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Abstract. We prove that a contractive positive linear map which is approx-
imately multiplicative and approximately injective from C(X) into certain
unital simple C∗-algebras of real rank zero and stable rank one is close to a
homomorphism (with finite dimensional range) if a necessary K-theoretical
obstruction vanishes and dimension of X is no more than two. We also show
that the above is false it the dimension of X is greater than 2, in general.
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0. INTRODUCTION

Let X be a compact metric space. A contractive positive linear map ψ : C(X) →
A, where A is a C∗-algebra, is said to be δ-F-multiplicative, if

‖ψ(fg)− ψ(f)ψ(g)‖ < δ

for all f ∈ F . A homomorphism is certainly δ-F-multiplicative. The purpose of
this article is to study when such a δ-F-multiplicative contractive positive linear
morphism is actually close to a homomorphism. A classical problem is whether,
for any ε > 0 there is δ > 0 such that for any n and any pair of selfadjoint matrices
x, y ∈Mn(C) such that ‖x‖, ‖y‖ 6 1 and ‖xy− yx‖ < δ, there exists a commuting
pair of x′, y′ ∈Mn(C) of selfadjoint matrices with ‖x′ − x‖+ ‖y − y′‖ < ε. It was
an old open problem for decades in linear algebra and operator theory which was
solved affirmative recently (see [52]). This result is equivalent to the following: For
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any ε > 0 and any finite subset F ∈ C(D), where D is the unit disk, there is δ > 0
and a finite subset G ∈ C(D) satisfying: for any finite-dimensional C∗-algebra, A
and any δ-G-multiplicative contractive positive linear morphism ψ : C(D) → A,

there is a homomorphism h : C(D) → A (with finite-dimensional range) such that

‖ψ(f)− h(f)‖ < ε for all f ∈ F .

Perturbation of homomorphisms appear in many area of mathematics. Lim-
ited to our knowledge, we encounter almost multiplicative morphisms in operator
theory, classification of C∗-algebra extensions and more recently, classification of
nuclear C∗-algebras. In fact, the old problem mentioned above attracted many
researchers’ attention (see [1], [2], [10], [20], [31], [32], [41], [42], [52], [60], [64],
[65], [72], [75] and many more).

In the case that A is a unital purely infinite simple C∗-algebra, it is shown
([53]) that a δ-G-multiplicative contractive positive linear morphism L : C(X) → A

is close to a homomorphism on a given finite subset F ⊂ C(X), provided that δ
is small enough and G is large enough.

In general, however, a δ-G-multiplicative contractive positive linear mor-
phism, is not close to a homomorphism no matter how small δ is and how large
G is. This was first discovered by D. Voiculescu (see [74]). The K-theoretical
obstruction was later explained by T.A. Loring (see [60]). Therefore, what we
are hoping for is that a δ-G-multiplicative contractive positive linear morphism is
close to a homomorphism, provided that δ is sufficiently small and G is sufficiently
large, as well as the K-theoretical obstruction vanishes. Since every compact met-
ric space X is a subspace of a contractible space Ω, a contractive positive linear
morphism ψ : C(X) → A can always be viewed as a contractive positive linear
morphism from C(Ω) into A. Therefore, in general, some injectivity condition has
to be imposed so that we know which obstacle has to vanish.

Among other things, the main results are the following.

The Main Theorem. Let X be a compact metric space with dimension no
more than 2 and let F be a finite subset of (the unit ball of) C(X). For any ε > 0,
there exist a finite subset P of projections in P(C(X)), δ > 0, σ > 0 and a finite
subset G of (the unit ball of) C(X) such that, whenever A is a unital simple C∗-
algebra with real rank zero, stable rank one, weakly unperforated K0(A) and unique
normalized quasitrace and whenever ψ : C(X) → A is a contractive unital positive
linear map which is δ-G-multiplicative and is σ-injective with respect to δ and F
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and ψ∗(P) ∈ N then there exists a unital homomorphism ϕ : C(X) → A with
finite dimensional range such that

‖ψ(f)− ϕ(f)‖ < ε

for all f ∈ F .

Here ψ∗(P) ∈ N simply means that the KK-obstacle vanishes. P(C(X)), N
and σ-injectivity will be defined below.

In the following corollaries, A is the set of all unital simple C∗-algebras of
real rank zero, stable rank one, with weakly unperforated K0(A) and with a unique
normalized quasitrace.

Sometimes, however, we do not need to worry about injectivity.

Corollary M1. Let X be a compact metric space of dimension no more
than 2. For any ε > 0 and any finite subset F of C(X), there exist δ > 0 and
a finite subset P of P(C(X)), and a finite subset of C(X) such that whenever
A ∈ A, K1(A) = 0 and K0(A) is torsion free and whenever ψ : C(X) → A is a
contractive unital positive linear map which is δ-G-multiplicative and ψ∗(P) ∈ N ,
then there exists a unital homomorphism h : C(X) → A with finite dimensional
range such that

‖ψ(f)− h(f)‖ < ε

for all f ∈ F .

Corollary M2. For any ε > 0, there is δ > 0 so that, whenever A ∈ A, if
h1, h2 ∈ A are two selfadjoint elements with ‖h1‖, ‖h2‖ 6 1 and

‖h1h2 − h2h1‖ < δ

then there exists a pair of commuting selfadjoint elements s1, s2 ∈ A such that

‖h1 − s1‖ < ε and ‖h2 − s2‖ < ε.

Corollary M3. For any ε > 0, there is δ > 0 so that, whenever A ∈ A, if
u and v are two unitaries in A,

‖uv − vu‖ < δ and κ(u, v) = 0

then there exist commuting unitaries u1, v1 ∈ A such that

‖u− u1‖ < ε and ‖v − v1‖ < ε.
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(If K1(A) = 0, u1 and v1 can be required to have finite spectrum.) Further, if
K0(A) is a dimension group, then the condition that κ(u, v) = 0 can be replaced
by τ(κ(u, v)) = 0, where τ is the normalized quasitrace.

See [32] for the definition of κ(u, v) (also 2.1 in [49]).
It turns out, a little surprise to us, that, even with the injectivity and vanish-

ing KK-obstacle, a δ-G-multiplicative contractive positive linear morphism ψ from
a C(X) into C∗-algebra Amay not be close to a homomorphism when dim(X) > 3,
no matter how small δ is and how large G is. Please see Section 4 for higher dimen-
sion cases. The main technical lemma is stated in Section 1 which is extracted from
the proof in [52]. However, the version in this article is in a much more general
form and somewhat complicated because of topological complication. Those read-
ers who care more about matrices than KK-theory could simply ignore anything
related to KK-theory or K-theory. One can simply assume that all K-theoretical
obstacles vanish at least for the case that X is a compact subset of the plane
and algebras has no K1. We prove this lemma in Section 1 without proving three
lemmas which are needed for the proof. These three lemmas together with some
other related matters will be proved in Section 2. Section 3 contains the proof of
the main theorem and its corollaries. In Section 4, we show that, in general, the
main theorem does not hold for a space X with dimension greater than 2.

Here are some conventions which are needed in the rest of this paper.

0.1. Definition. Let A be a C∗-algebra, X be a compact metric space
and ϕ : C(X) → A be a homomorphism. Let B be the weak closure of ϕ(C(X))
in A∗∗, the enveloping W ∗-algebra of A. Let C be the C∗-algebra of all bounded
Borel functions on X. Then ϕ induces a homomorphism from C into B. Let S be a
Borel subset of X and κS be the characteristic function of S and pS be the image
of κS in B. We call pS the spectral projection (of ϕ) corresponding to the subset
S. Let O be an open subset of X and D be the hereditary C∗-subalgebra of A
generated by ϕ(h), where h(ξ) > 0 for all ξ ∈ O and h(ξ) = 0 for all ξ ∈ X \O and
h ∈ C(X). The projection pO is the open projection corresponding to the hereditary
C∗-subalgebra D.

0.2. Definition. Let ψ : C(X) → C be a homomorphism, where C is a
C∗-algebra. Let Ω be the compact subset such that

ker(ψ) = {f ∈ C(X) | f(ξ) = 0 for all ξ ∈ Ω}.

We will denote Ω by sp(ψ).

0.3. Definition. (cf. 1.2 of [58]) Let ψ be a contractive positive linear
map from C(X) to C∗-algebra A, where X is a compact metric space. Fix a finite
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subset F contained in the unit ball of C(X). For ε > 0, we denote by Σε(ψ,F)
(or simply Σε(ψ)) the closure of the set of those points λ ∈ X for which there is
a nonzero hereditary C∗-subalgebra B of A which satisfies

‖(f(λ)− ψ(f))b‖ < ε and ‖b(f(λ)− ψ(f))‖ < ε

for f ∈ F and b ∈ B with ‖b‖ 6 1. Note that if ε < σ, then Σε(ψ) ⊂ Σσ(ψ).
We say ψ is σ-injective with respect to δ and F , or σ-F-injective, if Σδ(ψ,F)

is σ-dense in X.
It follows from 1.12 in [53] that, for any ε > 0 and F , for any δ-G-contractive

positive linear map ψ, if δ is sufficiently small and G is sufficiently large, Σε(ψ,F)
is not empty.

It is important to know, by 1.17 in [53], that, for any 1 > σ > 0, with suf-
ficiently small δ and sufficiently large G, a δ-G-multiplicative contractive positive
linear morphism ψ : C(X) → A can be replaced by a ε-h(G)-multiplicative con-
tractive positive linear morphism ϕ : C(F ) → A which is σ-injective with respect
to ε and h(G), where F is a compact subset of X and h : C(X) → C(F ) is the
surjective map induced by the inclusion F → X (see Lemma 3.15).

0.4. Definition. Let B be a C∗-algebra and X be a compact metric space.
A homomorphism ψ : C(X) → B has finite dimensional range if (and only if)
there exist a finite subset {ξi}li=1 ⊂ X and a finite subset of mutually orthogonal
projections {pi}li=1 ⊂ B such that

ψ(f) =
l∑
i=1

f(ξi)pi for all f ∈ C(X).

0.5. Definition. Let X be a finite CW-complex and let A be a unital C∗-
algebra. Suppose that ϕ : C(X) → A⊗K (or ϕ : C0(X) → A⊗K if X is not com-
pact) is a homomorphism and ξ1, ξ2, . . . , ξm ∈ X are points in each (compact) con-
nected component of X. Let Y = X \{x1, . . . , xm}. Let ϕ0 : C0(Y ) → A⊗K be the
restriction of ϕ. Let [ϕ] be the element in KK(C(X), A) and let [ϕ0] be an element
in KK(C0(Y ), A). We denote by N ′(X,A) (or just N ′ if X and A are understood)
the set of those elements in KK(C(X), A) which are represented by those ϕ such
that [ϕ0] = 0. Given m mutually orthogonal projections p1, p2, . . . , pm ∈ A ⊗ K,

define ϕ′(f) =
m∑
i=1

f(ξi)pi for f ∈ C(X). Then [ϕ′] ∈ N ′. Conversely, if [ϕ] ∈ N ′,

let f1, f2, . . . , fm be projections in C(X) corresponding to each component of X,
and let ϕ(fi) = pi, i = 1, 2, . . . ,m; then [ϕ] − [ϕ′] = 0 in KK(C(X), A). In fact,
from the six-term exact sequence in KK-theory, the map from KK(C(X), A) into
KK(C0(Y ), A) maps both [ϕ] and [ϕ′] into zero. So they both are in the image
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of the map from KK(C(X)/C0(Y ), A). Note that C(X)/C0(Y ) is m copies of C
corresponding to the m components. From the choice of ϕ′, they are both from
the same element in KK(C(X), A).

Now let X be any compact metric space. Then C(X) = lim
n→∞

C(Xn), where

Xn is a finite CW-complex. There is a surjective map s : KK(C(X), A) →
lim
n→∞

KK(C(Xn), A). We denote by N ′ the set of those elements x in KK(C(X), A)

such that s(x) ∈ lim
n→∞

N ′(Xn, A) for any sequence of finite CW-complexes {Xn}.
Recall that KL(C(X), A) is the quotient of KK(C(X), A) by the subgroup

of pure extensions in Ext(K∗(C(X)),K∗−1(A)) (see [70]).
We denote by N the image of N ′ in KL(C(X), A).
We will write Γ(ϕ) = 0, if ϕ induces an element in N . If Y is an open

subset of X, and ϕ : C0(Y ) → A is a homomorphism, then we write Γ(ϕ) = 0,
if Γ(ϕ̃) = 0, where ϕ̃ is the unital homomorphism from C(Ỹ ) → A and Ỹ is the
one-point compactification of Y.

0.6. Definition. The standard definition of mod-p K-theory for C∗-alge-
bras as given by Schochet in [73], is

Ki(A; Z/n) = Ki(A⊗ C0(Cn)),

where Cn is the 2-dimensional CW-complex obtained by attaching a 2-cell to
S1 via the degree n map from S1 to S1 (notice that K0(C0(Cn)) = Z/nZ and
K1(C0(Cn)) = {0}). Let A be a C∗-algebra; following [18], we denote

K(A) =
⊕
i=0,1
n>0

Ki(A; Z/n).

By [18], there is an isomorphism from KL(C(X), A) onto HomΛ(K(C(X)),K(A)).
Note that

K0(A⊗ C(Cm × S1)) ∼= K0(A)⊕K1(A)⊕K0(A; Z/m)⊕K1(A; Z/m).

We define K(A)+ to be the semigroup of K(A) generated by K0(A⊗C(Cm×S1))+,
m > 2. There is an obvious surjective map from

⋃
m>0

K0(A⊗C(Cm×S1) onto K(A).

0.7. Let A be a C∗-algebra. Denote by P(A) the set of projections in⋃
m>0

M∞(A⊗ C(Cm × S1)). Let P be a finite subset in P(A). There exist a finite

subset G(P) ⊂ A and δ(P) > 0 such that if B is any C∗-algebra and ϕ : A → B

is a ∗-preserving linear map which is δ(P)-G(P)-multiplicative, then

‖((ϕ⊗ id)(p))2 − (ϕ⊗ id)(p)‖ < 1
4
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for all p ∈ P. Hence, for each p ∈ P, there is a projection q ∈ P(B) such that

‖(ϕ⊗ id)(p)− q‖ < 1
2
.

Furthermore, if q′ is another projection satisfying the same condition, then
‖q − q′‖ < 1, hence q is unitarily equivalent to q′. Let P be the image of P
in K(A). For each p ∈ P, we set ϕ∗([p]) = [q]. This defines a map ϕ∗ : P → K(B).

Let α : P → K(B). Suppose that there is a homomorphism ψ : C(X) →
Mk(B) for some integer k with finite dimensional range such that ψ∗ = α : P →
K(B). Then we write α(P) ∈ N .

The results of this paper were reported by the first named author at the 1995
West Coast Operator Algebra Seminar held at Eugene, Oregon. When this paper
was being finalized, there have been some related development. First, Friis and
Rørdam obtained a short proof of the result in [52] (see [33]) and then, Terry Loring
gave further interesting generalizations ([63]). We consider only those simple C∗-
algebra of real rank zero with unique normalized quasitrace. The case when the
C∗-algebras are purely infinite and simple is considered in [53]. For more general
finite simple C∗-algebras, similar results will appear in [57].

1. A TECHNICAL LEMMA

1.1. For any ε > 0, and a fixed finite subset F ⊂ C(X), let δc(ε,F) > 0
such that

|f(x)− f(y)| < ε

for all f ∈ F and for all x, y ∈ X with dist (x, y) < δc(ε,F).
Suppose that ϕ : C(X) → A is a monomorphism, where A is a C∗-algebra

of real rank zero and stable rank one and X is a compact metric space.
Suppose that there are ideals

A = I0 ⊃ I1 ⊃ · · · ⊃ In ⊃ In+1 = 0,

where Ii+1 is an ideal of Ii. We denote by πi : A→ A/Ii the quotient map.
We will also use πi for the quotient map from ML(A) onto ML(A/Ii) for any

integer L > 0.
By [77], if q ∈ A/Ii is a projection, there is a projection p ∈ A such that

πi(p) = q. We will use this fact repeatedly without further explanation.
For each i, there is a monomorphism ϕi : C(Xi) → A/Ii induced by ϕ, i =

1, 2, . . . , n+ 1, where Xi are compact subsets of X. (Note Xn+1 = X.)



224 Guihua Gong and Huaxin Lin

Let Y1 = X1, Yi+1 = Xi+1 \Xi and Zi+1 = X \Xi. Let si : C0(Zi) → C0(Yi)
be the natural surjection.

There are also monomorphisms ψi : C0(Yi) → Ii−1/Ii induced by ϕ. Note
that C0(Yi) is an ideal of C(Xi) and C0(Zi) is an ideal of C(X). To simplify the
notation, we will sometime use ψi for ψi ◦ si.

