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Abstract. After introducing the Γ-convergence of a family of symmetric
matrices, we study the limits in that sense, of Schrödinger operators on a
finite graph. The main result is that any such limit can be interpreted as a
Schrödinger operator on a new graph, the construction of which is described
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1. INTRODUCTION

Schrödinger operators on a finite graph can be interpreted, up to elementary trans-
formations, as reversible Markov generators on the set of vertices of the graph.
For a general introduction one can consult [6], [7], [8], and [10]. After introduc-
ing the Γ-convergence of a family of symmetric matrices, the possible Γ-limits of a
Schrödinger operator on a finite graph are studied. The main result (Theorem 2.4)
states that any limit of that type can naturally be interpreted as a Schrödinger
operator on another graph, the construction of which is explicitly described. The
spectrum of a Γ-convergent family is proved to converge to the spectrum of the
Γ-limit, thus extending the classical perturbation results of Kato ([21]).
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The Markov processes to which this result is applied are almost reducible,
in the sense that their generator Λε depends on a parameter ε, tending to 0. For
ε = 0, the generator is reducible and the eigenvalue 0 has multiplicity strictly
larger than 1. Thus for ε > 0, some eigenvalues are of order O(ε). These “small”
eigenvalues control the access to equilibrium of the process and it is important to
estimate them precisely, by giving an equivalent as ε tends to 0. We propose a
general method for computing the equivalents of the eigenvalues of Λε.

The idea is the following. In order to observe the effect of small eigenvalues,
one has to change the scale of time. This amounts to multiplying the generator
Λε by ε−1. The new generator Γ-converges to a generator on the recurrent classes
of Λ0, the eigenvalues of which, once multiplied by ε are the equivalents of those
among the eigenvalues of Λε which are of order O(ε). This procedure can be
iterated on slower time scales (ε−2, ε−3, . . .). It creates a hierarchy of Markov
processes on nested sets of classes. That hierarchy is described in Section 3, and
the explicit expressions of the successive generators are given by Theorem 3.1.

As examples of applications, we shall treat two cases of almost reducible pro-
cesses, the quasi-decomposable processes (Section 4) and the simulated annealing
algorithm at low temperature (Section 5). Our application results are similar
to those obtained in the context of discrete time Markov chains by Delebecque
([11]). They could also be obtained as an application of the perturbation theory
for Markov processes of Freidlin and Wentzell ([16]) (see for instance [3] and [34]).
However our technique is purely algebraic and much simpler to apply than Freidlin
and Wentzell’s theory.

2. THE Γ-CONVERGENCE

2.1. Definitions and spectral convergence. Let (X, 〈 · | · 〉) be a Eu-
clidean space with finite dimension n. Let A be a symmetric operator on X. The
associated quadratic form is denoted by QA, also written as

QA(x) = 〈x | A | x〉.

Let Γ(A) = {(x,Ax) | x ∈ X} ⊂ X ⊕X be the graph of A.
Let Y ⊂ X be a Euclidean subspace of X and B : Y → Y a symmetric

operator on Y . The pair (Y,B) is called an unbounded operator on X if Y 6= X.
The definition of the graph is extended to unbounded operators in the following
way.

Γ(Y,B) = {(y, z) ∈ Y ⊕X such that for every w ∈ Y, 〈z | w〉 = 〈By | w〉}.
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As a particular case, Γ(A) = Γ(X,A). It is clear that Γ(Y,B) is still an n-
dimensional subspace of X ⊕X.

Let ω be the symplectic form defined by

ω((x, y), (x′, y′)) = 〈y′ | x〉 − 〈x′ | y〉.

An n-dimensional subspace of X ⊕X, which is isotropic for the symplectic form
ω is said to be Lagrangian. It is easy to check that any Lagrangian subspace is
the graph of a unique symmetric operator, bounded or not. Conversely, any graph
Γ(Y,B) is Lagrangian. The set of symmetric operators with domain on X can
thus be seen as a compactification of the set of symmetric endomorphisms of X,
which makes it a C∞ compact manifold.

In order to define the spectrum, we need the notion of invertibility. The
operator (Y,B) is said to be invertible if the space σ(Γ(Y,B)), where σ(x, y) =
(y, x), is the graph of a bounded mapping from X into Y ⊂ X.

For λ ∈ C, define the operator

(Y, λI −B)

by its graph

Γ(Y, λI −B) = {(y, λy − ξ) such that (y, ξ) ∈ Γ(Y,B)}.

This definition yields the two notions of resolvent (inverse of λI−B) and spectrum
(set of singular values of λ). Thus the spectrum of (Y,B) is the union of the
spectrum of B and of the eigenvalue ∞, repeated (n− dimY ) times.

Definition 2.1. A family Aε, ε > 0 of symmetric operators on X is said to
Γ-converge to (Y,B) if Γ(Aε) converges to Γ(Y,B) as ε → 0, in the sense of the
natural topology of the Grassmannian of n-dimensional subspaces of X ⊕X.

The notation is
Aε

Γ−→ (Y,B).

The following result extends to the case of Γ-convergence the classical results
of Kato ([21]) on the spectral convergence of perturbed quadratic forms. It will
justify in Section 3 our use of Γ-convergence to study the spectrum of almost
reducible Markov processes.

Theorem 2.2. Assume Aε
Γ−→ (Y,B). Then the spectrum of Aε converges

to that of (Y,B) in the sense of the topology of P 1(R) = R ∪∞.

Proof. It suffices to notice that the Γ-convergence is equivalent to the con-
vergence of the resolvents (λI − Aε), for all λ /∈ R, as bounded operators from X

into X.



