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Abstract. Let A be a Banach algebra, not necessarily unital, and let B
be a closed subalgebra of A. We establish a connection between the Banach
cyclic cohomology group HCn(A) of A and the Banach B-relative cyclic co-
homology group HCn

B(A) of A. We prove that, for a Banach algebra A with
a bounded approximate identity and an amenable closed subalgebra B of A,
up to topological isomorphism, HCn(A) = HCn

B(A) for all n > 0. We also
establish a connection between the Banach simplicial or cyclic cohomology
groups of A and those of the quotient algebra A/I by an amenable closed
bi-ideal I. The results are applied to the calculation of these groups for cer-
tain operator algebras, including von Neumann algebras and joins of operator
algebras.
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Much interest has been attached in recent years to the computation of cyclic
(co)homo-logy groups; see [18] for many references. Most of the literature has
been devoted to the purely algebraic context, but there have also been papers
addressing the calculation of the Banach version of these groups for Banach al-
gebras, and in particular C∗-algebras: see, for example, [2], [24] and [13]. There
is an effective tool for computing cyclic (co)homology: the Connes-Tsygan exact
sequence, which connects the cyclic (co)homology of many algebras with their
simplicial (co)homology. However, it remains the case that these groups can only
be calculated for a restricted range of algebras. The purpose of this paper is
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to describe a technique for the calculation of the Banach simplicial and cyclic
cohomology groups of Banach algebras, to establish the basic properties of this
technique and to apply it to some natural classes of algebras. The technique in-
volves, for a Banach algebra A, not necessarily unital, the notion of Banach cyclic
cohomology groups HCn

B(A) of A relative to a closed subalgebra B of A. This
concept was introduced and exploited by L. Kadison ([16]) in the algebraic theory.
We establish a connection between the Banach cyclic cohomology group HCn(A)
of A and the Banach B-relative cyclic cohomology group HCn

B(A) of A. The key
result (Theorem 5.1) is that, for a Banach algebra A with a bounded approximate
identity and an amenable closed subalgebra B of A, HCn(A) = HCn

B(A) for all
n > 0. With the aid of this theorem we show, for example, that if R is a von
Neumann algebra then, for each n > 0, HCn(R) is the direct sum of the cyclic
cohomologies HCn(RIf ) and HCn(RII1) of the finite von Neumann algebras RIf

and RII1 of types I and II appearing in the standard central direct summand de-
composition of R (Corollary 5.7). Another application is to A#B, the join of two
norm closed unital operator algebras A and B. We show that, for each n > 0,
HCn(A#B) = HCn(A) ⊕ HCn(B) (Proposition 5.8). In this paper equality of
cohomology groups means topological isomorphism of seminormed spaces.

In establishing the connection between the Banach cyclic cohomology groups
and the Banach relative cyclic cohomology groups of a Banach algebra A, we
need to know the connection between the Banach simplicial cohomology groups
Hn(A,A∗) of A and its relative analogue Hn

B(A,A∗). Here A∗ is the dual Banach
space of A. In Section 2 we prove Theorem 2.6 that for a Banach algebra A,
an amenable closed subalgebra B of A and a dual A-bimodule M , Hn(A,M) =
Hn

B(A,M) for all n > 0. I am grateful to B.E. Johnson for suggesting that this
result should be true. In the special case of a Banach algebra A with an identity,
an amenable closed subalgebra B of A which contains the identity of A and a
unital dual A-bimodule M , the identical result was proved by different methods
by L. Kadison ([17]). E. Christensen and A.M. Sinclair in [3] used the same version
of relative Hochschild cohomology group for the computation of the Hochschild
cohomology groups of von Neumann algebras; see also [23].

In Section 4 we introduce the Banach relative cyclic cohomology of a Banach
algebra and show that the relative Connes-Tsygan exact sequence exists for a
Banach algebra with a bounded approximate identity. We do this using ideas of
A.Ya. Helemskii ([13]). In this section we also show the existence of morphisms
of certain Connes-Tsygan exact sequences.

The results of Section 2 allow us to find, in Section 3, a connection between
the cohomology groups of a Banach algebra A and those of a quotient algebra
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A/I by an amenable closed bi-ideal I. We prove (Theorem 3.1) that in this case,
for a dual A/I-bimodule M , Hn(A,M) = Hn(A/I,M) for all n > 0. Thus we
obtain, in Theorem 3.4, the following information about the Banach simplicial
cohomology groups: Hn(A,A∗) = Hn(A/I, (A/I)∗) for all n > 2 and amenable I.
A connection between the Banach cyclic cohomology groups of a Banach algebra
A and those of a quotient algebra A/I by an amenable closed bi-ideal I is given
in Theorem 5.4 of Section 5.

1. DEFINITIONS AND NOTATION

Let A be a Banach algebra, not necessarily unital, and let A+ be the unitization
of A. We denote by e+ the adjoined identity and by e an identity of A when it
exists.

We recall some notation and terminology used in the homological theory of
Banach algebras. Let A be a Banach algebra, not necessarily unital, and let X be a
Banach A-bimodule. We define an n-cochain to be a bounded n-linear operator of
A×· · ·×A into X and we denote the space of n-cochains by Cn(A,X). For n = 0
the space C0(A,X) is defined to be X. Let us consider the standard cohomological
complex

(C(A,X)) 0 −→ C0(A,X) δ0

−→ · · · −→ Cn(A,X) δn

−→Cn+1(A,X) −→ · · · ,

where the coboundary operator δn is defined by

(δnf)(a1, . . . , an+1) = a1 · f(a2, . . . , an+1) +
n∑

i=1

(−1)if(a1, . . . , aiai+1, . . . , an+1)

+ (−1)n+1f(a1, . . . , an) · an+1.

The kernel of δn in Cn(A,X) is denoted by Zn(A,X) and its elements are called
n-cocycles. The image of δn−1 in Cn(A,X) (n > 1) is denoted by Nn(A,X) and
its elements are called n-coboundaries. An easy computation yields δn+1 ◦ δn = 0,
n > 0. The nth cohomology group of C(A,X) is called the nth Banach cohomology
group of A with coefficients in X. It is denoted by Hn(A,X). Thus Hn(A,X) =
Zn(A,X)/Nn(A,X); it is a complete seminormed space.

Recall that a Banach A-bimodule M = (M∗)∗, where M∗ is a Banach A-
bimodule, is called dual. A Banach algebra A such that H1(A,M) = {0} for
all dual A-bimodules M is called amenable. A Banach algebra A such that
H1(A,X) = {0} for all Banach A-bimodules X is called contractible.
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Now let D be a closed subalgebra of A+. We denote by Cn
D(A,X) the closed

subspace of Cn(A,X) of n-cochains ρ such that

ρ(da1, a2, . . . , an) = d · ρ(a1, . . . , an),

ρ(a1, . . . , ai−1, aid, ai+1, ai+2, . . . , an) = ρ(a1, . . . , ai−1, ai, dai+1, ai+2, . . . , an)

and
ρ(a1, a2, . . . , and) = ρ(a1, . . . , an) · d

for all a1, a2, . . . , an ∈ A, d ∈ D and 1 6 i 6 n. These cochains we shall call
D-relative n-cochains. For n = 0 the space C0

D(A,X) is defined to be CenDX
def=

{x ∈ X | d · x = x · d for all d ∈ D}.
Note that, for each ρ ∈ Cn

D(A,X), δnρ is also an D-relative cochain. There-
fore there is a subcomplex in C(A,X) formed by the spaces Cn

D(A,X). We de-
note this subcomplex by CD(A,X). The kernel of δn in Cn

D(A,X) is denoted
by Zn

D(A,X) and its elements are called D-relative n-cocycles. The image of
δn−1 : Cn−1

D (A,X)→ Cn
D(A,X) (n > 1) is denoted by Nn

D(A,X) and its elements
are called D-relative n-coboundaries. The nth cohomology group of CD(A,X) is
called the n-dimensional Banach D-relative cohomology group of A with coeffi-
cients in X. It is denoted by Hn

D(A,X). When D = Ce+ the subscript D is
unnecessary and we omit it.

Throughout the paper id denotes the identity operator. We denote the pro-
jective tensor product of Banach spaces by ⊗̂ and the projective tensor product of
left and right Banach A-bimodules by ⊗̂A ([20]). Let E and F be Banach spaces.
The Banach space of bounded operators from E into F is denoted by B(E,F ).
Instead of B(E,E) we write B(E).