We also denote by C(X)1 the unit ball of C(X).

Condition (A). A map ψi : C0(Yi) → Ii−1/Ii is said to satisfy condition
(A), if, for any finite subset F ⊂ C0(Yi), for any ε > 0, there is a homomorphism
h : C0(Yi) → Ii−1/Ii such that

‖ψ(f)− h(f)‖ < ε

for all f ∈ F , where h(f) =
m(i)∑
k=1

f(ξ(i)k )e(i)k , where ξk are points in Yi.

(So far are just notations).

1.2. Technical Lemma. Let X be a compact metric space with covering
dimension no more than 2. Fix ε > 0 and a finite subset F ⊂ C(X). Suppose that,
for each i, there are projections e ∈ Ii−1 such that

p⊕ p⊕ · · · ⊕ p <∼ e

for any number of copies of any projection p ∈ Ii. We also assume the following:
(a) For any λ ∈ Xi, any neighborhood O(λ) and any k, there are mutually

orthogonal projections e1, e2, . . . , ek ∈ HO(λ) such that

p⊕ p⊕ · · · ⊕ p <∼ em, m = 1, 2, . . . , k

for any number of copies of any projection p ∈ Ii, where HO(λ) is the hereditary
C∗-subalgebra generated by ϕ(h), where h ∈ C(X) with h > 0 in O(λ) and zero
outside O(λ).

(b) (no KK-obstacle) Γ(ϕi) = 0 for all i.
(c) The map ϕ1 : C(Y1) → A/I1 satisfies Condition (A).
(d) The maps ψi : C0(Yi) → Ii−1/Ii satisfy Condition (A);

or
(d′) Γ(ψi) = 0 and

dist (Xi, ξ) <
δc

(
ε
4 ,F

)
2

for all ξ ∈ Xi+1,

(either (d) or (d′)).
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(e) K1(J/I) = 0 and K0(J/I) is torsion free for any pair of ideals J ⊃ I ⊃
In, and ψn+1 satisfies (d′).

Then there are mutually orthogonal projections p1, p2, . . . , pm ∈ A such that

∥∥∥ϕ(f)−
m∑
k=1

f(λk)pk
∥∥∥ < ε,

for all f ∈ F , where λk are (fixed) points in X.

To prove this we need three lemmas.

1.3. Lemma (Dig). (Lemma 2.5 plus Lemma 2.6 in [52]) For any ε > 0,
any η > 0, any positive numbers a2, . . . , an, and any finite subset F of C(X)1,
there are δ = δdig(ε, η,F) > 0, a finite subset G = Gdig(ε, η,F) ⊂ C(X)1, a finite
subset {λ(i)

k } ⊂ Yi which is η-dense in Yi and finitely many mutually orthogonal
projections e(i)k ∈ Ii−1 (I0 = A) such that

(i)

∥∥∥ϕ(f)−
n∑
i=1

ψ
(i)
1 (f)−

(
1−

n∑
i=1

ei

)
ϕ(f)

(
1−

n∑
i=1

ei

)∥∥∥ < ε.

(ii)

∥∥∥(
1− πi

( n∑
j=1

ej

))
ϕi(fgi)− ϕi(fgi)

(
1− πi

( n∑
j=1

ej

))∥∥∥ < ε

for all f ∈ G, where
∑
k

e
(i)
k = ei and ψ(i)

1 (f) =
∑
k

f(λ(i)
k )e(i)k , and where 0 6 gi 6 1,

gi(t) = 0 if dist (t,Xi−1) < ai/4 and gi(t) = 1 if dist (t,Xi−1) > ai/2, i = 2, . . . , n;
(iii) there is b > 0 such that, for any 0 < β < b, Λi(g

(i)
β f) = Λi(g

(i)
β )Λi(f) for

all f ∈ C(X), where 0 6 gβ 6 1, g(i)
β (t) = 0 if dist (t,Xi−1) < β/2 and g(i)

β (t) = 1
if dist (t,Xi−1) > β, i = 1, 2, . . . , n, and Λi = (1− πi(ei))ϕi(1− πi(ei)); and

(iv) p⊕ p⊕ · · · ⊕ p <∼ e
(i)
k for any copies of any projection p ∈ Ii.

If ψi satisfies Condition (A), we can require
(v)

∥∥∥(1− πi(ei))ϕi(fgi)(1− π(ei))−
m(i)∑
k=1

fgi(λ
(i)
k )d(i)

k )
∥∥∥ < ε

for all f ∈ F , {λ(i)
k } is η-dense in Yi, and

p⊕ p⊕ · · · ⊕ p <∼ d
(i)
k
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for any copies of any projection p ∈ Ii.
(vi) Furthermore, if∥∥∥(

1−πi
( n∑
j=1

ej

))
ϕi(f)

(
1−πi

( n∑
j=1

ej

))
⊕H1(f)−H2(f)

∥∥∥ < δ

for all f ∈ G, where H1 : C(Xi) → MLi
(A/Ii) and H2 : C(Xi) → MLi+1(A/Ii)

are homomorphisms with finite dimensional range, then there are finitely many
mutually orthogonal projections {pk} in MLi+1(A/Ii) with

p⊕ p⊕ · · · ⊕ p <∼ pk

for any copies of any projection p ∈ Ii, and a finite subset {ξk} in Xi which is
η-dense in Xi such that∥∥∥(

1− πi

( n∑
j=1

ej

))
ϕi(f)

(
1− πi

( n∑
j=1

ej

))
⊕H1(f)−

∑
k

f(ξk)πi(pk)
∥∥∥ < ε

for all f ∈ F .

1.4. Lemma (Ap). (cf. 2.4 and 2.6 in [52]) For any ε > 0, σ > 0, a finite sub-
set F ⊂ C(X)1, and a2, . . . , an positive numbers there are δ = δap(ε, σ, {ai},F) >
0, a finite subset G = Gap(ε, σ, {ai},F) ⊂ C(X)1 and positive numbers b2, . . . , bn
satisfying the following:

(i) 0 6 gj , g
′
j 6 1 in C(X), gj(t) = 0 if dist (t,Xj−1) < aj/4, gj(t) = 1 if

dist (t,Xj−1) > aj/2;
(ii) g′j(t) = 0 if dist (t,Xj−1) < bj/4, g′j(t) = 1 if dist (t,Xj−1) > bj/2,

j = 2, . . . , n, and g1 = g′1 = 1;
(iii) if E is a projection in A and

‖ϕj(fg′j)− (1− πj(E))ϕj(fg′j)(1− πj(E))− h′(fg′j)‖ < δ

for all f ∈ G, where h′ : C(X) → πj(E)(Ij−1/Ij)πj(E) is a homomorphism
with finite dimensional range, then there are homomorphisms ψ(j)

2 : C0(Yj) →
QMLj+1(Ij−1)Q and ψ

(j)
3 : C(X) → MLj

(Ij−1) with finite dimensional range
such that

‖(1− πj(E))ϕj(fgj)(1− πj(E))⊕ πj ◦ ψ(j)
3 (fgj)− πj ◦ ψ(j)

2 (fgj)‖ < ε

for all f ∈ F ,

ψ
(j)
2 (fgi) =

m(j)∑
k=1

f(ζ(j)
k )q(j)k and ψ

(j)
3 (f) =

∑
k

f(ξk)d′k
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where {ζ(j)
k } is σ-dense in Yj, q

(j)
k are mutually orthogonal projections in

QMLj+1(Ij−1)Q with
p⊕ p⊕ · · · ⊕ p <∼ q

(j)
k

for any copies of projections p in Ij, Q = diag ((1 − E), 1, 1, . . . , 1), and ξk ∈ Yj

and gj(ξk) = 1 (so ψ
(j)
3 (fgj) = ψ

(j)
3 (f), that is that ξk is at least aj/2 distance

from Xj−1).

1.5. Lemma (Ab). (Lemma 2.7 and 2.9 in [52]) Let A be a unital C∗-algebra
of real rank zero and I be an ideal of A with K1(I) = 0 and torsion free K0(I),
ψ : C(X) → A be a unital positive linear map and π ◦ ψ be a unital positive
map from C(Y ) → A/I, where π : A → A/I is the quotient map and Y is a
compact subset of X. For any ε > 0 and a finite subset F ⊂ C(X)1, there exists
δ = δab(ε,F) > 0, G = Gab(ε,F) ⊂ C(X)1, a finite subset P = Pab(Y, ε,F) ⊂
P(C(Y )) and a = aab(ε,F) > 0 satisfying the following: if

(i) ‖π ◦ ψ(f) − h1(f)‖ < δ for all f ∈ G, where h1(f) =
m∑
k=1

f(λ′k)π(dk),

{λ′k} is δc(ε/8,F)-dense in Y and {dk} are mutually orthogonal projections in A

with p⊕ p⊕ · · · ⊕ p <∼ dk for any copies of any projections p ∈ I;
(ii) ψ(gβf) = ψ(gβ)ψ(f) for all f ∈ C(X) and 0 < β < a; and
(iii) ‖ψ(fga/4) − h′(fga/4)‖ < δ (0 6 gd 6 1, gd(t) = 0, if dist (t, Y ) < d/4

and gd(t) = 1, if dist (t, Y ) > d/2) for all f ∈ G, where h′ : C0(X \ Y ) is a
homomorphism with finite dimensional range;

(iv) ‖ψ(fg)− ψ(f)ψ(g)‖ < δ for all f ∈ G; and
(v) (no KK-obstacle) ψ∗(P) ∈ N .

Then there exists a homomorphism h2 : C(X) → A with finite dimensional range
such that

‖ψ(f)− h2(f)‖ < ε

for all f ∈ F .

We will prove these lemmas in the next section.

1.6. Proof of Technical Lemma. We may assume that F ⊂ C(X)1. We will
apply Lemma 1.3 and repeatedly apply Lemma 1.5 and Lemma 1.4.

To apply these lemmas repeatedly, we let X be the same as in Lemma 1.5.
We note that, in Lemma 1.5, δ and G do not depend on Y (but P does). We first
let δ1 = δab(ε/4,F)/4, G′1 = Gab(ε/4,F) in Lemma 1.5, let δ′1 = δc(ε/8,F),
let δ′′1 = δdig(δ′1, δ1,G′1)/4 and let G′′1 = Gdig(δ′1, δ1,G′1) in Lemma 1.4. Then
let δi+1 = δab(δ′′i ,G′′i )/4, G′i+1 = Gab(δ′′i+1,G′′i ), δ′i+1 = δc(δ′′i /8,G′′) and δ′′i+1 =
δdig(δ′i, δi,G′i)/4, G′′i+1 = Gdig(δ′i, δi,G′i) i = 1, 2, . . . , n. We may assume that δi+1 6

δi and δ1 6 ε/4. Set d1 = min{δ′i, δ′i, δ′′i | i = 1, 2, . . . , n} and ai = aab(δi,G′i)/4,
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i = 2, . . . , n and a1 = 0. Further, denote Pi = Pab(Xi, d1,F), i = 1, 2, . . . , n. Let

G1 =
n⋃
i

G′i ∪ F .

To apply Lemma 1.4 later, we let d2 = min(d1, δ(ap)(d1, d1, ai,G1)), G2 =
G(ap)(d1, d1, ai, G1) ∪ G1 ∪ Gdig(d1, d2,G1) and b1, b2, . . . , bn be as in Lemma 1.4.

Let gi ∈ C(X) be defined as follows: gi(t) = 0 if dist (t,Xi) < bi/4, gi(t) = 1,
if dist (t,Xi) > bi/2.

(Now we dig a projection E.)
By Lemma 1.3, there are finite subsets {λ(i)

k } ⊂ Yi which are δc(ε/4,F)-dense
in Yi and finitely many mutually orthogonal projections e(i)k ∈ Ii−1 (here I0 = A)
such that ∥∥∥ϕ(f)−

n∑
i=1

ψ
(i)
1 (f)−

(
1−

n∑
i=1

ei

)
ϕ(f)

(
1−

n∑
i=1

ei

)∥∥∥ < ε

4
,

∥∥∥(1− πi

( n∑
i=1

ei

)
ϕi(fgi)− ϕi(fgi)

(
1− πi

( n∑
i=1

ei

))∥∥∥ < ε

4

for all f ∈ G2, where
∑
k,i

e
(i)
k = E, ψ(i)

1 (g) =
∑
k=1

g(λ(i)
k )e(i)k , and

p⊕ p⊕ · · · ⊕ p <∼ e
(i)
k

for any copies of any projection p ∈ Ii, ϕi(g(i)
β f) = ϕi(g

(i)
β )ϕi(f) for all f ∈ C(X)

and 0 < β < min
i
{ai}, where g(i)

β are as in Lemma 1.3, and if ψi satisfies Condition

(A), then

∥∥∥(1− πi(E))ψi(fgi)(1− πi(E))−
n(i)∑
k=1

fgi(ζ
(i)
k )πi(q

(i)
k )

∥∥∥ < d2

for all f ∈ G1, where {ζ(i)
k } is d1-dense in Yi, and q

(i)
k are mutually orthogonal

projections in Ii−1 and
p⊕ p⊕ · · · ⊕ p <∼ q

(i)
k

for any copies of any projection p ∈ Ii. Further, if

∥∥∥(
1− πi

( n∑
i=1

ei

))
ϕi(f)

(
1− πi

( n∑
i=1

ei

))
⊕H1(f)−H2(f)

∥∥∥ < εdig(d1, d2,G1)

for all f ∈ G2, and for some homomorphisms H1 : C(Xi) → MLi(A/Ii) and
H2 : C(Xi) → MLi+1(A/Ii) with finite dimensional range, then there are some
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finitely many mutually orthogonal projections {pk} in MLi+1(A/Ii) with and {ξk}
is d1-dense in Xi and

p⊕ p⊕ · · · ⊕ p <∼ pk

for any copies of any projection p ∈ Ii, and {ξk} is d1-dense in Xi such that

∥∥∥(
1− πi

( n∑
i=1

ei

))
ϕi(f)

(
1− πi

( n∑
i=1

ei

))
⊕H1(f)−

∑
k

f(ξk)pk
∥∥∥ < d2

for all f ∈ G1. Furthermore, with possibly smaller d1, since Γ(ϕk) = 0, we may
assume that (1− πk(E))ϕi(1− πk(E))(Pk) ∈ N for k = 1, 2, . . . , n.

To distinguish the cases (d) and (d′), we use i for the case (d) and j for the
case (d′).

By Lemma 1.4, for each j, there is a homomorphism ψ
(j)
2 : C0(Yj) →

QMLj+1(Ij)Q with finite dimensional range and ψ
(j)
3 : C(X) → MLj

(Ij) with
finite dimensional range (Q = diag ((1− E, 1, 1, . . . , 1)) such that

‖(1− πj(E))ϕj(fgi)(1− πj(E))⊕ πi ◦ ψ(j)
3 (fgj)− πi ◦ ψ(j)

2 (fgj)‖ < δ2

for all f ∈ G2 and

ψ
(j)
2 (g) =

m(j)∑
k=1

g(ζ(j)
k )πj(q

(j)
k )

for all g ∈ C0(Yj) with {ζ(j)
k } d1-dense in Yj , and

ψ
(j)
3 (f) =

n(j)∑
k=1

f(ξ(j)k )d(j)
k

with ξ
(j)
k ∈ Yj and gj(ξ

(j)
k ) = 1, where {d(j)

k } and {q(j)k } are mutually orthogonal
projections in MLj+1(Ij−1) such that

p⊕ p⊕ · · · ⊕ p <∼ q
(j)
k

for any number of copies of projection p ∈ Ij .
Let Φ(g) = ϕ(g)⊕

∑
j

ψ
(j)
3 (g) for g ∈ C(X). We would remind to the reader

that πk(ei) = 0 if i > k and πk ◦ ψ(j)
3 = 0 if k < j.

Now we will apply Lemma 1.5 repeatedly.
Note that since (1−πm(E))ϕm(1−πm(E))(Pm) ∈ N , we have (1−πm(E))πm

◦ Φ(1− πm(E))(Pm) ∈ N .
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We also note that

(1− πi(E))πi ◦ Φ((1− πi(E))(fgi) = (1− πi(E))ψi(fgi)(1− πi(E))

and

(1−πj(E))πj ◦Φ((1−πj(E))(fgj) = (1−πj(E))ψj(fgj)(1−πj(E))⊕πj ◦ψ(j)
3 (fgj)

for all f ∈ G2.