154 Y. Colin de Verdière, Y. Pan and B. Ycart

The existence of Γ-limits is not uncommon.

Proposition 2.3. If Aε =
N∑

i=0

Aiε
−i, where the Ai are symmetric, then the

family Aε Γ-converges.

If N = 1, the Γ-limit is easily identified (see for instance Proposition 4.1).
The general case is much less simple (see Section 3, and [1]).

Proposition 2.3 can be generalized as follows.

Theorem 2.4. Let Ai : X → X be symmetric operators, α1 < · · · < αN a
sequence of reals. For ε > 0, define

Aε =
N∑

i=1

Aiε
αi .

Let Z be the Grassmannian of Lagrangian n-dimensional subspaces of X⊕X, and
Cε ∈ Z the graph of Aε. Then the mapping ε → Cε from R+ \ 0 into Z can be
continuously extended at ε = 0. Moreover, if the αi are integers, the extension is
analytic in ε real.

Proof. Let λ0 /∈ R. The resolvent

Rε = (λ0I −Aε)−1

is bounded above in norm by 1/|Imλ0| and can be written as an asymptotic series
of the form

Rε =
∑

Bjε
ρj ,

with non null Bj ’s. This comes from explicit formulae for the inverse of a matrix.
Notice that the ρj ’s are necessarily > 0.

In many cases of practical interest, Γ-convergence holds, and the Γ-limit will
be characterized by its domain Y and the coefficients of the matrix B.

2.2. Criteria for Γ-convergence. From now on, symmetric operators are
always assumed to be nonnegative.

Definition 2.5. Let (xε) be a family of elements of X. We write xε
s−→ x0

if xε converges to x0 with QAε(xε) = O(1).

Lemma 2.6. If Aε
Γ−→ (Y,B) then x0 ∈ Y iff there exists xε such that

xε
s−→ x0.

Proof. Let X = Yε ⊕ Zε be the decomposition of X into the sum Yε of
eigenspaces associated to eigenvalues of order O(1), and its orthogonal. Let us
write the decomposition of xε as xε = yε + zε. It can be easily seen that zε →
0 and ‖Aεyε‖ = O(QAε(xε)) = O(1). The proof is completed by extracting a
subsequence.
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Lemma 2.7. Let Yε be a family of p-dimensional subspaces of X such that
Yε tends to Y . Assume that for ε 6= 0, the norm of the restriction of Aε to Yε

remains uniformly bounded. Let φε be an isomorphism from Y into Yε such that
for all y ∈ Y , when ε→ 0, φε(y) tends to y. Define

Qφ
ε (y) = 〈φε(y) | Aε | φε(y)〉.

Then Qφ
ε admits a limit denoted by Qφ

0 as a quadratic form on Y and if B denotes
the associated operator, one has:

Aε
Γ−→ (Y,B).

Notice that the boundedness hypothesis for the restriction of Aε implies that
φε(y)

s−→ y.
A practical version of this lemma is the following:
Let (yi) be a base of Y . For each yi choose a family yi,ε converging to yi

with Aεyi,ε = O(1). Then the matrix of the limit B is given by

bi,j = 〈yi | B | yj〉 = lim〈yi,ε | Aε | yj,ε〉.

Beware that Qφ
ε is not the restriction to Y of QAε , that could have an incorrect

limit or no limit at all. Here is a concrete example.

Example 2.8. Consider X = R4, with the quadratic form

〈x | Aε | x〉 =
3∑

i=1

(
xi − x0

ε

)2

.

Take p = 3 and Yε = {y0 = (ε/3)(y1 + y2 + y3)}. Then Q0(y) = 1
3

3∑
i=1

(yi − yi+1)2

and not
3∑

i=1

y2
i .

Proof. First case: Let us suppose that Yε does not depend on ε thus being
equal to Y . Let us decompose X into X = Y ⊕ Z (orthogonal sum) and write Aε

as a matrix according to that decomposition:

Aε =
(
Kε Cε

Ct
ε Dε

)
.

It comes from the hypotheses and the minimax that D−1
ε = o(1) whereas Kε and

Cε are uniformly bounded.
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The graph of Aε is the set of couples ((y, z), (y′, z′)) such that:

z = D−1
ε (z′ − Ct

εy)

y′ = Kεy + Cεz.

The existence of a limit in the sense of Γ-convergence shows that Kε has a limit
K0 and that the limit of graphs is the set of pairs (z, y′) such that z = 0, y′ = K0y,
which is indeed the conclusion of the theorem in this case.

Second case: Let Uε be a continuous family of isometries of X such that U0

is the identity and Uε(Y ) = Yε. Setting Ãε = U t
εAεUε takes us back to the first

case. Thus the Γ-limit of Ãε is the same as that of Aε. The limit quadratic form
is the limit on Y of

qε(y) = 〈Uεy | Aε | Uεy〉.
The same limit is obtained by replacing in the previous formula Uεy by vectors yε

satisfying ‖Uεy − yε‖ = o(1) whereas Aε stays uniformly bounded.

We shall end this section by the particular case of an increasing sequence of
nonnegative quadratic forms, for which the notion of Γ-convergence is equivalent
to pointwise convergence.

Theorem 2.9. Let An be an increasing sequence of nonnegative symmetric
operators defined on X and Qn(x) = 〈x | An | x〉 the sequence of associated
quadratic forms. Let

Q∞ : X → R ∪+∞
be the pointwise limit of Qn and

Y = {x ∈ X such that Q∞(x) <∞}.

Let B be defined on Y by Q∞(y) = 〈y | B | y〉. Then

An
Γ−→ (Y,B).

The proof of Theorem 2.9 uses the following two lemmas.

