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Abstract. We develop standard models for commuting tuples of bounded
linear operators on a Hilbert space under certain polynomial positivity con-
ditions, generalizing the work of V. Müller and F.-H. Vasilescu in [6], [14].

As a consequence of the model, we prove a von Neumann-type inequal-
ity for such tuples. Up to similarity, we obtain the existence of in a certain
sense “unitary” dilations.
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1. INTRODUCTION

Let H be a separable Hilbert space and T = (T1, . . . , Tn) a commuting tuple of

bounded linear operators on H. T is called a spherical contraction, if
n∑

i=1

Ti
∗Ti 6

1H, and a spherical unitary, if
n∑

i=1

Ti
∗Ti = 1H and in addition, all components

of T are normal. We say that T has a spherical dilation if there is a spherical
unitary U which dilates T , i.e. Tα = PHUα|H for all α ∈ Nn

0 . There is no easy
generalization of the famous Dilation Theorem for contractions of Sz.-Nagy (see
[12]) to spherical contractions: in general, spherical contractions have no spherical
dilations, and there is not even a von Neumann-type inequality over the unit ball
in Cn for spherical contractions ([3]). Athavale has shown in [1] that under certain
additional positivity conditions a spherical contraction T has a spherical dilation,
and Müller and Vasilescu have developed a model for T under these conditions
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which reproduces this result ([6], [14]). This model consists of a spherical unitary
part and a weighted backward multishift part which for suitable order coincides
with the adjoint of the tuple of multiplication operators with the coordinates on
a Hardy space over the unit ball in Cn. For n = 1, this is just the well-known
coisometric extension for contractions.

In the current paper, we will develop a model for a commuting tuple T un-
der certain polynomial positivity conditions. We call T a P -contraction, where
P =

∑
γ∈Nn

0

aγxγ is a polynomial with non-negative coefficients of a certain type,

if
∑

γ∈Nn
0

aγT ∗γT γ 6 1H, and a P -unitary if
∑

γ∈Nn
0

aγT ∗γT γ = 1H, T1, . . . , Tn nor-

mal. We will show that P -contractions satisfying additional positivity conditions
of suitable order have a model consisting of a P -unitary part and a weighted
backward multishift part, which may be identified topologically with the adjoint
of the multiplication tuple on a Bergman space. In particular, up to topological
equivalence, T has a P -unitary dilation and therefore a rich functional calculus.

The crucial tools in identifying the weighted backward multishift with the
adjoint Bergman space multiplication tuple are a theorem of A. Cumenge from
complex analysis which allows to extend Bergman space functions on a complex
submanifoldM to Hardy space functions on a strictly pseudoconvex set containing
M and the simple idea of regarding a P -contraction as a spherical contraction in
a higher dimension.

2. PRELIMINARIES AND NOTATION

A commuting tuple T = (T1, . . . , Tn) of bounded linear operators on the separable
Hilbert space H will be called a commuting multioperator or just a multioperator.
For A ∈ L(H), let CA be the bounded linear map

(2.1) L(H) → L(H), X 7→ A∗XA,

and for a commuting tuple T = (T1, . . . , Tn) ∈ L(H)n let CT = (CT1 , . . . , CTn
).

If P =
∑

γ∈Nn
0

aγxγ ∈ C[X1, . . . , Xn] is a polynomial, then P (CT ) is the bounded

linear map L(H) → L(H), X 7→
∑

γ∈Nn
0

aγT ∗γXT γ . This map is well-defined, since

T1, . . . , Tn commute.
If T = (T1, . . . , Tn) is a commuting multioperator on H, S = (S1, . . . , Sn) a

commuting multioperator on some Hilbert space H′
and A : H → H′

is a linear
map, then we will write AT = SA for the identity ATi = SiA, i = 1, . . . , n.
In this situation, we call T and S topologically equivalent or similar if A is a
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topological isomorphism. We will call a commuting multioperator normal in case

all components are normal.

For z = (z1, . . . , zn), w = (w1, . . . , wn) ∈ Cn, we will denote the tuple

(z1w1, . . . , znwn) by zw and the tuple (|z1|2, . . . , |zn|2) by |z|2.
Let us introduce the class of polynomials from which our positivity conditions

are obtained. A polynomial P ∈ C[X1, . . . , Xn] is said to be positive regular, if

(i) the constant term is 0;

(ii) P has non-negative coefficients;

(iii) the coefficients of the linear terms X1, . . . , Xn are all different from 0.

There is a complete Reinhardt domain in Cn associated to each positive

regular polynomial P , namely

(2.2) P = {z ∈ Cn | P (|z|2) < 1}

which we call the P -ball. For P =
n∑

i=1

xi, the P -ball is just the unit ball Bn in Cn.

For a positive regular polynomial P,X ∈ L(H) positive and m ∈ N, we will

call a commuting multioperator T (P,m)-positive for X, if

(2.3) ∆(1)
P (X) := (1− P )(CT )(X) > 0

and

(2.4) ∆(m)
P (X) := (1− P )m(CT )(X) > 0.

In this case,

(2.5) ∆(k)
P (X) := (1− P )k(CT )(X) > 0 for 1 6 k 6 m,

as one obtains completely analogously to Lemma 2 in [6]. The tuple T is said

to be (P,m)-positive, if it is (P,m)-positive for 1H. Furthermore, we call T a

P -isometry, if ∆(1)
P := ∆(1)

P (1H) = 0, and a P -unitary, if in addition T is normal.

For P =
n∑

i=1

xi, the (P, 1)-positive operators are just the spherical contrac-

tions.
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3. STANDARD MODELS

We will now develop in analogy to [6] a standard model for (P,m)-positive com-
muting tuples, consisting of a part which is the adjoint of a multiplication tuple
— or, equivalently, a weighted backward multishift — and a P -unitary part.

For |P (x)| < 1, we have

(3.1)
1

(1− P (x))m
=
( ∞∑

j=0

P j(x)
)m

.

Therefore the function x 7→ 1/(1− P (x))m has a power series representation which
converges compactly on {x

∣∣ |P (x)| < 1} and coincides with the Taylor series ex-
pansion at 0. For positive regular P , all Taylor coefficients are positive.

Definition 3.1. Let P be a positive regular polynomial in n variables and
let m ∈ N. For each α ∈ Nn

0 , let ρm
P (α) be the Taylor coefficient at index α of the

function x 7→ 1/(1− P (x))m at 0.

