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NORMS OF SOME SINGULAR INTEGRAL OPERATORS
AND THEIR INVERSE OPERATORS
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ABSTRACT. Let o and 8 be bounded measurable functions on the unit circle
T. Then the singular integral operator S, g is defined by So gf = aPyf +
BP_f, (f € L*(T)) where Py is an analytic projection and P- is a co-analytic
projection. In this paper, the norms of S, g and its inverse operator on the
Hilbert space L?*(T) are calculated in general, using o, and a8 + H™.
Moreover, the relations between these and the norms of Hankel operators are
established. As an application, in some special case in which a and [ are
nonconstant functions, the norm of S, 3 is calculated in a completely explicit
form. If o and 3 are constant functions, then it is well known that the norm
of So,5 on L*(T) is equal to max {|a|,|3|}. If @ and 3 are nonzero constant
functions, then it is also known that S.,s on L?(T) has an inverse operator
S4-1,5-1 whose norm is equal to max{\arl, |6|71}.

KEYWORDS: Singular integral operators, Hardy spaces, Hankel operators,
Toeplitz operators.
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1. INTRODUCTION

Let m denote the normalized Lebesgue measure on the unit circle T = {¢ : || = 1}.
That is, dm(¢) = df/2r for ¢ = €. The inner product in the Hilbert space
L? = L*(T) is given by

(f.9) = / FOF0) dm(€).
T
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The norm in L? is given by || f|l2 = \/(f, f). By L® = L*(T) we denote the space
of bounded measurable functions. The norm in L is given by || f|lcc = esssup |f|.
T

Let H? (resp. H*) be the Hardy space of functions f € L? (resp. f € L°) whose
negative Fourier coefficients are zero. Let Fg be the space of functions f € L?
whose nonnegative Fourier coefficients are zero. Then L? = H? @ HZ. Let S be
the singular integral operator defined by

1 md77 (ae. C€T),

S =
(590 =+ [ 225
T
where the integral is understood in the sense of Cauchy’s principal value (cf. [4],
p. 12). If f is in L', then (Sf)(¢) exists for almost every ¢ on T, and Sf be-
comes a measurable function on T. Let the analytic projection and the co-analytic
projection be
I I-
= %S, and P_ = TS7
where I denotes the identity operator. If o, 3 € L°, then the singular integral

Py

operator S, 5 on L? is defined by

Sapf =aPyf+BP_f, (f€L?).

Then S1, =1, 51,-1 =195, S1,0 = Py and Sp,; = P_. The norm of S, g is defined
by

||Sa,ﬁ|| = sup ||Saﬁf||2-
FEL?, || fll2=1

Since || Py || = ||P-|| = 1, we have
[Sa5ll < lletlloc + {18l < 00

Hence, S, g is a bounded operator on L?. Furthermore, it is well known that

max {llallocs [18lloc} < ISasll < | VIaP+18P]_-

If @ and 3 are constant functions, then it is well known and not difficult to establish
that

[[Sa,5ll = max {|af, | 5]}

(cf. [3]). If @ and B are nonconstant functions, then we will show in Section 2 that
the formula of S, gl is more complicated.

If ¢ € L, then the Toeplitz operator T, is defined by T,f = Pi(¢f),
(f € H?). Its norm is equal to ||¢]|eo (cf. [2], p. 179). The Hankel operator H,, is
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defined by H,f = P_(¢f), (f € H?). By the Nehari theorem [8] (cf. [9], p. 181),
its norm is equal to inf{||¢ — k||oo : K € H>}. Hence,

ol < 1Tl < [156,1ll-

Though the norm of T, or H, is known, the norm of S, ; is not known.

In this paper, we consider the operator S, g on L? for functions «, 8 € L*.
In Section 2, we give the formula of the norm of S, s on L? for a, 8 € L*°, which
involves lower bounds over the algebra H>. It is a little surprising that the norm
of the singular integral operator S, g is related to the norm of the Hankel operator
H,

o for some special a and 3. In Section 3, we also give the formula of the norm

of the inverse operator of S, 5 on L? for a, 3 € L*, which involves upper bounds
over the algebra H*. If S, g is invertible, then essTinf (min{]e|,|6]}) > 0. When

¢ =a/f and essTinf (min {]al,]6]}) > 0,
Sa,p = BSp1 = B(ProPy + P_)(I + P_pPy).

Then I + P_@P, is invertible and (I + P_pP,)™' =1 — P_@P, (cf. [9], p. 393).
Hence, S, g is invertible if and only if min{essTinf |a|,ess'ﬂ_inf |8]} > 0 and T, /g is
invertible.

