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Abstract. For a Hardy submodule M of H2(Dn), assume that M ∩ C (or
M ∩ R) is dense in M , where C (or R) is the ring of all polynomials (or

R is a Noetherian subring of Hol (Dn
) containing C). We describe those

finite codimensional submodules of M by considering zero varieties. The
codimension formulas related to zero varieties, and some algebraic reduction
theorems are obtained. These results can be regarded as generalizations of
the result of Ahern-Clark ([2]). Finally, we point out that the results in this
paper extend with essentially no change to any reproducing Hilbert A(Ω)-
module H which satisfies certain technical hypotheses.
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1. INTRODUCTION

The starting point for the present paper is the remarkable algebraic reduction of
Ahern-Clark ([2]) for finite codimensional submodules of Hardy module H2(Dn)
over the polydisk algebra A(Dn). In the following, we will use C to denote the ring
of all polynomials on Cn.

Theorem 1.1. ([2]) Suppose M is a submodule of H2(Dn) of codimension
k < ∞. Then C ∩M is an ideal in the ring C such that:

(i) C ∩M is dense in M ;
(ii) dim C/C ∩M = k;
(iii) Z(C ∩M) is finite and lies in Dn.
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Conversly, if I is an ideal in C with Z(I) being finite, and Z(I) ⊂ Dn,
then [I], the closure of I in H2(Dn), is a submodule of the same codimension and
[I] ∩ C = I.

Also arising from this motivation, R.G. Douglas, V.I. Paulsen, C.H. Sah and
K. Yan ([8]), S. Axler and P. Bourdon ([4]), O.P. Agrawal and N. Salinas ([1]),
M. Putinar ([9]), X.M. Chen and R.G. Douglas ([5]) have developed a series of
techniques to investigate algebraic reduction and rigidity for Hilbert modules over
function algebras. In the present paper, we focus on Theorem 1.1 of [2].

Given submodules M1,M2 of H2(Dn), with M1 ⊇ M2, we can define a canon-
ical module homomorphism over C

τ : M1 ∩ C/M2 ∩ C → M1/M2

by τ(p̃) = p̃. If M1 ∩C is dense in M1, and M2 is finite codimensional in M1, then
it is not difficult to verify the following proposition.

Proposition 1.2. Under the above assumption, we have:
(i) M2 ∩ C is dense in M2;
(ii) the canonical homomorphism τ : M1 ∩ C/M2 ∩ C → M1/M2 is an iso-

morphism.

Focusing on the above Theorem 1.1, we will be concerned with the following
problems.

(A) How do we describe the structure of Z(M2 ∩ C) related to Z(M1 ∩ C)?
(B) How is the submodule M2 represented by M1 and the zeros of M2 via

considering mulitiplicity?
(C) How is codimension dim M1/M2 related to the zeros and their muliti-

plicity of M1,M2 (or M1 ∩ C,M2 ∩ C)?
(D) Conversely, suppose I1, I2 are ideals of C, I1 ⊇ I2 and the boundary of

Z(I2) related to Z(I1) is finite. We want to know how [I2] is related to [I1].

Furthermore, if we replace ideals of polynomials in the above problems by
ideals of Noetherian ring R, where R consists of some holomorphic functions
defined on neighborhoods of the closure of Dn, and R contains C, then, how are
these related to the above problems? In order to proceed with our discussion
about the answers to the above problems, some basic concepts and terminologies
are introduceed in Section 2. We give the basic analysis for ideals of polynomials,
as carried out in Section 2, as preliminaries for Sections 3 and 4. In Section 3 we
give complete answers to problems (A), (B), (C), (D) in the case of polynomials.
In Section 4, we proceed to discuss the case of a Noetherian ring R. Since a
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Noetherian ring R has the same algebraic properties as the ring of polynomials,
we essentially obtain similar results to those of Section 3. Finally, we point out
that the techniques in this paper are also available for Hardy submodules and
Bergman submodules on a bounded connected domain Ω which satisfies some
technical conditions; for exemple, we may assume that all polynomials are dense
in the Hardy module H2(Ω) (Bergman module L2

a(Ω)), and for λ /∈ Ω, there exists
a polynomial q such that q(λ) = 1, and |q(z)| < 1 for all z ∈ Ω \ {λ} (z ∈ Ω).