2. RELATIVE COHOMOLOGY OF BANACH ALGEBRAS

We need a strengthening of Theorem 4.1 of [15] to prove the isomorphism
of the cohomology and the relative cohomology of a Banach algebra A for dual
A-bimodules.

Proposition 2.1. Let A be a Banach algebra, let B be an amenable closed
subalgebra of A, let M be a dual A-bimodule and let n > 1. Suppose ρ ∈ Cn(A,M)
is such that

(δnρ)(a1, . . . , an+1) = 0

if any one of a1, . . . , an+1 lies in B. Then there exists ξ ∈ Cn−1(A,M) such that

(ρ− δn−1ξ)(a1, . . . , an) = 0

if any one of a1, . . . , an lies in B.

Proof. Is the same as that of Theorem 4.1 of [15].
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The following is essentially Lemma 4.1 of [21], but with a weakening of the
hypothesis.

Lemma 2.2. Let A be a Banach algebra, let B be a closed subalgebra of A,
let X be a Banach A-bimodule and let n > 1. Suppose ρ ∈ Cn(A,X) is such that

(δnρ)(a1, . . . , an+1) = 0

if any one of a1, . . . , an+1 lies in B and

ρ(a1, . . . , an) = 0

if any one of a1, . . . , an lies in B. Then ρ ∈ Cn
B(A,X).

Proof. Is the same as that of Lemma 4.1 of [21].

Corollary 2.3. Let A be a Banach algebra, let B be an amenable closed
subalgebra of A, let M be a dual A-bimodule and let n > 1. Suppose ρ ∈ Zn(A,M).
Then there exists ξ ∈ Cn−1(A,M) such that

(ρ− δn−1ξ)(a1, . . . , an) = 0

if any one of a1, . . . , an lies in B. Moreover (ρ− δn−1ξ) ∈ Zn
B(A,M).

Proposition 2.4. Let A be a Banach algebra, let B be a closed subalgebra
of A with a bounded approximate identity eν , ν ∈ Λ, let M = (M∗)∗ be a dual
A-bimodule and let n > 1. Suppose ρ ∈ Cn

B(A,M) is such that

(2.1) (δnρ)(a1, . . . , an+1) = 0

if any one of a1, . . . , an+1 lies in B. Then there exists ξB ∈ Cn−1
B (A,M) such that

(ρ− δn−1ξB)(a1, . . . , an) = 0

if any one of a1, . . . , an lies in B.

Proof. For n = 1, by assumption, for each b ∈ B and ν ∈ Λ,

0 = (δ1ρ)(eν , b) = eν · ρ(b)− ρ(eνb) + ρ(eν) · b = ρ(eν) · b,

since ρ ∈ C1
B(A,M) and eν ∈ B. So we obtain

ρ(b) = lim
ν

ρ(eνb) = lim
ν

ρ(eν) · b = 0.

Hence we can take ξB = 0.
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For n > 1, we construct, inductively on k, ξ1, . . . , ξk in Cn−1
B (A,M) such

that
(ρ− δn−1ξk)(a1, . . . , an) = 0

if any one of a1, . . . , ak lies in B for 1 6 k 6 n. The conclusion of the proposition
then follows, with ξB = ξn.

To construct ξ1, we consider gν ∈ Cn−1(A,M) given by

gν(a1, . . . , an−1) = ρ(eν , a1, . . . , an−1),

for a1, . . . , an−1 ∈ A and ν ∈ Λ. Since the Banach space Cn−1(A,M) is the dual
space of A⊗̂ · · · ⊗̂A⊗̂M∗, for the bounded net gν , ν ∈ Λ, there exists a subnet
gµ, µ ∈ Λ′, which weak∗ converges to some cochain g ∈ Cn−1(A,M). It is routine
to check that g ∈ Cn−1

B (A,M).
By assumption, for each b ∈ B and ν ∈ Λ,

(2.2)

0 = δnρ(eν , b, a2, . . . , an)

= eν · ρ(b, a2, . . . , an)− ρ(eνb, a2, . . . , an) + ρ(eν , ba2, . . . , an)

+
n−1∑
i=2

(−1)i+1ρ(eν , b, a2, . . . , aiai+1, . . . , an)

+ (−1)n+1ρ(eν , b, a2, . . . , an−1) · an

= ρ(eν , ba2, . . . , an) +
n−1∑
i=2

(−1)i+1ρ(eν , b, a2, . . . , aiai+1, . . . , an)

+ (−1)n+1ρ(eν , b, a2, , . . . , an−1) · an.

Thus

ρ(b, a2, . . . , an)− δn−1g(b, a2, . . . , an)

= ρ(b, a2, . . . , an)− b · g(a2, . . . , an) + g(ba2, . . . , an)

+
n−1∑
i=2

(−1)i+1g(b, a2, . . . , aiai+1, . . . , an) + (−1)n+1g(b, a2, , . . . , an−1) · an

= ρ(b, a2, . . . , an)− lim
µ

b · ρ(eµ, a2, . . . , an)

+ lim
µ

[
ρ(eµ, ba2, . . . , an) +

n−1∑
i=2

(−1)i+1ρ(eµ, b, a2, . . . , aiai+1, . . . , an)

+ (−1)n+1ρ(eµ, b, a2, . . . , an−1) · an

]
.

The first two terms cancel, and the remaining ones add up to zero by (2.2). This
proves the existence of a suitable cochain ξ1 = g.
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Suppose now that 1 6 k < n, and a suitable cochain ξk ∈ Cn−1
B (A,M) has

been constructed. With ρ− δn−1ξk ∈ Cn
B(A,M) denoted by σ,

(2.3) σ(a1, . . . , an) = 0

if any one of a1, . . . , ak lies in B. In order to continue the inductive process (and
so complete the proof of the theorem), it suffices to construct ζ in Cn−1

B (A,M)
such that σ − δn−1ζ vanishes whenever any one of its first k + 1 arguments lies in
B. For then we have ρ−δn−1(ξk +ζ) = σ−δn−1ζ, and we may take ξk+1 = ξk +ζ.
To this end, we consider gν ∈ Cn−1(A,M) given by

gν(a1, . . . , an−1) = σ(a1, . . . , ak, eν , ak+1, . . . , an−1),

for a1, . . . , an−1 ∈ A and ν ∈ Λ. By the same arguments as in the case k = 1,
there exists a subnet gµ, µ ∈ Λ′, which weak∗ converges to some cochain g ∈
Cn−1(A,M). It can be checked that g ∈ Cn−1

B (A,M) and

(2.4) g(a1, . . . , an−1) = 0

if any one of a1, . . . , ak lies in B.

In view of the assumption (2.1), for any b ∈ B and ν ∈ Λ,

δnσ(a1, . . . , ak, eν , b, ak+2, . . . , an)

= (δnρ− (δn ◦ δn−1)(ξk))(a1, . . . , ak, eν , b, ak+2, . . . , an) = 0.

Hence by the coboundary formula,

0 = δnσ(a1, . . . , ak, eν , b, ak+2, . . . , an) = a1 · σ(a2, . . . , ak, eν , b, ak+2, . . . , an)

+
k−1∑
i=1

(−1)iσ(a1, . . . , aiai+1, . . . , ak, eν , b, ak+2, . . . , an)

+ (−1)kσ(a1, . . . , akeν , b, ak+2, . . . , an)

+ (−1)k+1σ(a1, . . . , ak, eνb, ak+2, . . . , an)

+ (−1)k+2σ(a1, . . . , ak, eν , bak+2, . . . , an)

+
n−1∑

i=k+2

(−1)i+1σ(a1, . . . , ak, eν , b, ak+2, . . . , aiai+1, . . . , an)

+ (−1)n+1σ(a1, . . . , ak, eν , b, ak+2, . . . , an−1) · an.
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By the inductive hypothesis (2.3) the first two terms vanish, and since σ ∈
Cn

B(A,M), the third and fourth cancel. Thus

(2.5)

0 = (−1)k+2σ(a1, . . . , ak, eν , bak+2, . . . , an)

+
n−1∑

i=k+2

(−1)i+1σ(a1, . . . , ak, eν , b, ak+2, . . . , aiai+1, . . . , an)

+ (−1)n+1σ(a1, . . . , ak, eν , b, ak+2, . . . , an−1) · an.

