta|^2}{2} - \sqrt{|\alpha\bar{\beta} - k|^2 + \left(\frac{|\alpha|^2 - |\beta|^2}{2}\right)^2} \right) \right). \end{split}$$

The supremum is attained. If $S_{\alpha,\beta}$ is invertible, then the supremum is equal to $||S_{\alpha,\beta}^{-1}||^{-2}$.

Proof. For any $k \in H^{\infty}$, we define the quantity N_k according to

$$N_k = \operatorname*{ess\,inf}_{\mathbb{T}} \left(\frac{|\alpha|^2 + |\beta|^2}{2} - \sqrt{|\alpha\bar{\beta} - k|^2 + \left(\frac{|\alpha|^2 - |\beta|^2}{2}\right)^2} \right).$$

We prove that $\inf\{\|S_{\alpha,\beta}f\|_2^2: f \in L^2, \|f\|_2 = 1\} \leq \sup\{N_k: k \in H^\infty\}$. Let $\varepsilon = \inf\{\|S_{\alpha,\beta}f\|_2: f \in L^2, \|f\|_2 = 1\}$. Then

$$\varepsilon ||f||_2 \leqslant ||S_{\alpha,\beta}f||_2, \quad (f \in L^2).$$

Let $W_1 = |\alpha|^2 - \varepsilon^2$, $W_2 = |\beta|^2 - \varepsilon^2$ and $W_3 = \alpha \bar{\beta} - \varepsilon^2$. Then

$$(W_1f_1, f_1) + (W_2f_2, f_2) + 2\operatorname{Re}(W_3f_1, f_2) \geqslant 0,$$

 $(f_1 \in H^2, f_2 \in \overline{H_0^2})$. By the Cotlar-Sadosky lifting theorem ([1]), $W_1 \geqslant 0, W_2 \geqslant 0$, and there exists a $g \in H^{\infty}$ such that

$$|W_3 - g|^2 \leqslant W_1 W_2.$$

Hence, $\varepsilon \leq \min\{|\alpha|, |\beta|\}$ and there exists a $g \in H^{\infty}$ such that

$$|\alpha \bar{\beta} - \varepsilon^2 - g|^2 \leq (|\alpha|^2 - \varepsilon^2) (|\beta|^2 - \varepsilon^2).$$

Let $k_0 = \varepsilon^2 + g$. Then $k_0 \in H^{\infty}$ and $|\alpha \bar{\beta} - \varepsilon^2 - g| = |\alpha \bar{\beta} - k_0|$. Hence,

$$0 \leqslant (|\alpha|^2 - \varepsilon^2) (|\beta|^2 - \varepsilon^2) - |\alpha \bar{\beta} - k_0|^2 = \varepsilon^4 - (|\alpha|^2 + |\beta|^2) \varepsilon^2 + |\alpha \beta|^2 - |\alpha \bar{\beta} - k|^2$$

Suppose

$$\varepsilon^2 \geqslant \frac{|\alpha|^2 + |\beta|^2}{2} + \sqrt{|\alpha\bar{\beta} - k_0|^2 + \left(\frac{|\alpha|^2 - |\beta|^2}{2}\right)^2}$$

on some measurable subset E of \mathbb{T} . Since

$$\varepsilon^2 \leqslant \min\left\{|\alpha|^2, |\beta|^2\right\} = \frac{|\alpha|^2 + |\beta|^2}{2} - \left|\frac{|\alpha|^2 - |\beta|^2}{2}\right|$$

on \mathbb{T} , we have

$$\left| \frac{|\alpha|^2 - |\beta|^2}{2} \right| + \sqrt{|\alpha \bar{\beta} - k_0|^2 + \left(\frac{|\alpha|^2 - |\beta|^2}{2}\right)^2} \leqslant 0$$

on E. This implies that $|\alpha| - |\beta| = |\alpha \bar{\beta} - k_0| = 0$ on E. Hence,