2. ANALYSIS OF IDEALS OF POLYNOMIALS

Let q =
∑

am1···mn
zm1
1 zm2

2 · · · zmn
n be in C, and let q(D) denote the linear partial

differential operator
∑

am1···mn
(∂m1+m2+···+mn/∂zm1

1 ∂zm2
2 · · · ∂zmn

n ). If I is an
ideal of C and λ ∈ Cn, set

Iλ = {q ∈ C | q(D)f |λ = 0, ∀f ∈ I}

where q(D)f |λ denotes (q(D)f)(λ). From the Leibniz rule, for any polynomial q

and any analytic function f , the following holds

q(D)(zjf)|λ = λjq(D)f |λ +
∂q

∂zj
(D)f |λ j = 1, 2, . . . , n.

We thus conclude that Iλ is invariant under the action of the basic partial dif-
ferential operators {∂/∂z1, ∂/∂z2, . . . , ∂/∂zn}, and Iλ is called the characteristic
space of I at λ. Clearly, if λ ∈ Z(I), then 1 ∈ Iλ, and if λ /∈ Z(I), then Iλ = 0,
where Z(I) is the zero variety of I, that is, Z(I) = {z ∈ Cn | f(z) = 0, ∀f ∈ I}.
Also arising from the observation for polynomials of one variable, we define the
multiplicity of I at λ by the dimension of its characteristic space, dim Iλ. Of
course, we allow the case where the multiplicity is infinite. Let I1, I2 be ideals
of polynomials, and λ ∈ Cn. We say that I1 and I2 have the same mulitiplic-
ity at λ if I1λ = I2λ, and we use the symbol Z(I2) \ Z(I1) to denote the set
{λ ∈ Z(I2) | I2λ 6= I1λ}. If I1 ⊇ I2, and λ ∈ Z(I2) \ Z(I1), the mulitiplicity
of I2 related to I1 at λ is defined by dim I2λ/I1λ. In this way, the cardinality of
Z(I2) \Z(I1) is defined by

∑
λ∈Z(I2)\Z(I1)

dim I2λ/I1λ (counting multiplicity), and is

denoted by card (Z(I2) \ Z(I1)).

Theorem 2.1. Let I1, I2 be ideals in C. If for any λ ∈ Cn, I1λ = I2λ, then
I1 = I2.

Proof. There are three main steps in the proof of Theorem 2.1. Firstly,
for every finite codimensional ideal O in C, we claim that I1 + O = I2 + O.
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Obviously, the finite codimensional ideals I1 + O, I2 + O have the same zero set.
Let λ ∈ Z(I1 + O) and q ∈ (I1 + O)λ; then q ∈ I1λ, and q ∈ Oλ. It follows that
q is in I2λ by the assumption. We thus obtain that q is in (I2 + O)λ, that is,
(I1 + O)λ ⊆ (I2 + O)λ. Similarly, we have that (I2 + O)λ ⊆ (I1 + O)λ. That is,
they have the same multiplicity at every zero point. Some basic analysis for ideals
of polynomials implies that I1 + O = I2 + O.

Secondly, set
I =

⋂
O

(I1 + O) =
⋂
O

(I2 + O)

where O runs over all finite codimensional ideals in C. Then I ⊇ I1 and Z(I) =
Z(I1). We also claim that for every λ ∈ Z(I), Iλ = I1λ. In fact, it is obvious that
Iλ ⊆ I1λ. Let p be in I1λ and p 6= 0. Use P to denote the linear space generated
by p which is invariant under the action by {∂/∂z1, ∂/∂z2, . . . , ∂/∂zn}. Put

OP = {q ∈ C | f(D)q|λ = 0, ∀f ∈ P}.

From the Leibniz rule, we see that OP is an ideal in C, and is finite codimensional
because P is finite dimensional. For any g ∈ I, write g = g1 + g2, where g1 ∈ I1

and g2 ∈ OP . We see that p(D)g|λ = p(D)g1|λ + p(D)g2|λ = 0. Thus p is in Iλ.
This shows that I1λ = Iλ.