The first author (cf. [7]) calculated essentially the norm of the inverse oper-
ator of T,, on H?. We will show in Section 3 that the formula of the norm of the
inverse operator of T, is similar to the formula of the norm of the inverse operator
of Sq, . The second author (cf. [11]) considered the norm of S, g on the weighted
space L2(T, W) with a weight function W on T, and proved the Feldman-Krupnik-
Markus theorem ([3]) using the Cotlar-Sadosky lifting theorem ([1]) when a and

[ are constant functions.

2. NORM OF THE OPERATOR S, g

If a,8 € L°°, then the following inequality is well known and not difficult to
establish:

masc {]|ao, |Bllo0} < I1Sasll < || VIaP 18P _-

We should mention that

2 2 2 5 2 %
ma (oo, 51} = w*%*(“) |

o0
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and

2 2 B 2 _18]2\ 2
H |a|2+|ﬁ|2Hoo= lof” + 1A ;'m +\/a6—ol2+<|°‘| 5 i )

oo

It is not difficult to establish that

o2 +1587 [ af2 — |52
IS0 pll? < |2 4 flad — b2+ (R ) |

oo

for any k € H*°. The following theorem gives the formula for the computation of
the norm of the operator S, g.

THEOREM 2.1. Let o, 8 € L*°. Then

. al® + |82 _ al2 — 1312\ 2
[Susl? = e 1A \/|a5— K2 + (|2|ﬁ)

keH®

o0
The infimum is attained.

Proof. For any k € H*, we define the quantity M} according to

2
M = W+wa5_kp+(w—|ﬁ)

2

o0

We prove that ||S, 5> = inf{M} : k € H*}. Let v = ||Sq4,5]|. Then
[1Sa,aflla <A fll2s  (f € L?).
Let Wy =~2 — |a|?, Wy = 2 — |B]? and W3 = 4% — a3. Then
Wifr, f1) + (Wafa, f2) + 2Re (W3 f1, f2) 2 0,

(f1 € H2, f, € H?). By the Cotlar-Sadosky lifting theorem ([1]), Wy > 0, Wy > 0,
and there exists a g € H* such that

(W3 — g|* < Wi Ws.
Hence, v > max{|c|, |8|} and

W —aB —gl* < (7" = |a*)(v* — 18).
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Let ko =92 — g. Then ko € H* and |72 — a8 — g| = |3 — ko|. Hence,

0< (Y2~ 1[a>)(v? = I8%) — |aB — ko?
=7t — (Ja2 + 8272 + [aB? — |8 — ko[>

Suppose

2 2 ~ 2 _ (52 2
¢<CAQW|¢W3kW+<a|Jm>

on some measurable subset E of T. Since

o] + 182
2

o] — 12
2

7?2 max {|af?, |8} =

on T, we have

o] — |82

2

2
ol o (2 <

on E. This implies that |a| — |3] = |af — ko| = 0 on E. Hence,

2
7 = max {|of*, |8} = M + \/|a5 — ko2 + <a|2—|ﬁ|2>

2

on E. Therefore,

2 2 B 2 _ 1812\ 2
72>a|;|ﬂ|wmﬁ_,ﬁom(m|ﬂ|>

2

on T. Hence My, < 2. Since v = ||S,. 5|, we have
inf M, < My, < ||Sasl*
keH™

We prove that ||S, 5> < inf{Mj : k € H>®}. This is the easy direction of the

theorem. For any k € H*, we have
(kfi.f2) =0, (f1 € H? f» € HY).

Since

2 2 B 2 _ 1512\ 2
C”§m+%wW+C“2W)<Ma
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we have
2
(M — o) (M3 — |B]?) > ¢ B — k[2 + ('Q'Q -~ W) ol - 18
_ 2 2 (12 -
y waﬁ_k|2+(|a22w?> N B
Hence,

Myl fr + foll3 = llefy + B3
= | VAL TP, + | VAT 18R L||, - 2Re(afifr, £)
> 2|Vt = 1P £, || VA =TBP R, - 2Re((@B ~ 011, £2)
>2 [ (V38 PP VA = 5P = ja — k) i el dm > 0.