$$\varepsilon^{2} \leq \min\left\{|\alpha|^{2}, |\beta|^{2}\right\} = \frac{|\alpha|^{2} + |\beta|^{2}}{2} - \sqrt{|\alpha\bar{\beta} - k_{0}|^{2} + \left(\frac{|\alpha|^{2} - |\beta|^{2}}{2}\right)^{2}}$$

on E. Therefore,

$$\varepsilon^2 \leqslant \frac{|\alpha|^2 + |\beta|^2}{2} - \sqrt{|\alpha\bar{\beta} - k_0|^2 + \left(\frac{|\alpha|^2 - |\beta|^2}{2}\right)^2}$$

on \mathbb{T} . Hence $\varepsilon^2 \leqslant N_{k_0}$. Since $\varepsilon = \inf\{\|S_{\alpha,\beta}f\|_2 : f \in L^2, \|f\|_2 = 1\}$, we have

$$\inf_{f \in L^2, \|f\|_2 = 1} \|S_{\alpha,\beta} f\|_2^2 \leqslant N_{k_0} \leqslant \sup_{k \in H^\infty} N_k.$$

We prove that $\inf\{\|S_{\alpha,\beta}f\|_2^2: f \in L^2, \|f\|_2 = 1\} \geqslant \sup\{N_k: k \in H^\infty\}$. This is the easy direction of the theorem. For any $k \in H^\infty$, we have

$$(kf_1, f_2) = 0, \quad (f_1 \in H^2, f_2 \in \overline{H_0^2}).$$

Since

$$\frac{|\alpha|^2+|\beta|^2}{2}-\sqrt{|\alpha\bar{\beta}-k|^2+\left(\frac{|\alpha|^2-|\beta|^2}{2}\right)^2}\geqslant N_k,$$

we have

$$(|\alpha|^{2} - N_{k})(|\beta|^{2} - N_{k}) \geqslant \left(\sqrt{|\alpha\bar{\beta} - k|^{2} + \left(\frac{|\alpha|^{2} - |\beta|^{2}}{2}\right)^{2}} + \frac{|\alpha|^{2} - |\beta|^{2}}{2}\right) \times \left(\sqrt{|\alpha\bar{\beta} - k|^{2} + \left(\frac{|\alpha|^{2} - |\beta|^{2}}{2}\right)^{2}} - \frac{|\alpha|^{2} - |\beta|^{2}}{2}\right) = |\alpha\bar{\beta} - k|^{2}.$$

Hence,

$$\begin{aligned} \|\alpha f_{1} + \beta f_{2}\|_{2}^{2} - N_{k} \|f_{1} + f_{2}\|_{2}^{2} \\ &= \left\| \sqrt{|\alpha|^{2} - N_{k}} f_{1} \right\|_{2}^{2} + \left\| \sqrt{|\beta|^{2} - N_{k}} f_{2} \right\|_{2}^{2} + 2 \operatorname{Re}(\alpha \bar{\beta} f_{1}, f_{2}) \\ &\geqslant 2 \left\| \sqrt{|\alpha|^{2} - N_{k}} f_{1} \right\|_{2} \left\| \sqrt{|\beta|^{2} - N_{k}} f_{2} \right\|_{2} + 2 \operatorname{Re}((\alpha \bar{\beta} - k) f_{1}, f_{2}) \\ &\geqslant 2 \int_{\mathbb{T}} \left(\sqrt{|\alpha|^{2} - N_{k}} \sqrt{|\beta|^{2} - N_{k}} - |\alpha \bar{\beta} - k| \right) |f_{1} f_{2}| \, \mathrm{d}m \geqslant 0. \end{aligned}$$