Finally, our task is to prove that I = I1 under the assumption that I ⊇ I1

and Iλ = I1λ for every λ ∈ Cn. Below, the technique which we use is essentially
due to Douglas and Paulsen ([7], Chapter 6). For each λ ∈ Cn, use Uλ to denote
the maximal ideal of polynomials that vanish at λ, that is, Uλ = {q ∈ C | q(λ) = 0}.
Obviously,

I = I1 + Uj
λ ∩ I

for all j > 1 because Uj
λ is finite codimensional. By the Artin-Rees Lemma ([3],

Corollary 10.10), there is an integer k such that for j > k, Uj
λ ∩ I = Uj−k

λ (Uk
λ ∩ I).

Setting j = k + 1, we have that I = I1 + UλI for all λ ∈ Cn. Using the method of
localization ([3], Chapter 3), let Sλ = C \ Uλ; then Sλ is a multipliciatively closed
set. Consider the quotient ring S−1

λ (C) = {p/q | p ∈ C, q ∈ Sλ}. Since S−1
λ (Uλ) is

the unique maximal ideal in S−1
λ (C), and S−1

λ (I) = S−1
λ (I1) + S−1

λ (Uλ)S−1
λ (I), we

can apply Nakayama Lemma ([3], Corollary 2.7) to deduce that S−1
λ (I) = S−1

λ (I1)

for any λ ∈ Cn. Let I1 =
m⋂

j=1

I ′j be an irredundant primary decomposition of I1,

where I ′j is a primary ideal with associated prime ideal Pj ([3], Chapter 4). For
every λ ∈ Z(Pj), from [3], Proposition 4.8, we have that

I ⊆ S−1
λ (I1) ∩ C ⊆ S−1

λ (I ′j) ∩ C = I ′j
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for j = 1, . . . ,m. This leads to I ⊆
m⋂

j=1

I ′j = I1. It follows that I = I1. Similarly

we have that I = I2. We thus conclude that I1 = I2. The proof of Theorem 2.1 is
complete.

Notice that the proof of Theorem 2.1 yields the following corollary.

Corollary 2.2. Let I be an ideal of polynomials. Then I is equal to the
intersection of all finite codimensional ideals containing I.

From the proof of Theorem 2.1, we can obtain the following important con-
clusion.

Corollary 2.3. Let I1, I2 be ideals in C, and I1 ⊇ I2. If the set Z(I2)\Z(I1)
is bounded, then dim I1/I2 < ∞, that is, I2 is finite codimensional in I1.

Proof. Let I2 =
m⋂

j=1

I ′j be an irredundant primary decomposition of I2,

where I ′j is a primary ideal with associated prime ideal Pj . We can assume that
I ′1, . . . , I

′
m0

are finite codimensiomal, and I ′m0+1, . . . , I
′
m are infinite codimensional.

Since Z(Pj) = Z(I ′j), j = 1, . . . ,m, we see that Z(I2) =
m⋃

j=1

Z(Pj). It is well known

that
m0⋃
j=1

Z(Pj) is bounded, and Z(Pj) is unbounded for j > m0 + 1. Let
m0⋃
j=1

Z(Pj)

and Z(I2) \ Z(I1) are contained in the ball Bl =
{

(z1, . . . , zn) |
n∑

i=1

|zi|2 6 l2
}

,

where l is some positive real number. Let j > m0+1 and s be any natural number.
Then for every λ ∈ Z(Pj) ∩ (Cn \Bl), it is easy to see that finite codimensional
ideal I2 + Us

λ has only a zero point λ, and

I2 + Us
λ = {q ∈ C | p(D)q|λ = 0, p ∈ (I2 + Us

λ)λ}.