We will denote the coefficients ρm
P (α), α ∈ Nn

0 , as (P,m)-weights.
Now let H2(ρm

P ) be the linear space of all formal power series
∑

α∈Nn
0

cαzα such

that
∑

α∈Nn
0

|cα|21/ρm
P (α) < ∞. The space H2(ρm

P ) is obviously a Hilbert space with

the inner product

(3.2)
〈 ∑

α∈Nn
0

cαzα ,
∑

α′∈Nn
0

bα′z
α′
〉

=
∑

α∈Nn
0

cαbα
1

ρm
P (α)

.

It can be regarded as a space of holomorphic functions on the P -ball P, and there
is an obvious reproducing kernel:

Lemma 3.2. The elements of H2(ρm
P ) define holomorphic functions on the

P -ball P. Furthermore, let

(3.3) k : P × P → C, k(z, w) =
1

(1− P (zw))m
.

For each z ∈ P, the function kz = k(z, ·) is a holomorphic function on P and by
identification with its Taylor series expansion at 0 an element of H2(ρm

P ) such that

〈f, kz〉 = f(z), f ∈ H2(ρm
P ).

We have ‖kz‖ =
(
1/(1− P (|z|2))m

)1/2 for z ∈ P.
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Proof. For f =
∑

α∈Nn
0

cαwα ∈ H2(ρm
P ) and z ∈ P, we have

(3.4)

∑
α∈Nn

0

|cαzα| 6
( ∑

α∈Nn
0

|cα|2
1

ρm
P (α)

)1/2( ∑
α∈Nn

0

ρm
P (α)|zα|2

)1/2

=
1

(1− P (|z|2))m/2
‖f‖.

Thus f converges uniformly on compact subsets of P and defines a holomorphic
function on P (see [9], Corollaries 1.16 and 1.17), which we again call f . Further-
more, one obtains for z ∈ P

(3.5)

‖kz‖2 =
∥∥∥ ∑

α∈Nn
0

ρm
P (α)zαwα

∥∥∥2

=
∑

α∈Nn
0

|zα|2ρm
P (α)

=
1

(1− P (|z|2))m
< ∞

and 〈f, kz〉 =
∑

α∈Nn
0

cαzα = f(z).

We define multiplication operators Mzi
, i = 1, . . . , n, on H2(ρm

P ) by
Mzi

∑
α∈Nn

0

cαzα =
∑

α∈Nn
0

cαzα+ei .

For the study of the multiplication operators and the construction of the
model, we need more information about the (P,m)-weights (ρm

P (α)). Thus we
give a more explicit form and a recursion formula for the weights.

Let us first introduce some notation. For a given positive regular polynomial
P , let IP = {γ ∈ Nn

0 | aγ > 0} and mult(P ) = |IP | be the number of nontrivial
coefficients in P . We form the vector of the coefficients of P , A = (aγ)γ∈IP

∈ CIP .
Furthermore, let for K = (kγ)γ∈IP

, L = (lγ)γ∈IP
∈ CIP

AK :=
∏

γ∈IP

akγ
γ , |K| :=

∑
γ∈IP

kγ ,(3.6)

(
|K|
K

)
:=

|K|!∏
γ∈IP

kγ !
,

(
L

K

)
:=

∏
γ∈IP

(
lγ
kγ

)
(3.7)

and

(3.8) [K] := ([K]1, . . . , [K]n), where [K]i :=
∑

γ∈IP

γikγ for i ∈ {1, . . . , n}.

Write K 6 L if kγ 6 lγ for all γ ∈ IP . We need some combinatorial results:
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Lemma 3.3. For L ∈ NIP
0 and m ∈ N,

(3.9)
(
|L|
L

)(
|L|+ m

m

)
=

∑
K∈NIP

0
K6L

(
|L−K|
L−K

)(
|K|
K

)(
|K|+ m− 1

m− 1

)
.

Proof. We obtain the identity

(3.10)
∑

K6L
|K|=r

(
L

K

)
=
(
|L|
r

)
for r = 0, . . . , |L|

by induction over the number of nontrivial coefficients |IP | of P and the well-known
fact

(3.11)
r∑

q=0

(
|L| − l

q

)(
l

r − q

)
=
(
|L|
r

)
for 0 6 l 6 |L|.

Now, we have

(3.12)

∑
K∈NIP

0
K6L

(
|L−K|
L−K

)(
|K|
K

)(
|K|+ m− 1

m− 1

)

=
|L|∑
r=0

[ ∑
K6L
|K|=r

(
|L| − r

L−K

)(
r

K

)(
r + m− 1

m− 1

)]

=
(
|L|
L

) |L|∑
r=0

[
(|L| − r)! r!

|L|!

(
r + m− 1

m− 1

) ∑
K6L
|K|=r

(
L

K

)]

=
(
|L|
L

) |L|∑
r=0

(
r + m− 1

m− 1

)
.

It remains to show that
|L|∑
r=0

(
r+m−1

m−1

)
=
(|L|+m

m

)
for m ∈ N, which is an easy

induction.

Furthermore, Equation (3.10) yields the identity

(3.13)
∑

K6L
|K|=r

(
r

K

)(
|L| − |K|
L−K

)
=

r!(|L| − r)!
|L|!

(
|L|
L

) ∑
K6L
|K|=r

(
L

K

)
=
(
|L|
L

)

for 0 6 r 6 |L|. Now we can characterize the (P,m)-weights more explicitly.
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Lemma 3.4. Let P be a positive regular polynomial and m ∈ N. Then

(3.14) ρm
P (α) =

∑
K∈NIP

0
[K]=α

AK

(
|K|+ m− 1

|K|

)(
|K|
K

)
for α ∈ Nn

0 .

Proof. For m = 1 and |P (x)| < 1, we have

(3.15)

1
1− P (x)

=
∞∑

j=0

P (x)j =
∞∑

j=0

[ ∑
K∈NIP

0
|K|=j

(
|K|
K

) ∏
γ∈IP

akγ
γ (xγ)kγ

]

=
∞∑

j=0

[ ∑
K∈NIP

0
|K|=j

AK

(
|K|
K

)
x[K]

]
=
∑

α∈Nn
0

xα
∑

K∈NIP
0

[K]=α

AK

(
|K|
K

)
.

So, by uniqueness of the coefficients, (3.14) holds for m = 1. Now let (3.14) be valid
for an arbitrary m ∈ N. Then we obtain again by uniqueness and by Lemma 3.3
the identity for m + 1 :

(3.16)

1
(1− P (x))m+1

=
( ∑

α∈Nn
0

ρm
P (α)xα

)( ∑
α∈Nn

0

ρ1
P (α)xα

)

=
( ∑

K∈NIP
0

(
|K|
K

)(
|K|+ m− 1

m− 1

)
AKx[K]

)( ∑
J∈NIP

0

(
|J |
J

)
AJx[J]

)

=
∑

L∈NIP
0

[
ALx[L]

∑
K∈NIP

0
K6L

(
|L−K|
L−K

)(
|K|+ m− 1

m− 1

)(
|K|
K

)]

=
∑

α∈Nn
0

xα

[ ∑
L∈NIP

0
[L]=α

AL

(
|L|
L

)(
|L|+ m

m

)]
.