Suppose that ψ2 satisfies Condition (A), i.e., 2 is one of i.
Working in the A/I2, applying Lemma 1.5 to (1− π2(E))π2 ◦ Φ(1− π2(E))

(with the ideal I = I1/I2), we obtain a homomorphism h′1 : C(X2) → (1 −
π2(E))A/I2(1− π2(E)) with finite dimensional range such that

‖(1− π2(E))ϕ2(f)(1− π2(E))− h′1(f)‖ < δ′′n−1

for all f ∈ G′′n−1. By the way we dig, we can find h1 so that

‖(1− π2(E))ϕ2(f)(1− π2(E))− h1(f)‖ < δn−1

for all f ∈ G′n−1, where h1(f) has the form
∑
k

f(ξk)π2(pk), where the finite subset

{ξk} is d1-dense in Xi and {pk} are finite many mutually orthogonal projections
such that

p⊕ p⊕ · · · ⊕ p <∼ pk

for any copies of any projections in I2.
Suppose that 2 is one of j (the case (d′)).
Still working inA/I2 and applying Lemma 1.5 to (1−π2(E))◦Φ(1−π2(E)), we

obtain a homomorphism h′1 : C(X2) → Q2ML1(A/I2)Q2, where Q2 ∈ML1(A/I2)
with Q2 = diag (1− E, 1, 1, . . . , 1), with finite dimensional range such that

‖(1− π2(E))π2 ◦ Φ(f)(1− π2(E))− h′1(f)‖ < δ′′n−1

for all f ∈ G′′n−1.

By the way we dig, we can further assume that

‖(1− π2(E))π2 ◦ Φ(f)(1− π2(E))− h(f)‖ < δ′n−1

for all f ∈ G′n−1, where h1(f) has the form
∑
k

f(ξk)π2(pk), where the finite subset

{ξk} is d1-dense in Xi and {pk} are finite many mutually orthogonal projections
such that

p⊕ p⊕ · · · ⊕ p <∼ pk
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for any copies of any projections in I2.
We then apply Lemma 1.5 to (1 − π3(E)π3 ◦ Φ(1 − π3(E). If 3 is one of

i, we obtain a homomorphism h2 : C(X3) → Q3ML1+1(A/I3)Q (Q = diag (1 −
π3(E), 1, . . . , 1) ∈ML1+1(A/I3)) with finite dimensional range such that

‖(1− π3(E))π3 ◦ Φ(f)(1− π3(E))− h2(f)‖ < δ′n−2

for all f ∈ G′n−2 (here L1 could be just zero if 2 is also one of i). If 3 is one
of j, we obtain a homomorphism h2 : C(X3) → Q3ML1+L2+2(A/I3)Q3 (Q3 =
diag (1− π3(E), 1, 1, . . . , 1) ∈ML1+L2+2) with finite dimensional range such that

‖(1− π3(E))π3 ◦ Φ(f)(1− π3(E))− h2(f)‖ < δn−2

2

for all f ∈ Gn−2. Furthermore, in both cases (d) and (d′) (by the way we dig),
h2(f) has the form

∑
k

f(ξk)pk, where finite subset {ξk} is d1-dense in Xi and {pk}

are finite many mutually orthogonal projections such that

p⊕ p⊕ · · · ⊕ p <∼ pk

for any copies of any projections in I3.
We will repeat this argument. Note that for j = n, we apply Corollary 2.15

(which is simpler than Lemma 1.5).
By repeating this argument, we obtain a homomorphism h : C(X) →

QML(A)Q with finite dimensional range such that

‖(1− E)Φ(f)(1− E)− h(f)‖ < ε

4

for all f ∈ G4, or∥∥∥(1− E)ϕ(f)(1− E)⊕
∑
j

ψ
(j)
3 (f)− h(f)

∥∥∥ < ε

4

for all f ∈ F .
Since {λ(i)

k } are δc(ε/4,F)-dense in Yi, if we replace ξ(j)k by nearest points in
{λ(j)

k } in the definition of ψ(j)
3 and denote it by ψ(j)′

3 , we have∥∥∥(1− E)ϕ(f)(1− E)⊕
∑
j

ψ
(j)′

3 (f)− h(f)
∥∥∥ < ε

2

for all f ∈ F . To save the notation, we may write

ψ
(j)′

3 (f) =
∑
k

f(λ(j)
k )d(j)

k
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with the possibility that some of d(j)
k being zero. By our construction, d(j)

k
<∼ e

(j)
k

for all k and j. There is a unitary U such that

U∗d
(i)
k U 6 e

(i)
k .

We have∥∥∥(1− E)ϕ(f)(1− E)⊕
∑
k

f(λ(i)
k )U∗d(i)

k U − U∗h(f)U
∥∥∥ < ε

4
+
ε

4

for all f ∈ F .
Since ∥∥∥ϕ(f)−

∑
i,k

f(λ(i)
k )e(i)k − (1− E)ϕ(f)(1− E)

∥∥∥ < ε

4
,

we obtain∥∥∥ϕ(f)−
∑
i,k

f(λ(i)
k )(e(i)k − U∗d

(i)
k U)− U∗h(f)U

∥∥∥
6

∥∥∥ϕ(f)−
∑
i,k

f(λ(i)
k )e(i)k − (1− E)ϕ(f)(1− E)

∥∥∥
+

∥∥∥∑
i,k

f(λ(i)
k )(e(i)k − U∗d

(i)
k U)⊕ (1− E)ϕ(f)(1− E)⊕

∑
k

f(λ(i)
k )U∗d(i)

k U

−
∑
i,k

f(λ(i)
k )(e(i)k − U∗d

(i)
k U)⊕ U∗h(f)U

∥∥∥
<
ε

4
+
ε

4
+
ε

4
< ε

for all f ∈ F .

2. LEMMAS

2.1. Let X be a compact metric space. There is a dimension map d :
K0(C(X)) → C(X,Z). We denote by ker dX the kernel of d.

2.2. Lemma. Let X be a compact metric space with dim(X) 6 2, Y ⊂ X be
a compact subset and let s : C(X) → C(Y ) be the canonical surjective map. Then
s∗ maps ker dX onto ker dY .

Proof. There are finite CW-complexes {Xn} such that C(X) = lim
n→∞

C(Xn)

and ker dX = lim
n→∞

ker dXn . Write ker dXn = K̃0(C(Xn). Let BU = lim
n→∞

BU(n),
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where each BU(n) is a classifying space of the complex orthogonal unitaries. Then,
we have ker dX = lim

n→∞
K̃0(C(Xn)) = [X,BU ], the homotopy equivalent classes of

continuous functions to BU. It follows from [4] that for any compact subset Y of
X, where X is a compact subspace of Rn, every continuous map f : Y → BU can
be extended to a continuous map f̃ : X → BU if and only if Hq(X,Z) = 0 when
q > 3. Since dim(X) 6 2, Hq(X,Z) = 0 when q > 3. Therefore a continuous map
f : Y → BU can be extended to a continuous map f̃ : X → BU. This implies that
s∗ maps ker dX onto ker dY .

2.3. Lemma. Let dim(X) 6 2, Y a compact subset of X, A has real rank
zero and stable rank one and I be an ideal of A such that K1(A) = K1(I) = 0,
K0(A) and K0(I) are torsion free. For any finite subset P ⊂ P(C(Y )), there are
δ > 0, a finite subset G ⊂ C(X) and a finite subset P1 ⊂ P(C(X)) (none of them
depend on A) satisfying: if ψ = ψ′ ◦ s ⊕ h : C(X) → A is a δ-G-multiplicative
contractive positive linear morphism with h being a homomorphism with finite
dimensional range, s : C(X) → C(Y ) the surjective map and ψ′ : C(Y ) → eIe

being a δ-G-multiplicative contractive positive linear morphism such that

ψ∗(P1) ∈ N ,

then (ψ′)∗(P) ∈ N .

Proof. Since K1(A) = K1(I) = 0, K0(A) and K0(I) are torsion free, and
K1(C(Y )) is torsion free, we compute that KL(C(Y ), eIe) = Hom(K0(C(Y )),
K0(eIe)). Therefore it is sufficient to show that, for any finite set P of projections
in M∞(C(Y )), there is a finite subset P1 ∈ M∞(C(X)), and there are G and δ

such that if ψ = ψ′ ◦s⊕h′ : C(X) → A is a δ-G-multiplicative contractive positive
linear morphism with h′ being a homomorphism with finite dimensional range,
such that

ψ∗(P1) ∈ N ,

(see 0.7 for notation). Then

(ψ′)∗ = h∗ : P → K0(eIe),

where h : C(Y ) → eIe is a homomorphism with finite dimensional range.
Now write C(Y ) = lim

n→∞
C(Yn), where Yn are finite CW-complexes and the

maps from C(Yn) to C(Y ) are surjective. So we may assume that Y is a compact
subset of Yn for each n.

Suppose that F is a finite CW-complex and that f1, f2, . . . , fl are mutually
orthogonal projections in C(F ) which represent all connected components of F.We



234 Guihua Gong and Huaxin Lin

claim that if α : K0(F ) → K0(eIe) maps ker dY into zero and α([fi]) can be repre-
sented by l mutually orthogonal projections in eIe, then there is a homomorphism
h1 : C(F ) → eIe such that

α = (h1 ⊗ id)∗.

Since K0(C(F )) is finitely generated, we may write K0(C(F )) = C(F,Z)⊕ ker dF .
Let gi be mutually orthogonal projections in eIe such that [gi] = α(fi), i =
1, 2, . . . , l and ξi be a point in the ith component corresponding to fi. Define

h1(f) =
l∑
i=1

f(ξi)gi for all f ∈ C(F ).

Then (h1)∗|ker dF = 0 and (h1)∗ = α. This proves the claim. (Note that the
requirement that α([fi]) can be represented by l mutually orthogonal projections
in eIe is guaranteed by choosing large enough set G and small enough δ.)

Given any finite subset P ⊂ M∞(C(Y )), without loss of generality, by re-
placing projections by equivalent ones, we may assume that P ⊂ Mk(C(Yn)) for
some n and k. Let f1, f2, . . . , fl be mutually orthogonal projections in C(Yn) which
represent all connected components of Yn. We further assume that each of these
component intersects with Y. With smaller δ and larger G, we may assume that
(ψ′)∗(fi), i = 1, 2, . . ., defines l elements in K0(eIe) which can be represented by
l mutually orthogonal projections. We may further assume that, since K0(C(Yn))
is finitely generated, (ψ′)∗ gives a homomorphism α : K0(C(Yn)) → K0(eIe).

Let j : C(Yn) → C(Y ) be the map in the direct limit. Then j∗(ker dYn
) ⊂

ker dY . Choose a finite subset P1 ∈ M∞(C(X)) such that s∗(P1) generates a
subgroup which contains j∗(ker dYn). This is possible because of Lemma 2.2 and
because that ker dYn

is finitely generated. With a sufficiently large P1, sufficiently
large G and sufficiently small δ, ψ∗(P1) ∈ N (notation as in 0.7) implies that

(ψ)∗(s−1
∗ (j∗(ker dYn

)) = 0.

Thus (ψ′ ◦ j)∗(ker dYn) = 0 (we use the injectivity of the map K0(eIe) → K0(A)).
So, by the claim, there is a homomorphism h1 : C(Yn) → eIe with finite dimen-
sional range such that

(ψ′ ◦ j)∗ = (h1)∗ : P → K0(eIe).

Write h1(f) =
l∑
i=1

f(ξi)gi for f ∈ C(Yn). Note that we may assume that there are

ξi ∈ Y since each component intersects with Y. So h(f) =
l∑
i=1

f(ξi)gi for f ∈ C(Y )

defines a homomorphism from C(Y ) into eIe and

(ψ′)∗|P = h∗|P.

From the reduction of the beginning of the proof, this ends the proof.
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2.4. Lemma. Let X be a compact metric space with dimension no more
than two, A be a (unital) C∗-algebra and I be an ideal of A with K1(A/I) = 0 and
torsion free K0(A/I), and let ϕ : C(X) → A be a homomorphism. Suppose that
Y = sp (π ◦ ϕ), where π : A→ A/I is the quotient map. Denote ψ : C(Y ) → A/I

be the monomorphism induced by ϕ. If Γ(ϕ) ∈ KL(C(X), A) ∩ N then Γ(ψ) ∈
KL(C(Y ), A/I) ∩N .

Proof. We have the following commutative diagram:

K0(C(X)) −→ K0(A/I)
↓ ↗

K0(C(Y ))
.

Since Γ(ϕ) ∈ KL(C(X)) ∩ N , (π ◦ ϕ)∗(ker dX) = 0. Thus, by Lemma 2.2,
(π ◦ ϕ)∗(ker dY ) = 0. We note that, since K1(A/I) = 0 and K0(A/I) is tor-
sion free, KL(C(Y ), A/I) = Hom(K0(C(Y ),K0(A/I)). Now the argument used in
Lemma 2.3 shows that

Γ(ψ) ∈ KL(C(Y ), A/I) ∩N .

2.5. Lemma. Let A be a C∗-algebra of real rank zero and stable rank one
and H be a hereditary C∗-subalgebra of A. Suppose that Ki(A/I(H)) is torsion
free, where I(H) is the ideal generated by H and i = 0, 1. Let B = C(Cn × S1).
Then the map from K0(H ⊗B) → K0(A⊗B) is injective.

Proof. We first assume that H = I is an ideal of A. Since A and I have real
rank zero and stable rank one, the map from K0(I) → K0(A) is injective. It follows
from 2.1 in [51] that the map from K1(I) → K1(A) is also injective. Therefore we
have a long exact sequence

0 → Tor(Ki(I),Kj(B)) → Tor(Ki(A),Ki(B)) → Tor(Ki(A/I),Kj(B))

→ Ki(I)⊗Kj(B) → Ki(A)⊗Kj(B) → Ki(A/I)⊗Kj(B) → 0

which gives two short exact sequences

0 → Tor(Ki(I),Kj(B)) → Tor(Ki(A),Kj(B)) → 0

0 → Ki(I)⊗Kj(B) → Ki(A)⊗Kj(B) → Ki(A/I)⊗Kj(B) → 0.

Using Kunneth formula, we obtain

0 →
1⊕
i=0

Ki(I)⊗Ki(B) → K0(I ⊗B) →
1⊕
i=0

Tor(Ki(I),Ki+1(B)) → 0

↓ ↓ ↓ ↓ ↓

0 →
1⊕
i=0

Ki(A)⊗Ki(B) → K0(A⊗B) →
1⊕
i=0

Tor(Ki(A),Ki+1(B)) → 0.
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Since the left and the right arrows are injective, as we have proved, by Lemma 2.5,
the middle one is injective.

Now let e be a projection in A. We will show that the map K0(eAe⊗B) →
K0(A ⊗ B) is injective. Let Ie be the ideal of A generated by e. From what has
been proved, it suffices to show that the map K0(eAe ⊗ B) → K0(Ie ⊗ B) is
injective. Note that the ideal of Ie ⊗ B generated by eAe ⊗ B is Ie ⊗ B. So the
injectivity follows from 5.3 in [30]. This shows that Lemma 2.5 holds for unital
hereditary C∗-subalgebras. To get the general case, we note, since any hereditary
C∗-subalgebra H of A has an approximate identity consisting of projections, that
H ⊗B has an approximate identity consisting of projections.

2.6. Lemma. Let A be a unital C∗-algebra of real rank zero and stable rank
one, and I be an ideal. Suppose that d ∈ A is a projection such that

p⊕ p⊕ · · · ⊕ p <∼ d

for any number of copies of any projection p ∈ I and e ∈ A is another projection
with e− d ∈ I. Then

p⊕ p⊕ · · · ⊕ p <∼ e

for any number of copies of any projection p ∈ I.

Proof. Note that I has the real rank zero. Let {q(1)n } and {q(2)n } be approx-
imate identities of dId and (1− d)I(1− d) consisting of projections, respectively.
Set qn = q

(1)
n + q

(2)
n . Then {qn} is an approximate identity for A consisting of

projections and qnd = dqn for all n. Since e− d ∈ I, there is n such that

‖(e− d)(1− qn)‖ <
1
4
.

Note that d1 = (1− qn)d(1− qn) is a projection, d1 6 d and d− d1 ∈ I. Thus

p⊕ p⊕ · · · ⊕ p⊕ (d− d1) <∼ d

for any number of copies of any projection p ∈ I. Since A has real rank zero and
stable rank one,

p⊕ p⊕ · · · ⊕ p <∼ d1

for any number of copies of any projection p ∈ I. Since

‖e(1− qn)e− d1‖ <
1
2
,

there is a projection e1 6 eAe such that

‖e1 − d1‖ < 1.