Lemma 2.10. Let (Y,B) be a (possibly unbounded) operator, then (x0, z0) ∈
Γ(Y,B) if and only if x0 is a critical point of the mapping Fz0 defined on Y by

Fz0(y) = 〈y | B | y〉 − 2〈z0 | y〉.
This lemma is obvious. In particular, if K is a compact subset of X and B

is nonnegative, the mapping Fz0 is minimal at a point x0 in the interior of K if
and only if (x0, z0) ∈ Γ(Y,B).
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Lemma 2.11. Let K be a compact subset of X and fn be a sequence of lower

semi-continuous (lsc) functions defined on K, with values in [0,+∞], such that

fn converges pointwise to a function f∞. Assume moreover that there exist lsc

functions on K, gn 6 fn such that the sequence gn is increasing and has the same

pointwise limit as the sequence fn. Denote by mn and m∞ the minimal values

of fn and f∞ over K. Let xn be such that fn(xn) = mn and assume that the

sequence (xn) converges to a. Then m∞ = limmn and f∞(a) = m∞.

Proof. (of Lemma 2.11.) (1) The function f∞, being an increasing limit of

lsc functions, is lsc as well. Thus there exists x∞ ∈ K such that f∞(x∞) = m∞.

Obviously one has lim supmn 6 m∞. Assume that lim infmn = m∞−α, for some

positive α. Let

Kn =
{
x ∈ K such that gn(x) 6 m∞ − α

2

}
.

It is clear that the sequence of compact sets Kn is decreasing, with empty inter-

section. So for some n0 > 0, Kn0 = ∅ and thus gn(x) > m∞ −α/2 for n > n0 and

x ∈ K. This leads to a contradiction since fn > gn.

(2) (a) If fn(xn) = mn and xn → a, then mn = fn(xn) 6 fn(a). Taking

limits in both sides:

m∞ 6 f∞(a).

(2) (b) Suppose now that f∞(a) = m∞+ β with β > 0. Let U be a compact

neighborhood of a over which f∞ > m∞ + β/2, for some positive β. Let us apply

(1) to restrictions to U . For n large enough, inf
U
fn = mn and inf

U
f∞ > m∞+β/2.

Hence the contradiction.

Proof. (of Theorem 2.9.) Assume that the quadratic form Q∞ associated to

(B, Y ) is the pointwise limit of qn. Let (xn, zn) ∈ Γ(An) and assume that (xn, zn)

tends to (a, b). It is enough to show that (a, b) ∈ Γ(Y,B). This is done by applying

Lemma 2.11 to the sequence qn − 2〈zn | · 〉, restricted to some compact subset K

of X, containing a as an interior point. The conclusion is given by Lemma 2.10.

2.3. The main result. Let G = (V,E) be a finite graph. The vector space RV is

endowed with the canonical Euclidean structure. Schrödinger operators on graphs

are defined by analogy with the continuous case (see [10] or the introduction of [7]).
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Definition 2.12. A symmetric operator A : RV → RV is a Schrödinger
operator on G (notation A ∈ OG) if the following conditions are satisfied:

(i) if {i, j} ∈ E, then ai,j < 0;
(ii) if {i, j} /∈ E and i 6= j, then ai,j = 0;
(iii) the operator A is nonnegative.

We are going to show that any Γ-limit of a family of Schrödinger operators
on the graph G can naturally be identified to a Schrödinger operator on another
graph G′, where G′ is a weak-minor of G in the following sense.

Definition 2.13. The graph G′ = (V ′ = {1, . . . , p}, E′) is said to be a
weak-minor of G = (V,E) if and only if there exist G-connected disjoint subsets
V1, . . . , Vp of V such that ({i, j} ∈ E′) implies that there exists a path γi,j in G

joining some vertex a ∈ Vi to another vertex b ∈ Vj without meeting any of the
other Vk’s (k 6= i, j) (the paths γi,j are not requested to be disjoint).

We recall below the classical definition of a minor.

Definition 2.14. The graph G′ = (V ′ = {1, . . . , p}, E′) is said to be a mi-
nor of G = (V,E) if and only if there exist G-connected disjoint subsets V1, . . . , Vp

of V such that ({i, j} ∈ E′) implies that there exists a vertex a ∈ Vi and a vertex
b ∈ Vj such that {a, b} is an edge of G.

The precise statement is the following:

Theorem 2.15. Let Aε ∈ OG. Assume that Aε
Γ−→ (Y,B) with p = dimY .

Then there exists a weak-minor G′ = (V ′, E′) of G and an isometry J from RV ′

into Y such that J−1BJ ∈ OG′ .
The isometry J is described as follows: there exists a partition (determined

by Aε)
V = W0 ∪ V1 ∪ · · · ∪ Vp,

where the Vi, i > 1 are connected, such that if Fi = {ϕ ∈ Y such that supp(ϕ) ⊂
Vi}, then Fi, i > 1 have dimension 1 and Y =

p⊕
i=1

Fi. Each Fi is spanned by a

unique function ϕi > 0 with norm 1. These ϕi are an orthonormal basis of Y . If

x = (xi) ∈ RV ′ , then J(x) =
p∑
1
xiϕi.

In the context of reversible Markov processes (Section 3), the partition
W0, V1, . . . , Vp has a natural interpretation in terms of recurrent and transient
classes. The Γ-limit (Y,B) will be understood as a new Markov generator on a
set of recurrent classes. An explicit expression for the matrix B will be given in
Theorem 3.2.
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Proof. The space Y . Lemma 2.6 implies that, if ϕ ∈ Y , then |ϕ| ∈ Y . Indeed,

Qε(|ϕ|) 6 Qε(ϕ).