Let from now on ρm
P (α) = 0 for α ∈ Zn \ Nn

0 . Then we obtain the following
recursion formulae for the (P,m)-weights:

Remark 3.5. Let P =
∑

γ∈Nn
0

aγxγ be a positive regular polynomial and let

Q = 1− (1− P )m =
∑

γ∈Nn
0

bγxγ . Then

(3.17) ρm
P (α) =

∑
γ∈Nn

0

bγρm
P (α− γ), α ∈ Nn

0
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and for m > 1,

(3.18) ρm
P (α) = ρm−1

P (α) +
∑

γ∈Nn
0

aγρm
P (α− γ).

Proof. For α ∈ Nn
0 ,

∑
γ∈Nn

0

bγρm
P (α − γ) is the coefficient at index α of the

product power series
( ∑

α∈Nn
0

ρm
P (α)xα

)( ∑
γ∈Nn

0

bγxγ
)
. We obtain Equation (3.17)

by comparison of coefficients, since for |P (x)| < 1 we have

(3.19)

∑
α∈Nn

0

xα
∑

γ∈Nn
0

bγρm
P (α− γ) =(1− P (x))−m(1− (1− P (x))m)

=
∑

α∈Nn
0

ρm
P (α)xα − 1.

Similarly,
∑

γ∈Nn
0

aγρm
P (α − γ) is the α-coefficient of the product power series( ∑

α∈Nn
0

ρm
P (α)xα

)( ∑
γ∈Nn

0

aγxγ
)
, and we obtain for |P (x)| < 1, m > 1

(3.20)

∑
α∈Nn

0

xα
(
ρm

P (α)−
∑

γ∈Nn
0

aγρm
P (α− γ)

)
− 1

= (1− P (x))−m − (1− P (x))−mP (x)− 1

= (1− P (x))−m+1 − 1 =
∑

α∈Nn
0

ρm−1
P (α)xα − 1

implying (3.18).

Now we can prove that the multiplication operators are well-defined bounded
operators on H2(ρm

P ).

Lemma 3.6. Mz1 , . . . ,Mzn ∈ L(H2(ρm
P )).

Proof. Let ei be the ith unit vector in Cn, i = 1, . . . , n. It is sufficient to
show that for some constant c > 0, ρm

P (α + ei) > cρm
P (α) for all α ∈ Nn

0 . But by
Remark 3.5,

(3.21) ρm
P (α + ei) >

∑
γ∈Nn

0

aγρm
P (α + ei − γ) > aei

ρm
P (α)

for α ∈ Nn
0 , which proves the lemma.
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The multiplication operators are obviously commuting.

For the separable Hilbert space H, we can consider the Hilbert space tensor

product H⊗H2(ρm
P ) =: H2

H(ρm
P ). This space can obviously be identified with the

space of formal power series with coefficients in H,
∑

α∈Nn
0

hαzα with hα ∈ H for

α ∈ Nn
0 , such that

∑
α∈Nn

0

‖hα‖2(1/ρm
P (α)) < ∞. The inner product on H2

H(ρm
P ) is

then given by

〈 ∑
α∈Nn

0

hαzα ,
∑

α′∈Nn
0

h′α′z
α′
〉

=
∑

α∈Nn
0

〈hα, h′α〉
1

ρm
P (α)

.

We can view H2
H(ρm

P ) as a space of H-valued holomorphic functions on P. From

now on, we will denote the multiplication operators with the coordinates on

H2
H(ρm

P ) as well as the ones on H2(ρm
P ) by Mz1 , . . . ,Mzn . By Lemma 3.6, these

operators are also well-defined and bounded on H2
H(ρm

P ).

As in the case of spherical contractions, the spectrum of a (P, 1)-positive

multioperator is contained in the closure of the P -ball:

Lemma 3.7. Let P be a positive regular polynomial and T a (P, 1)-positive

commuting multioperator. Then the Taylor spectrum σ(T ) of T is contained in the

closure P of the P -ball.

Proof. This lemma is a special case of a more general result ([11], Theorem

1.12). We give a more elementary proof for our situation.

Let λ ∈ Cn \ P. We will show that λ is not contained in the joint spec-

trum of T relative to the closed commutative subalgebra A of L(H) generated by

T1, . . . , Tn, i.e. we will show that the ideal I generated by λ11H−T1, . . . , λn1H−Tn

in A is equal to A. Since the Taylor spectrum σ(T ) of T is contained in the joint

spectrum of T relative to any closed commutative subalgebra of L(H) containing

T , this means that λ is not in σ(T ).

Let Qλ(z) = (1/P (|λ|2))P (λz). Then Qλ(λ) = 1, and for h ∈ H, ‖h‖ 6 1,

(3.22)

‖Qλ(T )h‖ =
1

P (|λ|2)
‖P (λT )h‖

6
1

P (|λ|2)

( ∑
γ∈IP

aγ |λγ |2
)1/2( ∑

γ∈IP

aγ‖T γh‖2
)1/2

=
1

P (|λ|2)1/2
〈P (CT )(1H)h, h〉1/2 6

1
P (|λ|2)1/2

< 1
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by definition of P. Thus ‖Qλ(T )‖ < 1, and 1H−Qλ(T ) is invertible in A. On the
other hand, one easily verifies that

(3.23) 1H −Qλ(T ) = Qλ(λ)−Qλ(T ) =
1

P (|λ|2)
∑

γ∈IP

aγλ
γ
(λγ1H − T γ) ∈ I,

which finishes the proof.

We are now in the situation to state our model theorem:

Theorem 3.8. Let P be a positive regular polynomial in n variables , T =
(T1, . . . , Tn) a commuting multioperator on the separable Hilbert space H and m ∈
N. Then the following are equivalent:

(i) T is (P,m)-positive;
(ii) there exist a Hilbert space N , a P -unitary operator N = (N1, . . . , Nn) ∈

L(N )n and an isometry V = V1 ⊕ V2 : H → H2
H(ρm

P ) ⊕ N such that V T =
(M∗

z ⊕N)V .

Proof. First we prove (i) ⇒ (ii).

Claim 1. Let T be (P, 1)-positive for the positive operator X ∈ L(H).
Then the sequence (P (CT )k(X))k∈N converges to some positive operator P̃X in
the strong operator topology (SOT) on L(H).