This implies that d1
<∼ e.
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2.7. Lemma. Let A be a C∗-algebra of real rank zero and stable rank one,
I be an ideal of A, ϕ : C(X) → A be a homomorphism, and π : A → A/I be the
quotient map. Let X1 = sp (π◦ϕ). Suppose that, for any λ ∈ X1, any neighborhood
O(λ) and k, there are mutually orthogonal projection e1, e2, . . . , ek 6 HO(λ) such
that

p⊕ p⊕ · · · ⊕ p <∼ em, m = 1, 2, . . . , k

for any number of copies of any projection p ∈ Ii, where HO(λ) is the hereditary C∗-
subalgebra ϕ(h), where h ∈ C(X) with h > 0 in O(λ) and zero outside O(λ). Then,
for any ε > 0, σ > 0 and a finite subset F ∈ C(X), there is η = η(ε, σ,F) > 0
and a finite subset G = G(ε, σ,F) of C(X) such that, if

‖π ◦ ϕ(f)− h′(f)‖ < η

for all f ∈ G for some homomorphism h : C(X1) → A/I with finite dimensional

range, then there is a homomorphism h(f) =
m∑
k=1

f(ξk)π(pk), where {ξk} is σ-

dense in X1 and {pk} are m mutually orthogonal projections in A with π(pk) 6= 0
and

p⊕ p⊕ · · · ⊕ p <∼ pk

for any copies of any projections in I such that

‖π ◦ ϕ(f)− h(f)‖ < ε

for all f ∈ F .

Proof. Let a, b > 0 be positive numbers with a < b/4 and a finite subset
{ζi}ni=1 ⊂ X1 be a b-dense set such that dist (ζi, ζj) > a if i 6= j. Let fi ∈ C(X)
such that 0 6 fi 6 1, fi(t) = 1 if dist (t, ζi) < a/2 and fi(t) = 0 if dist (t, ζi) > a.

Let G = F ∪ {f1, f2, . . . , fn}. Suppose that

‖π ◦ ϕ(f)− h′(f)‖ < η

for all f ∈ G, where h′ : C(X1) → A/I is a homomorphism with finite dimensional
range and η > 0 (to be determined later). Suppose that q(1)l , q

(2)
l are two mutually

orthogonal projections in HO(ζl), where

Oζl
=

{
x ∈ X | dist (x, ζl) <

a

4

}
.

(The only reason that we take two projections is to be used in the proof of
Lemma 1.3.) We have

‖π(q(j)l )(π ◦ ϕ)(fl)− π(q(j)l )h′(fl)‖ < η, j = 1, 2.
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Note that π(q(j)l )(π ◦ϕ)(fl) = π(q(j)l ). Write h′(f) =
m∑
k=1

f(λk)dk, where {λk} is a

subset of X1 and dk are mutually orthogonal projections in A/I. Let d′l be a sum

of some {dk} with the property that dist (λk, ζl) 6 b and
n∑
l=1

d′l =
m∑
k=1

dk. (Note

that {ζl} is b-dense in X1.) The above inequality implies that

‖π(q(j)l )− π(q(j)l )d′l‖ < η,

whence
‖π(q(j)l )− d′lπ(q(j)l )d′l‖ < 2η.

A standard argument, with η < 1/16, shows that there are mutually orthogonal
projections c(1)l , c

(2)
l 6 d′l such that

‖π(q(j)l )− c
(j)
l ‖ < 4η, j = 1, 2.

This also implies that π(q(j)l ) is equivalent to c(j)l , j = 1, 2.
Let

h(f) =
n∑
l=1

f(ζl)d′l.

Now if a, b and η are small enough,

‖h′(f)− h(f)‖ < ε

2

for all f ∈ F . Then, (if η is also less than ε/2),

‖π ◦ ϕ(f)− h(f)‖ < ε

for all f ∈ F . From assumptions, we may assume that

p⊕ p⊕ · · · ⊕ p <∼ q
(j)
l .

Suppose that p1, p2, . . . , pn are mutually orthogonal projections in A such that
π(pl) = d′l. Then, by applying Lemma 2.6 with b 6 σ, h meets the requirements
in the lemma.

Note that both Lemma 1.3 and Lemma 1.4 assume the conditions in
Lemma 1.2.

2.8. Proof of Lemma 1.3. If we just want to obtain (i) and (ii) in Lemma 1.3,
then it follows from [27] (in fact, (iii) follows too — we will explain later).

We now use Lemma 2.7 to obtain (v) and (vi).
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Let a, b > 0 be as in the proof of Lemma 2.7. Let {ζ(i)
k } be finite subsets of

Yi which are b-dense in Yi and dist (ζ(i)
k , ζ

(j)
k′ ) > a, if i 6= j or k 6= k′. We may also

assume that
dist (ζ(i+1)

k , Xi) > a, i = 1, 2, . . . , n.

Let H
O(ζ

(i)
k

)
be as in the proof of Lemma 2.7. So, H

O(ζ
(i)
k

)
⊂ Ii. As in [27], if

e
(i)
k ∈ H

O(ζ
(i)
k

)
, with small b, (i) and (ii) are satisfied. We can choose those e(i)k so

that (iv) are satisfied.
Suppose that ψi satisfies Condition (A), then the argument in the proof of

Lemma 2.7 applies. Suppose that

‖ψi(f)− hi(f)‖ < ε1

for all f ∈ Gi for some finite subset Gi ∈ C0(Yi) and for some small ε1. We may

assume that hi(f) =
n(i)∑
k=1

f(ξ(i)k )d(i)
k with ξ

(i)
k ∈ Yi. It is clear that, with larger Gi

and small η, we may assume that {ξ(i)k } is σ-dense in Yi.
Now fix i (and forget it so that we save some notation) and denote ϕi by F.

In the proof of Lemma 2.7, we have

‖π(q(j)l )− c
(j)
l ‖ < 4η, j = 1, 2.

So, as in the proof of Lemma 2.7, we have that (with π(el) = π(q(1)l ))∥∥∥(
1−

∑
l

π(el)
)
π ◦ F (f)

(
1−

∑
i

π(el)
)
−

∑
i

f(ζl)
(
d′l − c

(1)
l

)∥∥∥
is small, provided that η is small enough and Gi is large enough. Furthermore,
the presence of the second projection q(2)l and c(2)l 6 d′l in the proof of Lemma 2.7
implies that

p⊕ p⊕ · · · ⊕ p <∼ d′l − c
(1)
l .

Remember that we can do this for each i. This proves (vi). To prove (v), we can
apply a similar argument to the homomorphism ψi ⊕H.

Now, to get (iii), let β1 > 0 such that

dist (Xi, ζ
(i+1)
k ) > β1

for all k and i. Then let b in the lemma be β1/2. We note that, in the above,
e
(i)
k ∈ H

O(ζ
(i)
k

)
. Thus, if β > 0 and β < β1/2,

ϕi(g
(i)
β )e(i)k = e

(i)
k ϕi(g

(i)
β ) = e

(i)
k
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for all k and i. So

Λi(g
(i)
β f) = (1− πi(ei))ϕi(g

(i)
β f)((1− πi(ei))

= (1− πi(ei))ϕi(g
(i)
β )ϕi(f)(1− πi(ei))

= (1− πi(ei))ϕi(g
(i)
β )(1− πi(ei))ϕi(f)(1− πi(ei))

= Λi(g
(i)
β )Λi(f)

for all f ∈ C(X) (Λi(f) = (1− πi(ei))ϕi(f)(1− πi(ei))).

In what follows we will use 1.6 in [53]. However, when Ki(C(X)) has torsion,
the proof needs to be modified. We include a brief modification here.

Let Cn = Bn ⊗K and D =
∏
Bn ⊗K, where each Bn is unital.

We have the following lemma:

2.9. Lemma. For the above D,

Ki(D,Z/kZ) =
∏

Ki(Bn,Z/kZ)

and
Ki(D/⊕ Cn,Z/kZ) =

∏
Ki(Bn,Z/kZ)/⊕Ki(Bn,Z/kZ)

i = 0, 1.

Proof. It is easy to check (since each Cn = Bn ⊗K) that

K0(D) =
∏

K0(Bn).

To show that K1(D) =
∏
K1(Bn), we will show that {un} ∈ D̃ connects to the

identity if each un ∈ U0((Bn ⊗ K)̃ . This requires that there are equi-continuous
paths of unitaries which connecting un to id

(Bn⊗K)̃
. This follows form the proof

(not the statement) of 3.7 in [67]. The proof implies that any unitary in U0((Bn⊗
K)̃ ) is close to a product of two unitaries connecting to the identity each of which
has an exponential length no more than 2π. This implies that the equi-continuous
path exists. This proves that K1(D) =

∏
K1(Bn). The other two identities follow

easily, using the facts that projections and normal partial isometries in
∏
Cn/⊕Cn

lift to projections and normal partial isometries in
∏
Cn.

Now, for k > 0, we follow an argument in Section 5 of [38]. We have the fol-
lowing long exact sequences (see 23.15.7 (c) in [3] also [73]), for any C∗-algebras A,

K1(A) k−→ K1(A) −→ K1(A,Z/kZ) −→ K0(A) k−→ K0(A)
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and
K0(A) k−→ K0(A) −→ K0(A,Z/kZ) −→ K1(A) k−→ K1(A),

where k is the multiplication by k. We also have the same long exact sequences for
each Bn. Now since we have shown that Ki(D) =

∏
Ki(Bn), i = 0, 1, it follows

that
Ki(D,Z/kZ) =

∏
Ki(Bn,Z/kZ), i = 0, 1.

The other two identities for k > 0 follow.

2.10. Now in the proof of 1.6 in [53], we replace B by ⊕Cn and M(B) by D
and consider maps Ψ̄, Φ̄ : C(X) → (C/⊕ Cn)̃ . One should verify

Ψ̄∗([p]) = Φ̄∗([p])

as follows. Assume that [p] is an element in Ki(C(X),Z/kZ) (i = 0 or i = 1) with
k > 0, or [p] ∈ K1(C(X)). We identify Ψ̄∗([p]) and Φ̄∗([p]) with elements z̄′ and z̄′′

in
∏
Ki(Bn,Z/kZ)/ ⊕Ki(Bn,Z/kZ), respectively. Let π∗i :

∏
Ki(Bn,Z/kZ) →∏

Ki(Bn,Z/kZ)/ ⊕Ki(Bn,Z/kZ). Let z′ = {z′n}, z′′ = {z′′n} ∈
∏
Ki(Bn,Z/kZ)

such that π∗i(z′) = z̄′ and π∗i(z′) = z̄′′. On the other hand, we know that

yn = (ψn)∗(p) = (ϕn)∗(p) in Ki(Bn,Z/kZ) (for n > s).

However, π∗i({(ψn)∗(p)} = z̄′ and π∗i({(ϕn)∗(p)} = z̄′′. Therefore z̄′=π∗i({yn}) =
z̄′′. This implies that

(Ψ̄∗)|Ki(C(X),Z/kZ) = (Φ̄∗)|Ki(C(X),Z/kZ).

Therefore Ψ̄∗ = Φ̄∗ : K(C(X)) → K(D/⊕Cn). The rest of the proof of 1.6 in [55]
remains the same (but replace M(B) by D̃, B by ⊕Cn and M(B)/B by (D/⊕Cn)̃ ,
respectively. It is important to note that a unitary un in C̃n is (arbitrarily) close
to a unitary with the form λ(1 − em) + u′n, where u′n is a unitary in Mm(Bn),
em = 1Mm(Bn). Furthermore, for a finite set of projections d1, d2, . . . , dk and a
unitary un ∈ C̃n, one can find large k(n) such that 1Mk(n)(Bn) approximately
commutes with each di and u. So a standard perturbation shows that we can
assume that un is in Mk(n)(Bn) and ϕ(1)

n : C(X) →Mk(n)(Bn).
One should note that, in the statement of 1.6 in [53], from the modification

above, we do not need to assume that A ∈ Ar. However, if we want to have the
integer L independent of A, ϕ and ψ, one needs to assume that A ∈ Ar, A has
real rank zero and K0(A) is weakly unperforated.
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2.11. Proof of Lemma 1.4. We would like to remind to the reader that the
conditions in the Lemma 1.2 are assumed.

Suppose that

‖ϕj(fg′j)− (1− πj(E))ϕj(fg′j)(1− πj(E))− h′(fg′j)‖ < δ

for all f ∈ G. For any finite subset Gj ⊂ C0(Yj), and δ1 > 0, with small enough
b1, b2, . . . , bn, small enough δ and large enough G,

‖ψj(f)− (1− πj(E))ψj(f)(1− πj(E))− h′(f)‖ < δ1

for all f ∈ Gi. Let Λj = (1 − πj(E))ψi(1 − πj(E)). To save the notation, let
us fix j. For any δ1 > 0, since Ij−1/Ij has real rank zero, there is a projection
e ∈ (1− πj(E))Ij−1/Ij(1− πj(E)) such that

‖eΛj(f)e− Λj(f)‖ < δ1

for all f ∈ Gi. Thus, we have

‖ψj(f)− eΛj(f)e− h′(f)‖ < δ1

for all f ∈ Gj . Note that eΛje is a contractive positive linear morphism which is
2δ1-Gj-multiplicative.

Since Γ(ψi) = 0 and K0(e(Ij−1/Ij)e⊗B) → K0(Ij−1/Ij ⊗B) is injective for
each B = C(Cn × S1) by (e) and by 2.5, we conclude that, for any given finite
subset Pj ∈ P(C0(Yj )̃ ), if δ1 is small enough and G′j is large enough,

(Λ′j)∗ : Pj → K(e(Ij−1/Ij)e)

is in N , where Λ′j : C0(Yj )̃ → e(Ij−1/Ij)e is the unital contractive positive linear
morphism induced by eΛje.

Now we apply 1.6 in [53] (see 2.12 and also [15]). Note that δ and G in
1.6 in [53] do not depend on the C∗-algebra A. So, for any ε1 > 0, with small
enough δ1 and large enough Gj (this require to have small enough δ, small enough
b1, b2, . . . , bn, and large enough G), there are homomorphisms Hj : C0(Yj )̃ →
ML(e(Ij−1/Ij)e) and hj : C0(Yj )̃ → ML+1(e(Ij−1/Ij)e) both with finite dimen-
sional range such that

‖Λ′j(f)⊕Hj(f)− hj(f)‖ < ε1
2

for all f ∈ Gj . Thus
‖Λj(f)⊕Hj(f)− hj(f)‖ < ε1
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for all f ∈ Gj , if δ1 is small enough, where L is some positive integer. For any a > 0,
let the finite subset {x(j)

i }k(j)i=1 be a-dense in Yj . There are nonzero projections
q1, q2, . . . , qk(j) mutually orthogonal projections in MN (Ij−1) (for some large N)
such that

p⊕ p⊕ · · · ⊕ p <∼ qi

for any number of copies of any projection p ∈ Ij for each i. Set H ′
j(f) =∑

i

f(xi)πj(qi) for all f ∈ C0(Yj). Then

‖Λj(f)⊕Hj(f)⊕ πj ◦H ′
j(f)− hj(f)⊕ π ◦H ′

j(f)‖ < ε1

for all f ∈ Gj . Suppose that Hj(f) ⊕ H ′
j(f) =

m(j)∑
k=1

f(ζ(j)
k )πj(q

(j)
k ) and hj(f) ⊕

H ′
j(f) =

∑
k

f(ξk)πj(d′k) for all f ∈ C0(Yj), where {ζ(j)
k } and the finite subset {ξk}

are in Yj , {q(j)k } and {d′k} are both mutually orthogonal projections inML+N (Ij−1)

and ML+1+N (Ij−1), respectively. We now define ψ(j)
2 (f) =

m(j)∑
k=1

f(ζ(j)
k )q(j)k and

ψ
(j)
3 (f) =

∑
k

f(ξk)d′k for all f ∈ C(X). Thus, with small enough ε1 and a > 0, we

see that ψ(j)
2 and ψ(j)

3 satisfy the requirements.

2.12. Lemma. (L.G. Brown, [6]) Let A be a C∗-algebra of real rank zero, q
and p be two projections in A∗∗. Suppose that p is an open projection and there is
a positive element a ∈ A such that q 6 e 6 p. Then there exists a projection e ∈ A
such that q 6 e 6 p.

Proof. This follows from [6] (1 ⇒ 2).

2.13. Lemma (Cut). (cf Lemma 2.1 in [52]) Let X be a locally compact
metric space, G ⊂ X be an open subset,

I = {f ∈ C0(X) | f(x) = 0 if x 6∈ G}.