Since for such λ,
(I2 + Us

λ)λ ⊆ I2λ = I1λ

it follows that
I1 ⊆ I2 + Us

λ

that is, I1 = I2 + Us
λ ∩ I1. Using the last part of the proof of Theorem 2.1, we

obtain that I1 ⊆ I ′j , j > m0 + 1. This implies that I1 ⊆
m⋂

j=m0+1

I ′j . Since
m0⋂
j=1

I ′j

is finite codimensional and
m⋂

j=m0+1

I ′j is finitely generated, it follows that
m⋂

j=1

I ′j is

finite codimensional in
m⋂

j=m0+1

I ′j . We conclude thus that I2

(
=

m⋂
j=1

I ′j

)
is finite

codimensional in I1. This completes the proof of Corollary 2.3.
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Now suppose that I1 ⊇ I2. Let {Mz1 ,Mz2 , . . . ,Mzn
} be the n-tuple of

operators which are defined on the quotient ring I1/I2 by Mzi f̃ = ˜(zif) for
i = 1, . . . , n. We use σp(Mz1 ,Mz2 , . . . ,Mzn

) to denote the joint eigenvalues for
{Mz1 ,Mz2 , . . . ,Mzn

}, that is, λ = (λ1, λ2, . . . , λn) ∈ σp(Mz1 ,Mz2 , . . . ,Mzn
) if and

only if there exists a q ∈ I1 and q /∈ I2 such that (zi − λi)q ∈ I2, i = 1, 2, . . . , n.

Theorem 2.4. Let I1, I2 be ideals in C, I1 ⊇ I2 and dim I1/I2 = k < ∞.

Then we have:
(i) Z(I2) \ Z(I1) = σp(Mz1 ,Mz2 , . . . ,Mzn

);
(ii) I2 = {q ∈ I1 | p(D)q|λ = 0, p ∈ I2λ, λ ∈ Z(I2) \ Z(I1)};
(iii) dim I1/I2 =

∑
λ∈Z(I2)\Z(I1)

dim I2λ/I1λ = card (Z(I2) \ Z(I1)).

It is worth noticing that (iii) of Theorem 2.4 says that the codimension
dim I1/I2 of I2 in I1 is equal to the cardinality of zeros of I2 related to I1. In this
way, the equality (iii) is an interesting codimension formula whose left side is an
algebraic invariant, while the right side is a geometric invariant.

Proof. (i) Write
I1 = I2+̇R

where R is a linear space of polynomials with dim R = dim I1/I2. We may regard
{Mz1 ,Mz2 , . . . ,Mzn

} being defined on R by Mzi
q = decomposition of ziq on R for

any q ∈ R. By [6], they can be simultaneously triangularized as

Mzi
=

 λ
(1)
i ∗

. . .
λ

(k)
i

 ;

here i = 1, 2, . . . , n, and k = dim I1/I2, so that σp(Mz1 ,Mz2 , . . . ,Mzn
) is equal to

{λ(1), . . . , λ(k)}. Then we have

Uλ(k)Uλ(k−1) · · · Uλ(1)I1 ⊆ I2 ⊆ I1.

This implies that Z(I2) \ Z(I1) ⊆ σp(Mz1 ,Mz2 , . . . ,Mzn). Let λ ∈ σp(Mz1 ,Mz2 ,

. . . , Mzn
). Since λ is a joint eigenvalue of {Mz1 ,Mz2 , . . . ,Mzn

}, there is a poly-

nomial q in R such that qUλ ⊆ I2. Defining I
†
2 to be the ideal generated by I2

and q, then for any λ′ 6= λ, there holds that (I†2 )λ′ = I2λ′ . Therefore, by Theo-

rem 2.1, we have that (I†2 )λ $ I2λ. Since (I†2 )λ ⊇ I1λ, we see that I1λ $ I2λ, that
is, λ is in Z(I2) \ Z(I1). Combining the above discussion, we thus conclude that
Z(I2) \ Z(I1) = σp(Mz1 ,Mz2 , . . . ,Mzn). This completes the proof of (i).
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(ii) Let I\
2 = {q ∈ I1 | p(D)q|λ = 0, p ∈ I2λ, λ ∈ Z(I2) \ Z(I1)}. Then I\

2

is an ideal which contains I2. It follows that (I\
2)λ ⊆ I2λ for all λ ∈ Cn. By

the representation of I\, we have that (I\
2)λ ⊇ I2λ for all λ ∈ Cn. According to

Theorem 2.1, we obtain that I\
2 = I2. The proof of (ii) is complete.

(iii) The proof is by induction on number of points in Z(I2) \ Z(I1). If
Z(I2) \ Z(I1) contains only a point λ, then by (ii) I2 can be written as

I2 = {q ∈ I1 | p(D)q|λ = 0, p ∈ I2λ}.