Let Z ⊂ V be the set of vertices i such that there exists ϕ ∈ Y with ϕ(i) 6= 0.
For i ∈ Z, let εi ∈ Y ′\0 be the linear form defined by εi(ϕ) = ϕ(i). Let us introduce
the equivalence relation in Z, for which i and j are related if εi and εj are linearly
dependent. Let W1, . . . ,Wq be the equivalence classes and choose ai ∈ Wi. Then
the mapping from Y into Rq which associates ϕ to (ϕ(ai)) is an isomorphism.
Indeed, it is obviously injective. To prove surjectivity, one can apply for instance
Lemma 12.1, p. 141 of [4].

The previous argument also shows that the ϕi can be chosen to be strictly
positive over Wi.

The Vi’s. The Wi’s are disjoint, but not necessarily connected. The sets Vi

are such that Wi ⊂ Vi. The set Vi is the set of vertices a ∈ V such that does not
exist ϕε

s−→ ϕi with ϕε(a) = 0.
Thus there exists ϕε

s−→ ϕi, with ∀ a /∈ Vi, ϕε(a) = 0, and Vi is minimal
for that property. Indeed, it suffices to take, for each a /∈ Vi, ϕa,ε

s−→ ϕ with
ϕa,ε(a) = 0 and ϕa,ε > 0; then ϕε = inf ϕa,ε.

The Vi’s are connected. Indeed if Vi = V ′i ∪V ′′i with V ′i ∩V ′′i = ∅ andWi∩V ′i 6=
∅, one can replace ϕε by its restriction to V ′i thus contradicting minimality.

Let a ∈ Vi ∩ Vj and assume one can find 0 6 ϕi,ε
s−→ ϕi, 0 6 ϕj,ε

s−→ ϕj

and that ϕi,ε(a)/ϕj,ε(a)→ l, 0 6 l <∞.
One can then find lε such that Φε(a) = ϕi,ε(a) − lεϕj,ε(a) = 0 and Φε

s−→
ϕi − lϕj . Then one chooses (Φε)+

s−→ ϕi and null at a.
If lε does not exist, it suffices to swap the roles of i and j.

The graph G′. Let us choose ai ∈ Wi. Let mi = ϕi(ai) > 0 and Φi,ε be
such that Φi,ε(aj) = δi,jmi and AεΦi,ε(x) = 0, ∀x 6= a1, . . . , ap. This amounts
to minimizing Qε(Φ) under constraint of fixed values at the aj ’s. The Φi,ε are
everywhere nonnegative, because replacing them by their absolute values conserves
the constraints and diminishes the quadratic form.

Now the Φi,ε satisfy the hypotheses of Lemma 2.7. Indeed, if ψi,ε
s−→ ϕi are

such that ψi,ε(aj) = δi,jmi, one has:

Qε(Φi,ε) 6 Qε(ψi,ε) = O(1).

Hence Φi,ε
s−→ ϕi, because the Φi,ε’s have the same values at vertices aj than the

ψi,ε’s. Next AεΦi,ε(x) = 0 if x 6= a1, . . . , ap, and

AεΦi,ε(aj) =
1
mj
〈Φi,ε | Aε | Φj,ε〉 = O(1),
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by Cauchy-Schwarz inequality.
Thus the elements bi,j of the limit matrix B are given by

bi,j = lim〈Φi,ε | Aε | Φj,ε〉.
The mapping Φi,ε being nonnegative in a neighborhood of aj , this implies

that for i 6= j, bi,j 6 0.
Let us show that, if there does not exist any path γ from Vi to Vj not entering

any of the other Vl’s, then bi,j = 0.
The first step is to show that, for a ∈ Vk, Φi,ε(a) = o(Φk,ε(a)).
If this was false, after possibly extracting a subsequence, one would get

Φk,ε(a)− cεΦi,ε(a) = 0 for some bounded cε. This would yield

|Φk,ε − cεΦi,ε| s−→ ϕk + |c|ϕi,

hence
min{|Φk,ε − cεΦi,ε|, |cεΦi,ε|} s−→ ϕk.

This proves that a /∈ Vk.
Therefore,

Φi,ε(a) = o
( ∑

k 6=i

Φk,ε(a)
)

for all a ∈ ⋃
k 6=i

Vk. This yields the same estimate over the set of those a’s which

are not joined by a path to Vi, without meeting any of the Vl’s (positivity of
the solutions to the Dirichlet problem, with positive boundary conditions). In
particular, this is true for the neighbors of aj . This yields

〈Φi,ε | Aε | Φj,ε〉 = o
( ∑

k 6=i

〈Φk,ε | Aε | Φj,ε〉
)
,

and thus bi,j = 0.

In general, the graph G′ is not a minor of G, as was observed in Example 2.8
which corresponds to a star-triangle transformation (see also [1]). It is interesting
to give sufficient conditions on the family Aε that ensure G′ to be a minor of G.
One such condition is Aε1V = 0, since then W0 = ∅. We shall meet again this
particular case with quasi-decomposable processes (Section 4). Another sufficient
condition is a consequence of Theorem 2.9.

Proposition 2.16. Let An be an increasing sequence of operators of OG,
and A∞ ∈ OG′ its Γ-limit. Then G′ is a minor of G.

Proof. In that case, according to Theorem 2.9, it suffices to consider point-
wise convergence on Y . This implies that the Wi are already connected, and that
{i, j} can be an edge of G′ only if there exist vertices ai ∈ Wi and aj ∈ Wj such
that {ai, aj} is an edge of G.
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3. REVERSIBLE MARKOV PROCESSES

3.1. Definitions. Let Λ = (λij)i,j∈V be the infinitesimal generator of a Markov
process on a finite state space V (cf. Çinclar ([5]) for a general reference). It is a
square matrix whose nondiagonal elements are nonnegative, the sum of elements
of each line being null.