T
Hence, for any k € H*,

IS0, f13 < MilfI3,  (f € L?).
Therefore,
inf My < My, < ||Sapsl? < inf M.
W M ko < |1Sa,sll Jdnf M
Hence the equalities hold, and the infimum is attained by k = kg. This completes
the proof. &

REMARK 2.2. Let o, 8 € L™, let ¢ = a3, and let ¥ = (|a|? — |3]?)/2. Then

1Sasll* = inf_||VIeP +92 + Ve —kE+ 42| .
€H®> S
The infimum is attained. If || = |3], then 1) = 0. Hence
2 _ _
Sl = inf el + 1o~ K o

COROLLARY 2.3. If |a| and |3| are constant functions, then

o] + 152 2 (lal? =182\
1Sal* = =+ \[ |1 Hasl "+ (=) -

Proof. 1t follows from Theorem 2.1 that

. al? + |82 _ al2 — |82\ ?
1Sa,* = inf % 41/ laf — k2 + (||||)

He 2

o0

) ) - 2 2 _ g2\ 2

By the Nehari theorem ([8]), this proves the corollary. 1
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COROLLARY 2.4. Let o, 3 € L. Then

1S0,51I* < max {[lof3c, 1812} + [ Hogll

Proof. Tt follows from the easy direction of Theorem 2.1 that

2 2 9 ANE
. al® + _ al? —
ISsl? < nf |2 W e (V)
o
2 2 2 9
B e SV )l
kcHo 2 5 N
J— 1 2 2 —
= Jnf |lmax {|af* [3°} +]af — k],

< max {Jlal/%, 1812} + inf_[laf — kllw.

By the Nehari theorem ([8]), this proves the corollary. &

REMARK 2.5. If o3 € H*®, then the infimum in Theorem 2.1 is attained by
k = of. In this case,

[Sa5ll = llmax {|al, |6}, = max {[|alloc, |5} -

Hence the equality holds in Corollary 2.4 because || H,3| = 0. By Corollary 2.3,
if || = |B] = constant, then the equality holds in Corollary 2.4.

By Corollary 2.4, if ¢ € L* and ||¢|lc < 1, then [|S, 1> < 1+ ||Hy|. By
Corollary 2.3, if |¢| = 1, then ||S, 1> = 1 + |[[Hy||. If ¢ is a real function whose
range consists of only two points, then the norm of S, ; will be calculated in a
completely explicit form in Corollary 2.7. For example, by Corollary 2.7, if F is a
measurable subset of the unit circle T satisfying 0 < m(E) < 1, then [|Sy 1] =
2/v/3. Tt is well known that ||H, | = 1/2. In this case, [|Syp1[> < 1+ [|Hypzl-
Hence the equality does not hold, in general, in Corollary 2.4. For the proof of
Corollary 2.7 we need Lemma 2.6.

LEMMA 2.6. Let a and b be real numbers satisfying a #b. Then the equality

a2+ 1 a2 —1\? »2+1 b2 —1\2
_ )2 — )2
me(z) L Jomar (B51)

holds for some real number x if and only if |a+b| < 2. Then x is unique and it is

given by
2(a+b)(1 —ab)
4 —(a+b)?
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Proof. Suppose the equality holds for z = 0. Then a? = b?. Since a # b, we
have a = —b. Hence |a + b] = 0 < 2. Suppose the equality holds for some real
number x satisfying x # 0. Then

b2;a2+\/(b—x)2+<b2;1)2 z(a—a:)2+<a22_1>2.

It follows by direct computation that

2(b? az)\/(x —-b)2+ <b22_1> =(b—a) {4z — (a+b)(B*+1)}.

Since a # b, we have

2(a+b)\/(zb)2+ <622_ 1) =4z — (a+b)(b* +1).

Hence,
{4—(a+b)*}2® =2(a+b)(1— ab)z.
Since x # 0, we have

{4—(a+b)*}z=2(a+b)(1—ab).

If (a + b)? = 4, then ab = 1. Hence a® = b?> = 1. Since a # b, we have a + b = 0.
This contradiction implies that (a + b)? # 4. Hence,

2(a+b)(1 — ab)
4 — (a+ b)?

It follows by direct computation that

(a+0) {(a— b)2 + (b +ab — 2)2}

4o — (a+D)(B* +1) = Ry

Since a # b, we have

o (2 =1\" (a—b)%+ (b +ab—2)?
o ) = e e

because (a — b)? > 0. Hence, |a + b| < 2. This proof is reversible. 1
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COROLLARY 2.7. Let E be a measurable subset of T satisfying 0 < m(E) <
1, let a and b be real numbers, and let p = axg + bxg:. Then
(i) If max{a?,b%} > 2 — ab, then