Hence, for any $k \in H^{\infty}$,

$$||S_{\alpha,\beta}f||_2^2 \geqslant N_k ||f||_2^2, \quad (f \in L^2).$$

Therefore,

$$\sup_{k \in H^{\infty}} N_k \leqslant \inf_{f \in L^2, \|f\|_2 = 1} \|S_{\alpha,\beta} f\|_2^2 \leqslant N_{k_0} \leqslant \sup_{k \in H^{\infty}} N_k.$$

Hence the equalities hold, and the infimum is attained by $k=k_0$. This completes the proof. \blacksquare

REMARK 3.5. Let $\alpha, \beta \in L^{\infty}$, let $\varphi = \alpha \bar{\beta}$, and let $\psi = (|\alpha|^2 - |\beta|^2)/2$. Then

$$\inf_{f\in L^2,\,\|f\|_2=1}\|S_{\alpha,\beta}f\|_2^2=\sup_{k\in H^\infty}\left(\operatorname{ess\,inf}\left(\sqrt{|\varphi|^2+\psi^2}-\sqrt{|\varphi-k|^2+\psi^2}\right)\right).$$

The supremum is attained. If $|\alpha| = |\beta|$, then $\psi = 0$. Hence

$$\inf_{f \in L^2, \|f\|_2 = 1} \|S_{\alpha,\beta} f\|_2^2 = \sup_{k \in H^{\infty}} \left(ess \inf_{\mathbb{T}} \left(|\varphi| - |\varphi - k| \right) \right).$$

Corollary 3.6. If $|\alpha|$ and $|\beta|$ are constant functions, then

$$\inf_{f \in L^2, \, \|f\|_2 = 1} \|S_{\alpha,\beta} f\|_2^2 = \frac{|\alpha|^2 + |\beta|^2}{2} - \sqrt{\|H_{\alpha\bar{\beta}}\|^2 + \left(\frac{|\alpha|^2 - |\beta|^2}{2}\right)^2}.$$

Proof. It follows from Theorem 3.4 that

$$\begin{split} &\inf_{f \in L^{2}, \|f\|_{2} = 1} \|S_{\alpha,\beta}f\|_{2}^{2} \\ &= \sup_{k \in H^{\infty}} \left(\operatorname{ess\,inf} \left(\frac{|\alpha|^{2} + |\beta|^{2}}{2} - \sqrt{|\alpha\bar{\beta} - k|^{2} + \left(\frac{|\alpha|^{2} - |\beta|^{2}}{2}\right)^{2}} \right) \right) \\ &= \frac{|\alpha|^{2} + |\beta|^{2}}{2} + \sup_{k \in H^{\infty}} \left(\operatorname{ess\,inf} \left(-\sqrt{|\alpha\bar{\beta} - k|^{2} + \left(\frac{|\alpha|^{2} - |\beta|^{2}}{2}\right)^{2}} \right) \right) \\ &= \frac{|\alpha|^{2} + |\beta|^{2}}{2} + \sup_{k \in H^{\infty}} \left(-\left\| \sqrt{|\alpha\bar{\beta} - k|^{2} + \left(\frac{|\alpha|^{2} - |\beta|^{2}}{2}\right)^{2}} \right\|_{\infty} \right) \\ &= \frac{|\alpha|^{2} + |\beta|^{2}}{2} - \inf_{k \in H^{\infty}} \left\| \sqrt{|\alpha\bar{\beta} - k|^{2} + \left(\frac{|\alpha|^{2} - |\beta|^{2}}{2}\right)^{2}} \right\|_{\infty} \\ &= \frac{|\alpha|^{2} + |\beta|^{2}}{2} - \sqrt{\inf_{k \in H^{\infty}} \|\alpha\bar{\beta} - k\|_{\infty}^{2} + \left(\frac{|\alpha|^{2} - |\beta|^{2}}{2}\right)^{2}}. \end{split}$$

By the Nehari theorem ([8]), this proves the corollary.