λii = −
∑

j 6=i

λij , ∀ i ∈ V.

Let p be a strictly positive probability measure on V . The generator Λ is
said to be p-reversible, if the following detailed balance condition is satisfied (see
for instance [22]).

(3.1) p(i)λij = p(j)λji, ∀ i, j ∈ V.

Thus a generator is p-reversible if and only if it is self-adjoint in L2(V, p). To such
a generator, one can associate its reduced graph G = (V,E) whose set of vertices
is V and set of edges is

E = {{i, j}, λij > 0}.
The generator is irreducible if its reduced graph is connected. In that case, the
eigenvalue 0 is simple.

Let D be the diagonal matrix

D = diag
((√

p(i), i ∈ V ))
,

and D−1 its inverse. The generator Λ is p-reversible iff the matrix DΛD−1 is
symmetric. Thus −DΛD−1 is the matrix of a Schrödinger operator on the graph
G, in the sense of Definition 2.12. Its only additional property, compared to
Definition 2.12, is to admit 0 as an eigenvalue, associated to the eigenvector D1V .
Here 1V is the constant vector with coordinates equal to 1, indexed by V . The
eigenvalues of a reversible generator are all real, non positive. If Λ is p-reversible,
its eigenvalues will be ranked in decreasing order, and we shall call spectrum of Λ
the vector of its ordered eigenvalues. With that convention, the first coordinate
of the spectrum is 0, and the opposite of the second one is the spectral gap of Λ,
denoted by gap (Λ).

The speed of access to equilibrium of a Markov process with generator Λ is
usually studied through its Dirichlet form (see [13], [15], [17], [31] and [33]):

E(ϕ,ϕ) = 〈ϕ | −Λ | ϕ〉p =
1
2

∑

i,j∈E

(ϕ(i)− ϕ(j))2p(i)λij .
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Our point of view is to use instead the quadratic form Q, with matrix −DΛD−1:

Q(ϕ,ϕ) = 〈ϕ | −DΛD−1 | ϕ〉p =
1
2

∑

i,j∈E

(
ϕ(i)√
p(i)
− ϕ(j)√

p(j)

)2

p(i)λij .

We recall here the classical result on the conservation of reversibility upon
truncation (Corollary 1.10, p. 26 of Kelly ([22])).

Proposition 3.1. Let Λ be a p-reversible irreducible generator on V , and
α a subset of V . Define the transition rates λα

ij by

λα
ij =

{
λij if i, j ∈ α,
0 else.

Let Λα be the generator corresponding to the rates λα
i,j and assume it is irreducible

on α. Then Λα is pα-reversible, where pα is the conditional distribution of p over α:

pα(i) =
{

p(i)
p(α) if i ∈ α,
0 else.

3.2. Analytic perturbations. From now on, ε is a real positive parameter and
Λε is a pε-reversible generator, irreducible over V , such that the transition rates
λε

ij depend analytically on ε in a neighborhood of 0. It is easy to deduce from (3.1)
that the measure pε is analytic in a neighborhood of 0 as well. The generators we
want to study are almost reducible, in the sense that the limit of Λε, denoted by
Λ0, is reducible. From the classical perturbation theory for symmetric operators
(cf. [21]), the eigenvalues of Λε as well as the associated eigenspaces converge to
the eigenvalues and eigenspaces of Λ0. In other words, the spectrum of Λ0 gives
an equivalent of the eigenvalues of order O(1) for Λε. But Λ0 being reducible,
the eigenvalue 0 has a multiplicity strictly larger than 1. This means that some
eigenvalues of Λε are of order O(ε). We propose a general method for computing
explicitly the equivalents of the eigenvalues of order O(εk) for all k > 1. The idea
is the following. The eigenvalues of order O(εk) correspond to movements of the
process on the scale of time ε−k. In order to compute their equivalents, one has to
determine the Γ-limit of ε−kΛε, the spectrum of which will give the coefficients of
the desired equivalents, by Theorem 2.2. The explicit expression of this Γ-limit,
and its probabilistic interpretation, are given in Theorem 3.2.

Denote by Sk the vector whose coordinates are the eigenvalues of order O(εk)
of the generator Λε, with their multiplicity. The Γ-limit of ε−kΛε is a generator
Λk on a state space of size #Sk, coming from a partition of the state space V , as
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in Theorem 2.15. This partition has a concrete interpretation in the dynamical
language of Markov processes.

Here is the interpretation for k = 1. The irreducible classes of Λ0 are maximal
subsets of states such that inside each of these subsets, any state is linked to any
other by a path of positive transitions. An irreducible class is transient if there
exists a positive transition coming out of it, otherwise it is called recurrent (see
for instance [5] for these classical definitions). Denote by E1 the set of irreducible
classes of Λ0 and by F1 ⊂ E1 the set of recurrent classes. These classes can be
observed on the dynamics of the process with generator Λε. For ε small enough,
starting in a transient class (element of E1 \ F1), the process comes out of it,
and goes to a recurrent class in a time O(1) on average. In the same time scale,
starting in a recurrent class (element of F1), the process can reach any state in
that same class. But the departure from any recurrent class will not occur before
a time O(1/ε) on average. Thus over a time scale of order O(1) the process reaches
its equilibrium inside any recurrent class, but no communication is seen between
these classes. Changing the scale of time by a factor ε, i.e. over time intervals
of length O(1/ε), the process has reached its equilibrium inside recurrent classes
almost immediately, compared to the time scale. So that one can ignore the way
equilibrium has been reached, and identify all states of a given recurrent class, by
aggregating them into a single state. The recurrent classes are the sets V1, . . . , Vp

of Theorem 2.15. The set W0 is the union of all transient classes.
By iterating this procedure, one can define a partition Ek of the state space

V , and a subset Fk of Ek with the following properties. In a time interval of order
O(1/εk−1) on average, starting from a class of Ek the process can reach any state
of the same class, and go out to a class of Fk if the initial one was in Ek \ Fk.
However, it will take a time O(1/εk) on average to get out of a class in Fk. Then
the Γ-limit of ε−kΛε is a Markov generator on Fk. The equivalents of Sk are the
product of the eigenvalues of this generator by εk.