Now consider

(σ − (−1)kδn−1g)(a1, . . . , ak, b, ak+2, . . . , an) = σ(a1, . . . , ak, b, ak+2, . . . , an)

+ (−1)k+1a1 · g(a2, . . . , ak, b, ak+2, . . . , an)

+
k−1∑
i=1

(−1)i+k+1g(a1, . . . , aiai+1, . . . , ak, b, ak+2, . . . , an)

− g(a1, . . . , akb, ak+2, . . . , an) + g(a1, . . . , ak, bak+2, . . . , an)

+
n−1∑

i=k+2

(−1)i+k+1g(a1, . . . , ak, b, ak+2, . . . , aiai+1, . . . , an)

+ (−1)n+k+1g(a1, . . . , ak, b, ak+2, . . . , an−1) · an.

By (2.4), the second and third terms vanish. So, by definition of g, we have

(σ − (−1)kδn−1g)(a1, . . . , ak, b, ak+2, . . . , an)

= σ(a1, . . . , ak, b, ak+2, . . . , an)− lim
µ

σ(a1, . . . , akb, eµ, ak+2, . . . , an)

+ (−1)k lim
µ

[(−1)k+2σ(a1, . . . , ak, eµ, bak+2, . . . , an)

+
n−1∑

i=k+2

(−1)i+1σ(a1, . . . , ak, eµ, b, ak+2, . . . , aiai+1, . . . , an)

+ (−1)n+1σ(a1, . . . , ak, eµ, b, ak+2, . . . , an−1) · an].

The first two terms cancel, and the remaining ones add up to zero by (2.5). This
shows that, if ζ = (−1)kg, then (σ−δn−1ζ)(a1, . . . , an) vanishes when its (k+1)th
argument lies in B. When ai = b ∈ B for some i, 1 6 i 6 k, by the inductive
hypothesis (2.3) and (2.4), we obtain

(σ − (−1)kδn−1g)(a1, . . . , b, . . . , an)

= (−1)k+ig(a1, . . . , ai−1b, ai+1, . . . , an)+(−1)k+i+1g(a1, . . . , ai−1, bai+1, . . . , an)

= 0,

since g ∈ Cn−1
B (A,M). Thus (σ − δn−1ζ)(a1, . . . , an) vanishes when any of its

first k + 1 arguments lies in B. As noted above, this completes the proof of the
proposition.
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Proposition 2.5. Let A be a Banach algebra, let B be an amenable closed
subalgebra of A, let M be a dual A-bimodule and let n > 1. Suppose ρ ∈ Cn

B(A,M)
∩Nn(A,M). Then there exists ξ ∈ Cn−1

B (A,M) such that

δn−1ξ = ρ.

Proof. For n = 1, by Proposition 2.4, there exists ξB ∈ C0
B(A,M) = CenBM

such that
(ρ− δ0ξB)(a1) = 0

if a1 ∈ B. By assumption, there exists ξ1 ∈ C0(A,M) = M such that ρ = δ0ξ1.

Hence
(ρ− δ0ξB)(a1) = (δ0ξ1 − δ0ξB)(a1) = δ0(ξ1 − ξB)(a1)

= a1 · (ξ1 − ξB)− (ξ1 − ξB) · a1 = 0

if a1 ∈ B. This implies ξ1 − ξB ∈ CenBM , and so ξ1 ∈ CenBM .
For n > 2, by Proposition 2.4, there exists ξB ∈ Cn−1

B (A,M) such that

(ρ− δn−1ξB)(a1, . . . , an) = 0

if any one of a1, . . . , an lies in B, and by Lemma 2.2, ρB
def= (ρ − δn−1ξB) ∈

Cn
B(A,M). By assumption, there exists ξ1 ∈ Cn−1(A,M) such that ρ = δn−1ξ1.

Hence
ρB = ρ− δn−1ξB = δn−1ξ1 − δn−1ξB = δn−1(ξ1 − ξB).

Further, η
def= ξ1 − ξB satisfies the assumption of Proposition 2.1, and so there

exists β ∈ Cn−2(A,M) such that

ηB(a1, . . . , an−1)
def= (η − δn−2β)(a1, . . . , an−1) = 0

if any one of a1, . . . , an−1 lies in B. Therefore

ρB = δn−1(ξ1 − ξB) = δn−1η = δn−1(ηB + δn−2β) = δn−1ηB .

By Lemma 2.2, ηB ∈ Cn−1
B (A,M); this implies

ρ = ρB + δn−1ξB = δn−1ηB + δn−1ξB = δn−1(ηB + ξB)

and so, for ξ = ηB + ξB ∈ Cn−1
B (A,M), we have δn−1ξ = ρ.

As was said in the introduction, the following result is based on a communi-
cation of B.E. Johnson.
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Theorem 2.6. Let A be a Banach algebra, let B be an amenable closed
subalgebra of A and let M be a dual A-bimodule. Then

Hn(A,M) = Hn
B(A,M)

for all n > 0.

Proof. The inclusion morphism of cochain objects Cn
B(A,M) → Cn(A,M)

induces a morphism of complexes CB(A,M)→ C(A,M) and hence morphisms

Fn : Hn
B(A,M)→ Hn(A,M)

given, for each ρ ∈ Zn
B(A,M), by Fn(ρ + Nn

B(A,M)) = ρ + Nn(A,M) (see, for
example, [11], Section 0.5.3).

For n = 0 we have H0
B(A,M) = H0(A,M) = Cen A(M). In the case where

n > 1, the morphism Fn is injective by Proposition 2.5 and surjective by Corol-
lary 2.3. Hence, by Lemma 0.5.9 of [11], Fn is a topological isomorphism.

In the particular case when A is a unital C∗-algebra, B is the C∗-algebra
generated by an amenable group of unitaries and M is a dual normal A-bimodule,
the statement of Theorem 2.6 is given in Theorem 3.2.7 of [23].

Theorem 2.7. Let A be a Banach algebra, let B be a contractible closed
subalgebra of A and let X be a Banach A-bimodule. Then

Hn(A,X) = Hn
B(A,X)

for all n > 0.

Proof. It requires only minor modifications of that of Theorem 2.6, since
H1(A,X) = {0} for all Banach A-bimodules X and B has an identity (see [12]).

Proposition 2.8. Let Ai be a Banach algebra with identity ei, i = 1, . . . ,m,

let A be the Banach algebra direct sum
m⊕

i=1

Ai with some norm ‖ · ‖A such that

‖ ·‖A is equivalent to ‖ ·‖Ai
on Ai, 1 6 i 6 m, and let X be a Banach A-bimodule.

Then the canonical projections from A to Ai, i = 1, . . . ,m, induce a topological

isomorphism of complexes CB(A, eXe)→
m⊕

i=1

C(Ai, eiXei), where B is the Banach

subalgebra of A generated by {ei, i = 1, . . . ,m}. Hence

Hn(A,X) =
m⊕

i=1

Hn(Ai, eiXei)

for all n > 1. If X is unital, then we have also

H0(A,X) =
m⊕

i=1

H0(Ai, eiXei).

(Here eiXei = {ei · x · ei, x ∈ X} is a Banach A-bimodule and e =
m∑

i=1

ei.)
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Proof. For n = 0 it can be checked that

C0
B(A, eXe) = CenB(eXe) =

m⊕
i=1

(eiXei) =
m⊕

i=1

C0(Ai, eiXei).

For n > 1 and ρ ∈ Cn
B(A, eXe), we have

ρ(a1, . . . , an) = ρ
( m∑

i=1

a1ei, a2, . . . , an

)
=

m∑
i=1

ei · ρ(a1ei, a2ei, . . . , anei) · ei

for a1, . . . , an ∈ A. We define cochain maps from Cn
B(A, eXe) to

m⊕
i=1

Cn(Ai, eiXei)

and back by
Jn : ρ→ (ρ1, . . . , ρm)

where ρi(ai
1, . . . , a

i
n) = ρ(ai

1, . . . , a
i
n) for ai

1, . . . , a
i
n ∈ Ai and for i = 1, . . . ,m, and

Gn : (ρ1, . . . , ρm)→ ρ

is given by ρ(a1, . . . , an) =
m∑

i=1

ρi(a1ei, a2ei, . . . , anei) for a1, . . . , an ∈ A.