Proof. Since P is positive regular, (P (CT )k(X))k∈N is a sequence of positive
operators and thus bounded below by 0. Moreover, the sequence is decreasing
because of

P (CT )k(X)− P (CT )k+1(X) = P (CT )k(1− P (CT ))(X) > 0

and consequently converging to some positive operator P̃X in the SOT-topology.

Now define for X ∈ L(H), X > 0, and T (P,m)-positive for X the map

V X
1 : H → H2

H(ρm
P ), h 7→

∑
α∈Nn

0

ρm
P (α) ((1− P (CT ))m(X))1/2

Tαhzα.

As one proves by induction completely analogously to [6], Lemmas 4 and 5 (see
also [11], 2.1 and 2.8), we have

(3.24)

k∑
j=0

(
j + m− 1

m− 1

)
P (CT )j(1− P (CT ))m

= 1−
m−1∑
j=0

(
k + j

j

)
P (CT )k+1(1− P (CT ))j , k ∈ N
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and

(3.25) lim
k→∞

(
k + j

j

)
〈P (CT )k+1(1− P (CT ))j(X)h, h〉 = 0, h ∈ H,

for j = 1, . . . ,m− 1. We obtain

(3.26) ‖V X
1 h‖2 = ‖h‖2 − lim

k→∞
〈P (CT )k(X)h, h〉 = ‖h‖2 − 〈P̃Xh, h〉, h ∈ H

by

(3.27)

‖V X
1 h‖2 =

∑
α∈Nn

0

ρm
P (α) 〈(1− P (CT ))m(X)Tαh, Tαh〉

=
∑

α∈Nn
0

[ ∑
K∈NIP

0
[K]=α

(
|K|+ m− 1

m− 1

)(
|K|
K

)
AK〈Cα

T (1− P (CT ))m(X)h, h〉

]

=
∞∑

j=0

[ ∑
K∈NIP

0
|K|=j

(
j + m− 1

m− 1

)(
j

K

)
AK
〈
C

[K]
T (1− P (CT ))m(X)h, h

〉]

=
∞∑

j=0

(
j + m− 1

m− 1

)
〈P (CT )j(1− P (CT ))m(X)h, h〉

= ‖h‖2 − lim
k→∞

m−1∑
j=0

(
k + j

j

)
〈P (CT )k+1(1− P (CT ))j(X)h, h〉

= ‖h‖2 − lim
k→∞

〈P (CT )k(X)h, h〉,

according to (3.24) and (3.25), with the limits existing because of Claim 1. For T

(P,m)-positive and V1 = V 1H
1 , one gets

(3.28)

V1 Ti h =
∑

α∈Nn
0

ρm
P (α)((1− P (CT )m(1H))1/2Tα+eih zα

=
∑

α∈Nn
0

ρm
P (α)

ρm
P (α + ei)

ρm
P (α + ei)((1− P (CT ))m(1H))1/2Tα+eih zα

= M∗
zi

( ∑
α∈Nn

0

ρm
P (α + ei)((1− P (CT ))m(1H))1/2Tα+eih zα+ei

)
= M∗

zi
V1 h.

So we have constructed the first part of our model. In a second step we construct
the P -unitary part, using the fact that P̃ = P̃1H is invariant under P (CT ). In the
following, we write s - lim for the limits in the strong operator topology on L(H).
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Lemma 3.9. Let T be a (P, 1)-positive commuting multioperator on H and
P̃ = P̃1H = s - lim

k→∞
P (CT )k(1H). Then there exist a Hilbert space N , a P -unitary

multioperator N ∈ L(N )n and a contractive linear mapping V2 : H → N such that
‖V2h‖2 = 〈P̃ h, h〉 for h ∈ H and V2T = NV2.

Proof. Let K = P̃ 1/2H and V2 : H → K, h 7→ P̃ 1/2h. For i = 1, . . . , n, the
linear map Wi : P̃ 1/2H → K,

(3.29) WiV2h = V2Tih for h ∈ H,

is well-defined and bounded, since

(3.30) ‖WiV2h‖2 = 〈T ∗i P̃ Tih, h〉 6 a−1
ei
〈P (CT )(P̃ )h, h〉 = a−1

ei
‖V2h‖2, h ∈ H.

So we can extend Wi to a bounded linear map K → K, which we also call
Wi. By (3.29) and continuity, we have WV2 = V2T for W = (W1, . . . ,Wn) and
consequently

(3.31) V ∗
2 (P (CW )(1K))V2 = P (CT )(V ∗

2 V2) = P (CT )(P̃ ) = V ∗
2 V2

because of the SOT-continuity of P (CT ).

Now P (CW )(1K) = 1K, since V2H is dense in K. Thus W is a P -isometry.
To replace W by a P -unitary tuple, we need the following lemma:

Lemma 3.10. Every P -isometry is subnormal, and its minimal normal ex-
tension is a P -unitary.

Proof. Let W ∈ L(W)n be a P -isometry. Then the tuple (a1/2
γ W γ)γ∈IP

is
a spherical isometry and consequently by [1], Proposition 2, a subnormal tuple.
Since ae1 , . . . , aen

are all not 0, in particular the tuple W = (W1, . . . ,Wn) is
subnormal. Let N = (N1, . . . , Nn) be its minimal normal extension on the Hilbert
space N ⊇ K. Then (a1/2

γ Nγ)γ∈IP
is the minimal normal extension of the tuple

(a1/2
γ W γ)γ∈IP

and by [1] also a spherical isometry, which implies that N is a
P -unitary.

Now let for a (P,m)-positive multioperator T on H

(3.32) V = V1 ⊕ V2 : H → H2
H(ρm

P )⊕N .
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The mapping V is an isometry, and V T = (M∗
z ⊕ N)V . Note that only the first

part of the model depends on m.

For the proof of the reverse direction, we have only to show that M∗
z ∈

L(H2(ρm
P ))n is (P,m)-positive for arbitrary m. Then the (P,m)-positivity of M∗

z

on H2
H(ρm

P ) follows, and we obtain the (P,m)-positivity of T by the fact that any
P -unitary is (P,m)-positive for every m and that (P,m)-positivity is preserved
under the direct sum M∗

z ⊕N , the restriction to the invariant subspace VH and
the unitary transformation H → VH.

Lemma 3.11. For every m ∈ N, the commuting multioperator M∗
z ∈

L(H2(ρm
P ))n is (P,m)-positive. Moreover, (1 − P (CM∗

z
))m(1) is the orthogonal

projection onto the subspace of constants in H2(ρm
P ).

Proof. For α, β ∈ Nn
0 , we have

(3.33) Mβ
z M∗

z
βzα =

{
ρm

P (α−β)
ρm

P
(α) zα if β 6 α,

0 otherwise.