For any ε > 0, σ > 0 and a finite subset F ∈ C0(X), there exist δ > 0, a > 0
and a finite subset G ⊂ C(X) satisfying the following: if A is a C∗-algebra of real
rank zero and ϕ : C0(X) → A is a contractive positive linear map, if ϕ(gβf) =
ϕ(gβ)ϕ(f) for all f ∈ C(X) and all 0 < β < a < σ for some σ > β > 0, and if

∥∥∥ϕ(ga/16f)−
m∑
k=1

ga/16f(ξk)pk
∥∥∥ < δ
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for all f ∈ G, where ξk ∈ G, {pk} are mutually orthogonal projections in A and
where gd ∈ C(X), 0 6 gd 6 1, gd(t) = 0 if dist (t,X \ G) < d/2 and gd(t) = 1 if
dist (t,X \G) > d (d > 0), then there exists a projection p ∈ A such that

ϕ(gσ) 6 p, ‖pϕ(f)− ϕ(f)p‖ < ε

and ∥∥∥pϕ(f)p−
m∑
k=1

f(ξk)pk
∥∥∥ < ε

for all f ∈ F , where ξk ∈ Ωr,

Ωr = {ξ ∈ G | dist (ξ,X \G) > r}

for some r < a/2 and {pk} are mutually orthogonal projections in pAp.

Proof. Let F = X \G. Fix ε > 0 and σ > 0. For any positive number d > 0,
denote by Ωd the set

{ξ ∈ G | dist (ξ, F ) > d}.

Let G = F ∪ {gd | d = a/2i, 0 6 i 6 4} ∪ {gdf | f ∈ F , d = a/2i, 0 6 i 6 4}.
Suppose that there are

ξ1, ξ2, . . . , ξm ∈ G

and mutually orthogonal projections p1, p2, . . . , pm ∈ A such that∥∥∥ϕ(gd)−
m∑
j=1

gd(ξj)pj
∥∥∥ < η,

and ∥∥∥ϕ(gdf)−
m∑
j=1

gdf(ξj)pj
∥∥∥ < η, d = a/2i, 0 6 i 6 4,

for all f ∈ F and for some small η < 1/16. Let

pa/8 =
∑

ξj∈Ωa/8

pj .

From the above inequalities,

‖ϕ(ga/4)− ϕ(ga/4)pa/8‖ < 2η and ‖ϕ(ga/8)pa/8 − pa/8‖ < 2η.

Since ϕ(gka) = ϕ(ga)k 6 ϕ(ga/2) for all k,

ϕ(gσ) 6 ϕ(ga) 6 qa 6 ϕ(ga/2) 6 qa/2 6 ϕ(ga/4),
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where qd is the open projection corresponding to the hereditary C∗-subalgebra
generated by ϕ(gd).

By Lemma 2.12, there is a projection p′ ∈ A such that

ϕ(gσ) 6 ϕ(ga) 6 qa 6 p′ 6 qa/2.

We have ‖p′pa/8 − p′‖ < 2η. This implies that

‖pa/8p′pa/8 − p′‖ < 4η.

By 2.1 in [21], there is a unitary v ∈ A such that

‖v − 1‖ < 8η and v∗pa/8v > p′ > qa.

We also have
‖pa/8ϕ(ga/16f)− ϕ(ga/16f)pa/8‖ < 2η

for all f ∈ F and ∥∥∥pa/8ϕ(f)pa/8 −
∑

ξj∈Ωa/8

ga/16f(ξj)pj
∥∥∥ < η

for all f ∈ F . From ‖ϕ(ga/8)pa/8 − pa/8‖ < 2η, we obtain

‖pa/8 − pa/8qa/8‖ < 2η.

Thus
‖pa/8ϕ(f)− pa/8qa/8ϕ(f)‖ < 2η

for all f ∈ F . Since ϕ(ga/8ga/16) = ϕ(ga/8)ϕ(ga/16) and ϕ(ga/16f) = ϕ((ga/16)ϕ(f)
for all f ∈ C(X), we have qa/8ϕ(f) = qa/8ϕ(ga/16f). Then

‖pa/8ϕ(f)− pa/8ϕ(ga/16f)‖ < 4η

for all f ∈ F . Similarly,

‖ϕ(f)pa/8 − ϕ(ga/16f)pa/8‖ < 4η

for all f ∈ F . Therefore

‖pa/8ϕ(f)− ϕ(f)pa/8‖ < 10η

for all f ∈ F and ∥∥∥pa/8ϕ(f)pa/8 −
∑

ξj∈Ωa/8

f(ξj)pj
∥∥∥ < 10η.

Notice that
‖v∗pa/8v − pa/8‖ < 16η.

We take p = v∗pa/8v and δ = η < ε/64.
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2.14. Proof of Lemma 1.5. Let F = Y ⊂ X and G = X \ F. Fix ε > 0 and
a finite subset F ⊂ C(X)1. Let σ = (1/2)δc(ε/8,F) and let P1 = P (X, ε,F) and
δ0 = δ(X, ε,F) be as in Theorem 1.6 in [53]. Suppose that {x1, x2, . . . , xN} is σ/16-
dense in X. Denote Yi = {ξ ∈ X | dist (ξ, xi) 6 σ/8} and denote X1, X2, . . . , X2N

all possible finite union of Yi’s. Let P ′i = P(Xi, ε/8, si(F)) be as in Theorem 1.6
in [53], where si : C(X) → C(Xi) is the natural surjective map. Among {Xi},
there is one, which we denote by Xσ, satisfying the following

{ξ ∈ X | dist (ξ, F ) 6 σ} ⊂ Xσ ⊂ {ξ ∈ X | dist (ξ, F ) 6 2σ}.

Let G1 = G(ε/8,F) ∈ C(X)1 and G2 =
2n⋃
i=1

G(ε/8, si(F)) ∈ C(Xi)1 be as in

Theorem 1.6 in [53]. Note that G2 does not depend on F but on X, ε and F . Let
δ1 = δ(ε/8, s(F)) be as in Theorem 1.6 in [53]. Every function in C(Xσ)1 can be
extended to a function in C(X)1. Let G′2 be the set of such extensions of functions
in G2. Let P3 = PKK(ε/8,F ,P2), G3 = GKK(ε/8,F ,P2) and δ2 = δKK(ε/8,F ,P2)
be as in Lemma 2.3. Let G4 = F ∪G1 ∪G′2 ∪G3 and let G5 = Gcut(ε/8, σ,G4) be as
in Lemma 2.13 (with G = X \ F ). We then set G6 = G4 ∪ G5. Let P3 = P1 ∪ P2

and let δ3 = (1/8)min{δ0, δ1, δ2, ε/2}.
Now suppose that the conditions of Lemma 1.5 hold with δ < min

{δcut(δ3/4, σ,G), δ3/4}, G = G6, P = P3 and a < σ. By Lemma 2.13, there are
ξi ∈ Ωσ/16 = {ξ ∈ G | dist (ξ, F ) > σ/16}, and nonzero mutually orthogonal
projections pi ∈ I such that

ψ(gσ) 6 pσ, ‖pσψ(f)− ψ(f)pσ‖ < δ3,

where gσ is as in Lemma 2.13, and

∥∥∥pσψpσ − n∑
i=1

f(ξi)pi
∥∥∥ < δ3,

where pσ =
n∑
i=1

pi (when G = ∅, we let pi = 0) for all f ∈ G4. Set p = 1 −
n∑
i=1

pi.

Then π(pψp) = π ◦ψ. Since pAp has real rank zero, by 2.4 in [79], every projection
in pAp/pIp lifts to a projection in pAp. In fact, there are mutually orthogonal
projections {qj} ∈ pAp such that π(qj) = π(dj). Therefore there are af ∈ pIp

such that ∥∥∥pψ(f)p−
m∑
j=1

f(λj)qj − af

∥∥∥ < δ
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for all f ∈ G. We may assume that
m∑
j=1

qj = p. Since eIe has real rank zero, there

are projections ej ∈ qjIqj such that

‖eafe− af‖ <
δ3
4
,

for all f ∈ G, where e =
m∑
j=1

ej . Then it is easy to see that

‖eψ(f)− ψ(f)e‖ < δ3
2

and
∥∥∥eψ(f)e−

m∑
j=1

f(λj)ej − eafe
∥∥∥ < δ3

2
,

for all f ∈ G4.

For any g ∈ C(Xσ), there is g′ ∈ C(X) such that g′(ξ) = g(ξ) for all
ξ ∈ Xσ. Define ψ′(g) = eψ(g′)e. We have to check that this is well defined. Since
g′(ξ) = g′′(ξ) for all ξ ∈ Xσ, we have (g′ − g′′)gσ = g′ − g′′. Since pσ > ψ(gσ),
ψ′(gσ) = 0. Since ψ′ is positive, this implies that ψ′(g′− g′′) = 0. This checks that
ψ′ is a well defined contractive positive linear map which is δ2-G4-multiplicative.

Since K1(A) = {0}, dim(X) 6 2 and

∥∥∥ψ′(f)⊕
m∑
j=1

f(ξj)(qj − ej)− pϕ(f)p
∥∥∥ < 3δ3

and ∥∥∥ϕ(f)−
n∑
i=1

f(ξi)pi + pϕ(f)p
∥∥∥ < 6δ3

for all f ∈ G4, by Lemma 2.3,

(ψ′)∗ : P(Xσ) → K(eIe) is in N .

It follows from 1.6 in [53] (cf. Theorem 6.2 in [15] and 1.6 in [58]) that there
are homomorphisms h1 : C(Xσ) → ML(eIe) and h2 : C(Xσ) → ML+1(eIe) with
finite dimensional range such that

‖ψ′(f)⊕ h1(f)− h2(f)‖ < ε

8

for some integer L and all f ∈ F . Without loss of generality, since {λ1, λ2, . . . , λm}
is δc(ε/8,F)-dense in F , we may assume that h(g) =

m∑
i=1

g(λi)di for all g ∈ C(X),
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where di are mutually orthogonal projections in ML(eIe) such that
k∑
i=1

di is the

identity of ML(eIe), and

∥∥∥ψ′(f)⊕
m∑
i=1

f(λi)di − h2(f)
∥∥∥ < ε

4
.

Now we will use the part
k∑
i=1

f(ξi)(qi−ei) in pϕ(f)p to “absorb” h1. By Lemma 2.6,

for any integer N > L and any projection e ∈ I,

e⊕ e⊕ · · · ⊕ e <∼ (qj − ej)

(there are N copies of e). There is a partial isometry

v ∈ (p⊕ e⊕ · · · ⊕ e)ML+1(M(A)/A)(p⊕ e⊕ · · · ⊕ e)

(there are L copies of e) such that v∗div 6 qi − ei, i = 1, 2, . . . ,m,

v∗v =
m∑
i=1

v∗div and vv∗ = e⊕ e⊕ · · · ⊕ e

(there are L copies of e). There is then a partial isometry u such that

u∗[ψ′(f)⊕ h1(f)]u = ψ′(f)⊕
m∑
i=1

f(λi)d′i

and u∗h2u has finite dimensional range, where d′i = v∗div. So

∥∥∥[
ψ′(f)⊕

m∑
i=1

f(λi)(qi − ei)
]
−

[
u∗h2(f)u⊕

m∑
i=1

f(λi)((qi − ei)− d′i)
]∥∥∥ < ε

2
.

Therefore,

∥∥∥pψ(f)p−
[
u∗h2(f)u⊕

m∑
i=1

f(λi)((qi − ei)− d′i)
]∥∥∥ < ε

2
.

Thus ∥∥∥ϕ(f)−
[
u∗h2(f)u⊕

m∑
i=1

f(λi)((qi − ei)− d′i)
]

+
n∑
i=1

f(ξi)pi
∥∥∥ < ε

2

for all f ∈ F .
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2.15. Corollary. Let A be a unital C∗-algebra of real rank zero and I be
an ideal of A, ψ : C(X) → A be a unital positive linear map and π ◦ ψ be a unital
positive map from C(Y ) → A/I, where π : A→ A/I is the quotient map and Y is
a compact subset of X. For any ε > 0 and a finite subset F ⊂ C(X)1, there exists
δ = δab(ε,F) > 0, G = Gab(ε,F) ⊂ C(X)1 and a finite subset P = Pab(ε,F) ⊂
P(C(X)) satisfying the following: if

(i) ‖π ◦ ψ(f) − h1(f)‖ < δ for all f ∈ G, where h1(f) =
m∑
k=1

f(λ′k)π(dk),

{λ′k} is δc(ε/8,F)-dense in Y and {dk} are mutually orthogonal projections in A

with
p⊕ p⊕ · · · ⊕ p <∼ dk

for any copies of any projections p ∈ I,
(ii) sup

ξ∈X
{dist (ξ, Y )} < δc(ε/2,F),

(iii) ‖ψ(fg)− ψ(f)ψ(g)‖ < δ for all f ∈ G and
(iv) (no KK-obstacle) ψ∗(P) ∈ N ;

then there exists a homomorphism h2 : C(X) → A with finite dimensional range
such that

‖ψ(f)− h2(f)‖ < ε

for all f ∈ F .

Proof. The proof is much easier than that of Lemma 1.5 (see the proof of
1.12 in [39]). Here we do not need Lemma 2.13. In the proof of Lemma 1.5, we
let p = 1 (i.e., pσ = 0). So eψe is a positive linear map from C(X) into eIe. From
(iv), we check that eψe has no KK-obstacle.

3. THE MAIN THEOREM AND ITS COROLLARIES

3.1. Theorem. Let X be a compact metric space with dimension no more
than two and let F be a finite subset of (the unit ball of ) C(X). For any ε > 0,
there exist a finite subset P of projections in P(C(X)), δ > 0, σ > 0 and a finite
subset G of (the unit ball of) C(X) such that whenever A ∈ A and whenever ψ :
C(X) → A is a contractive unital positive linear map which is δ-G-multiplicative
and is σ-injective with respect to δ and G and ψ∗(P) ∈ N , then there exists a
unital homomorphisms ϕ : C(X) → A with finite dimensional range such that

‖ψ(f)− ϕ(f)‖ < ε

for all f ∈ F .
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We will prove Theorem 3.1 in several steps.

Step 1 of the proof. There is an increasing sequence of finite subsets P(n)

of projections in
∞⋃
m=1

M∞(C(X)⊗ C(Cm × S1)) such that
∞⋃
m=1

P(n) forms a gen-

erating set of the semigroup K(C(X))+. Suppose that the theorem is false. Let
F1,F2, . . . ,Fn, . . . be a sequence of finite subsets of the unit ball of C(X) such

that Fn ⊂ Fn+1 and the union
∞⋃
n=1

Fn is dense in the unit ball of C(X), and

G(P(n)) ⊂ Fn, where G(P) is defined in 0.7. Then there are a positive number
ε > 0, a finite subset F , a sequence of positive numbers δn → 0 with δn 6 δ(P(n)),
a sequence of positive numbers σn → 0, the unital simple C∗-algebras Bn of real
rank zero, stable rank one, weakly unperforated K0(Bn) and unique quasitrace,
and unital contractive positive linear maps ψn : C(X) → Bn which are δn-Fn-
multiplicative, σn-δ-Fn-injective and (ψn)∗(P(n)) ∈ N , and for all n,

inf
k,ϕ,u

{
sup
f∈F

{‖ψn(f)− ϕ(f)‖}
}

> ε.

Here the infimum is taken for all k ∈ N, all ϕ : C(X) →Mk(Bn) homomorphisms
with finite dimensional range.

Now let

A =
∞⊕
n=1

Bn,

the set of all sequences b with bn ∈ Bn and ‖bn‖ → 0. Then A is a σ-unital
C∗-algebra of real rank zero. The multiplier algebra M(A) of B is

M(A) =
∞∏
n=1

Bn,

the set of all sequences b with bn ∈ Bn and sup
n
‖bn‖ < ∞. Let π : M(A) →

M(A)/A be the quotient map. We note that both M(A) and M(A)/A has real
rank zero and stable rank one. Let ϕ′ = {ψn} : C(X) →M(A) be the contractive

positive linear map defined by the sequences {ψn}. Since
∞⋃
n=1

Fn is dense in the

unital ball of C(X) and δn → 0, it follows that ϕ = π◦ϕ′ is a homomorphism from
C(X) →M(A)/A. Since ψn are σn-δn-Fn-injective, Fn =

∑
δn

(ψn,Fn) converges to

X. As in the proof of 1.12 in [53], this implies that ϕ is a monomorphism.
Let hn : C(X) → Bn be homomorphisms with finite dimensional range such

that
(hn)∗(P(n)) = (ψn)∗(P(n)).
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Denote H = {hn}. As in the proof of 1.6 in [53], since M(A)/A has stable rank
one,

Γ(ϕ) = Γ(π ◦H) ∈ N .