It is clear that Jn ◦ Gn = id, Gn ◦ Jn = id and the maps Jn and Gn are
bounded. It is routine to check that collections of {Jn} and {Gn} are mor-
phisms of cochain complexes. Thus there is a topological isomorhism of complexes

CB(A, eXe)→
m⊕

i=1

C(Ai, eiXei), and so, for all n > 0,

Hn
B(A, eXe) =

m⊕
i=1

Hn(Ai, eiXei).

Note that B =
m⊕

i=1

Cei is contractible. Hence, by Theorem 2.7, Hn(A, eXe) =

Hn
B(A, eXe) for all n > 0, and by [14], Hn(A,X) = Hn(A, eXe) for all n > 1. The

result now follows directly.

Proposition 2.9. Let R be a von Neumann algebra, let

R = RIf ⊕RI∞ ⊕RII1 ⊕RII∞ ⊕RIII

be the central direct summand decomposition of R into von Neumann algebras
of types If (finite), I∞, II1, II∞, III with the identity e of R decomposing as
e = eIf ⊕ eI∞ ⊕ eII1 ⊕ eII∞ ⊕ eIII ([22], Section 2.2), and let X be a Banach R-
bimodule. Then
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(i) for all n > 1,

Hn(R, X) = Hn(RIf , eIf XeIf )⊕Hn(RI∞ , eI∞XeI∞)

⊕Hn(RII1 , eII1XeII1)⊕Hn(RII∞ , eII∞XeII∞)⊕Hn(RIII, eIIIXeIII);

(ii) in particular, for all n > 0,

Hn(R,R∗) = Hn(RIf ,R∗If )⊕H
n(RII1 ,R∗II1).

Proof. Part (i) follows from Proposition 2.8. In part (ii) we apply (i) to the
unital Banach R-bimodule X = R∗. By Proposition 2.2.4 of [22], for a properly
infinite von Neumann algebra U there exists a sequence (pm) of mutually orthog-
onal, equivalent projections in U with pm ∼ e. Thus, by Theorem 2.1 of [5],
each hermitian element of U is the sum of five commutators. Hence there are no
non-zero bounded traces on U . Thus, by virtue of Corollary 3.3 of [2], for a von
Neumann algebra U of one of the types I∞, II∞ or III, the simplicial cohomology
groups Hn(U ,U∗) = {0} for all n > 0.

Remark 2.10. As for finite von Neumann algebras of type I, by [22], The-
orem 2.3.2, they are the l∞-direct sum of type Im von Neumann algebras RIm ,
where m < ∞. By Theorem 2.3.3 and results of Section 1.22 of [22], RIm is ∗-
isomorphic to the C∗-tensor product Z

⊗
min

B(H), where Z is the centre of RIm

and dim(H) = m. Hence, by Theorem 7.9 of [14], finite von Neumann algebras
RIm

of type Im are amenable, and so their simplicial cohomology groups vanish
Hn(RIm

,R∗Im
) = {0} for all n > 1. It is still not clear to the author whether

Hn(RIf ,R∗If ) = {0} for all n > 2.
Note that the statement of Proposition 2.9 (i) is proved in [23], Corol-

lary 3.3.8, for the particular case of a dual normal R-bimodule X.
Now let us consider two unital Banach algebras A1 and A2, a unital Banach

A1-A2-bimodule Y , and the natural triangular matrix algebra

U =
[

A1 Y

0 A2

]
; or U =

[
A1 0
Y A2

]
with matrix multiplication and some norm ‖ · ‖U such that ‖ · ‖U is equivalent to
‖ · ‖Ai on Ai, 1 6 i 6 2, and to ‖ · ‖Y on Y . For example,∥∥∥∥[

r1 y

0 r2

]∥∥∥∥
U

= ‖r1‖A1 + ‖r2‖A2 + ‖y‖Y .

Let eii, i = 1, 2, denote the idempotents e11 =
[

eA1 0
0 0

]
and e22 =

[
0 0
0 eA2

]
respectively; and let e = e11 + e22. Let us also consider the Banach subalgebra B

of U generated by {eii, i = 1, 2}.
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Now we shall give examples of operators algebras of such form. Let A and B

be norm closed unital subalgebras of B(H) and B(K), where H and K are Hilbert
spaces. Then the join of A and B, denoted by A#B, is the operator algebra on
H ⊕K consisting of operators represented by block-matrixes[

b 0
u a

]
,

where a ∈ A, b ∈ B and u ∈ B(H,K) (see [6]). It is easy to see that∥∥∥∥[
0 0
0 a

]∥∥∥∥
A#B

= ‖a‖A,

∥∥∥∥[
b 0
0 0

]∥∥∥∥
A#B

= ‖b‖B

and ∥∥∥∥[
0 0
u 0

]∥∥∥∥
A#B

= ‖u‖B(H,K).

Proposition 2.11. Let A1 and A2 be unital Banach algebras, let Y be a
unital Banach A1-A2-bimodule, let

U =
[

A1 Y

0 A2

]
respectively, U =

[
A1 0
Y A2

]
be the natural triangular matrix algebra with some norm ‖ · ‖U such that ‖ · ‖U
is equivalent to ‖ · ‖Ai

on Ai, 1 6 i 6 2, and to ‖ · ‖Y on Y , and let X be a
Banach U-bimodule. Suppose that e11Xe22 = {0} or e11Ue22 = {0} (respectively,
e22Xe11 = {0} or e22Ue11 = {0}). Then the two canonical projections from U
to A1 and to A2 induce a topological isomorphism of complexes CB(U , eXe) →
2⊕

i=1

C(Ai, eiiXeii) and hence

Hn(U , X) = Hn(A1, e11Xe11)⊕Hn(A2, e22Xe22)

for all n > 1. If X is unital, then we have also

H0(U , X) = H0(A1, e11Xe11)⊕H0(A2, e22Xe22).

Proof. We give a proof for the upper triangular form of U . For the lower
triangular case the proof requires insignificant changes.

One can see that, for a =
[

r1 y

0 r2

]
, we have ae11 = e11ae11, e22ae11 = 0

and e22a = e22ae22. For n = 0, it can be checked that

C0
B(U , eXe) = Cen B(eXe) =

2⊕
i=1

(eiiXeii) =
2⊕

i=1

C0(Ai, eiiXeii).
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For n > 1 and ρ ∈ Cn
B(U , eXe), we have

ρ(a1, . . . , an) = (e11 + e22) · ρ(a1, a2, . . . , an) · (e11 + e22)

= e11 · ρ(a1, a2, . . . , an) · e11 + e11 · ρ(a1, a2, . . . , an) · e22

+ e22 · ρ(a1, a2, . . . , an) · e11 + e22 · ρ(a1, a2, . . . , an) · e22.

Note that

e22 · ρ(a1, a2, . . . , an) · e11 = e22 · ρ(e22a1, a2, . . . , ane11) · e11

= e22 · ρ(e22a1e11, e11a2e11, . . . , e11ane11) · e11 = 0,

since e22a1e11 = 0. As to the term e11 · ρ(a1, a2, . . . , an) · e22, it is obvious that
it is equal to 0, when e11Xe22 = {0}. If the other condition is satisfied, that is,
e11Ue22 = {0}, we have the following:

e11 · ρ(a1, a2, . . . , an) · e22 = e11 · ρ(e11a1, a2, . . . , ane22) · e22

= e11 · ρ(e11a1e11 + e11a1e22, a2, . . . , ane22) · e22

= e11 · ρ(e11a1e11, e11a2e11 + e11a2e22, . . . , ane22) · e22

= e11 · ρ(e11a1e11, e11a2e11, . . . , e11ane22) · e22 = 0.

Thus

ρ(a1, . . . , an) = e11 · ρ(e11a1e11, e11a2e11, . . . , e11ane11) · e11

+ e22 · ρ(e22a1e22, e22a2e22, . . . , e22ane22) · e22,

for a0, . . . , an ∈ A.
We define cochain maps from Cn

B(U , eXe) to Cn(A1, e11Xe11) ⊕
Cn(A2, e22Xe22) and back by

Ln : ρ→ (ρ1, ρ2)

where

ρ1(r1
1, . . . , r

1
n) = ρ

([
r1
1 0
0 0

]
, . . . ,

[
r1
n 0
0 0

])
and

ρ2(r2
1, . . . , r

2
n) = ρ

([
0 0
0 r2

1

]
, . . . ,

[
0 0
0 r2

n

])
for ri

1, . . . , r
i
n ∈ Ai, i = 1, 2, and

Gn : (ρ1, ρ2)→ ρ

by ρ(a1, . . . , an) =
2∑

i=1

eii · ρi(eiia1eii, . . . , eiianeii) · eii for a1, . . . , an ∈ A.
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It is clear that Ln ◦ Gn = id, Gn ◦ Ln = id and the maps Ln and Gn are
bounded. It is routine to check that collections of {Ln} and {Gn} are morphisms
of cochain complexes. Thus

Hn
B(U , eXe) =

2⊕
i=1

Hn(Ai, eiiXeii).