So obviously (1 − P (CM∗
z
))m(1)zα = zα for α = 0. Let as before ρm

P (α) = 0
for α ∈ Zn \ Nn

0 . Since the spaces C · zα are invariant under Mβ
z M∗

z
β , thus also

invariant under (1− P (CM∗
z
))(1) and (1− P (CM∗

z
))m(1), it remains to show that

〈(1− P (CM∗
z
))(1)zα, zα〉 > 0, α > 0(3.34)

〈(1− P (CM∗
z
))m(1)zα, zα〉 = 0, α > 0, α 6= 0.(3.35)

By Equation (3.33), we have

(3.36) 〈(1− P (CM∗
z
))(1)zα, zα〉 =

1
ρm

P (α)2

(
ρm

P (α)−
∑

γ∈IP

aγρm
P (α− γ)

)

and

(3.37) 〈(1− P (CM∗
z
))m(1)zα, zα〉 =

1
ρm

P (α)2

(
ρm

P (α)−
∑

γ∈Nn
0

bγρm
P (α− γ)

)
,

where
∑

γ∈Nn
0

bγxγ is the polynomial 1− (1−P )m. The rest of the proof now results

from Remark 3.5.

This finishes the proof of Theorem 3.8.
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Via the isometric isomorphism

(3.38) H2
H(ρm

P ) → l2(Nn
0 ,H),

∑
α∈Nn

0

hαzα 7→
( 1

ρm
P (α)1/2

hα

)
α∈Nn

0

,

the multioperator M∗
z may be looked upon as a weighted multi-backward shift. So

V1H ⊆ H2
H(ρm

P ) may be regarded as the shift part of our model, and V2H ⊆ N is
the P -unitary part.

In case m = n = 1 and P = x, the (P,m)-positive operators are just the con-
tractions, and our model is the well-known coisometric extension for contractions.

If P is the polynomial
n∑

i=1

xi, the P -ball P = {z ∈ Cn | P (|z|2) < 1} is just

the unit ball Bn of Cn, and the P -unitaries are just the spherical unitaries. For
this case, Theorem 3.8 was proved by V. Müller and F.-H. Vasilescu in [6]. The
positivity conditions ∆(m)

P > 0, 1 6 m 6 n, were examined earlier by A. Athavale,
who showed in [1], Remark 1 to Proposition 4, that the tuple T then has a spherical
dilation.

The standard model of Müller and Vasilescu reproduces this result: as one
easily verifies, for the above P the space H2(ρm

P ) is just the Hardy space

H2(Bn) =
{

f : Bn → C holomorphic
∣∣∣ ‖f‖2 := sup

0<r<1

∫
∂Bn

|f(rz)|2 dσ < ∞
}

,

where σ is the normalized surface measure on ∂Bn, since∫
∂Bn

|zα|2 dσ = (n− 1)!α!/(n− 1− |α|)!

for α ∈ Nn
0 (see e.g. [10], Proposition 1.4.9). The adjoint of the multiplication

tuple here of course has a spherical dilation, for example the multioperator Mz ∈
L(L2(∂Bn, σ))n via the isometric inclusion H2(Bn) ↪→ L2(∂Bn, σ). Thus M∗

z ⊕N ,
where N is a spherical unitary, has a spherical dilation, and T , being unitarily
equivalent to the restriction of M∗

z ⊕N to an invariant subspace, has a spherical
dilation, too.

The existence of a spherical dilation implies a von Neumann-type inequality
over Bn and consequently the existence of a contractive A(Bn)-functional calculus
for T , where A(Bn) =

{
f : Bn → C continuous

∣∣ f |Bn holomorphic
}
.

But since the multioperator M∗
z ∈ L(H2

H(ρm
P ))n = L(H2

H(Bn))n has an ob-
vious H∞(Bn)-functional calculus defined by

(3.39) f(M∗
z ) = (Mf̌ )∗, f ∈ H∞(Bn)
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with
∨

f(z) = f(z), every (P, n)-positive operator for which the model given by
Theorem 3.8 consists only of the first part has even an H∞(Bn)-functional calculus.
So, according to Lemma 3.9 in the proof of Theorem 3.8, every (P, n)-positive
multioperator T with s - lim

k→∞
P (CT )k(1H) = 0 has a H∞(Bn)-functional calculus.

This result is contained in [6] and may also be obtained by means of an operator-
valued Poisson integral formula ([14]).

So for general positive regular polynomials P , a natural question to ask is
whether H2(ρm

P ) may be identified for suitable m with a well-known Hilbert space
of holomorphic functions on the P -ball P and thus one can obtain a rich functional
calculus for M∗

z ∈ L(H2(ρm
P ))n (and consequently for (P,m)-positive T ) by this

identification.
In the next section, we will show that such an identification is possible by

passing to an equivalent norm.

4. THE FUNCTIONAL MODEL

Theorem 4.1. Let P be a positive regular polynomial and m = mult(P ) > n.
Furthermore, let µ be the normalization of the positive measure
(1−P (|z|2))m−n−1 dλ on P, where dλ denotes Lebesgue measure. Then the space
H2(ρm

P ) and the Bergman space

B2(P, µ) =
{

f : P → C holomorphic
∣∣ ∫
P

|f(z)|2 dµ < ∞
}

coincide as sets of functions on P, and the identifying map id : B2(P, µ) →
H2(ρm

P ) is a topological isomorphism.

Proof. Let us first introduce some notations. With P =
∑

γ∈Nn
0

aγxγ , IP =

{γ ∈ Nn
0 | aγ > 0} and |IP | = mult(P ) = m, identify Cm with CIP and denote

the elements of Cm by w = (wγ)γ∈IP
. Let τ : Cm → Cn, w = (wγ)γ∈IP

7→
(we1 , . . . , wen

), and κ : Cm → Cn, w = (wγ)γ∈IP
7→ (a−1/2

e1 we1 , . . . , a
−1/2
en wen

).
Now define the holomorphic map

(4.1) ϕ : Cm → Cm, ϕ(w)γ =

{
a
1/2
γ wγ if γ ∈ e1, . . . , en,

wγ + a
1/2
γ τ(w)γ otherwise.

The map ϕ is biholomorphic, since

(4.2) ϕ−1 : Cm → Cm, ϕ−1(w)γ =

{
a
−1/2
γ wγ if γ ∈ e1, . . . , en,

wγ − a
1/2
γ κ(w)γ otherwise;
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is obviously a holomorphic inverse map. Let D = ϕ−1(Bm). Then D is strictly

pseudoconvex, since Bm is strictly pseudoconvex (see e.g. [9], II.2.7), and we have

(4.3)

D ∩ (Cn × {0} × · · · × {0})

=
{

w ∈ Cm
∣∣∣wγ = 0 for γ /∈ {e1, . . . , en},

∑
γ∈IP

aγ |τ(w)γ |2 < 1
}

=P × {0} × · · · × {0}.