We define the pairing
[−,−] : I2λ/I1λ × I1/I2 → C

by [p̃, q̃] = p(D)q|λ. Clearly, this is well-defined. From this pairing and the
representation of I2, it is not difficult to see that dim I1/I2 = dim I2λ/I1λ =
card (Z(I2) \ Z(I1)).

Now let l > 1, and assume that (iii) has been proved for Z(I2) \ Z(I1)
containing different points less than l. Let Z(I2) \ Z(I1) = {λ1, . . . , λl} here
λi 6= λj for i 6= j. Writting

I?
2 = {q ∈ I1 | p(D)q|λ1 = 0, p ∈ I2λ1}

then I?
2 is an ideal, and (I?

2 )λ1 = I2λ1 . Similarly to the preceding proof, we have
that

dim I1/I?
2 = dim I2λ1/I1λ1 .

Set I2λ1 = I1λ1+̇R with dim R = dim I2λ1/I1λ1 . Let ]R denote the linear space
of polynomials generated by R which is invariant under the action of {∂/∂z1,

. . . , ∂/∂zn}. Put
QR = {p ∈ C | q(D)p|λ1 = 0, q ∈ ]R}.

Then it is easily verified that QR is a finite codimensional ideal of C with only
zero point λ1 because ]R is finite dimensional. Thus

QRI1 ⊆ I?
2 ⊆ I1.

From the above relation, we see that for λ 6= λ1, I1λ = (I?
2 )λ. Therefore

Z(I2) \ Z(I?
2 ) = {λ2, . . . , λl}.

By the induction hypothesis, we have

dim I?
2/I2 =

l∑
j=2

dim I2λj /(I?
2 )λj =

l∑
j=2

dim I2λj /I1λj .

It follows that we obtain

dim I1/I2 = dim I1/I?
2 + dim I?

2/I2 =
l∑

j=1

dim I2λj
/I1λj

= card (Z(I2) \ Z(I1)).

The proof of Theorem 2.4 is thus completed.
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From Theorem 2.4 and Corollary 2.3 we have

Corollary 2.5. Let I1, I2 be ideals in C, and I1 ⊇ I2. Then I2 is finite
codimensional in I1 if and only if Z(I2) \ Z(I1) is bounded, if and only if Z(I2) \
Z(I1) is finite, and codimension dim I2/I1 = card (Z(I2) \ Z(I1)).

3. ALGEBRAIC REDUCTION FOR HARDY SUBMODULES

In this section we will completely answer the problems raised in Section 1. Sim-
ilarly to Section 2, the following concepts are useful. Let M be a submodule of
H2(Dn) and let λ ∈ Dn; set

Mλ = {q ∈ C | q(D)f |λ = 0, ∀f ∈ M}.

Then Mλ is invariant under the action of the basic partial differential operators
{∂/∂z1, ∂/∂z2, . . . , ∂/∂zn}, and Mλ is called the characteristic space of M at λ.
Clearly, if λ ∈ Z(M), then 1 ∈ Mλ, and if λ /∈ Z(M), then Mλ = 0, where Z(M)
is zero set of M , that is, Z(M) = {z ∈ Dn | f(z) = 0, ∀f ∈ M}. We define
the multiplicity of M at λ by the dimension of characteristic space, dim Mλ. Let
M1,M2 be Hardy submodules and λ ∈ Dn. We say that M1 and M2 have the
same multiplicity at λ if M1λ = M2λ. The symbol Z(M2) \ Z(M1) denotes the
set {λ ∈ Z(M2) | M2λ 6= M1λ}. If M1 ⊇ M2 and λ ∈ Z(M2) \ Z(M1), the
multiplicity of M2 related to M1 at λ is defined by dim M2λ/M1λ. In this way,
the cardinality of Z(M2) \ Z(M1) is defined by

∑
λ∈Z(M2)\Z(M1)

dim M2λ/M1λ by

counting multiplicity, and is denoted by card (Z(M2) \ Z(M1)). The following is
our main result in this section.