The proof will be completed if we show that ϕ is approximated by homo-
morphisms with finite dimensional range. In fact, if there is a homomorphism
h : C(X) →M(A)/A with finite dimensional range such that

‖ϕ(f)− h(f)‖ < ε

2

for all f ∈ F . Then, by expressing h(f) =
m∑
k=1

f(ξk)pk, where {ξk} ⊂ X is a fixed

finite subset and {pk} is a set of mutually orthogonal projections in M(A)/A, we
have the following: ∥∥∥ψn(f)−

m∑
k=1

f(ξk)q
(n)
k

∥∥∥ < ε

for all f ∈ F , provided that n is large enough, where {q(n)
k } are mutually orthog-

onal projections (for each n) in Bn. Note that both A and M(A) have real rank
zero, whence orthogonal projections can be lifted (by a result of Zhang ([76])).
This leads to a contradiction.

To show that such homomorphism h exists, we will apply the Lemma 1.2.
But before we do that, we will introduce some notation, state some easy facts and
one key lemma.

3.2. Let N′ ⊂ N be an infinite subset, let QN′ = {bn}, where bn = 1 if n ∈ N′

and bn = 0 if n 6∈ N′. We see that QN′ is a projection in M(A). It is clear that
sp (ϕ) = sp (π(QN′) ·ϕ) = X. We also note that it suffices to show that π(QN′) ·ϕ
can be approximated by a homomorphism h : C(X) → π(N′)(M(A)/A)π(QN′)
with finite dimensional range. In other words, we are free to pass to subsequences.

3.3. Let τn be the normalized quasitrace on Bn. Fix a nonzero projection
p ∈M(A)/A. Suppose that π({pm}) = p and pm 6= 0. Define

τpn = τn/τn(pm).

Let J be the ideal generated by those projections e ∈ M(A)/A such that
sup
n
{τpn(en)} < ∞, where π({en}) = e and I be the ideal generated by those

projections e ∈ M(A)/A such that lim τpn(em) = 0. By 1.8 in [52], this definition
does not depend on the choice of {pn} or the choice of {en}. Moreover, J is the
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ideal generated by the projection p. Clearly, p ∈ J . Suppose that e = π({en}) and
that for some integer K > 0, sup

n
{τpn(en)} < K. Then

K · τn(pn) > τn(en)

for n large. This implies that

e <∼ p⊕ p⊕ · · · ⊕ p in MK(M(A)/A)

(there are K copies of p). Therefore e is in the ideal generated by p. On the other
hand, if e ∈ J , by 1.13 in [58], there is an integer K > 0 such that

e <∼ p⊕ p⊕ · · · ⊕ p in MK(M(A)/A)

(there are K copies of p). Thus, if e ∈ J , sup
n
{τpn(en)} <∞, where π({em}) = e.

Now we show that, for any projection e ∈ I, lim τpm(em) = 0, if π({em}) = e.

In fact, if e ∈ I, then by 1.13 in [52], there are ε1, ε2, . . . , εk ∈ I such that
lim τpm(εmi ) = 0, where π({εmi }) = εi, i = 1, 2, . . . , k, and e <∼ d1 ⊕ d2 ⊕ · · · ⊕ dk,

where di = εi ⊕ εi ⊕ · · · ⊕ εi (there are K copies of εi), i = 1, 2, . . . , k and K is
some positive integer. This implies that lim τpm(em) = 0, where π({em}) = e.

3.4. Consider a homomorphism ψ : C0(Y ) →M(A)/A, where Y is a locallly
compact metric space (if Y is compact, then ϕ is a homomorphism from C(Y )
into M(A)/A). Let {ξm} be a dense sequence in sp (ϕ). Let {Sk} be the sequence
of all finite subset of {ξm}. Fix this {Sk}. Set

Ok,n = {ξ ∈ sp (ϕ) | dist (ξ, Sk) < rn},

where {rn} is dense in (0, 1). By [6] ( see also 1.4 in [52]), there exists a projection
pk,n ∈M(A)/A such that

pOk,n
6 pk,n 6 pOk,n

,

where pOk,n
, pOk,n

∈ (M(A)/A)∗∗ are the spectral projections of ψ corresponding
to the sets Ok,n and Ok,n. We will use this notation later.

The following is an easy fact which is proved in 1.18 in [52].

3.5. Lemma. Let G ⊂ O ⊂ sp (ϕ), where G and O are (relative) open
subsets of sp (ϕ). Suppose that p ∈M(A)/A is a projection such that

pG 6 p 6 pG.
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Suppose also that the sequence (τpm(pmk,n))m converges (to a finite number or to
infinity) for every pk,n. Let J be the ideal generated by p, πJ : M(A)/A →
(M(A)/A)/J be the quotient map, I be the ideal generated by those projections
e ∈M(A)/A such that

lim τpm(em) = 0,

where π({em}) = e and πI : M(A)/A→ (M(A)/A)/I be the quotient map. If

sp (πJ ◦ ϕ) ∩O = sp (πI ◦ ϕ)) ∩O,

then the following hold:
(1) if G ⊂ Ok,n ⊂ Ok,n ⊂ O, then lim τpm(pmk,n) = ∞;
(2) if Ok,n ⊂ G, then lim τpm(pmk,n) = 0;
(3) if Ok,n ⊂ O \G, then lim τpm(pmk,n) = 0, or ∞;
(4) there exists ξ ∈ G \G such that ξ ∈ sp (πJ ◦ ϕ);
(5) if ξ ∈ G, ξ 6∈ sp (πI ◦ ϕ).

(Notice that, for the case (1), the condition sp (πJ ◦ϕ)∩O = sp (πI ◦ϕ))∩O
implies that sp (πJ ◦ ϕ) ∩ O 6= 0. For other cases, the proof is similar, see 1.18 in
[52] for details.)

Let I1 be the (closed) ideal generated by those projections e ∈M(A)/A such
that

lim
m→∞

τm(em) = 0

and π1 : M(A) →M(A)/I1 is the quotient map.

3.6. Lemma. Let I1 be as above. Suppose that J1 ⊃ J2 are two ideals of
M(A)/A such that J2 is generated by a projection p 6∈ I1 and I1. Then K1(J1/J2) =
0 and K0(J1/J2) is torsion free.

Proof. Since J1 is an ideal of M(A)/A, it has real rank zero and stable rank
one. It suffices to show that, for any projection q ∈ J1, K1(qJ1q/J2) = 0 and
K0(qJ1q/J2) is torsion free.

Suppose that Q = {q(m)} is a projection in M(A) such that π(Q) = q. Since
J2 ⊃ I1, we may assume that q(m) 6= 0 for all but finitely many ofm. Replacing Bm
by q(m)Bmq

(m), we may assume that qJ1q = M(A)/A, without loss of generality.
It follows from 1.10 in [39] that K1(M(A)/I1) = 0. Therefore K1(M(A)/J2) = 0.
This shows that K1(J1/J2) = 0.

Let P = {p(m)} be a projection in M(A) such that π({p(m)}) = p. Let

T ={{am}|am=τm(d(m))−τm(g(m)) for some projections {d(m)}, {g(m)}∈M(A)}
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and
N =

{
{bm} ∈ T

∣∣ |bm| 6 K|τm(p(m))|+ cm,

where K is a positive number and cm → 0
}
.

Similar to 1.11 in [39], one easily computes that

K0(M(A)/J2) = T/N.

It is clear that T/N is torsion free. Therefore K0(J1/J2) is torsion free.

The following is a key lemma which is a generalized form of Lemma 2.14 in
[52]. A proof is also given in [39].

3.7. Lemma. (We keep the notation in 3.5) Let Y be a compact metric space.
Suppose that ψ : C(Y ) → (M(A)/A) is a homomorphism and pk,n is as in 3.4.
If (τm(pmk,n))m converges for every (k, n), where π({pmk,n}) = pk,n (τm as in 3.3),
then π1 ◦ψ can be approximated by homomorphism from C(Y ) into (M(A)/A)/I1
with finite dimensional range.

3.8. Corollary. Let p, I, J, πI and πJ be as in 3.5. Let ψ : C0(Y ) → J(⊂
M(A)/A) and pk,n be as in 3.4. If (τm(pmk,n))m converges for every (k, n), where
π({pmk,n}) = pk,n (τm as in T), then πI ◦ ψ is approximated by homomorphisms
from C0(Y ) → J/I with finite dimensional range.

Proof. Consider a finite subset F of C0(Y ) and ε > 0. There is a compact
subset Y1 ⊂ Y and a function g with support in Y1 such that

‖gf − f‖ < ε

2
for all f ∈ F . So, without loss of generality, we may assume that every f ∈ F has
support in Y1. Let Ω be an open subsets of Y such that

Y1 ⊂ Ω

and Ω is compact. By [6], there is a projection q ∈M(A)/A such that

pΩ 6 q 6 pΩ.

Suppose that π({q(m)}) = q, where q(m) are projections in Bm. Since q ∈ J , from
3.3, qIq is generated by projections e with

lim
m→∞

τ qm(em) = 0,

where π({em}) = e. Set B =
∞⊕
m=1

q(m)Bmq
(m). Let D be the C∗-subalgebra of

C0(Y ) generated by functions with support in Y1. Then F ⊂ D. Define ψ′ : D̃ →
M(B)/qIq be the unital homomorphism induced by ψ, where D̃ is the unitization
of D. Then by Lemma 3.7, ψ′ is approximated by homomorphisms with finite
dimensional range. So the corollary follows.
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Now we are ready to complete the proof of the main theorem.

3.9. Proof of Theorem 3.1. We now construct a finite tower of ideals which
satisfy the conditions in Lemma 1.2.

Step 2. Let τm be the normalized quasitrace on Am. There exists a subset
N1 ⊂ N such that τm(pmk,n) converges (m ∈ N1) for each k and n, where π({pjk,n}) =
pk,n. For the sake of notation, we may assume, without loss of generality, that
N1 = N. Let I1 be the ideal generated by those projections e ∈ M(A)/A which
satisfy

lim τm(em) = 0,

where π({em}) = e. So there are projection e ∈ A such that

p⊕ p⊕ · · · ⊕ p <∼ e

for any number of copies of any projections p ∈ I1.
Let π1 : M(A)/A → (M(A)/A)/I1 and ϕ1 be the monomorphism from

C(X1) → M(A)/I1 induced by ϕ, where X1 = sp (π ◦ ϕ) is a compact subset
of X. Suppose that Ok,n ∩X1 6= ∅. Then

lim τm(pmk,n) > 0.

Therefore, by 3.3,
e⊕ e⊕ · · · ⊕ e <∼ pk,n

for any number of copies of e ∈ I1. It then follows that condition (a) in Lemma 1.2
is satisfied for i = 1. By Lemma 3.7, ϕ1 satisfies Condition (A).

Let α = δc(ε/4,F)/2. For each a > 0, let

O1
a = {ξ ∈ X | dist (ξ,X1) > a}.

For any (Borel) subset S, we denote by pS the spectral projection of ϕ in
(M(A)/A)∗∗ corresponding to S.

If O1
α = ∅, we will stop the construction and let I2 = 0. Note by Lemma 2.4

that Γ(ϕ1) = 0 and Γ(ψ1) = 0, where ψ1 : C0(Y2) → I1 is the monomorphism
induced by ϕ, where Y2 = X \X1. (Here X = X2. We also let Y1 = X1.)

So we may assume that O1
α 6= ∅.

Step 3. Let F be a closed subset such that O1
α ⊂ F ⊂ O1

3α/4. Suppose that
there exists a projection p2 ∈ I1 such that

pO1
α

6 p2 6 pF
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and p2 satisfies the following:

(3a) There is an infinite subset of N2 ⊂ N such that the sequence (τ (2)
m (pmk,n))m

converges (m ∈ N2) (to a finite number, or infinity) for each (k, n), where τ (2)
m =

τm/τm(pm2 ) and π({pm2 }) = p2.

(3b) sp (π2(QN2
) · π2 ◦ ϕ) ∩ O1

3α/4 6= sp (π3(QN2
) · π3 ◦ ϕ) ∩ O1

3α/4, where I2
is the ideal generated by p2 and I3 is the ideal of M(A)/A generated by those
projections e ∈M(A)/A such that

lim τ (2)
m (em) = 0, m ∈ N2,

where π({em}) = e, and π2 : M(A)/A → (M(A)/A)/I2 and π3 : M(A)/A →
(M(A)/A)/I3 are the quotient maps. DenoteX2 = sp (π2◦ϕ), X3 = sp (π3◦ϕ), and
let ϕ2 : C(X2) → M(A)/I2 and ϕ3 : C(X3) → M(A)/I3 be the monomorphisms
induced by ϕ.

One should note that, by [6], there always exists a projection p2 ∈ I1 such
that pO1

α
6 p2 6 pF and also condition (3a) is always satisfied.

To save notation, without loss of generality, we may assume that N2 = N.
If ξ ∈ sp (ϕ2) and ξ ∈ Ok,n, then by 3.3,

lim τ (2)
m (pmk,n) = ∞.

Thus
e⊕ e⊕ · · · ⊕ e <∼ pk,n

for any number of copies of e ∈ I2. Similarly, if ξ ∈ sp (ϕ3) and ξ ∈ Ok,n, then,

e⊕ e⊕ · · · ⊕ e <∼ pk,n

for any number of copies of e ∈ I3.
Since p2 ∈ I2,

X2 ⊂ {ξ | dist (ξ,X1) 6 α}.

Let Y2 = X2 \ X1, Y3 = X3 \ X2, ψ2 = ϕ2|C0(Y2) and ψ3 = ϕ3|C0(Y3). It
follows from Lemma 2.4 that Γ(ϕ2) = Γ(ϕ3) = 0 and Γ(ψ2) = 0, and it follows
from Corollary 3.8 that ψ3 satisfies Condition (A).

So, in this case, we constructed I2 and I3. Both satisfy (a) and (b) in
Lemma 1.2. I2 satisfies (d′) and I3 satisfies (d).

Moreover, since (X3 \X2) ∩O1
3α/4 6= ∅,

sup
ξ∈X3

dist (X1, ξ) >
3α
4
.
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Step 4. Suppose that, for any projection e ∈M(A)/A with

p1
Oa

6 e 6 pF

e does not satisfy (3a) and (3b) at the same time, where O1
a ⊂ F ⊂ O1

3α/4 and F

is closed.
By [6] (see also 1.4 in [52]), there is a projection p2 ∈M(A)/A such that

pO7α/8 6 p2 6 pO7α/8
.

Notice that p2 ∈ I1. By the assumption on projections e, since (3a) always holds,
by passing to a subsequence, if necessary, we may assume that

(3a) The sequence (τ (2)
m (pmk,n))m converges (to a finite number, or to infinity),

where τ (2)
m = τm/τm(pm2 ) and π({pm2 }) = p2.

(4b) sp (π′2 ◦ϕ)∩O1
3α/4 = sp (π2 ◦ϕ)∩O1

3α/4, where J2 is the ideal generated
by p2, π′2 : M(A)/A→ (M(A)/A)/J2 is the quotient map, I2 is the ideal generated
by those projections p ∈M(A)/A such that

lim τ (2)
m (pm) = 0,

where π({pm}) = p, and π2 : M(A)/A → (M(A)/A)/I2 is the quotient map.
Let X ′

2 = sp (π′2 ◦ ϕ), X2 = sp (π2 ◦ ϕ) and ϕ2 : C(X2) → M(A)/I2 be the
monomorphism induced by ϕ. It follows from Lemma 2.4 that Γ(ϕ2) = 0 and
Γ(ψ2) = 0.

For any ξ ∈ X2, if ξ ∈ Ok,n

e⊕ e⊕ · · · ⊕ e <∼ pk,n

for any number of copies of e ∈ I2.
We also have (by (5) of 3.5)

X ′
2 ⊂

{
ξ | dist (ξ,X1) 6

7α
8

}
and

X2 ⊂
{
ξ | dist (ξ,X1) 6

7α
8

}
.

So

dist (X1, ξ) <
δc

(
ε
4 ,F

)
2

for all ξ ∈ X2.
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In other words, in this case, we constructed I2 which satisfies (a), (b)
and (d′).

Furthermore, by (4) of 3.5,

[X2 \X1] ∩O1
7α/8 6= ∅ and dist (X1, X2) >

3α
4
.

Step 5. Let i = 3 if I2 and I3 have constructed as in Step 3, and let i = 2 if
I2 has been constructed as in Step 4.

For any a > 0, set

O2
a = {ξ ∈ X | dist (ξ,Xi)) > a}.

If O2
α = ∅, then we stop the construction and let Ii+1 = 0. Note that Γ(ϕi+1) = 0

and Γ(ψi+1) = 0. Otherwise, we continue to construct Ii+1 (and Ii+2) as in Step 3
and Step 4. Denote πi : M(A) →M(A)/Ii the quotient map.