Moreover, M = ϕ(P) is a complex submanifold of Bm such that M = {w ∈ Bm |
wγ = a

1/2
γ κ(w)γ}.

Let Q be the polynomial in m variables that corresponds to the unit ball,

Q ∈ C[(Xγ)γ∈IP
], Q =

∑
γ∈IP

xγ .

We will now construct the identifying map B2(P, µ) → H2(ρm
P ) in several

steps.

Step 1. The restriction. As in (3.8), let [ · ] : Nm
0 = NIP

0 → Nn
0 , [β]i =∑

γ∈IP

γiβγ .

Lemma 4.2. With A = (aγ)γ∈IP
and the notation in (3.6), the map

(4.4) π : H2(Bm) → H2(ρm
P ),

∑
β∈Nm

0

cβwβ 7→
∑

β∈Nm
0

cβAβ/2z[β]

is well-defined, surjective, linear and has norm 1.

Proof. First notice that the (P,m)-weights may be expressed in terms of

(Q,m)-weights: For α ∈ Nn
0 , we have

(4.5) ρm
P (α) =

∑
β∈Nm

0
[β]=α

Aβ

(
|β|+ m− 1

m− 1

)(
|β|
β

)
=
∑

β∈Nm
0

[β]=α

Aβρm
Q (β).

As one shows easily by induction over r, for any a1, . . . , ar, b1, . . . , br ∈ R with

a1, . . . , ar > 0 and b1, . . . , br > 0 one has

(4.6)

( r∑
i=1

ai

)2

r∑
i=1

bi

6
r∑

i=1

a2
i

bi
.
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Consequently we obtain for arbitrary f =
∑

β∈Nm
0

cβwβ ∈ H2(Bm), α ∈ Nn
0

(4.7)

∣∣∣∣ ∑
β∈Nm

0
[β]=α

Aβ/2cβ

∣∣∣∣2
ρm

P (α)
6

( ∑
β∈Nm

0
[β]=α

Aβ/2|cβ |
)2

∑
β∈Nm

0
[β]=α

Aβρm
Q (β)

6
∑

β∈Nm
0

[β]=α

|cβ |2

ρm
Q (β)

and

(4.8) ‖π(f)‖2 =
∑

α∈Nn
0

1
ρm

P (α)

∣∣∣∣ ∑
β∈Nm

0
[β]=α

Aβ/2cβ

∣∣∣∣2 6 ‖f‖2.

To show the surjectivity of π, consider the map ι : H2(ρm
P ) → H2(Bm), g =∑

α∈Nn
0

cαzα 7→
∑

α∈Nn
0

cα

∑
β∈Nm

0
[β]=α

Aβ/2(ρm
Q (β)/ρm

P (α))wβ . Then ι is well-defined and iso-

metric, since ι(g) ∈ H2(Bm) with ‖ι(g)‖2 =
∑

α∈Nn
0

|cα|2
∑

β∈Nm
0

[β]=α

Aβ(ρm
Q (β)/ρm

P (α)2) =

‖g‖2 by Equation (4.5), and π ◦ ι = 1.

Thus the map π can be regarded as the orthogonal projection from H2(Bm)
onto the closed subspace H2(ρm

P ). This close relationship between H2(ρm
P ) and

H2(Bm) and the definitions of ϕ and π become clearer by considering the following
idea:

Let T = (T1, . . . , Tn) be a (P,m)-positive multioperator on H and let V1 :
H → H2

H(ρm
P ) be the map constructed in Theorem 3.8. Let W be the commuting

m-tuple (Wγ)γ∈IP
, Wγ = a

1/2
γ T γ . Then

(4.9) (1− P )(CT ) = (1−Q)(CW )

and thus W is (Q,m)-positive. Again by Theorem 3.8, now applied to the m-tuple
W , we obtain the map Ṽ1 : H → H2

H(Bm) as first part of the model for the tuple
W . Therefore

(4.10)

(1H⊗π) ◦ Ṽ1(h)=(1H⊗π)
( ∑

β∈Nm
0

ρm
Q (β)((1−Q)m(CW )(1H))1/2W βhwβ

)
=
∑

α∈Nn
0

∑
β∈Nm

0
[β]=α

ρm
Q (β)Aβ((1− P )m(CT )(1H))1/2 T [β]hzα

=
∑

α∈Nn
0

ρm
P (α)((1− P )m(CT )(1H))1/2 Tαhzα = V1(h)
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for h ∈ H, and we have

(4.11) (1H ⊗ π) ◦ Ṽ1 = V1.

In particular, the map 1H ◦ π is isometric on Ṽ1H, since

(4.12) ‖V1h‖2 = lim
k→∞

〈P (CT )k(1H)h, h〉 = lim
k→∞

〈Q(CW )k(1H)h, h〉 = ‖Ṽ1h‖2.

The submanifold M =
{
w ∈ Bm

∣∣wγ = a
1/2
γ κ(w)γ

}
corresponds to the identities

Wγ = a
1/2
γ T γ . The map π may be regarded as the restriction of functions in

H2(Bm) to the submanifold M, up to the biholomorphic map ϕ. For z ∈ P and
f =

∑
β∈Nm

0

cβwβ ∈ H2(Bm), we have

(4.13)

f ◦ ϕ(z) =
∑

β∈Nm
0

cβ(ϕ(z))β =
∑

β∈Nm
0

cβ

∏
γ∈IP

aβγ/2
γ (zγ)βγ

=
∑

β∈Nm
0

cβAβ/2z[β] = π(f)(z).

Altogether, we have the following commutative diagram.

(4.14)

Ṽ1H ↪→ H2
H(Bm)

Ṽ1 ↗
yo 1⊗ ι

xy1H ⊗ π = · ◦ ϕ|P

H V1−→ V1H ↪→ H2
H(ρm

P ).

Step 2. The transformation. Recall that the Hardy space Hp(Ω), 1 <

p < ∞, over a bounded strictly pseudoconvex set Ω ⊆ Cn with C2-boundary can
be obtained in the following way (see e.g. [5], Section 8.3):

Let % : U → R be a strictly plurisubharmonic defining C2-function for Ω,
defined on some region U ⊃ Ω. That means,

(4.15) Ω = {z ∈ U | %(z) < 0}.