Note that B =
2⊕

i=1

Ceii is contractible. Hence, by Theorem 2.7, Hn(U , eXe) =

Hn
B(U , eXe) for all n > 0; and by [14], Hn(U , X) = Hn(U , eXe) for all n > 1. The

result now follows directly.

Corollary 2.12. Let A1, A2 and U be as in Proposition 2.11. Then

Hn(U ,U∗) = Hn(A1, A
∗
1)⊕Hn(A2, A

∗
2)

for all n > 0.

Note that in particular Corollary 2.12 applies whenever U is the join A1#A2

of two unital operators algebras A1 and A2.

Proof. We apply Proposition 2.11 to the unital Banach U-bimodule X = U∗.
It can be checked that we have e11Xe22 = {0} for the upper triangular form of U
(respectively, e22Xe11 = {0} for the lower triangular form of U).

The same assertion in a purely algebraic context was proved by L. Kadison
in [16].

3. THE CONNECTION BETWEEN THE COHOMOLOGIES OF A AND A/I

Recall Proposition 5.1 of [14] that a quotient algebra of an amenable algebra is
amenable, and that an extension of an amenable algebra by an amenable bi-ideal
is an amenable algebra (this can also be found in Corollary 35 and Proposition 39
of [10]). The following theorem gives some additional information about the coho-
mology of Banach algebras A and A/I without the assumption that A be amenable.

Theorem 3.1. Let A be a Banach algebra and let I be a closed two-sided
ideal of A. Suppose that I is an amenable Banach algebra and M is a dual A/I-
bimodule. Then

Hn(A,M) = Hn(A/I,M)

for all n > 0.
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Proof. For n = 0 we have H0(A,M) = H0(A/I,M) = CenA/I(M). In the
case where n > 1, the inclusion morphism of cochain objects Cn(A/I,M) →
Cn(A,M) induces a morphism of complexes C(A/I,M) → C(A,M) and hence
morphisms

Ln : Hn(A/I,M)→ Hn(A,M)

given, for each ρ̂ ∈ Zn(A/I,M), by

Ln(ρ̂ + Nn(A/I,M)) = ρ + Nn(A,M),

where ρ(a1, . . . , an) = ρ̂(θ(a1), . . . , θ(an)) and θ : A→ A/I is the natural epimor-
phism. It is straightforward to check that if ρ̂ = δn−1ξ̂ for some ξ̂ ∈ Cn−1(A/I,M)
then ρ = δn−1ξ where ξ(a1, . . . , an−1) = ξ̂(θ(a1), . . . , θ(an−1)).

By Corollary 2.3, for η ∈ Zn(A,M), there exists ξ ∈ Cn−1(A,M) such that

(η − δn−1ξ)(a1, . . . , an) = 0

if any one of a1, . . . , an lies in I. We can therefore define

ηI
def= η − δn−1ξ and η̂I(a1 + I, . . . , an + I) def= ηI(a1, . . . , an).

Hence for each η ∈ Zn(A,M) there exists η̂I ∈ Zn(A/I,M) such that

Ln(η̂I + Nn(A/I,M)) = η + Nn(A,M),

and so Ln is surjective.
Let Ln(ρ̂ + Nn(A/I,M)) = 0, that is, ρ(a1, . . . , an) = ρ̂(θ(a1), . . . , θ(an)) ∈

Nn(A,M). This implies that there is β ∈ Cn−1(A,M) such that ρ = δn−1β.
Further, β satisfies the assumption of Proposition 2.1, and so there exists α ∈
Cn−2(A,M) such that

(β − δn−2α)(a1, . . . , an−1) = 0

if any one of a1, . . . , an−1 lies in I. We can define βI
def= β − δn−2α and see that

ρ = δn−1β = δn−1βI . Therefore ρ̂ = δn−1β̂I , where

β̂I(a1 + I, . . . , an + I) def= βI(a1, . . . , an).

This proves the injectivity of Ln. Hence, by Lemma 0.5.9 of [11], Ln is a topological
isomorphism.
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Proposition 3.2. Let A be a Banach algebra and let I be a closed two-sided

ideal of A. Suppose that I has a bounded approximate identity. Then H0
I(A, I∗) =

CenII
∗ and

Hn
I (A, I∗) = {0}

for all n > 1.

Proof. Let us consider the Banach space Cn
I (A, I∗) which is isometrically iso-

morphic to the Banach space IhI(A⊗̂I · · · ⊗̂IA, I∗) of all Banach I-bimodule mor-

phisms from A⊗̂I · · · ⊗̂IA into I∗. The latter Banach space is isometrically isomor-

phic to CenI(A⊗̂I · · · ⊗̂IA⊗̂II)∗ by Proposition VII.2.17 of [11]. By virtue of the

assumption, I has a bounded approximate identity, and so Proposition II.3.13 of

[11] gives us an isomophism of Banach I-bimodules A⊗̂I · · · ⊗̂IA⊗̂II = I. There-

fore, there exists an isometric isomorphism of Banach spaces

Fn : Cn
I (A, I∗)→ CenII

∗

for all n > 0.

Now it is routine to check that the diagram

0 −→ C0
I (A, I∗) δ0

−→ · · · −→ Cn
I (A, I∗) δn

−→ Cn+1
I (A, I∗) −→ · · ·yF0

yFn

yFn+1

0 −→ CenII
∗ η0

−→ · · · −→ CenII
∗ ηn

−→ CenII
∗ −→ · · · ,

is commutative, where ηn(f) = 0 for all even n and ηn(f) = f for all odd n. The

cohomology of the upper complex is, by definition, Hn
I (A, I∗). Thus the result

now follows directly.

Corollary 3.3. Let A be a Banach algebra and let I be a closed two-sided

ideal of A. Suppose that I is an amenable Banach algebra. Then H0(A, I∗) =

CenII
∗ and

Hn(A, I∗) = {0}

for all n > 1.

Proof. By Theorem 2.6, Hn(A, I∗) = Hn
I (A, I∗) for all n > 0. Hence the

result follows from Proposition 3.2.



40 Zinaida A. Lykova

Theorem 3.4. Let A be a Banach algebra and let I be a closed two-sided

ideal of A. Suppose that I is an amenable Banach algebra. Then

(i)

Hn(A,A∗) = Hn(A/I, (A/I)∗)

for all n > 2, and the natural map from H1(A/I, (A/I)∗) into H1(A,A∗) is sur-

jective;

(ii) if CenII
∗ = {0} then

Hn(A,A∗) = Hn(A/I, (A/I)∗)

for all n > 0.

Proof. We consider the short exact sequence of Banach A-bimodules

(I) 0←− A/I
j←− A

i←− I ←− 0,

where i and j are the natural embedding and quotient mapping respectively, and

its dual complex

(I∗) 0 −→ (A/I)∗
j∗−→ A∗ i∗−→ I∗ −→ 0.

By virtue of its amenability, I has a bounded approximate identity and so

the complex (I∗) is admissible. Hence, by Corollary III.4.11 of [11], there exists a

long exact sequence

0→H0(A, (A/I)∗)→ H0(A,A∗)→ H0(A, I∗)→ H1(A, (A/I)∗)→ H1(A,A∗)

→H1(A, I∗)→ H2(A, (A/I)∗)→ H2(A,A∗)→ H2(A, I∗)→ · · ·
· · · →Hn−1(A, I∗)→ Hn(A, (A/I)∗)→ Hn(A,A∗)→ Hn(A, I∗)→ · · · .

Recall that, by Corollary 3.3, Hn(A, I∗) = {0} for all n > 1. Thus Hn(A, (A/I)∗)

= Hn(A,A∗) (see Lemma 0.5.9 of [11]) for all n > 2. Therefore, by Theorem 3.1,

Hn(A/I, (A/I)∗) = Hn(A, (A/I)∗) = Hn(A,A∗)

for all n > 2.
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Note that CenAA∗ coincides with the space Atr = {f ∈ A∗ | f(ab) = f(ba)
for all a, b ∈ A} of continuous traces on A.