The recursive construction of the partitions Ek and Fk has been detailed in
[30] and we shall not reproduce it here. It is not new. It can be seen as a cycle
decomposition in the sense of Freidlin and Wentzell ([16]). It has been obtained by
different means, for discrete time Markov chains, with an analogous interpretation
in terms of time scales, by Delebecque ([11]).

The partitions Ek are nested, and #Fk is decreasing. Let K be the smallest
integer such that

#FK = 1.

The eigenvalues of order εK−1 are the smallest in the spectrum, and εK−1 is the
order of gap (Λε).
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Let
Uk+1 = V −

⋃

αk∈Fk

αk,

and denote by ΛUk+1 the restriction of Λε over Uk+1. For any class αk of Fk, denote
by pαk

the reversible measure for the restriction of Λε to αk. It is the conditional
distribution of pε over αk, according to Proposition 3.1. For all subsets S1, S2 of
V with S1 ∩ S2 = ∅, denote by

GS2
S1

= (λab)a∈S1, b∈S2

the matrix composed of the transition rates from S1 to S2. Denote by DUk+1 the
diagonal matrix such that

DUk+11Uk+1 =
∑

αk∈Fk

Gαk

Uk+1
1αk

,

where 1Uk+1 and 1αk
stand for constant vectors equal to 1 over Uk+1 and αk

respectively.
Our main result gives the explicit expression of the Γ-limit of ε−kΛε.

Theorem 3.2. Let k be an integer between 1 and K − 1.
(i) For all αk 6= βk ∈ Fk, define the transition rate from αk to βk as follows:

λαkβk
= ε−kpαk

[
Gβk

αk
1βk
−GUk+1

αk
(ΛUk+1 −DUk+1)

−1Gβk

Uk+1
1βk

]
.

Then lim
ε↘0

λαkβk
exists. Let l > k+1 be the smallest integer such that αk is included

in an element of Fl, denoted by αl. Then if βk 6⊆αl one has

lim
ε↘0

λαkβk
= 0.

(ii) For all a in Uk+1, denote by pβk
a the probability for the process with

generator Λε, starting from a, to reach βk for the first time without visiting any
other class of Fk. Let P βk

Uk+1
be the column vector made of the pβk

a ’s for a in Uk+1.

Then
λαkβk

=
1
εk
pαk

(
Gβk

αk
1βk

+GUk+1
αk

P βk

Uk+1

)
.

(iii) Let Λk be the generator on Fk made of the transition rates λαkβk
. Then

up to a permutation

lim
ε↘0

S0 (Λk) = lim
ε↘0

1
εk
Sk(Λ).

In (i), the invertibility of ΛUk+1 −DUk+1 comes from positivity properties of
the Markov generator Λε. A direct proof of this theorem due to Y. Pan can be
found in [30]. It can also be deduced from the results of Delebecque ([11]). In
the next two sections, we shall apply Theorem 3.2 to particular cases of almost
reducible Markov processes which are of practical interest.
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4. QUASI-DECOMPOSABLE PROCESSES

The notion of quasi-decomposability seems to have been introduced by the econo-
mists Simon and Ando ([32]) in the framework of hierarchical analysis for complex
systems. The idea, quite natural, has been applied in sociology, biology, and
computer science (for a history of the subject, see the introduction of Courtois
([9])). This idea is the following. In a complex dynamical system, there usually
coexist several scales of time. As an example, let us speak of seconds, hours
and months. At the scale of a few seconds, the system can be decomposed into
isolated sub-systems, having only internal interactions. Interactions between these
components occur only at the scale of several hours. This induces an aggregation
of the former components into bigger ones. Some of these big components will
interact at the scale of one month, thus inducing a coarser partition of the global
system. One obtains a hierarchy of nested partitions, each of them corresponding
to a given time scale.

We shall now describe a formal setting in terms of continuous time Markov
processes (for the discrete time analogous, see the first chapter of Courtois ([9])).

Let Λ be an irreducible generator on V = {i, j, . . .}, corresponding to tran-
sition rates (λij)i,j∈V . The generator Λ is assumed to be p-reversible, where
p = (p(i))i∈V . Consider a partition of V , F = {α, β, . . .}.

α ∩ β = ∅ and
⋃

α∈F
α = V, ∀α 6= β ∈ F .

Denote by
q(α) =

∑

i∈α

p(i)

the measure of the set α. The conditional measure of p over α is still denoted by pα:

pα(i) =
p(i)
q(α)

, ∀ i ∈ α.