Now for ε > 0 let Ωε = {z ∈ U | %(z) < ε}. For sufficiently small ε0, ∂Ωε is a real
C2-manifold for each ε with 0 < ε < ε0. Let σε be the surface measure on ∂Ωε

and define

(4.16) Hp(Ω)=

{
f :Ω→C holomorphic

∣∣∣ ‖f‖p =

(
sup

ε0>ε>0

∫
∂Ωε

|f(z)|p dσε

)1/p

<∞

}
.
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Then Hp(Ω, ‖ · ‖p) is a Banach space. The space Hp(Ω) is independent of the
choice of the defining function % in the sense that any two plurisubharmonic defin-
ing C2-functions for Ω induce equivalent norms on Hp(Ω). Furthermore, by pass-
ing to nontangential boundary values Hp(Ω) may be embedded topologically into
Lp(∂Ω, σ), where σ is the surface measure on ∂Ω.

Our aim is to show that the biholomorphic map ϕ : D → Bm induces a
topological isomorphism

(4.17) Uϕ : H2(Bm) → H2(D), f 7→ f ◦ ϕ.

This can be done by using the transformation formula and looking at the Jacobi-
matrix for ϕ on ∂D, but an alternative characterization of Hp(Ω) and an equivalent
norm to ‖ · ‖p give a much shorter and less technical proof. We have

(4.18) Hp(Ω) =
{
f : Ω → C holomorphic

∣∣ |f |p has a harmonic majorant on Ω
}
,

and if Ω is connected, for any z ∈ Ω

(4.19) ‖f‖p,z =
(
inf{g(z) | g : Ω → R harmonic, g > |f |p}

)1/p

defines an equivalent norm to ‖ · ‖p on Hp(Ω) (see e.g. [15], Section 2.2).
Since composition with the biholomorphic map ϕ maps the class of real-

valued harmonic functions on Bm bijectively onto the class of real-valued harmonic
functions on D, for any fixed z0 ∈ D and any f ∈ H2(Bm) we have

(4.20)

‖f ◦ ϕ‖22,z0
= inf{g(z0) | g : D → R harmonic, g > |f ◦ ϕ|2}
= inf{g(ϕ(z0)) | g : Bm → R harmonic, g > |f |2}
= ‖f‖22,ϕ(z0)

,

and Uϕ in (4.17) is thus a topological isomorphism with inverse Uϕ−1 .

Step 3. The extension. Now we come to the main step of our construction
of the identification B2(P, µ) → H2(ρm

P ), using a theorem of A. Cumenge.
We will show that for a measure µ̃ equivalent to µ, there is a bounded

linear extension operator E : B2(P, µ̃) → H2(D) and that the restriction R :
H2(D) → B2(P, µ̃) is well-defined, bounded and surjective. To apply the theorem
of Cumenge, we first have to show that P may be extended to a complex manifold
transverse to ∂D, i.e. that there is a complex submanifold P̃ of Cm intersecting
∂D transversally such that P = D ∩ P̃.
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Let P̃ = Cn × {0} × · · · × {0}. Then P = D ∩ P̃ by (4.3). The function
r : Cm → R, r(z) =

∑
γ∈IP

|zγ |2 − 1, is a strictly plurisubharmonic defining C∞-

function for Bm. Thus % = ϕ◦r is a strictly plurisubharmonic defining C∞-function
for D.

To prove that P̃ intersects ∂D transversally, we have to show that

(4.21) d%(z) ∧

( ∧
γ∈IP \{e1,...,en}

dzγ

)
6= 0 for all z ∈ P̃ ∩ ∂D

(see e.g. [9], p. 118). So it suffices to prove that for every z ∈ P̃ ∩ ∂D, there is an
i ∈ {1, . . . , n} such that ∂%/∂zei(z) 6= 0. On P̃, identify z with z̃ = τ(z) ∈ Cn to
obtain %(z) =

∑
γ∈IP

aγ |zγ |2. Now let z ∈ P̃ ∩ ∂D. Since 0 /∈ ∂D, there is an i with

τ(z)i 6= 0, and we obtain

(4.22)

∂%

∂zei

(z) =
∂%

∂z̃i
(z̃) = ae1τ(z)i +

∑
γ∈IP \{e1,...,en}

γi 6=0

γiaγτ(z)γτ(z)γ−ei

= τ(z)i

(
aei

+
∑

γ∈IP \{e1,...,en}
γi 6=0

γiaγ |τ(z)γ−ei |2
)
6= 0,

since the second factor is strictly positive.
Now P is a complex submanifold of codimension m − n of the smoothly

bounded strictly pseudoconvex set D. Thus we are in the situation of Theorem 0.1
in [2]: let µ̃ be the measure dist(z, ∂D)dλ on P. Then f |P ∈ B2(P, µ̃) for every
f ∈ H2(∂D), and there exists a bounded linear extension operator E : B2(P, µ̃) →
H2(D), Eg|P = g for g ∈ B2(P, µ̃).

Moreover, the restriction operator R : H2(D) → B2(P, µ̃) is bounded since
µ̃ is a Carleson measure on D by Hörmander’s formulation of Carleson’s Theorem
and by Lemme II.1.1 in [2] (see [2], Section II.1, and [4], Theorem 4.3). It is
surjective since R ◦ E = 1B2(P,µ̃). The map π ◦ Uϕ−1 ◦ E : B2(P, µ̃) → H2(ρm

P )
now maps each function g ∈ B2(P, µ̃) onto itself. It is bounded by construction and
has the bounded inverse R◦Uϕ ◦ ι. Altogether, we have the following commutative
diagram:

H2(D)
Uϕ−1
−→ H2(B)m

E
xyR

xy
B2(P, µ̃) ∼−→

id
H2(ρm

P )
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It remains to compare µ and µ̃.

Step 4. The equivalence of the measures. It suffices to show that
there are constants c1, c2 > 0 such that

(4.23) c1dist(z, ∂D) 6 1− P (|z1|2, . . . , |zn|2) 6 c2dist(z, ∂D), z ∈ ∂P.

Then B2(P, µ) and B2(P, µ̃) coincide as sets and carry equivalent norms.
The second inequality just follows by the Lipschitz continuity of the map

z 7→ P (|z1|2, . . . , |zn|2) on the compact set P. For the first inequality, choose for
z ∈ P some w ∈ ∂P such that z = λw for a suitable λ ∈ [0, 1). Then

(4.24)

1− P (|z1|2, . . . , |zn|2) =
∑

γ∈IP

aγ(|wγ |2 − |zγ |2)

> (1− λ2)
n∑

i=1

aei |wi|2 > c(1− λ)‖w‖2

> c1(1− λ)‖w‖ = c1‖w − z‖ > c1dist(z, ∂P)

for suitable constants c, c1 > 0, since ∂P is bounded away from 0. Thus we obtain
(4.23), which finishes the proof of the theorem.