COROLLARY 3.7. Let $\alpha, \beta \in L^{\infty}$. Then

$$\inf_{f \in L^2, ||f||_2 = 1} ||S_{\alpha,\beta} f||_2^2 \geqslant \operatorname{ess \, inf} \left(\min\{|\alpha|^2, |\beta|^2\} \right) - ||H_{\alpha\bar{\beta}}||.$$

Proof. It follows from the easy direction of Theorem 3.4 that

$$\begin{split} &\inf_{f \in L^2, \, \|f\|_2 = 1} \|S_{\alpha,\beta} f\|_2^2 \\ &\geqslant \sup_{k \in H^\infty} \left(\operatorname{ess\,inf} \left(\frac{|\alpha|^2 + |\beta|^2}{2} - \sqrt{|\alpha\bar{\beta} - k|^2 + \left(\frac{|\alpha|^2 - |\beta|^2}{2} \right)^2} \right) \right) \\ &\geqslant \sup_{k \in H^\infty} \left(\operatorname{ess\,inf} \left(\frac{|\alpha|^2 + |\beta|^2}{2} - |\alpha\bar{\beta} - k| - \left| \frac{|\alpha|^2 - |\beta|^2}{2} \right| \right) \right) \\ &= \sup_{k \in H^\infty} \left(\operatorname{ess\,inf} \left(\min \left\{ |\alpha|^2, |\beta|^2 \right\} - |\alpha\bar{\beta} - k| \right) \right) \\ &\geqslant \sup_{k \in H^\infty} \left(\operatorname{ess\,inf} \left(\min \left\{ |\alpha|^2, |\beta|^2 \right\} \right) + \operatorname{ess\,inf} \left(- |\alpha\bar{\beta} - k| \right) \right) \\ &= \operatorname{ess\,inf} \left(\min \left\{ |\alpha|^2, |\beta|^2 \right\} \right) + \sup_{k \in H^\infty} \left(\operatorname{ess\,inf} \left(- |\alpha\bar{\beta} - k| \right) \right) \\ &= \operatorname{ess\,inf} \left(\min \left\{ |\alpha|^2, |\beta|^2 \right\} \right) + \sup_{k \in H^\infty} \left(- \|\alpha\bar{\beta} - k\|_\infty \right) \\ &= \operatorname{ess\,inf} \left(\min \left\{ |\alpha|^2, |\beta|^2 \right\} \right) - \inf_{k \in H^\infty} \|\alpha\bar{\beta} - k\|_\infty. \end{split}$$

By the Nehari theorem ([8]), this proves the corollary.

REMARK 3.8. If $\alpha \bar{\beta} \in H^{\infty}$, then the supremum in Theorem 3.4 is attained by $k = \alpha \bar{\beta}$. In this case,

$$\inf_{f \in L^2, \|f\|_2 = 1} \|S_{\alpha,\beta} f\|_2 = \operatorname{ess \, inf}_{\mathbb{T}} \left(\min \left\{ |\alpha|, |\beta| \right\} \right).$$

For functions $\alpha, \beta \in L^{\infty}$, $S_{\alpha,\beta}$ is left invertible if and only if

$$\operatorname*{ess\,inf}_{\mathbb{T}}\left(\frac{|\alpha|^2+|\beta|^2}{2}-\sqrt{|\alpha\bar{\beta}-k|^2+\left(\frac{|\alpha|^2-|\beta|^2}{2}\right)^2}\right)>0,$$

for some $k \in H^{\infty}$. By Corollary 3.2, if $|\varphi| = 1$, then T_{φ} is left invertible if and only if $S_{\varphi,1}$ is left invertible if and only if $|H_{\varphi}| < 1$ (cf. [9], p. 203).