Step 6. Let F be a closed subset such that O2
α ⊂ F ⊂ O2

3α/4. Suppose that
there exists a projection p3 ∈ Ii such that

pO2
α

6 p3 6 pF

and p3 satisfies the following: Let τ (3)
m = τm/τm(pm3 ) and π({pm3 }) = p3.

(3a) there is a subsequence N′ of N such that the sequence (τ (3)
m (pmk,n))m

converges (m ∈ N′) (to a finite number, or infinity) for each (k, n), where τ (3)
m =

τm/τm(pm3 ) and π({pm3 }) = p3 and

(3b) sp (πi+2(QN′) · πi+2 ◦ ϕ) ∩ O2
3α/4 6= sp (πi+1(QN′) · πi+1 ◦ ϕ) ∩ O2

3α/4,

where Ii+1 is the ideal generated by p3 and Ii+2 is the ideal of M(A)/A generated
by those projections e ∈M(A)/A such that

lim τ (2)
m (em) = 0,

and πi+1 : M(A)/A → (M(A)/A)/Ii+1, πi+2 : M(A)/A → (M(A)/A)/Ii+2 are
the quotient maps.

To save notation, without loss of generality, we may assume that N′ = N.
Denote Xi+1 = sp (πi+1 ◦ ϕ) and Xi+2 = sp (πi+2 ◦ ϕ), and let ϕi+1 : C(Xi+1) →
M(A)/Ii+1 and ϕi+2 : C(Xi+2) →M(A)/Ii+2 be monomorphisms induced by ϕ.

If ξ ∈ Xi+1 and ξ ∈ Ok,n, then

e⊕ e⊕ · · · ⊕ e <∼ pk,n



Almost multiplicative morphisms and almost commuting matrices 259

for any number of copies of e ∈ Ii+1 and, if ξ ∈ Xi+2 and ξ ∈ Ok,n, then

e⊕ e⊕ · · · ⊕ e <∼ pk,n

for any number of copies of e ∈ Ii+2.

Let Yi+1 = Xi+1 \ Xi, Yi+2 = Xi+2 \ Xi+1, ψi+1 = ϕi+1|C0(Yi+1) and
ψi+2 = ϕi+2|C0(Yi+2). It follows from Lemma 2.4 that Γ(ϕi+1) = Γ(ϕi+2) = 0 and
Γ(ψi+1) = 0, and it follows from Corollary 3.8 that ψi+2 satisfies Condition (A).

Since p3 ∈ Ii,
Xi+1 ⊂ {ξ | dist (ξ,Xi) < α}.

So in this case, we constructed Ii+1 and Ii+2 which satisfy (a) and (b) in
Lemma 1.2. Ii+1 satisfies (d′) and Ii+2 satisfies (d). Furthermore

(Xi+2 \Xi) ∩O2
3α/4 6= ∅ and sup

ξ∈Xi+2

dist (Xi, ξ) >
3α
4
.

Step 7. Suppose that, for any projection e ∈M(A)/A with

pOa
1 6 e 6 pF

e does not satisfy (3a) and (3b) at the same time, where O2
a ⊂ F ⊂ O1

3α/4 and F

is closed.
By [6] (see also 1.4 in [48]), there is a projection p3 ∈M(A)/A such that

pO2
7α/8

6 p3 6 p
O

2
7α/8

.

Notice that p3 ∈ Ii. By the assumption on projections e, since (3a) always holds,
by passing to a subsequence, if necessary, we may assume that:

(3a) the sequence (τ (3)
m (pmk,n))m converges (to a finite number, or to infinity),

where τ (3)
m = τm/τm(pm3 ) and π({pm3 }) = p3;

(4b) sp (π′3◦ϕ)∩O2
3α/4 = sp (π3◦ϕ)∩O3

3α/4, where Ji+1 is the ideal generated
by p3, π′i+1 : M(A)/A → (M(A)/A)/Ji+1 is the quotient map, Ii+1 is the ideal
generated by those projections p ∈M(A)/A such that

lim τ (3)
m (pm) = 0,

where π({pm}) = p, and πi+1 : M(A)/A → (M(A)/A)/Ii+1 is the quotient map.
Let X ′

i+1 = sp (π′i+1 ◦ ϕ), Xi+1 = sp (πi+1 ◦ ϕ) and ϕi+1 : C(Xi+1) →M(A)/Ii+1

be the monomorphism induced by ϕ. It follows from Lemma 2.4 that Γ(ϕi+1) = 0
and Γ(ψi+1) = 0.
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For any ξ ∈ Xi+1, if ξ ∈ Ok,n

e⊕ e⊕ · · · ⊕ e <∼ pk,n

for any number of copies of e ∈ Ii+1.

We also have (by (5) of 3.5)

X ′
i+1 ⊂

{
ξ | dist (ξ,Xi) 6

7α
8

}
and

Xi+1 ⊂
{
ξ | dist (ξ,Xi) 6

7/α
8

}
.

So

dist (Xi, ξ) <
δc

(
ε
4 ,F

)
2

for all ξ ∈ Xi+1.

In other words, in this case, we constructed Ii+1 which satisfies (a), (b)
and (d′).

Furthermore, by (4) of 3.5,

[Xi+1 \Xi] ∩O1
7α/8 6= ∅ and sup

ξ∈Xi+1

dist (Xi, ξ) >
3α
4
.

Step 8. If we continue, we obtain a sequence of ideals

M(A) = I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ Ik · · ·

where each Ii satisfies (a), (b), and either (d) or (d′). We also note that there are
projections e ∈ Ii−1 such that

p⊕ p⊕ · · · ⊕ p <∼ e

for any number of copies of any projection p ∈ Ii. Since we also have

sup
ξ∈Xi+2

dist (Xi, ξ) >
3α
4
,

and X is compact, this construction has to stop after a finite number of steps, say
n. We note that if Ii is not generated by a projection pi, then by the first part of
Lemma 3.6, K1(Ii−1/Ii) = 0, and K0(Ii−1/Ii) is torsion free. Suppose that Ij is
generated by a projection pj and Ii is also generated by a projection pi and i > j.
Then, from our construction, pi 6 pj . Choose the smallest of those projections,
say pk. Suppose that π({p(m)

k }) = pk and p
(m)
k ∈ Bm are not zero if m ∈ N′. So,
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by passing to another subsequence (the last one, we promise!), we may assume
that p(m)

i 6= 0 for all m and all those i’s. Thus, by Lemma 3.6, K1(Ii/Ii+1) = 0
for 0 6 i 6 n− 1. Similarly, by applying Lemma 3.6, K0(Ii/Ii+1) are torsion free
for 0 6 i 6 n− 1.

Note also that

sup
ξ∈X

{dist (ξ,Xn)} < α.

Thus Lemma 1.2 applies.

3.12. Proof of Corollary M1. Note that, without σ-injective condition, in
the proof of Theorem 3.1, the homomorphism ϕ may not be injective. Denote
by ψ the induced monomorphism from C(Y ) → M(A)/A, where Y is a compact
subset of X (ϕ = ψ ◦ s, where s : C(X) → C(Y ) is surjective). As in the proof of
Theorem 3.1, we need to show that ψ can be approximated by homomorphisms
with finite dimensional ranges. To do this, with the proof of Theorem 3.1, we only
need to verify that

Γ(ψ) ∈ N .

Note that (in the proof of the main theorem)

K0(M(A)/A) =
∏
n

K0(Bn)/⊕K0(Bn).

We see that, if each K0(Bn) is torsion free, so is K0(M(A)/A). Furthermore,
since K1(Bn) = 0 for all n, K1(M(A)/A) = 0. We then compute that KL(C(Y ),
M(A)/A) = Hom(K0(C(Y )),K0(M(A)/A). By Lemma 2.2 and the following com-
mutative diagram

K0(C(X)) −→ K0(M(A)/A)
↓ ↗

K0(C(Y ))

we conclude that Γ(ψ) ∈ N .

3.13. Proof of the Main Theorem. The only difference between 3.1 and the
Main Theorem is about σ-injective. It is quite clear that the Main Theorem follows
from 3.1 easily. The following proof gives us a choice of σ. Please see Remark 3.14.

Let σ = 1/2δc(ε/3,F) be as in 1.1. By the proof of Corollary M1, we may
assume that A is not elementary.
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Suppose that ψ is σ-injective with respect to δ and F . Given any ε1 > 0,
and G1, with sufficiently small δ and sufficiently large G, by Lemma 1.5 in [58],
without loss of generality, we may write that

ψ(f) =
m∑
i=1

f(ζi)pi ⊕ ψ1(f)

for all f ∈ C(X), where {ζi} is σ-dense in X and ψ1 is δ1-G1-multiplicative con-
tractive positive linear morphism. Since we now assume that A is not elementary
and simple, there exists a nonzero projection e ∈ A such that e <∼ pi for each i.
Again, for any σ1 > 0, since eAe is nonelementary and simple, there exists a homo-
morphism h0 : C(X) → eAe which is σ1-G1-injective. Now we apply Theorem 3.1
to the map ψ1⊕h0 (with sufficiently small δ1 and sufficiently large G1). We obtain

a homomorphism h1 : C(X) → QM2(A)Q (with Q = diag
(
1 −

m∑
i=1

pi, e
)
) with

finite spectrum such that

‖ψ1(f)⊕ h0(f)− h1(f)‖ < ε

3

for all f ∈ F . Since {ζi} is σ-dense in X, by changing h0 slightly, we obtain a ho-

momorphism h2(f) =
m∑
i=1

f(ζi)qi, where {qi} are mutually orthogonal projections

in eAe such that
‖ψ1(f)⊕ h2(f)− h1(f)‖ < 2ε

3
for all f ∈ F . Note that qi <∼ pi for each i. The absorption argument that we use
several times in this paper shows that

‖ψ(f)− h3(f)‖ < ε

for all f ∈ F for some homomorphism h3 : C(X) → A with finite dimensional
range.

3.14. Remark. The proof in 3.13 actually shows that in the Main Theorem
σ can be chosen to be δc(ε/3,F) as in 1.1. Note that, from the proof in 3.13, we
see that if Y ⊂ X, the same σ works for the subset s(F), where s : C(X) → C(F )
is the quotient map. If we assume that all compact metric spaces of dimension no
more than two in this paper are compact subsets of the unit ball B5 of R5, then
σ does not depend on X. It certainly does depend on ε and F . But F can be
thought an image of a finite set of C(B5).

The reader might wonder what we can say when ϕ is not σ-injective. The
point is that if ϕ is not sufficiently injective, the condition on P might be mean-
ingless, in general. For example, a compact subset X of the plane is always a
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compact subset of a disk D. A positive linear map ϕ : C(X) → A can always be
viewed as a positive linear map from C(D) → A by mapping C(D) into C(X)
then mapping to A. Then, of course, ϕ∗(P) is always in N since D is contractive.
On the other hand, one can always use the following lemma to replace it by a
σ-injective morphism first. However, if we do not require the homomorphism to
have finite dimensional range, σ-injectivity may be removed, for many cases at
least. The proof of 3.19 probably explains more about this.

However sometime, we do not need to worry about this problem as we see in
Corollary M1.

3.15. Lemma. (Lemma 1.17 in [53]) Let X be a compact metric space. For
any ε > 0, σ > 0, η > 0 and any finite subset F ⊂ C(X), there exist δ > 0 and a
finite subset G ⊂ C(X) such that whenever A is a unital C∗-algebra and whenever
ψ : C(X) → A is a unital contractive positive δ-G-multiplicative linear map, then
there is an ε-h(F)-multiplicative contractive positive linear map ψ : C(F ) → A

which is σ-injective with respect to ε and h(F) such that

‖ϕ(f)− ψ ◦ h(f)‖ < η

for all f ∈ F , where F is a compact subset of X and h : C(X) → C(F ) is the
quotient map (from C(X) → C(X)/I ∼= C(F ), I = {f ∈ C(X) | f(x) = 0 for x ∈
F}).

3.16. Definition. Let A be a simple C∗-algebra of real rank zero, X be a
compact metric space and α ∈ KL(C(X), A) such that γ(α) in Hom(K∗(C(X)),
K∗(A)) preserves the order of K0(C(X)). A is said to satisfy condition B(X,α), if
for any nonzero projection e ∈ A, there is a homomorphism h : C(X) → eAe such
that

α− [h] ∈ N .

3.17. Theorem. Let X be a compact metric space with dimension no more
than two. For any ε > 0 and finite subset F ⊂ C(X) there is δ > 0, σ > 0, a
finite subset G ⊂ C(X) and finite subset P ⊂ P(C(X)) satisfying the following:

Let A ∈ A and a contractive positive linear morphism ψ : C(X) → A which
is δ-G-multiplicative and σ-F-injective with

ψ∗(P) = α(P)

for some α ∈ KL(C(X), A) such that γ(α) preserves the order of K0(C(X)). If A
satisfies the condition (BX,α), then there exists a homomorphism h : C(X) → A

such that
‖ψ(f)− h(f)‖ < ε
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for all f ∈ C(X).

Proof. We first would like to point out that, in the case that A is an elemen-
tary C∗-algebra, then Theorem 3.17 follows from the Main Theorem directly. This
is because K1(A) = 0, K0(A) has no infinitesimal element and free, and K1(C(X))
is torsion free. Thus KL(C(X), A) = Hom(K0(C(X)),K0(A)). It is clear that if
γ(α) preserves order, and A satisfies the condition B(X,α), then α ∈ N .

So now we assume that A is a nonelementary C∗-algebra among other con-
ditions.

Suppose that ψ is a contractive positive linear morphism from C(X) into A
which is δ-G-multiplicative and σ-G-injective with

ψ∗(P) = α(P)

for some α ∈ KL(C(X), A) such that γ(α) preserves the order on K0, where P is
a finite subset in P(C(X)).

For any σ > 0, by Lemma 1.5 in [58], without loss of generality, we may
write that

ψ(f) =
m∑
i=1

f(ζi)pi ⊕ ψ1(f)

for all f ∈ C(X), where {ζi} is σ-dense in X and ψ1(f) is δ-G-multiplicative. Since
A is a nonelementary simple C∗-algebra of real rank zero, there is a projection
e ∈ A such that

e⊕ e⊕ e⊕ e⊕ e <∼ pi

for each i. By the assumption, for any given P, with small enough δ and large
enough G, there is a homomorphism ϕ : C(X) → eAe, such that

(ψ1)∗ − ϕ∗ : P → K(A) ∈ N .

By 2.9 in [26] (note that dim(X) 6 2), there is a homomorphism ϕ : C(X) →
M4(eAe) such that

(ϕ⊕ ϕ)∗ ∈ N .

Note that, since A is a non-elementary simple C∗-algebra, ϕ can always be chosen
so that it is σ-injective. Applying the Main Theorem, with sufficiently small
δ and sufficiently large G, there are homomorphisms h1 : C(X) → QM5(A)Q
(with Q = diag (1 −

∑
i

pi, e, e, e, e)) and h2 : C(X) → M5(eAe) both with finite

dimensional range such that

‖ψ1(f)⊕ ϕ(f)− h1(f)‖ < ε

4
and ‖ϕ(f)⊕ ϕ(f)− h2(f)‖ < ε

4
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for all f ∈ F . Without loss of generality (with sufficiently small σ), we may write

h2(f) =
n∑
i=1

f(ζi)di, where {di} are mutually orthogonal projections in M5(eAe).

There is a unitary U ∈M6(A) such that

U∗diU 6 pi and U
(
1−

n∑
i=1

pi

)
=

(
1−

n∑
i=1

pi

)
U =

(
1−

n∑
i=1

pi

)
for i = 1, 2, . . . , n. We estimate that

∥∥∥ψ(f)−
[ n∑
i=1

f(ζi)(pi − U∗diU)⊕ U∗(h1(f)⊕ ϕ(f))U
]∥∥∥

6
∥∥∥ψ(f)−

[ n∑
i=1

f(ζi)(pi − U∗diU)⊕ ϕ1(f)⊕ U∗h2(f)U
]∥∥∥

+
∥∥∥ n∑
i=1

f(ζi)(pi − U∗diU)⊕ ϕ1(f)⊕ U∗h2(f)U − U∗(h1 ⊕ ϕ(f))U
∥∥∥

<
ε

4
+
ε

4
< ε

for all f ∈ F .

3.18. Remark. We see that in 3.17 σ can be chosen to be 1/2σc(ε/6,F) as
remarked in Remark 3.14 and the same σ works for compact subset Y ⊂ X which
also satisfies the required conditions in the theorem if the finite subset is s(F),
where s : C(X) → C(Y ) is the quotient map.

For many X, A ∈ A, and many order preserving α, A satisfies the condition
(B(X,α)). These are two examples.