5. DILATIONS

The identifying map B2(P, µ) → H2(ρm
P ) obviously intertwines the multiplication

operators with the coordinate functions on B2(P, µ) and H2(ρm
P ). So its adjoint

intertwines the adjoints of the multiplication operators, and we obtain the following
easy consequence of Theorem 3.8 and Theorem 4.1. Let as before P be a positive
regular polynomial with m = mult(P ) > n, µ the normalization of the measure
(1−P (|z1|2, . . . , |zn|2))m−n−1 dλ on P and let M = (M1, . . . ,Mn) be the tuple of
multiplication operators with the coordinate functions on B2

H(P, µ).

Corollaty 5.1. The following are equivalent:
(i) T is topologically equivalent to a (P,m)-positive multioperator;
(ii) T is topologically equivalent to the restriction of M∗⊕N ∈ L(B2

H(P, µ)⊕
N )n to an invariant subspace, where N is a P -unitary operator on some separable
Hilbert space N .

Moreover, the functional model for a (P,m)-positive multioperator T implies
— up to topological equivalence — the existence of a P -unitary dilation for T .
Unlike the situation of the unit ball, we cannot obtain a P -unitary dilation directly.
We have to check the complete boundedness of the map q 7→ q(T ) on the algebra
of polynomials, equipped with the supremum norm on P.
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Theorem 5.2. Let T be a (P,m)-positive commuting multioperator. Then
T is topologically equivalent to a multioperator S which has a P -unitary dilation.

Proof. By Corollary 5.1, T is topologically equivalent to the restriction of
M∗ ⊕ N to an invariant subspace. Thus it is sufficient to show that M∗ has a
P -unitary dilation.

The algebra C[X1, . . . , Xn] carries an operator algebra structure as a subal-
gebra of the commutative C∗-algebra C(∂P) of continuous functions on ∂P. We
denote this operator algebra by Pol(P).

Remark 5.3. The algebra homomorphism

(5.1) Φ : Pol(P) → L(B2
H(P, µ)), q 7→ q(M∗)

is completely contractive.

Proof. Let Mn(L(B2
H(P, µ))) be the C∗-algebra of n × n-matrices over

L(B2
H(P, µ)) and let Mn(Pol(P)) be the algebra of n × n-matrices over Pol(P),

carrying the norm ‖(qi,j)‖n = sup{‖(qi,j(z))‖
∣∣ z ∈ P}, where ‖(qi,j(z))‖ denotes

the usual operator norm of the complex n× n-matrix (qi,j(z)). We have to show
that for each n, the map

(5.2) Φ(n) : Mn(Pol(P)) → Mn(L(B2
H(P, µ))), (qi,j) 7→ (qi,j(M∗))

is a contraction.
For q ∈ C[X1, . . . , Xn], let

∨
q be the polynomial obtained by complex con-

jugation of the coefficients of q. Then for (qi,j) ∈ Mn(Pol(P)), ‖Φ(n)((qi,j))‖ =

‖(qi,j(M∗))‖ = ‖(
∨
qj,i(M))‖, and for f = (f1, . . . , fn) ∈ B2

H(P, µ)n = B2
Hn(P, µ)

we have

(5.3)

‖(
∨
qj,i(M))f‖2 =

∫
P

‖((
∨
qj,i(M))f)(z)‖2 dµ =

∫
P

∥∥(∨qj,i(z)1B2
H(P,µ))f(z)

∥∥2 dµ

6
∫
P

‖(
∨
qj,i(z))‖2‖f(z)‖2 dµ 6 ‖(

∨
qj,i)‖2n ‖f‖2 =‖(qi,j)‖2n ‖f‖2.

Thus Φ(n) is a contraction, and the remark is proved.

To finish the proof of the theorem, note that by a corollary to Arveson’s
Extension Theorem (see [7], Corollary 6.7) the map Φ dilates to a homomorphism
Ψ : C(P) → L(K) with some Hilbert space K ⊇ B2

H(P, µ). Then the tuple K =
(Ψ(z1), . . . ,Ψ(zn)) is a normal multioperator dilating M∗, and the Taylor spectrum
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of K is contained in ∂P. By the Spectral Theorem for normal multioperators
(see [13], Theorem 7.26), we have

(5.4) P (CK)(1K) =
∫

∂P

P (|z|2) dE = 1K,

where E is the spectral measure for the tuple K on K.

In particular, Theorem 5.2 implies that each (P,m)-positive multioperator
satisfies a von Neumann-type inequality with respect to the P -ball P. Let A(P)
be the Banach algebra of complex-valued continuous functions on P which are
holomorphic on P, together with the supremum norm on P.

Corollary 5.4. Let T be a (P,m)-positive multioperator. Then T has a
continuous A(P)-functional calculus. In particular, there is a constant c > 0 such
that

(5.5) ‖q(T )‖ 6 c sup
{
|q(z)|

∣∣ z ∈ P} for q ∈ C[X1, . . . , Xn].

Proof. As one easily sees by the Spectral Theorem for normal multioperators
(see [13], Theorem 7.26) and by Lemma 3.7, a P -unitary multioperator U satisfies
the von Neumann-inequality

(5.6) ‖q(U)‖ 6 sup
{
|q(z)|

∣∣ z ∈ P} for q ∈ C[X1, . . . , Xn].

The corollary now follows from Theorem 3.8, since the polynomials are dense
in A(P).

In case the model for T provided by Theorem 5.2 consists only of the multi-
plication operator part, i.e. in case P (CT )s(1H) converges strongly to 0 for s →∞,
we can strengthen this result. Let A : H2

H(ρm
P ) → B2

H(P, µ) be the isomorphism
intertwining M∗

z on H2
H(ρm

P ) and M∗ on B2
H(P, µ) mentioned in the beginning of

this paragraph. Then

(5.7) H∞(P) → L(H), f 7→ V ∗A−1Mf̌
∗AV,

where V : H → H2
H(ρm

P ) is the isometry constructed in Theorem 3.8,
∨

f is the
holomorphic map z 7→ f(z) on P and Mf̌ is the bounded operator of multiplication

with
∨

f on B2
H(P, µ), defines a continuous algebra homomorphism with norm less

or equal to ‖A‖ ‖A−1‖, mapping the coordinate functions to the components of T .
Thus (5.7) gives a continuous H∞(P)-functional calculus for T .
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In a forthcoming paper ([9]), the developed standard model for (P,m)-

positive multioperators T will be applied to give necessary conditions for the

existence of non-trivial joint invariant subspaces of T .
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