Corollary 3.9. Let $\varphi \in L^{\infty}$, $|\varphi| = 1$. Then

$$\inf_{f \in H^2, \, \|f\|_2 = 1} \|T_{\varphi}f\|_2 = \|S_{\varphi,1}\| \left(\inf_{f \in L^2, \, \|f\|_2 = 1} \|S_{\varphi,1}f\|_2\right).$$

Proof. It follows from Corollary 3.2 that

$$\inf_{f \in H^2, \, \|f\|_2 = 1} \|T_{\varphi}f\|_2^2 = 1 - \|H_{\varphi}\|^2.$$

It follows from Corollary 2.3 that

$$||S_{\varphi,1}||^2 = 1 + ||H_{\varphi}||.$$

It follows from Corollary 3.6 that

$$\inf_{f \in L^2, \|f\|_2 = 1} \|S_{\varphi,1} f\|_2^2 = 1 - \|H_{\varphi}\|.$$

These equalities prove the corollary.

COROLLARY 3.10. If a and b are invertible functions in H^{∞} , then

$$\|S_{a,\bar{b}}L_{1/\bar{b}}\|^{-2} = \sup_{k \in H^{\infty}} \left(\operatorname{ess\,inf} \left(\frac{|a|^2 + |b|^2}{2|a|^2} - \sqrt{\left|\frac{\bar{b}}{a} - k\right|^2 + \left(\frac{|a|^2 - |b|^2}{2|a|^2}\right)^2} \right) \right),$$

where $L_{1/\bar{b}}$ denotes the Laurent operator on L^2 . The supremum is attained.

Proof. Since a and b are invertible functions H^{∞} , it follows that $S_{\bar{b}/a,1}$ is invertible, and

$$S_{\bar{b}/a,1}^{-1} = S_{a,\bar{b}} L_{1/\bar{b}}$$

(cf. [6], p. 88 and [10], Theorem 3). Hence,

$$\|S_{a,\bar{b}}L_{1/\bar{b}}\|^{-2} = \|S_{\bar{b}/a,1}^{-1}\|^{-2} = \inf_{f \in L^2, \|f\|_2 = 1} \|S_{\bar{b}/a,1}f\|_2^2.$$

We apply Theorem 3.4 with $\alpha = \bar{b}/a$ and $\beta = 1$. This completes the proof.

This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education of Japan.

REFERENCES

- M. COTLAR, C. SADOSKY, On the Helson-Szegö theorem and a related class of modified Toeplitz kernels, *Proc. Sympos. Pure Math.*, vol. 35, Amer. Math. Soc., 1979, pp. 383–407.
- R.G. DOUGLAS, Banach Algebra Techniques in Operator Theory, Academic Press, New York 1972.
- 3. I. FELDMAN, N. KRUPNIK, A. MARKUS, On the norm of two adjoint projections, *Integral Equations Operator Theory* **14**(1991), 69–90.
- I. GOHBERG, N. KRUPNIK, One-Dimensional Linear Singular Integral Equations, vols. I, II, Birkhäuser Verlag, Basel 1992.
- 5. P. Koosis, Introduction to H_p Spaces, Cambridge University Press, London 1980.
- G.S. LITVINCHUK, I.M. SPITKOVSKII, Factorization of Measurable Matrix Functions, Birkhäuser Verlag, Basel 1987.

- 7. T. Nakazi, Absolute values of Toeplitz operators and Hankel operators, *Canad. Math. Bull.* **34**(1991), 249–253.
- 8. Z. Nehari, On bounded bilinear forms, Ann. of Math. 65(1957), 153–162.
- 9. N.K. Nikolskii, Treatise on the Shift Operator, Springer Verlag, Berlin 1986.
- T. YAMAMOTO, Invertibility of some singular integral operators and a lifting theorem, Hokkaido Math. J. 22(1993), 181–198.
- 11. T. Yamamoto, Boundedness of some singular integral operators in weighted L^2 spaces, J. Operator Theory **32**(1994), 243–254.

TAKAHIKO NAKAZI
Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060
JAPAN

TAKANORI YAMAMOTO Department of Mathematics Hokkai-Gakuen University Sapporo 062 JAPAN

Received March 21, 1997; revised August 27, 1997.