For ε > 0, we define the generator Λε multiplying by ε the transition rates between
different classes of the partition F . This amounts to slowing down by a factor ε
the exchanges between different classes, or else to distinguish the time scale 1/ε of
exchanges between classes from the time scale 1 which remains that of exchanges
inside the classes:

λε
ij = λij , ∀α ∈ F , ∀ i 6= j ∈ α
λε

ij = ελij , ∀α 6= β ∈ F , ∀ i ∈ α, j ∈ β.
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The results of the previous section are easily applied in this particular case. With
the notation of Section 2, the set W0 is empty, and the sets Vk are the classes of
partition F . As ε tends to zero, the spectrum of Λε, denoted by sε, converges to
that of Λ0, which is a concatenation of the spectrums of the restrictions of Λ to
each class of the partition.

Among the eigenvalues of Λε, #F converge to 0 (one of them remains null).
Denote by s′ε their vector (#F first coordinates of sε). A direct application of
Theorem 3.2 shows that s′ε/ε converges to the spectrum of a Markov generator M
on F .

Proposition 4.1. Let M be the generator defined on F by the following
transition rates:

µαβ =
∑
i∈α
j∈β

λijpα(i), ∀α 6= β ∈ F .

Then M is the Γ-limit of ε−1Λε. Let t be its spectrum; then

lim
ε→0

s′ε
ε

= t.

It is easy to check that the generator M is q-reversible. The rate µαβ can
be interpreted as the stationary exchange flux from α to β for the process with
generator Λ.

The above result can obviously be extended to other time scales. To do
this, one has to consider coarser partitions, for which the transition rates between
distinct classes are of higher order. It is not necessary to detail the full construction
here, since it is a particular case of Theorem 3.2, essentially contained already in
Proposition 4.1.

As an example, we describe below a family of birth and death processes (cf.
[5] for a general reference) on {1, . . . , 2k}, with a hierarchy of time scales. The
family is constructed iteratively according to the following transition diagrams.

• 1←→
1
•stage 1 (2 states)

• 1←→
1
• ε←→

ε
• 1←→

1
•stage 2 (4 states)

• 1←→
1
• ε←→

ε
• 1←→

1
• ε2

←→
ε2
• 1←→

1
• ε←→

ε
• 1←→

1
•stage 3 (8 states)

• · · · · · · · · · · · · · · · · · · •︸ ︷︷ ︸
stage k−1

εk−1

←→
εk−1
• · · · · · · · · · · · · · · · · · · •︸ ︷︷ ︸

stage k−1

stage k (2k states)
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More precisely, let Λ2 be the symmetric generator on {1, 2},

Λ2 =
(−1 1

1 −1

)
.

For all k > 1, if Λ2k has been defined on {1, . . . , 2k}, define the generator Λ2k+1

on {1, . . . , 2k+1} by

Λ2k+1 =
(

Λ2k (0)
(0) Λ2k

)
+ εkB2k+1 ,

where B2k+1 is the generator whose transition rates between 2k and 2k + 1 are 1,
the others being null.

(4.1) B2k+1 = (bij)16i, j62k+1 =




(0)
∣∣ (0)

−1
∣∣ 1

1
∣∣ −1

(0)
∣∣ (0)




with

bij =




−1 if i = j = 2k or 2k + 1;
1 if (i, j) = (2k, 2k + 1) or (i, j) = (2k + 1, 2k);
0 else.

For all k > 1, the generator Λ2k is irreducible and symmetric. It is reversible
with respect to the uniform measure on {1, . . . , 2k}. The generators Λ2k are quasi-
decomposable. At time scale 1/εk, for the generator Λ2k+1 the state space is
divided into two halves, the local dynamics of each being governed by the generator
Λ2k . Applying Proposition 4.1, the following result is obtained by induction.

Proposition 4.2. Let λ1 = 0 > λ2 > · · · > λ2k+1 be the eigenvalues of
Λ2k+1 , in decreasing order. One has:

λ1 = 0, λ2k+1 = −2

and ∀ i = 0, . . . , k − 1, ∀ j = 2i + 1, . . . , 2i+1

λj = − εk−i

2k−i−1
+ o(εk−i), λ2k+j = −2− εk−i

2k−i−1
+ o(εk−i).
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5. SIMULATED ANNEALING AT LOW TEMPERATURE

The Metropolis algorithm has been the subject of a large number of articles in the
past ten years (see [14] and references therein). The interest for that algorithm
comes from its numerous applications, from simulated annealing to Gibbs sampling
([18], [24], [19], [20], and [2]). The most important theoretical problem in that
type of technique is the exact determination of the convergence speed. A review
of rigorous results is given by Diaconis and Saloff-Coste ([14]). Most of them
concern lower bounds of the spectral gap for the Markov chain being simulated.
A lower bound of the gap can give an indication about the convergence speed,
even if the full spectrum is out of reach due to the size of the state space. A
complete description of the spectrum has been obtained in some particular cases
by Diaconis et Hanlon ([12]) and Liu ([25]). We propose a result of this type here,
for the case where some transitions are very slow. A typical case of application is
the simulated annealing algorithm at low temperature, for which we shall describe
the equivalents of the different eigenvalues.

Let us first recall the classical description of the simulated annealing algo-
rithm (see [2]). Let V = {i, j, . . .} be a finite set, and H a function from V into R,
to be minimized. This function is interpreted as an energy and the corresponding
Gibbs measure, denoted by p, and defined by

p(i) =
1
Z

e−( 1
T )H(i), ∀ i ∈ V,

where T is the temperature parameter, and Z is the normalizing constant (parti-
tion function). As T tends to 0, the measure so defined converges to the uniform
distribution on the set of global minima of the function H. The simulated anneal-
ing algorithm is a variant of the Metropolis algorithm that simulates a Markov
chain, reversible with respect to the distribution p. The Markov chain is simulated
by a rejection method, starting from a Markovian kernel K (cf. [14]). In most
applications, the kernel K is that of the symmetric random walk on an unoriented
graph, for which V is the set of vertices. The set of edges is still denoted by E.
The algorithm will be seen as a continuous time Markov process, and described
by its transition rates, which are positive only on the edges of the graph:

λij =
{

1 if H(j) 6 H(i),
e−

1
T (H(j)−H(i)) if H(j) > H(i);

∀ {i, j} ∈ E.