Theorem 3.4 applies whenever I is a nuclear C∗-algebra. Other examples
are given by the Banach algebra A = B(E) of all bounded operators on a Banach
space E with the property (A), which was defined in [7], and the closed ideal
I = K(E) of compact operators on E. In this case K(E) is amenable ([7]). The
property (A) implies that K(E) contains a bounded sequence of projections of
unbounded finite rank, and from this it is easy to show (via embedding of ma-
trix algebras) that there is no non-zero bounded trace on K(E). Thus we can
see from Theorem 3.4 (ii) that, for a Banach space E with the property (A),
Hn(B(E),B(E)∗) = Hn(B(E)/K(E), (B(E)/K(E))∗) for all n > 0. Several classes
of Banach spaces have the property (A): lp; 1 < p < ∞; C(K), where K is a
compact Hausdorff space; Lp(Ω, µ); 1 < p < ∞, where (Ω, µ) is a measure space
(for details and more examples see [14] and [7]).

In the case of C∗-algebras, we know that the Banach simplicial cohomology
groups vanish for C∗-algebras without non-zero bounded traces [2], Corollary 3.3.
Therefore, for an infinite-dimensional Hilbert space H, we obtain

Hn(B(H)/K(H), (B(H)/K(H))∗) = Hn(B(H),B(H)∗) = {0}

for all n > 0, since K(H)tr = {0} by [1], Theorem 2 and B(H)tr = {0} by [9]. One
can also see directly that the Calkin algebra has no non-zero bounded trace, and
hence has trivial Banach simplicial cohomology.

Recall from [4], Sections 4.2, 4.3, that a C∗-algebra A is called CCR (or
liminary) if π(A) = K(H) for each irreducible representation (π,H) of A. A C∗-
algebra A is called GCR (or postliminary) if each non-zero quotient of A has a non-
zero closed two-sided CCR-ideal. Finally we say that A is NGCR (or antiliminary)
if it contains no non-zero closed two-sided CCR-ideal. By [4], Propositions 4.3.3
and 4.3.6, each C∗-algebra A has a largest closed two-sided GCR-ideal Iα, and
A/Iα is NGCR. The following result allow us to reduce the computation of the
simplicial cohomology groups of C∗-algebras to the case of NGCR-algebras.

Proposition 3.5. Let A be a C∗-algebra. Then

Hn(A,A∗) = Hn(A/Iα, (A/Iα)∗)

for all n > 1.

Proof. By [8], Corollary 4.2, H1(A,A∗) = {0} for every C∗-algebra A. By
Theorem 7.9 of [14], Iα is amenable. Thus the result directly follows from Theo-
rem 3.4 (i).
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4. THE EXISTENCE OF THE CONNES-TSYGAN EXACT SEQUENCE

Let A be a Banach algebra, not necessarily unital, and let D be a closed
subalgebra of A+. In this section we introduce the Banach version of the concept
of D-relative cyclic cohomology HCn

D(A) (compare with [16]). We also show that
the D-relative Connes-Tsygan exact sequence exists for every Banach algebra A

with a bounded approximate identity. This is accomplished with the aid of ideas
from [13].

When D = Ce+ the subscript D is unnecessary and we omit it. We denote
by Cn

D(A), n = 0, 1, . . . , the Banach space of continuous (n + 1)-linear functionals
on A such that

f(da0, a1, . . . , an) = f(a0, a1, . . . , and)

and, for j = 0, 1, . . . , n− 1,

f(a0, . . . , ajd, aj+1, . . . , an) = f(a0, . . . , aj , daj+1, . . . , an)

for all d ∈ D and a0, . . . , an ∈ A; these functionals we shall call D-relative
n-cochains. We let

tn : Cn
D(A)→ Cn

D(A), n = 0, 1, . . .

denote the operator given by

tnf(a0, a1, . . . , an) = (−1)nf(a1, . . . , an, a0),

and we set t0 = id. The important point is that tnf is a D-relative cochain since

tnf(da0, a1, . . . , an) = (−1)nf(a1, . . . , an, da0)

= (−1)nf(a1, . . . , and, a0) = tnf(a0, . . . , and)

and the other identities follow just as readily. A cochain f ∈ Cn
D(A) satisfying

tnf = f is called cyclic. We let CCn
D(A) denote the closed subspace of Cn

D(A)
formed by the cyclic cochains. In particular,

CC0
D(A) = C0

D(A) = CenDA∗ = {f ∈ A∗ | f(da) = f(ad) for all a ∈ A, d ∈ D}.

From the D-relative cochains we form the standard cohomology complex C̃D(A):

0 −→ C0
D(A) δ0

−→ · · · −→ Cn
D(A) δn

−→ Cn+1
D (A) −→ · · · ,
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where the continuous operator δn is given by the formula

(δnf)(a0, a1, . . . , an+1)

=
n∑

i=0

(−1)if(a0, . . . , aiai+1, . . . , an+1) + (−1)n+1f(an+1a0, . . . , an).

One can easily check that δn+1 ◦ δn is indeed 0 for all n and that each δnf is
again a D-relative cochain. It is not difficult to verify that every δn sends a cyclic
cochain again to a cyclic one. Therefore there is a subcomplex in C̃D(A) formed by
the spaces CCn

D(A). We denote this subcomplex by C̃CD(A), and its differentials
are denoted by

δcn : CCn
D(A)→ CCn+1

D (A).

Note that C̃D(A) is a subcomplex of C̃(A) and C̃CD(A) is a subcomplex of
C̃C(A) respectively.

Definition 4.1. The nth cohomology of C̃D(A), denoted by Hn
D(A), is

called the nth Banach D-relative simplicial, or Hochschild, cohomology group of
the Banach algebra A. The nth cohomology of C̃CD(A), denoted by HCn

D(A), is
called the nth Banach D-relative cyclic cohomology group of A.

Note that, by definition, δc0 = δ0, so that HC0D(A) = H0
D(A) coincides with

the space Atr = {f ∈ A∗ | f(ab) = f(ba) for all a, b ∈ A}. We define HC−1
D (A) to

be {0}.

Remark 4.2. The canonical identification of (n + 1)-linear functionals on
A and n-linear operators from A to A∗ shows that Hn

D(A) is just another way of
writing Hn

D(A,A∗).

Further, we need the following complex C̃RD(A):

0 −→ C0
D(A) δr0

−→ · · · −→ Cn
D(A) δrn

−→ Cn+1
D (A) −→ · · · ,

where the continuous operator δrn is given by the formula

(δrnf)(a0, a1, . . . , an+1) =
n∑

i=0

(−1)if(a0, . . . , aiai+1, . . . , an+1).

The nth cohomology of C̃RD(A) is denoted by HRn
D(A).

Following [13] we consider the sequence

0 −→ C̃CD(A) i−→ C̃D(A) M−→ C̃RD(A) N−→ C̃CD(A) −→ 0
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of complexes in the category of Banach spaces and continuous operators, where i

denotes the natural inclusion

in : CCn
D(A)→ Cn

D(A),

Mn = id− tn : Cn
D(A)→ Cn

D(A)

and
Nn = id + tn + · · ·+ tnn : Cn

D(A)→ CCn
D(A).

Proposition 4.3. Let A be a Banach algebra and let D be a closed subal-
gebra of A+. Then the sequence

0 −→ C̃CD(A) i−→ C̃D(A) M−→ C̃RD(A) N−→ C̃CD(A) −→ 0

is exact.

The proof is the same as that of Proposition 4 of [13].

Proposition 4.4. Let A be a Banach algebra and let D be a closed sub-
algebra of A+. Suppose that A has a left or right bounded approximate identity
eν , ν ∈ Λ, such that, for any d ∈ D ∩ A, lim

ν
deν = lim

ν
eνd. Then HRn

D(A) = {0}
for all n > 0.