156,11

= max{]al, |b|}.
(ii) If max{a? b®} < 2 — ab, then
4(1 — ab)
2 _
HS%lH - 4 — (a + b)2'
Proof. We define the functions f(z) and g(x) according to

fla) = +\/<a—x>2+ (“7)

b2+ 1 p2—1\°
— )2
g(x) 5 —|—\/(b x)+( 5 >
For the real number zy defined in Lemma 2.6, it follows that
a?+1 (a—b)(a®+ab—2)\> a2 —1\°
oo = o) = (Pl k)1, (o)
_b2+1+ (a —b) (b2 + ab — 2) 2+ p2—1\>  4(1—ab)
2 4—(a+0b)? 2 44— (a+b)?
We prove (i). Since max {a27b2} > ab and max {a27b2} > 2 — ab, we have

max {a® b?} > 1. It follows that max {a?® b% 1} = max {a? b*}. Since [¢||o =
max{lal, o]} and max {[|plloc, 1} < [|Sp ], we have

and

max {a®,b”} = max {a® b* 1} < [|S,.1>.
Suppose a = b. Then ¢ becomes a constant function. Hence, by Remark 2.5,
Sl = max{|p], 1} = max{|al, [b], 1} = max{]al, [b[}.

Suppose a # b. Since 0 < m(F) < 1, we have

2 2 2
. +1 p?—1
2 g f |90‘ _ 2
|Se,1]l nf |\ =5 — +4/(p—2)2+ 5

= inf [|f(2)xE + 9(2)xEllo = inf (max{f(), 9(2)}).
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By Lemma 2.6, if |a + b| > 2, then the equality f(z) = g(«) does not hold for any
real number z. Hence, f(z) < g(z) or f(z) > g(z). Hence,

inf (max{f(z), g(2)}) = max{f(a), g(5)}.

z€R

Since f(a) = max {a* 1} and g(b) = max {b? 1}, we have
max {a®,b°} < ||Sp1]|* < max{f(a),g(b)} = max {a® b% 1} = max {a®b*}.

By Lemma 2.6, if |a +b| < 2, then the equation f(x) = g(x) has a unique solution
x = xo which is given in Lemma 2.6. Hence, f(zo) = g(z¢). Without loss of
generality, we assume a < b. If a < x¢p < b, then max {a27b2} < 2 — ab. Since
max {a?,b?} > 2 — ab, we have max {a? b?} = 2 — ab. By this equality,

ma {a2, 17} < |S,.1l° < inf (max{ (@), 9(2)})

4(1 — ab)

= f(wo) = g(wo) = m

= max {a2, b2} .

If zg <a<bora<b< xg, then

mas {a2, 17} < |S,.1]12 < inf (max{f(2), g(2)})

= max{f(a),g(b)} = max {a* b* 1} = max {a® b} .

We prove (ii). Suppose a = b. Then ¢ becomes a constant function and ¢ = a = b.
Since max {(127 b2} < 2 — ab, we have a® = b?> < 1. By Remark 2.5,

[Sp.1|I? = max{¢?, 1} = max{a®, 1} = max{b? 1} = 1.

Suppose a # b. It is sufficient to prove that || S, 1> = f(x0) = g(zo). Without
loss of generality, we assume a < b. Since max {a2, b2} < 2—ab, we have a®+b* <
2(2—ab). Hence |a+b| < 2. Let f(x) and g(x) be functions defined in the proof of
(i). By Lemma 2.6, the equation f(x) = g(x) has a unique solution & = xy which
is given in Lemma 2.6. Hence, f(z¢) = g(z¢). It follows by direct computation

that
(b—a)(a® + ab—2)
4— (a+0b)?

a—xo= <0,
(a—b)(b2+ab—2)

I—(atb) > 0.

b*l‘():
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Hence, a < x¢g < b. By Theorem 2.1, there exists a kg € H*> such that

+1 -1
El +¢W%P+(m2 )

: ol +1 o2 =1
i |l kg (T
B e VL s 2
24 -1
inf "P| \/| — a2+ 'S”‘ )
xeR

= inf [|f(2)xe + 9(2)xEe)llo < inf (max{f(z), g(2)}).

1512

o0

N

Since a < z¢ < b, we have

inf (max{f(z),g(x)}) = f(zo) = g(x0)-

rER

Hence,
14111 < f(0) = g(o).

o0 = EEL o (251))
s = EE o wop o (P52)

Suppose there exists an € > 0 such that ||S, 1]|*> < f(z¢) —e. Then

2 2 2 2 2 2
+1 —1 a®+1 a’*—1
|802+\/|<,0k’0|2+ <§0|2> < 9 +\/(al‘o)2+< 9 > —E.