Theorem 3.1. Suppose M2 is finite codimensional in M1 and M1 ∩ C is
dense in M1. Then we have:

(i) M2 ∩ C is dense in M2;
(ii) The canonical homomorphism τ : M1 ∩ C/M2 ∩ C → M1/M2 is an iso-

morphism;
(iii) Z(M2∩C)\Z(M1∩C) = Z(M2)\Z(M1) = σp(Mz1 ,Mz2 , . . . ,Mzn

) ⊂ Dn;
(iv) M2 = {f ∈ M1 | p(D)f |λ = 0, p ∈ M2λ, λ ∈ Z(M2) \ Z(M1)};
(v) dim M1/M2 = dim M1 ∩ C/M2 ∩ C = card (Z(M2 ∩ C) \ Z(M1 ∩ C)) =

card (Z(M2) \ Z(M1)).
Conversely, let I1, I2 be ideals in C, I1 ⊇ I2 and Z(I2) \ Z(I1) ⊂ Dn. Then

dim[I1]/[I2] = dim I1/I2, that is, the canonical homomorphism τ : I1/I2 →
[I1]/[I2] is an isomorphism.
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Proof. Firstly, we claim that M1 can be expressed as

M1 = M2+̇R

where R is a linear space of polynomials with dim R = dim M1/M2. In fact, since
M1∩C is dense in M1, there exists a polynomial q in M1∩C, q /∈ M2. Let Σ be the
collection {L | L is a linear space of polynomials, L ⊆ M1∩C, and L∩M2 = {0}}.
We thus see that Σ is not empty. If · · · ⊆ Φα ⊆ Φβ ⊆ Φγ ⊆ · · · is an ascending
chain in Σ, then

⋃
α

Φα is a linear space of polynomials, and
⋃
α

Φα is in Σ. It

follows that there exists a maximal element R in Σ such that M2 ∩ R = {0}.
Since M2+̇R ⊆ M1, R is finite dimensional. So M2+̇R is closed. If M2+̇R 6= M1,
then there is a polynomial p ∈ M1, such that p /∈ M2+̇R. This induces that the
linear space {R, p} generated by R and p satisfies that {R, p} ∩M2 = 0. This is
impossible. Therefore, we conclude that M1 = M2+̇R with dim R = dim M1/M2.
From this assertion we immediately obtain

M1 ∩ C = M2 ∩ C+̇R.

The above argument tells us that M2 ∩C is dense in M2, and the canonical homo-
morphism τ : M1 ∩ C/M2 ∩ C → M1/M2 is an isomorphism. This completes the
proof of (i) and (ii).

To prove (iii), pick any λ ∈ Z(M1 ∩ C) \ Z(M2 ∩ C). By Theorem 2.4 (i),
we see that λ = (λ1, λ2, . . . , λn) is a joint eigenvalue of {Mz1 ,Mz2 , . . . ,Mzn

} on
M1∩C/M2∩C, that is, there is q ∈ M1∩C, q /∈ M2∩C such that (zi−λi)q ∈ M2∩C
for i = 1, 2, . . . , n. If for some i |λi| > 1, then zi − λi is an outer function of one
variable. It follows that there exist polynomials {qn(zi)}n such that qn(zi)(zi−λi)
converges to 1 as n →∞. This implies that q ∈ M2 ∩ C = M2. Thus q ∈ M2 ∩ C.
This contradiction says that |λi| < 1, i = 1, 2, . . . , n. So

Z(M2 ∩ C) \ Z(M1 ∩ C) ⊂ Dn.

By (i), (ii) and Theorem 2.4 (i), we immediately obtain

Z(M2 ∩ C) \ Z(M1 ∩ C) = Z(M2) \ Z(M1) = σp(Mz1 ,Mz2 , . . . ,Mzn
) ⊂ Dn.

The proof of (iii) is complete.
We notice that (iv) is from (i) and Theorem 2.4 (ii), and (v) is from (ii), (iii)

and Theorem 2.4 (iii).
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Let I1, I2 be ideals in C, with I1 ⊇ I2 and Z(I2) \ Z(I1) ⊂ Dn. Then by
Corollary 2.3, I2 is finite codimensional in I1, and by Theorem 2.4 (ii),

I2 = {q ∈ I1 | p(D)q|λ = 0, p ∈ I2λ, λ ∈ Z(I2) \ Z(I1) ⊂ Dn}.