Proof. Let eν , ν ∈ Λ, be a left bounded approximate identity. For f ∈ Cn
D(A)

we define gν ∈ Cn−1(A) by

gν(a0, . . . , an−1) = f(eν , a0, . . . , an−1),

for a0, . . . , an−1 ∈ A and ν ∈ Λ. Since the Banach space Cn−1(A) is the dual space
of A⊗̂ · · · ⊗̂A, for the bounded net gν , ν ∈ Λ, there exists a subnet gµ, µ ∈ Λ′,
which weak∗ converges to some cochain g ∈ Cn−1(A). It can be checked that
g ∈ Cn−1

D (A).
For each f ∈ Cn

D(A) such that δrn(f) = 0 and for each ν ∈ Λ,

(4.1)

0 = δrnf(eν , a0, . . . , an)

= f(eνa0, a1, . . . , an) +
n−1∑
i=0

(−1)i+1f(eν , a0, . . . , aiai+1, . . . , an).

Thus we obtain

δrn−1g(a0, . . . , an) =
n−1∑
i=0

(−1)ig(a0, . . . , aiai+1, . . . , an)

=lim
µ

n−1∑
i=0

(−1)if(eµ, a0, . . . , aiai+1, . . . , an)=f(a0, a1, . . . , an),

by (4.1).
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Note that in the case where D = Ce+ it is easy to see that the statement
of Proposition 4.4 is true for every Banach algebra with left or right bounded
approximate identity. That and other conditions on the vanishing of HRn(A) are
given in detail in [13], Section 2.

Proposition 4.5. Let A be a Banach algebra and let D be a closed sub-
algebra of A+. Suppose that A has a left or right bounded approximate identity
eν , ν ∈ Λ, such that, for any d ∈ D ∩ A, lim

ν
deν = lim

ν
eνd. Then the D-relative

Connes-Tsygan exact sequence for A

· · ·−→Hn
D(A) Bn

−→ HCn−1
D (A) Sn

−→ HCn+1
D (A) In+1

−→ Hn+1
D (A) Bn+1

−→ HCn
D(A)−→· · ·

exists.

Proof. It follows from Propositions 4.3 and 4.4 by the same arguments as
that of [13]. The mappings Bn, Sn and In are natural ones; their definitions are
analogous to those in [13].

Proposition 4.6. Let A be a Banach algebra and let D be a closed sub-
algebra of A+. Suppose that A has a left or right bounded approximate identity
eν , ν ∈ Λ, such that, for any d ∈ D ∩ A, lim

ν
deν = lim

ν
eνd. Then the inclu-

sion morphism of cochain objects Cn
D(A,A∗)→ Cn(A,A∗) induces a morphism of

Connes-Tsygan exact sequences for A, that is, a commutative diagram

· · · −→ Hn
D(A) Bn

−→ HCn−1
D (A) Sn

−→ HCn+1
D (A) In+1

−→ Hn+1
D (A) Bn+1

−→ · · ·y y y y
· · · −→ Hn(A) Bn

−→ HCn−1(A) Sn

−→ HCn+1(A) In+1

−→ Hn+1(A) Bn+1

−→ · · · .

Proof. Note that the inclusion morphism of cochain objects Cn
D(A,A∗) →

Cn(A,A∗) gives morphisms of two pairs short exact sequences of complexes

0 −→ C̃CD(A) i−→ C̃D(A) M−→ C̃SD(A) −→ 0y y y
0 −→ C̃C(A) i−→ C̃(A) M−→ C̃S(A) −→ 0

and
0 −→ C̃SD(A)

j−→ C̃RD(A) N−→ C̃CD(A) −→ 0y y y
0 −→ C̃S(A)

j−→ C̃R(A) N−→ C̃C(A) −→ 0,
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where C̃SD(A) is the subcomplex Im (M) = Ker(N) of C̃RD(A).
By the cohomology analogue of Proposition II.4.2 of [19], a morphism of two

short exact sequences of complexes induces a morphism of long exact cohomology
sequences. Hence we have two commutative diagrams

(∗)

· · · −→ Hn
D(A) −→ HSn

D(A) −→ HCn+1
D (A) −→ Hn+1

D (A) −→ · · ·y y y y
· · · −→ Hn(A) −→ HSn(A) −→ HCn+1(A) −→ Hn+1(A) −→ · · ·

and

(∗∗)

· · · −→ HRn
D(A) −→ HCn

D(A) −→ HSn+1
D (A) −→ HRn+1

D (A) −→ · · ·y y y y
· · · −→ HRn(A) −→ HCn(A) −→ HSn+1(A) −→ HRn+1(A) −→ · · ·

.

Note that, by [11], Section 0.5.4, these long exact cohomology sequences consist
of complete seminormed spaces and continuous operators. By Proposition 4.4,
HRn

D(A) = HRn(A) = {0} for all n > 0. Thus we can see from (∗∗) and Proposi-
ton 8 of [13] that there exists a commutative diagram

HCn
D(A) = HSn+1

D (A)y y
HCn(A) = HSn+1(A)

for all n > 0. By setting HCn−1
D (A) instead of HSn

D(A) and HCn−1(A) instead of
HSn(A) in (∗), we get the required commutative diagram.

Proposition 4.7. Let A and D be Banach algebras with right or left bounded
approximate identities. Suppose there exists a continuous homomorphism κ : A→
D. Then the associated morphism of cochain objects Cn(D,D∗)→ Cn(A,A∗) in-
duces a morphism of Connes-Tzygan exact sequences for A, that is, a commutative
diagram

· · · −→ Hn(D) Bn

−→ HCn−1(D) Sn

−→ HCn+1(D) In+1

−→ Hn+1(D) Bn+1

−→ · · ·y y y y
· · · −→ Hn(A) Bn

−→ HCn−1(A) Sn

−→ HCn+1(A) In+1

−→ Hn+1(A) Bn+1

−→ · · ·

.

Proof. It requires only minor modifications of that of Proposition 4.6.
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5. RELATIVE CYCLIC COHOMOLOGY OF BANACH ALGEBRAS

Theorem 5.1. Let A be a Banach algebra and let B be an amenable closed
subalgebra of A. Suppose that A has a left or right bounded approximate identity
eν , ν ∈ Λ, such that, for any b ∈ B, lim

ν
beν = lim

ν
eνb. Then

HCn(A) = HCn
B(A)

for all n > 0.

Proof. Consider the commutative diagram of Proposition 4.6

0 −→ HC0B(A) −→yG0

0 −→ HC0(A) −→

H0
B(A) −→ HC−1

B (A) −→ HC1B(A) −→ H1
B(A) −→ HC0B(A) · · ·yF0

yG−1

yG1

yF1

yG0

H0(A) −→ HC−1(A) −→ HC1(A) −→ H1(A) −→ HC0(A) · · ·

· · · Hn
B(A) −→ HCn−1

B (A) −→ HCn+1
B (A) −→ Hn+1

B (A) −→ HCn
B(A) · · ·yFn

yGn−1

yGn+1

yFn+1

yGn

· · · Hn(A) −→ HCn−1(A) −→ HCn+1(A) −→ Hn+1(A) −→ HCn(A) · · ·

.

Note that HC−1(A) = HC−1
B (A) = {0} and HC0(A) = HC0B(A) = Atr. Thus G−1

and G0 are topological isomorphisms. By Theorem 2.6, Hn(A) = Hn(A,A∗) =
Hn

B(A,A∗) = Hn
B(A) for all n > 0, that is, Fi is a topological isomorphism for each

i > 0. As an induction hypothesis suppose that the vertical map Gi : HCi
B(A) →

HCi(A) is an isomorphism for each i 6 n. Then it follows from the five lemma of
[19], Lemma 1.3.3, that the middle vertical map Gn+1 above is an isomorphism.
Hence by Lemma 0.5.9 of [11], Gn+1 is a topological isomorphism.

We note that the assumptions of Theorem 5.1 are obviously satisfied by all
C∗-algebras A and all nuclear C∗-subalgebras B of A+. Recall that all nuclear C∗-
algebras and only these C∗-algebras are amenable. For example, all GCR-algebras,
in particular, all commutative C∗-algebras are amenable. Other examples are given
by the Banach algebra A = B(E) and B = K(E), where E is a Banach space with
the property (A) (see [7]).
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Proposition 5.2. Let A be a Banach algebra for which one of the following
conditions is satisfied:

(i) A has a left or right bounded approximate identity;
(ii) A coincides with the topological square A2 of A, and that either A is a

flat right Banach A-module or C is a flat left Banach A-module.
Then the following are equivalent:
(a) HCn(A) = {0} for all n > 0;
(b) HCn(A) = {0} for all n > 0;
(c) Hn(A,A∗) = {0} for all n > 0;
(d) Hn(A,A) = {0} for all n > 0.