Then

o0
Since f(zo) = g(xo), we have ||S,.1]|? < g(zo) — €. Hence,
241 21 b +1 b2 —1\°
e +1 ¢| e (1 ) B ;_+¢®—%P+< Y

Hence, there exists an & > 0 such that
la — kol < la—xo] —€' on E,

|b—k0‘ < ‘b—1‘0|—8/ on E°.
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Since a < zp < b, we have |a — zg| + |b — o] = b —a. If |a — zo| > |b — x|, then
[2|a — zo|xEe +a — ko| = laxe + (b+ |a — xo| — |b — zo]) X B — ko

< la—kolxe + b= kolxEe + (|a — 20| — [b — 2o|)xEe

~X
< la— x| — €.

Hence, inf{||2xge — k|loc : & € H*} < 1. This is a contradiction (cf. [5], p. 198).
If |a — zg] < |b — ], then

| — 2|b_$O|XE +b— ki0| = |(a+ \a—x0| — |b_$0|)XE +bXEC — k‘ol
< la—kolxe + |b— ko|xEe + (|b— zo| — [a — xo|)xE

~
< |b— x| — €.

Hence, inf{||2xg — k|lcc : K € H>®} < 1. This is a contradiction (cf. [5], p. 198).
These two contradictions imply that ¢’ must be zero. This contradiction implies

that € must be zero. Hence,

1951117 = f(z0) = g(x0).

This completes the proof. I

When a and b are complex numbers, we give Corollary 2.9. When || is not
constant, Corollary 2.9 does not contain the completely explicit form of the norm

of S, 1. For the proof of Corollary 2.9 we need Lemma 2.8.

LEMMA 2.8. Let a and b be complex numbers, and let 6 be a real number
satisfying Re(e'(a — b)) = 0. If the equality

|a‘|2+1 i0 2 |a|2_1 2_|b|2+1 i0 2 |b|2_1 ?
2+|eax|+ 5 —2+|ebx\+T

holds for some real number x, then |a| = |b| and the equality holds for any real

numbers x.

Proof. Suppose the equality holds for some real number x. Then

2

2
jaf? — [b]? o o (laP=NTL e s (P
5 + ¢/ |effa — x|? + 5 = b —z|” + 5 .
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Since Re (e!(a — b)) = 0, we have

2—1
(laf? = P \/eﬁ N ‘“' )

=2Re (¢?(a — b))z + |b|2 la® +

_ (b —al*)(al* + 1)
5 :

(16 = lal*)(la[* = 1)
2

Hence, |a| = |b| and the equality

leffa — x| = | — z|?

holds for any x because Re(ei‘g (a— b)) =0. 1

COROLLARY 2.9. Let E be a measurable subset of T satisfying 0 < m(E) <
1, let a and b be complex numbers, and let ¢ = axg + bxgc. Then
(i) If 0 is a real number satisfying Re (eie (a— b)) =0, then

2 1 . 2_1 2
I5eal? < may ¢ L # (m(e2))* + ()

=a,

The equality does not hold in general.
(ii) If |a] = |b|, then the equality holds for some 0 in (i), and

2 2
o _laP+1 [(la=b\? | (lal2-1
1802 = 5=+ [ (P52) + () -

Proof. We prove (ii). Suppose a = b. Then ¢ becomes a constant function.
Hence, by Remark 2.5,

||Sgo,1

2 2 _1\2
2 :max{|ap|2,1} :max{|a\2,l} = M%l +1/0+ (M21> .

Suppose a # b. Since || = |a| = |b], it follows from Corollary 2.3 that

la]? +1 la]?2 —1 2
I8l = T e+ (1)

20 — (a+b)
a—b

Let
w p—
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Then . 5
on E;
v= { —1 on E-.
Hence, inf{||) — k|| : k € H*®} =1 (cf. [5], p. 198). By the Nehari theorem ([8]),
. _Ja—10|
Hol = inf o~ bl = 20
Hence,

2 2
o laPr1 flabl)? L (la o
2 2 2 '

Since a # b, |a| = |b| and Re(e' (a—b)) = 0, it follows that there exist real numbers
u and v such that

15,1

a=u+iv and € =u—iv.

ol
Since |a| = |b], we have

(|ab|)2 _la]* = Re(ab)  u*+v? — (u? —v?)

2 - 2 - 2

=2 = (Im(ema))2 = (Im(eieb))z.

We prove (i). By (ii), it is sufficient to prove (i) when |a| # |b|]. We define the
functions f(x) and g(x) according to

al>+1 . al2—1\?
f(x):‘ |2 + |616a_$|2+ <||2> ,

b2+ 1 . b2 —1\2
g(.’l?): ||2+\/|eleb—$2+ (||2> .