It is immediate to check that the generator so defined is p-reversible. Our aim is to
study the spectrum of that generator at low temperature. We shall set ε = e−1/T ,
and denote by Λε the corresponding generator. In order to simplify notation,
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we shall assume that H can take only nonnegative integer values, 0 being the
minimum, and that the difference of energy between neighboring vertices is at
most 1:

inf
i∈V

H(i) = 0, ∀ i ∈ V, H(i) ∈ N,

H(i)−H(j) ∈ {−1, 0, 1}, ∀ {i, j} ∈ E.
This hypothesis is not really restrictive. Any function H can be shifted to take its
values in R+, without changing neither the measure p nor the generator. Morrover,
in order to extend our results to the general case, it would suffice to replace the
integer powers of ε by exponents corresponding to the actual energy differences
between neighbors (cf. Theorem 2.4). From now on the generator Λε is defined
on V by

λε
ij =





0 if {i, j} /∈ E,
1 if {i, j} ∈ E and H(j) 6 H(i),
ε if {i, j} ∈ E and H(j) > H(i);

∀ i, j ∈ V.

This generator is reversible with respect to the measure pε, now defined by:

pε(i) =
1
Z
εH(i), ∀ i ∈ E.

This is another particular case of the general setting of Section 3. The structure
of the problem allows a natural description of the hierarchical decomposition into
classes. We shall be led to aggregations of states, corresponding to connected
classes of the graph, with constant energy. The equivalence relation is the follow-
ing:

iRj ⇔
{∃ k1 = i, k2, . . . , k` = j such that {kh, kh+1} ∈ E,

and H(k1) = · · · = H(k`);
∀ i, j ∈ V.

The classes of that relation are denoted by α, β, . . .. We shall still denote by H(α)
the common value of the energy function over the class α. Two classes α and
β are said to communicate if there exists an edge of the graph linking them (the
difference |H(α)−H(β)| can only be 1 in that case). A class α is said to be minimal
for the energy function H if it communicates only with classes at a strictly larger
energy level.

The following proposition describes the orders of the equivalents of the eigen-
values in terms of minimal classes of energy functions defined by induction, starting
from H.
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Proposition 5.1. Set H0 = H. Let F0 be the set of minimal classes of H0.
For any positive integer k, suppose an energy function Hk has been defined on V .
Let Fk be the set of its minimal classes. The function Hk+1 is defined on V by

Hk+1(i) =
{
Hk(i) + 1 if ∃α ∈ Fk, i ∈ α;
Hk(i) else.

Denote by K the first integer such that #Fk = 1.
Then among the eigenvalues of Λε, #V −#F0 converge to a strictly negative

limit. For all k between 1 and K, #Fi−1 −#Fi eigenvalues are equivalent, up to
a negative constant, to εi.

This description is not new. It is classically deduced from Freidlin et
Wentzell’s theory ([16]). It has been obtained by Catoni ([3]), and generalized
by Trouvé ([34]) (see also in a different framework Miclo ([28] and [29])). The way
it is derived here by a direct application of Theorem 2.15 is much simpler.

Instead of repeating in the particular case of simulated annealing the explicit
expression of the successive generators given in Theorem 3.2, we shall illustrate it
on an explicit example for a line graph with 17 vertices. The energy function H

is that of Figure 1.

• •
• •

•
•
• •

•
•
•
• •

•
• • •

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 1. Energy function on a line graph with 17 vertices.

Proposition 5.1 predicts 12 eigenvalues of order 1, 3 of order ε, 1 of order ε2

(and 1 equal to 0).
The generator Λ0 has 3 eigenvalues equal to −3, 4 equal to −2, 5 equal to

−1 and 5 equal to 0. The eigenvalues of order ε are obtained with the generator
Λ1. It is defined on the minimal classes of H which are:

α1 = {1, 2}, α2 = {5}, α3 = {9}, α4 = {12, 13}, α5 = {15, 16, 17}.
This generator is the following:




−1/6 1/6 0 0 0
1/3 −1/3 0 0 0
0 1/3 −5/6 1/2 0
0 0 0 −1/4 1/4
0 0 0 1/6 −1/6



.
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Its spectrum is

0, 0,− 5
12
,−1

2
,−5

6
.

These values are the equivalents of the eigenvalues of order ε. The equivalent of

the eigenvalue of order ε2 (spectral gap), is obtained by constructing the partition

E2 and the generator Λ2. The aggregation of classes α1, α2 on one side, and α4, α5

on the other side, leads to a process with two states. The transition rate from

the first class to the second one is 1/15, the other one is 1/25. The reversible

measure is proportional to the cumulated weights of the classes, which are 3 and

5 respectively. The eigenvalues of the corresponding generator are 0 and −8/75.

Thus the spectral gap of Λε is equivalent to 8/75ε2.

Numerical experiments have been performed on this example. Here are, for 4

values of ε, the maximal relative error between eigenvalues computed numerically,

and their equivalents, as computed above.

∆ = max
|numerical− equivalent|

numerical
.

ε
∣∣ 10−1 10−2 10−3 10−4

∆
∣∣ 0.253 0.076 0.023 0.0007
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Sci. Toulouse VI, Ser. Math. (4) 4(1995), 819–877.

30. Y. Pan, Spectres de processus de Markov, Thèse UJF, Grenoble 1997.
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