Set
I1 = I2+̇R

where R is a linear space of polynomials with dim R = dim I1/I2. Since each
function f in [I2] satisfies that p(D)f |λ = 0, p ∈ I2λ, λ ∈ Z(I2) \ Z(I1), it follows
that [I2] ∩ R = {0}. By the fact that [I2]+̇R contains I1, and [I2]+̇R is closed,
we obtain that [I2]+̇R = [I1]. Therefore, it holds that I1/I2

∼= [I1]/[I2] ∼= R. The
proof of Theorem 3.1 is complete.

4. SOME FURTHER RESULTS AND REMARKS

We denote by Hol (Dn
) the ring of holomorphic functions defined on neighborhoods

of the closure of Dn. Now let R be a Noetherian subring of Hol (Dn
) containing

C. For exemple, the ring of all rational functions with poles off the closure Dn

of Dn is such a ring ([8]). Since the rings R and C have the same algebraic
properties, the techniques in Sections 2 and 3 are also completely available in the
case of the Noetherian ring R. Let I be an ideal of R. We use Z(I) to denote
{z ∈ Dn | f(z) = 0, ∀f ∈ I}. Let I1 ⊇ I2, the definitions of Z(I2) \ Z(I1) and
card (Z(I2) \ Z(I1)) are completely similar to that of Sections 2 and 3. We thus
have the following theorem.

Theorem 4.1. Suppose M2 is finite codimensional in M1 and M1 ∩ R is
dense in M1. Then we have:

(i) M2 ∩R is dense in M2;
(ii) the canonical homomorphism τ : M1 ∩ R/M2 ∩ R → M1/M2 is an

isomorphism;
(iii) Z(M2 ∩R) \ Z(M1 ∩R) = Z(M2) \ Z(M1) = σp(Mz1 ,Mz2 , . . . ,Mzn

) ⊂
Dn;

(iv) M2 = {f ∈ M1 | p(D)f |λ = 0, p ∈ M2λ, λ ∈ Z(M2) \ Z(M1)};
(v) dim M1/M2 = dim M1 ∩R/M2 ∩R = card (Z(M2 ∩R) \Z(M1 ∩R)) =

card (Z(M2) \ Z(M1)).
Conversely, if I1, I2 are ideals in R, I1 ⊇ I2 and Z(I2) \ Z(I1) ⊂ Dn.

Then dim[I1]/[I2] = dim I1/I2, that is, the canonical homomorphism τ : I1/I2 →
[I1]/[I2] is an isomorphism.
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Let Q be a subring of Hol (Dn) containing C, where Hol (Dn) is the ring of
all holomorphic functions on Dn. Using the techniques in this paper, we can prove
the following theorem.

Theorem 4.2. Suppose M2 is finite codimensional in M1, and M1 ∩ Q is
dense in M1. Then we have:

(i) M2 ∩Q is dense in M2;
(ii) the canonical homomorphism τ : M1 ∩ Q/M2 ∩ Q → M1/M2 is an

isomorphism;
(iii) Z(M2 ∩ Q) ∩ Dn \ Z(M1 ∩ Q) ∩ Dn = Z(M2) \ Z(M1) ⊆ σp(Mz1 ,Mz2 ,

. . . , Mzn
) ⊂ Dn;

(iv) M2 ⊆ {f ∈ M1 | p(D)f |λ = 0, p ∈ M2λ, λ ∈ Z(M2) \ Z(M1)};
(v) dim M1/M2 = dim M1 ∩ Q/M2 ∩ Q > card (Z(M2 ∩ Q) ∩ Dn \ Z(M1 ∩

Q) ∩ Dn) = card (Z(M2) \ Z(M1)).

Finally, we point out that techniques in this paper are also available for
Hardy submodules and Bergman submodules on bounded connected domain Ω
which satisfies some additional conditions, for exemple, we may assume that all
polynomials are dense in Hardy module H2(Ω) (Bergman module L2

a(Ω)), and
for λ /∈ Ω, there exists a polynomial q such that q(λ) = 1, and |q(z)| < 1 for
all z ∈ Ω \ {λ} (z ∈ Ω). Furthermore, if a reproducing Hilbert A(Ω)-module H

satisfies certain technical hypotheses, then the results in this paper extend with
essentially no change to H.
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