Since |a| # |b], it follows from Lemma 2.8 that the equality f(z) = g(z) does not
hold for any real number x. If |a| < [b], then f(z) < g(z) because Re(e(a—b)) =
0. Hence, by Theorem 2.1,

2
2 lol” +1 o2 —1
= f — 2
1Sp11" = mf === +1/lp — k> + 5

o0

el 41 : o2 = 1\?
< f _ a—i0]2
inf 5 + 4/l — e 0z)2 + 5

and

o0

= inf [|f(2)xp + g(2)xp) | < inf g(z) = g (Re(e’D))

_ |b|22+ 1 n \/(Im(eiab))2 n <b|22 1)2.
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Similarly, if |a| > |b|, then

241 ) 2_q 2
R C= s

This completes the proof. 1§

3. NORM OF THE INVERSE OPERATOR OF Saﬁ

The first author essentially gave Theorem 3.1 (cf. [7], Corollary 3). It is not
difficult to establish that

inf T, f|13 > essinf (|p|* — |¢ — k|?
rertl TNz > essinf (jol” — o — &%),

for any k € H*°. The following theorem gives the formula for the computation of
the norm of the inverse operator of T,.

THEOREM 3.1. Let o € L*>°. Then

inf T,flI2 = su (essinf 2 —k2).
e ITof13 = sup (essinf (1o = o &P

The supremum s attained. If T, is invertible, then the supremum is equal to
[

Proof. For any k € H*, we define the quantity J; according to
Ji = essTinf (le? = o — K[?) .

We prove that inf{||T,f||3 : f € H2 ||fll2 = 1} < sup{Jy : k € H®}. Let
e = inf{||Tfll2 - f € H?, || fll2 = 1}. Then

ellfill < N Tpfill2,  (fr € H?).
Since | T, f1ll5 + [Hof1ll5 = [0 f1]13, we have
[Hy f1l3 < ((lel* = €2) f1, f1) -

Let Wi = |¢> — €2, Wa = 1, Wy = ¢. Since (pf1,f2) = (Hof1, f2), for any
f1 € H?, fo € HZ, we have

(Wifi, f1) + (Wafa, f2) + 2Re(Ws f1, f2) = | Hp f1ll5 + || 213 + 2Re(Ho f1, f2)
= Hyfr + f2l3 > 0,
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(f1 € H?, f, € H2). By the Cotlar-Sadosky lifting theorem ([1]), Wy > 0, Wy > 0,
and there exists a kg € H such that

(W3 — kol® < Wi W,

Hence,
o — kol < |gf* — €2

Since € = inf{||T,, f||2 : f € H?,||f||2 = 1}, we have

inf T fl? < Jp, < sup Ji.
renjum 1Tefl < Jio < ke Hoo

We prove that inf{||T,f||3 : f € H% | fll2 = 1} > sup{Jx : kK € H>®}. This is
the easy direction of the theorem. For any k € H™, |p|? — Jp > |¢ — k|? and
H,_j = H,. Hence, for any f, € H?,
T fill3 = TkllAlls = llefill3 = 1 Hofill3 = Jullefil3
= (e = Jo)f1 fr) = | Ho full3
> (le—kPPf1, f1) — |Ho—r f1]3
=l — k) f1ll3 = 1Hp-r fill3 = [ Tp-rf1ll3 = 0.

Hence, for any k € H>,

T, f1l13 = Jell f1ll3, (f1 € H?).

Therefore,

sup Ji <

inf T, flI2 < Ju, < sup J.
KeH renTjam T2 < Jho " kem=

Hence the equalities hold, and the infimum is attained by k = kg. This completes
the proof. 1

COROLLARY 3.2. If || is a constant function, then

. 2 2 2
feHZI,Iﬁf;‘I\Z:1 ||T¢,f||2 =l = ”H@H .

Proof. Tt follows from Theorem 3.1 that

inf T £12 = su (essinf 2,k )
rerhy,m 1T 2 potbe \&5 (lel* =l — &[*)
= |p|* + sup (essinf (=l - k\2))
keH®> T
2 . )
= — inf — k|-
lpl* =, inf o = FlIZ

By the Nehari theorem ([8]), this proves the corollary. 1
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COROLLARY 3.3. Let ¢ € L. Then

inf T, f||% > essinf|p|* — || H,||*
re i ITafIE > essinf ol = [[Ho|
Proof. It follows from the easy direction of Theorem 3.1 that

inf T,fl12 > su (essinf 2 —k:2)
seratlhy_ ITedll2 > sup (essinf (|of” — o — k%)

WV

sup (ess inf [¢|* + essinf (—[p — k|2))
ke H> T T
= essinf [p|® + sup (ess inf (—|¢ — k|2))
T k€H> T
— essinf o2 — inf [ — k|2
essinf|p|” — inf llo - Kll5
By the Nehari theorem ([8]), this proves the corollary. 1

If a, 8 € L*°, then the following inequality is well known and not difficult to
establish.