The definition of flat module can be found in [11], and the definition of
Banach cyclic homology of a Banach algebra can be found, for example, in [13],
Section 5.

Proof. The assumption gives the existence the Connes-Tsygan exact se-
quence for cohomology of A ([13], Theorems 15 and 16). We can see from this
exact sequence that the vanishing of HCn(A) for all n > 0 is equivalent to the van-
ishing of the simplicial cohomology Hn(A,A∗) for all n > 0. The latter relation
is equvalent to the vanishing of the simplicial homology Hn(A,A) for all n > 0
([14], Corollary 1.3). As was noted in [13], Section 5, for the given assumption,
the canonical Connes-Tsygan exact sequence for homology of A also exists. Thus
it is easy to see from the Connes-Tsygan exact sequence for homology of A that
all these relations are equivalent to the vanishing of the cyclic homology HCn(A)
for all n > 0.

Corollary 5.3. Let A be a C∗-algebra without non-zero bounded traces.
Then

Hn(A,A) = {0} and HCn(A) = {0}

for all n > 0.

Proof. It follows from Proposition 5.2 and [2], Theorem 4.1 and Corollary 3.3,
which show that Hn(A,A∗) = {0} and HCn(A) = {0} for all n > 0.

Note that in particular Corollary 5.3 applies whenever A is a properly infinite
von Neumann algebra (see Proposition 2.8), or a stable C∗-algebra, that is, an
algebra isomorphic to its C∗-tensor product with K(H) ([5], Theorem 1.1). Recall
that the vanishing of the Banach (and algebraic) simplicial and cyclic homology
groups of stable C∗-algebras, of B(H) and the vanishing of the algebraic simplicial
and cyclic homology groups of the Calkin algebra on a separable Hilbert space H

was given in [24].
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Theorem 5.4. Let A be a Banach algebra with a right or left bounded ap-
proximate identity and let I be a closed two-sided ideal of A. Suppose that I is an
amenable Banach algebra. Then

(i) for all even n > 0 the natural map from HCn(A/I) into HCn(A) is
injective, and for all odd n > 1 the natural map from HCn(A/I) into HCn(A) is
surjective;

(ii) if Itr = {0} (that is, CenII
∗ = {0}) then

HCn(A) = HCn(A/I)

for all n > 0.

Proof. Consider the commutative diagram of Proposition 4.7 for the Banach
algebras A and A/I

0 −→ HC0(A/I) −→yG0

0 −→ HC0(A) −→

H0(A/I) −→ HC−1(A/I) −→ HC1(A/I) −→ H1(A/I) −→ HC0(A/I) · · ·yL0

yG−1

yG1

yL1

yG0

H0(A) −→ HC−1(A) −→ HC1(A) −→ H1(A) −→ HC0(A) · · ·

· · · −→ Hn(A/I) −→ HCn−1(A/I) −→ HCn+1(A/I) −→yLn

yGn−1

yGn+1

· · · −→ Hn(A) −→ HCn−1(A) −→ HCn+1(A) −→

Hn+1(A/I) −→ HCn(A/I) −→ · · ·yLn+1

yGn

Hn+1(A) −→ HCn(A) −→ · · ·

.

Note that the maps G0 : HC0(A/I) → HC0(A) : f → f ◦ θ and L0 : H0(A/I) →
H0(A) : f → f ◦θ are injective. Here θ : A→ A/I is the natural quotient mapping.
By Theorem 3.4,

Hn(A) = Hn(A,A∗) = Hn(A/I, (A/I)∗) = Hn(A/I),

so that Ln is a topological isomorphism for all n > 2 and the natural map L1

from H1(A/I, (A/I)∗) into H1(A,A∗) is surjective. Then it follows from the five
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lemma that the middle vertical map G1 above is surjective. Suppose, inductively,
that the vertical map, for each i 6 n,

Gi : HCi(A/I)→ HCi(A)

is injective if i is even and surjective if i is odd. The result then follows from the
five lemma.

One can see that in particular Theorem 5.4 applies whenever A is a C∗-
algebra and I is an amenable closed ideal. We noted in remark after Theo-
rem 3.4 that K(E)tr = {0} for a Banach space with the property (A). Thus
one can see from the following theorem that HCn(B(E)) = HCn(B(E)/K(E)) for
all n > 0. In particular, for an infinite-dimensional Hilbert space H, we have
HCn(B(H)/K(H)) = HCn(B(H)) = {0} for all n > 0; and, by Corollary 5.3,
HCn(B(H)/K(H)) = HCn(B(H)) = {0} for all n > 0.

Proposition 5.5. Let A and D be Banach algebras with right or left bounded
approximate identities and let κ : A → D be a continuous homomorphism. If κ

induces a topological isomorphism

Hn(D,D∗)→ Hn(A,A∗)

for all n > 0, then it induces a topological isomorphism

HCn(D)→ HCn(A)

for all n > 0, and conversely.

Proof. The forward implication is a repetition of that of Theorem 5.1 with
the commutative diagram of Proposition 4.7. The converse statement follows easily
from the five lemma.

Proposition 5.6. Let Ai be a Banach algebra with identity ei, i = 1, . . . ,m,

and let A be the Banach algebra direct sum
m⊕

i=1

Ai with some norm ‖ · ‖A such that

‖ · ‖A is equivalent to ‖ · ‖Ai on Ai, 1 6 i 6 m. Then

HCn(A) =
m⊕

i=1

HCn(Ai)

for all n > 0.

Proof. By Theorem 5.1, HCn(A) = HCn
B(A), where n > 0 and B is the

Banach subalgebra of A generated by {ei, i = 1, . . . ,m}. By Proposition 2.8, the
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canonical projections from A to Ai, i = 1, . . . ,m, induce a topological isomorphism

of complexes CB(A,A∗)→
m⊕

i=1

C(Ai, A
∗
i ). It can be checked that they also induce a

topological isomorphism of subcomplexes CCB(A)→
m⊕

i=1

CC(Ai). Thus HCn
B(A) =

m⊕
i=1

HCn(Ai). The result now follows directly.

Corollary 5.7. Let R be a von Neumann algebra, let

R = RIf ⊕RI∞ ⊕RII1 ⊕RII∞ ⊕RIII

be the central direct summand decomposition of R into von Neumann algebras of
types If , I∞, II1, II∞, III. Then

HCn(R) = HCn(RIf )⊕HC
n(RII1)

for all n > 0.

Proof. As we noted in the proof of Proposition 2.9, there are no non-zero
bounded traces on RI∞ ,RII∞ and RIII. Thus, by Theorem 4.1 of [2], their Banach
cyclic cohomology groups vanish for all n > 0.

Note that, by Theorem 25 of [13], for a von Neumann algebra RIm
of type

Im, where m <∞, we have HCn(RIm
) = Rtr

Im
for all even n, and HCn(RIm

) = {0}
for all odd n.

Proposition 5.8. Let A1 and A2 be unital Banach algebras, let Y be a
unital Banach A1-A2-bimodule, let

U =
[

A1 Y

0 A2

]
respectively, U =

[
A1 0
Y A2

]
be the natural triangular matrix algebra with some norm ‖ · ‖U such that ‖ · ‖U is
equivalent to ‖ · ‖Ai on Ai, 1 6 i 6 2, and to ‖ · ‖Y on Y . Then the two canonical
projections from U to A1 and A2 induce a topological isomorphism

HCn(U) = HCn(A1)⊕HCn(A2)

for all n > 0.

Note that in particular Proposition 5.8 applies whenever U is the join A1#A2

of two unital operators algebras A1 and A2.
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Proof. By Theorem 5.1, we obtain HCn(U) = HCn
B(U) for all n > 0, where

the contractible subalgebra B of U was defined before Proposition 2.11. By Propo-
sition 2.11, the two canonical projections from U to A1 and to A2 induce a topolog-

ical isomorphism of complexes CB(U ,U∗)→
2⊕

i=1

C(Ai, A
∗
i ). It can be checked that

they also induce a topological isomorphism of subcomplexes CCB(U)→
2⊕

i=1

CC(Ai).

Thus HCn
B(U) = HCn(A1)⊕HCn(A2). The result now follows directly.

The algebraic version of such statement was given in [16], Theorem 9
by L. Kadison.
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