3.19. Theorem. Let X be a finite CW-complex of dimension no more than
two, and let A ∈ A such that K0(A) is a dimension group and K1(A) = 0. Then,
for any α ∈ KL(C(X), A) which preserves the order of K0, A satisfies the condition
B(X,α).

Proof. By 2.9 in [44], there is a C∗-subalgebra B ⊂ A which is isomorphic to
a simple AF-algebra and the inclusion induces an isomorphism from K0(B) onto
K0(A).

A result in [43] says that any element in α ∈ KL(C(X), C) which preserves
the order of K0, and satisfies that α∗([1C(X)]) = [1C ], where C is any unital simple
AF-algebra, can be realized by a unital homomorphism from C(X) into C. Then
the theorem follows.
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3.20. If X is a finite CW-complex in the plane, then for any A ∈ A and
any α ∈ KL(C(X), A), A satisfies the condition B(X,α). It is clear, since X is a
finite CW-complex, that when δ is sufficiently small and G is sufficiently large, ψ∗
induces a homomorphism α : K1(C(X)) → K1(A). Thus it is sufficient to show
that there is homomorphism h : C(X) → eAe such that h∗ = α on K1(C(X)).
Let g1, g2, . . . , gn be the generators of K1(C(X)) corresponding to the bounded
connected components

∆1,∆2, . . . ,∆n of C \X.

Suppose that zi = α(gi), i = 1, 2, . . . , n. Let p1, p2, . . . , pn be nonzero mutually
orthogonal projections in eAe (they exist because A is assumed to be a non-
elementary simple C∗-algebra of real rank zero). There are unitaries vi ∈ piApi

such that [vi] = zi in Ki(A). There is a continuous function fi : S1 → ∂∆i, the
boundary of ∆i, for each i. Set

x =
n∑
i=1

fi(vi).

It is easy to see now that the homomorphism from C(X) into eAe induced by the
normal element x satisfies the requirement.

Now suppose that F is a proper compact subset of a compact connected man-
ifold X of dimension no more than two and F itself is a finite simplicial complex.
There is a compact subset Y ⊂ F which is a retraction of F and is homeomor-
phic to an one-dimensional finite simplicial complex. So Y is homeomorphic to
a compact subset of the plane. Thus, for such F , and for any A ∈ A and any
α ∈ KL(C(X), A), from above, A satisfies the condition B(F, α).

3.21. Corollary. Let X be a compact manifold with dimension no more
than two and let F be a finite subset of (the unit ball of) C(X). For any ε > 0,
there exist a finite subset P of projections in P(C(X)), δ > 0, and a finite subset
G of (the unit ball of) C(X) satisfying the following: for any A ∈ A and any ψ :
C(X) → A which is a contractive unital positive linear map and δ-G-multiplicative,
if ψ∗(P) ∈ N then there exists a unital homomorphism ϕ : C(X) → A such that

‖ψ(f)− ϕ(f)‖ < ε

for all f ∈ F .

Proof. Let σ = 1/2δc(ε/6,F) (see the above remark). We may assume that
X is connected. There are finitely many subsets F1, F2, . . . , Fl of X which are
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finite simplicial complexes and, for any compact subset F ⊂ X, there is an Fj

such that F ⊂ Fj and

sup{dist (x, Fj) + dist (F, y) | x ∈ F, y ∈ Fj} <
σ

2
.

Note that Fi satisfies the condition that we discussed in the third part of Re-
mark 3.18. Let δi = δ(ε/3,F) and Gi = G(ε/3,F) be as in 3.17 for X = Fi,
i = 1, 2, . . . , l, if Fi is a proper subset, or δi = δ(ε/3,F) and Gi = G(ε/3,F) be
as in the Main Theorem. Set δ′ = min{δi | i = 1, 2, . . . , l} and G′ =

⋃
i

Hi, Hi

is a finite subset of C(X) such that si(Hi) = Gi, where si : C(X) → C(Fi) is
the quotient map. By Lemma 3.15, with sufficiently small δ and sufficiently small
G, there is a compact subset F ⊂ X and a contractive positive linear morphism
L′ : C(F ) → A which is δ′/2-G′-multiplicative and σ/2-s′(G′)-injective, where
s′ : C(X) → C(F ) is the quotient map, such that

‖ψ(f)− L′ ◦ s′(f)‖ < ε

2

for all f ∈ G′. Choose Fj above so that F ⊂ Fj and

sup{dist (x, Fj) + dist (F, y) | x ∈ F, y ∈ Fj} <
σ

2
.

Let s0 : C(Fj) → C(F ) be the quotient map and L = L′ ◦ s0 : C(Fj) → A. Then
L is δ/2-sj(G′)-multiplicative and σ-sj(G′)-injective. By applying 3.17 and the
second part of 3.20, there is a homomorphism h1 : C(Fj) → A such that

‖L(f)− h1(f)‖ < ε/2

for all f ∈ sj(F). Note that L′ ◦ s0 ◦ sj = L ◦ s′. We have

‖ϕ(f)− h1 ◦ sj(f)‖ < ε

for all f ∈ F . Take ϕ = h1 ◦ sj .

3.22. Proof of Corollary M2. We consider a δ-G-multiplicative contractive
positive linear morphism ϕ : C(D) → A, where D is the unit disk. It suffices
to show that such a contractive positive linear morphism is close to a homomor-
phism, provided that δ is small enough. But this now follows from Corollary 3.21
immediately.
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3.23. Proof of Corollary M3. Define two homomorphisms h1, h2 : C(S1) →
A by the unitaries u and v in A. It follows from Lemma 2.1 in [58] that, for any
ε1 > 0 and any finite subset F1 ∈ C(T2) there exists a contractive positive linear
map L : C(T2) → A which is ε1-F1-multiplicative such that

‖L(z1)− u‖ < ε and ‖L(z2)− v‖ < ε,

where z1 and z2 are standard unitaries generators of C(T2). So, without loss of
generality, we may assume that L(z1) = u and L(z2) = v. Therefore the first part
of M3 follows from 3.19.

To obtain the second part, we apply 3.17. Note, if α ∈ KL(C(X), A) such
that L∗(P) = α(P), then, since τ(κ(u, v)) = 0, γ(α) preserves the order on K0. It is
proved in [28] that, if B is a unital simple AF-algebra, then for any order preserving
homomorphism, β ∈ Hom(K0(C(T2)), B) which also preserves the identity, there
exists a homomorphism h′ : C(T2) → B such that h′∗ = β. By the additional
assumption that K0(A) is a dimension group, for any nonzero projection e ∈ A, it
follows from 2.9 in [44] that there is a unital simple AF-algebra B which can be
injectively mapped into eAe.

4. HIGHER DIMENSION CASES

4.1. Theorem. Let D3 be the three-dimensional unit solid ball. There are
contractive positive linear maps Λn : C(D3) → Mn3 which are σn-injective with
σn → 0 and which satisfy

‖Λn(fg)− Λn(f)Λn(g)‖ → 0

for all f, g ∈ C(D3), as n→∞ and a > 0 such that

inf
ψn

{sup{‖Λn(f)− ψn(f)‖
∣∣ f ∈ F}} > a,

where F is a given set of finite generators and the infimum is taken from all
homomorphisms ψn : C(D3) →Mn3 for each n.

Proof. We start with a known example ([60], [31], [32] and [75]). There are
two sequences of unitaries un, vn ∈Mn with

‖unvn − vnun‖ → 0
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but dim[e(un, vn)] = n− 1. Denote pn =
(

1 0
0 0

)
and qn = e(un, vn) in M2(Mn)

(see [60] for e(un, vn)). There are partial isometries wn ∈ M2(Mn) such that
pn − w∗nqnwn is a rank one projection in Mn.

Let B′ =
⊕
n
Mn be as a C∗-algebra. Then M(B′) =

∏
n
Mn. Let U = {un}

and V = {vn} and π′ : M(B′) → M(B′)/B′ be the quotient map. Then π′(U)
commutes with π(V ). Thus we obtain a homomorphism Ψ : C(T2) →M(B′)/B′.
By [11], there is a contractive positive linear map Ψ : C(T2) → M(B′) such that
π′ ◦Ψ = Ψ. Write Ψ = {ϕn}; then

‖ϕn(u)− un‖ → 0 and ‖ϕn(v)− vn‖ → 0

as n→∞, where u and v are standard unitaries generators of C(T2). Since Ψ is
a homomorphism,

‖ϕn(fg)− ϕn(f)ϕn(g)‖ → 0

as n→∞ for all f ∈ C(T2).
Now let hn : C(D3) → Mn be 4/n1/3-injective homomorphisms. Such a

homomorphism is found easily. Now define a contractive positive linear map Λn :
C(D3) →Mn3 as follows:

Λn(f) = diag (hn, ϕn(f |C(T2)), ϕn(f |C(T2)), . . . , ϕn(f |C(T2)))

for f ∈ C(D3), where we view T2 as a compact subset of D3 and there are n2 − 1
copies of ϕn(f |C(T2)). Clearly Λn | C(D3) is a contractive positive linear map.
We also have

‖Λn(fg)− Λn(f)Λn(g)‖ → 0

for all f ∈ C(D3) as n→∞. Furthermore, for any (finite) subset Fn ∈ C(D3), Λn
is 4/n1/3-injective.

Consider B =
⊕
n
Mn3 be as a C∗-algebra. Then M(B) =

∏
n
Mn3 . Let

π : M(B) → M(B)/B be the quotient map. Denote by dn a projection in Mn3

with rank n, d = {dn} and let Id be the ideal of M(B) generated by d. Let
πI : M(B) →M(B)/Id be the quotient map. Set

p = diag (0, {pn}, {pn}, . . . , {pn}), q = diag (0, {qn}, {qn}, . . . , {qn})

and

w = diag (0, {wn}, {wn}, . . . , {wn})
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(in M(B)). Since

diag (0, pn − w∗nqnwn, pn − w∗nqnwn, . . . , pn − w∗nqnwn)

has rank n2−1, by 3.3, p−w∗qw 6∈ Id. Let Λ = {Λn}. Then Λ : C(D3) →M(B) is a
contractive positive linear map and π◦Λ : C(D3) →M(B)/B is a monomorphism.
However, sp (πI ◦ Λ) = T2 and πI ◦ Λ induces a homomorphism C(T2) from into
M(B)/Id. Furthermore this homomorphism is the same as

H = diag (Φ,Φ, . . . ,Φ).

(there are n2 − 1 many copies). Since πI(p − v∗qv) is a nonzero projection
in M(B)/Id, H can not be approximated by homomorphisms from C(T2) into
M(B)/Id with finite dimensional range. This implies that π ◦ Λ can not be ap-
proximated by homomorphisms from C(D3) into M(B)/B with finite dimensional
range. This, in turn, implies that Λ can not be approximated by homomorphisms
with finite dimensional range. Since every homomorphism from C(D3) into M(B)
(M(B) is a W∗-algebra) can be approximated by homomorphisms with finite
dimensional range, we conclude that Λ is bounded away from homomorphisms,
whence, {Λn} is bounded away from homomorphisms.

4.2. Theorem. Let X be a finite CW-complex with dim(X) > 3 and A ∈ A
be nonelementary. There are contractive positive linear maps Λn : C(X) → A

which are σn-injective with σn → 0 and which satisfy

‖Λn(fg)− Λn(f)Λn(g)‖ → 0

for all f, g ∈ C(X), as n→∞,

(Λn)∗(P) ∈ N

for any finite subset P ∈ P (C(X)) when n is sufficiently large, and a > 0 such
that

inf
ψn

{sup{‖Λn(f)− ψn(f)‖
∣∣ ‖f‖ 6 1}} > a,

where the infimum is taken from all homomorphisms ψn : C(X) → A for each n.

Proof. Let τ be the unique normalized quasitrace. By [78], there are projec-
tions en ∈ A such that τ(en) 6 1/n3 and (1 − en)A(1 − en) = Mn3(Bn), where
Bn is a unital hereditary C∗-subalgebra of A. Let Cn be the C∗-subalgebra of A
which is isomorphic to Mn3 . We may further assume that 1−1Cn

6= 0. With p and
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q being as in Theorem 4.1; as in the proof of Theorem 4.1, we obtain a sequence
of unital contractive positive linear morphisms ψn : C(T2) → Cn with

‖ψn(fg)− ψn(f)ψn(g)‖ → 0

for all f, g ∈ C(T2) and

n[τ(ψn(p))− τ(ψn(q))] → 1

as n → ∞. Since dim(X) > 3, there is a subset Y ⊂ X such that Y is homeo-
morphic to D3. Thus there is a compact subset Y1 ⊂ Y such that Y1 is homeo-
morphic to T2. Without loss of generality, we may assume that Y1 = T2. Since
enAen is a nonelementary simple C∗-algebra, there is a unital monomorphism
hn : C(X) → enAen. Now define

Λn(f) = hn(f)⊕ ψn(f |Y1).

Clearly (Λn)∗(P) ∈ N when n is large enough. Moreover,

τ(en)
τ(ψn(p)− ψn(q))

= O
( 1
n2

)
.

Note that, by 4.5 in [27], every monomorphism from C(D3) into A can be approxi-
mated by homomorphisms with finite dimensional range. The proof of Theorem 4.1
shows that Λn is bounded away from homomorphisms (choose {dn} ∈

∏
A with

each dn ∈ A and 1/n2 − 1/n4 6 τ(dn) 6 1/n2 + 1/n4).

4.3. Let A be a unital separable simple C∗-algebra of real rank zero, stable
rank one with weakly unperforated K0(A) and unique (normalized) quasi-trace τ ,
and let X be a compact metric space. Suppose that ψ : C(X) → A is a unital
positive linear map. Then τ ◦ ψ is a state for C(X). Fix a Borel measure m on X
with the property that every open ball O of X with positive radius has positive
measure. Such a measure will be called strictly positive. Let mψ be the (Borel)
measure on X induced by τ ◦ψ. For any ε > 0 and σ > 0, a positive linear map ψ
is said to be m-ε-σ-injective if there is an ε-net {x1, x2, . . . , xm} ⊂ X (i.e. for any
x ∈ X there is xi ∈ {x1, x2, . . . , xm} such that dist (x, xi) < ε) such that

mψ(Oi) > σm(Oi), i = 1, 2, . . . ,m,

where Oi = {x ∈ X | dist (x, xi) < η} for any η > 0.

For a general space X, we have proved (see [39]) the following positive result:
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4.4. Theorem. Let X be a compact metric space. For any ε > 0, σ > 0, a
strictly positive Borel measure m on X and a finite subset F ⊂ C(X) there exist a

finite subset P of projections in
∞⋃
m=1

M∞(C(X)⊗C(Cm× S1)), δ > 0 and a finite

subset G ⊂ C(X) satisfying the following:
If A ∈ A and ψ : C(X) → A is a δ-G-multiplicative contractive positive linear

map which is m-δ-σ-injective and which satisfies that ψ∗ : P → K(B) lies in N ,
then there exist a homomorphism ϕ : C(X) → A with finite dimensional range
such that

‖ψ(f)− ϕ(f)‖ < ε

for all f ∈ F .
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71. J. Rosenberg, C. Schochet, The Künneth theorem and the universal coeffi-

cient theorem for Kasparov’ generalized K-functor, Duke Math. J. 55(1987),
431–474.

72. P.R. Rosenthal, Are almost commuting matrices near commuting pairs?, Amer.
Math. Monthly 76(1969), 925–926.

73. C. Schochet, Topological methods for C∗-algebras IV: mod p homology, Pacific J.
Math. 114(1984), 447–468.

74. D. Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine
Math. Pures Appl. 21(1976), 97–113.

75. D. Voiculescu, Asymptotically commuting finite rank unitaries without commuting
approximants, Acta Sci. Math. (Szeged) 451(1983), 429–431.

76. S. Zhang, C∗-algebras with real rank zero and the internal structure of their Corona
and multiplier algebras. III, Canad. J. Math. 42(1990), 159–190.

77. S. Zhang, K1-groups, quasidiagonality, and interpolation by multiplier projections,
Trans. Amer. Math. Soc. 325(1991), 793–818.

78. S. Zhang, Matricial structure and homotopy type of simple C∗-algebras with real
rank zero, J. Operator Theory 26(1991), 283–312.

79. S. Zhang, C∗-algebras with real rank zero and the internal structure of their Corona
and multiplier algebras. I, Pacific J. Math. 155(1992), 169–197.

80. S. Zhang, Certain C∗-algebras with real rank zero and their Corona and multiplier
algebras. II, K-Theory 6(1992), 1–27.

GUIHUA GONG HUAXIN LIN
Department of Mathematics Department of Mathematics

University of Puerto Rico, Rio Piedras University of Oregon
San Juan, PR 00931 Eugene, Oregon 97403–1222

U.S.A. U.S.A.

Received September 7, 1996.