IS5 3 < essinf (min {Jaf2, 5%})

2 2 2 _1R12\ 2
= essinf 7‘04 + 1] —1/0+ 7|oz\ 18]
T 2 2

It is not difficult to establish that

2 2 B 2 _ 1812\ 2
ISas713 > essint W\/ i -+ (RS E) ).

inf
feL?, || fllz=1

inf
feL?,|Ifll2=1

for any k € H*°. The following theorem gives the formula for the computation of
the norm of the inverse operator of S, 3. The proof of the following theorem is
essentially the same as the proof of Theorem 2.1.

THEOREM 3.4. Let o, 8 € L>°. Then

: 2
it 19asfl

2 2 _ 2 2\ 2
= sup essTinf M_\/mg_kp_,_(mﬂl)

keHo 2 2

The supremum is attained. If S, g is invertible, then the supremum is equal to
1=
1S5l =2
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Proof. For any k € H*, we define the quantity N according to

I (e s oo (a2 =182\
Ng —esbqunf 5 — [ |afB — k]2 + 5 .

We prove that inf{||Sasfl3 : f € L% ||fll2 = 1} < sup{Ny : k € H®}. Let
e = inf{||Sa,sfll2 : f € L*, || fll2 = 1}. Then

el fll2 < [1Sasfll2s  (f € L?).
Let Wy = |a|? — &2, Wy = |B|? — €% and W3 = a8 — 2. Then
(Wifi, f1) + (Wafz, f2) + 2Re(Ws f1, f2) > 0,

(fie H% fy € Fg) By the Cotlar-Sadosky lifting theorem ([1]), W7 > 0, W5 > 0,
and there exists a g € H* such that

(W5 — g|* < WhWa.
Hence, ¢ < min{|a/, |3|} and there exists a g € H> such that
o — & — gI* < (lo” = €2) (18] — €?) -
Let kg = €2+ g. Then ko € H*® and |aff — &2 — g| = |a — ko|. Hence,

0< (jof —&) (18 — &) —|af — kol = &* — (Jal? +[BP) & + aB|> — | — P

2
2>“”+W2+¢w%ww+(mz‘mﬁ
2 2

on some measurable subset £ of T. Since

o + 187
2

Suppose

o] —
2

2 < min{|oz\2, |ﬂ|2} =

on T, we have

\Oél2 182

ww Wl || mw\w

on E. This implies that || — |3 = |a3 — ko| = 0 on E. Hence,

€2 < min{\a|2, \ﬂ|2} = M _ \/|a5 o2 + <|a2 . 5|2>
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on E. Therefore,

2 2 B 2 _[5]2\ 2
PPEY \/|aﬂko|2+(|a 25|>

on T. Hence €2 < Ny,. Since € = inf{||Sa sfl2: f € L% | fll2 = 1}, we have

inf S 2 <N < sup Ni.
pera oy 1S lla < Niw < sup Ny

We prove that inf{||Sa sf||3: f € L% ||fll2 =1} = sup{Ny : k € H>®}. This is the

easy direction of the theorem. For any & € H*, we have

(kfi, f2) =0, (f1 € H? fo € H).

2 2 B 2 _13]2\ 2
o+ 19 —\/|a6—k|2+<|a| SIS

Since

we have

2
D S e e
2 2

2
; \/M iy (LESIBEY_ P it

= |af — k|*.

(la]* = Np)(IB)* = Ni) > \/|a5 — K2+ (

Hence,

i+ Bf2115 = Nill fi + fall3
= | VIRE=Run |, + | VIBF = Nese||, + 2Re(abfr, 12
> 2||VIaP = Nufi |, || VIBF = Nifo] | + 2Re((@B — W) 1, £2)

> 2/ (\/Ial2 — N8 = Ny — Iaﬁ—k\) \f1faldm > 0.

T

Hence, for any k € H°,

1Sasfl3 = Nl fl3,  (F € L?).

Therefore,

sup Ni < inf [1Sa.5fll3 < Nk, < sup Ng.

ke H> FeL?, |Ifllz=1 k€ Ho®
Hence the equalities hold, and the infimum is attained by k = kg. This completes
the proof. 1
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REMARK 3.5. Let a, 3 € L™, let ¢ = a3, and let ¥ = (|a|?> — |3]?)/2. Then

inf
feL?, || fll2=1

1S5 f13 = sup (essinf (VieP 07 = Ve —kP +4?)).
keHoe T
The supremum is attained. If |a| = ||, then ¢ = 0. Hence

inf S 2= gu (essinf —lo—k )
et Sunfl3 = sup (essinf (o] ~ o~ k)

COROLLARY 3.6. If |a| and |3] are constant functions, then

2 2 2
: + 16 la* — |87
inf S 2l —+/1H,5 2+< .
fers [ flla=1 [Sa.81l3 D) [Ho D)

Proof. 1t follows from Theorem 3.4 that

: 2
sepathy_ I19asfllz

o[ el + 182 3 a2 = |82\
_ ssinf _ k|2
kzlllf})oo essin 5 laB — k|2 + 5
2 2 B 2 1312\ 2
_ |Oé‘ +|ﬂ‘ + sup | essinf —\/|O¢ﬂ—k‘|2+<|a| |ﬂ| ) )
2 ke Ho> T 2

el lgr _H\/W_kz+ (2B
2

2 keH>
_ e+ 18P 2 | 2 - W
< g o v
2 2 2 _ |82\ 2
_lal2+18 _\/ nf lof— b2 + (|a oy’
2 2
By the Nehari theorem ([8]), this proves the corollary. 1
COROLLARY 3.7. Let o, 3 € L*. Then
inf [Sasfll3 > essinf (min{lof?, [3°}) — | Hapll

frer?, | fll=
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Proof. 1t follows from the easy direction of Theorem 3.4 that

: 2
f€L2{Iﬁfc|‘221 1Sa,5f112

2 2 2 _ 1312\ 2
s sup [essint [ 127 1P W_ e+ ((25100) )
k€Ho T 2 2
(e +18P o o2 — 152
> kzt;{px (ess'ﬂ‘mf (2 —|aB — k| - )
= sup (essmf (min {|a|?, [8]°} — a8 — k|))
keHee T
> sup (essmf (min {|a|?,|8]°}) + essinf (—|af — k|)>
k€H> T T
= essmf (min {|af?, [8}) + sup (essinf (—|aB — k|))
:essmf (min {|af?, [8°}) + sup (—lleB = klo)
= essmf (min {|af?,[8*}) — 1nfoc |8 — K| oo-

By the Nehari theorem ([8]), this proves the corollary. 1

REMARK 3.8. If a8 € H*®, then the supremum in Theorem 3.4 is attained
by k = 3. In this case,

inf Sa = essinf (min {|o/, )
feLZ,HfHQ:l” 8112 nf (min {[af, |5]})

For functions o, f € L™, S, 3 is left invertible if and only if

ot [ 1o 101 5 ey (lo2 =182
essTmf — a3 — k]2 + — >0,

for some k € H*. By Corollary 3.2, if |p| = 1, then T, is left invertible if and
only if S, 1 is left invertible if and only if |[H,| < 1 (cf. [9], p. 203).

COROLLARY 3.9. Let ¢ € L™, |¢| =1. Then

inf
feH?, || f]l2=1 feL? | fllz

Proof. 1t follows from Corollary 3.2 that

Il = 18, (. int,_ IS071e)-

. 2 _ 1 _ 2
feHZI,Iﬁfsz=1 HT@f”Z =1 ”H(pH '
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It follows from Corollary 2.3 that

[18p,1ll* =1+ [ Hyl-
It follows from Corollary 3.6 that

. 2
el IS fI3 =1 1H.

These equalities prove the corollary. 1

COROLLARY 3.10. Ifa and b are invertible functions in H*°, then

© L (laP =1y
2af? |

where Ly ;3 denotes the Laurent operator on L2. The supremum is attained.

b
2k

_ , al? + |b)?
S L, z7%= s essinf |7—
l a,b 1/bH kelilpx 1rm a

2|al?

Proof. Since a and b are invertible functions H*, it follows that S/, is
invertible, and

-1 B -
SB/a,l - Sa,bLl/b

(cf. [6], p. 88 and [10], Theorem 3). Hence,

1505 L1 8l = 11855, I7% =

b/a,l HSE/a,lf”g‘

inf
FeL? |Ifllz=1
We apply Theorem 3.4 with a = b/a and 3 = 1. This completes the proof. 1
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