STANDARD MODELS UNDER POLYNOMIAL POSITIVITY CONDITIONS

SANDRA POTT

Communicated by Florian-Horia Vasilescu

ABSTRACT. We develop standard models for commuting tuples of bounded linear operators on a Hilbert space under certain polynomial positivity conditions, generalizing the work of V. Müller and F.-H. Vasilescu in [6], [14].

As a consequence of the model, we prove a von Neumann-type inequality for such tuples. Up to similarity, we obtain the existence of in a certain sense "unitary" dilations.

KEYWORDS: Multivariable spectral theory, weighted multishifts, standard models, dilations, functional calculus.

MSC (2000): 47A45, 47A60.

1. INTRODUCTION

Let \mathcal{H} be a separable Hilbert space and $T = (T_1, \ldots, T_n)$ a commuting tuple of bounded linear operators on \mathcal{H} . T is called a *spherical contraction*, if $\sum_{i=1}^n T_i^* T_i \leq$

 $\mathbf{1}_{\mathcal{H}}$, and a spherical unitary, if $\sum_{i=1}^{n} T_i^* T_i = \mathbf{1}_{\mathcal{H}}$ and in addition, all components of T are normal. We say that T has a spherical dilation if there is a spherical unitary U which dilates T, i.e. $T^{\alpha} = P_{\mathcal{H}} U^{\alpha} | \mathcal{H}$ for all $\alpha \in \mathbb{N}_0^n$. There is no easy generalization of the famous Dilation Theorem for contractions of Sz.-Nagy (see [12]) to spherical contractions: in general, spherical contractions have no spherical dilations, and there is not even a von Neumann-type inequality over the unit ball in \mathbb{C}^n for spherical contractions ([3]). Athavale has shown in [1] that under certain additional positivity conditions a spherical contraction T has a spherical dilation, and Müller and Vasilescu have developed a model for T under these conditions which reproduces this result ([6], [14]). This model consists of a spherical unitary part and a weighted backward multishift part which for suitable order coincides with the adjoint of the tuple of multiplication operators with the coordinates on a Hardy space over the unit ball in \mathbb{C}^n . For n = 1, this is just the well-known coisometric extension for contractions.

In the current paper, we will develop a model for a commuting tuple T under certain polynomial positivity conditions. We call T a P-contraction, where $P = \sum_{\gamma \in \mathbb{N}_0^n} a_{\gamma} x^{\gamma}$ is a polynomial with non-negative coefficients of a certain type, if $\sum_{\gamma \in \mathbb{N}_0^n} a_{\gamma} T^{*\gamma} T^{\gamma} \leq \mathbf{1}_{\mathcal{H}}$, and a P-unitary if $\sum_{\gamma \in \mathbb{N}_0^n} a_{\gamma} T^{*\gamma} T^{\gamma} = \mathbf{1}_{\mathcal{H}}, T_1, \ldots, T_n$ normal. We will show that P-contractions satisfying additional positivity conditions of suitable order have a model consisting of a P-unitary part and a weighted backward multishift part, which may be identified topologically with the adjoint of the multiplication tuple on a Bergman space. In particular, up to topological equivalence, T has a P-unitary dilation and therefore a rich functional calculus.

The crucial tools in identifying the weighted backward multishift with the adjoint Bergman space multiplication tuple are a theorem of A. Cumenge from complex analysis which allows to extend Bergman space functions on a complex submanifold \mathcal{M} to Hardy space functions on a strictly pseudoconvex set containing \mathcal{M} and the simple idea of regarding a *P*-contraction as a spherical contraction in a higher dimension.

2. PRELIMINARIES AND NOTATION

A commuting tuple $T = (T_1, \ldots, T_n)$ of bounded linear operators on the separable Hilbert space \mathcal{H} will be called a *commuting multioperator* or just a *multioperator*. For $A \in \mathcal{L}(\mathcal{H})$, let C_A be the bounded linear map

(2.1)
$$\mathcal{L}(\mathcal{H}) \to \mathcal{L}(\mathcal{H}), \quad X \mapsto A^* X A$$

and for a commuting tuple $T = (T_1, \ldots, T_n) \in \mathcal{L}(\mathcal{H})^n$ let $C_T = (C_{T_1}, \ldots, C_{T_n})$. If $P = \sum_{\gamma \in \mathbb{N}_0^n} a_{\gamma} x^{\gamma} \in \mathbb{C}[X_1, \ldots, X_n]$ is a polynomial, then $P(C_T)$ is the bounded linear map $\mathcal{L}(\mathcal{H}) \to \mathcal{L}(\mathcal{H}), X \mapsto \sum_{\gamma \in \mathbb{N}_0^n} a_{\gamma} T^{*\gamma} X T^{\gamma}$. This map is well-defined, since T_1, \ldots, T_n commute.

If $T = (T_1, \ldots, T_n)$ is a commuting multioperator on \mathcal{H} , $S = (S_1, \ldots, S_n)$ a commuting multioperator on some Hilbert space \mathcal{H}' and $A : \mathcal{H} \to \mathcal{H}'$ is a linear map, then we will write AT = SA for the identity $AT_i = S_iA$, $i = 1, \ldots, n$. In this situation, we call T and S topologically equivalent or similar if A is a topological isomorphism. We will call a commuting multioperator *normal* in case all components are normal.

For $z = (z_1, \ldots, z_n)$, $w = (w_1, \ldots, w_n) \in \mathbb{C}^n$, we will denote the tuple $(\overline{z}_1 w_1, \ldots, \overline{z}_n w_n)$ by $\overline{z}w$ and the tuple $(|z_1|^2, \ldots, |z_n|^2)$ by $|z|^2$.

Let us introduce the class of polynomials from which our positivity conditions are obtained. A polynomial $P \in \mathbb{C}[X_1, \ldots, X_n]$ is said to be *positive regular*, if

- (i) the constant term is 0;
- (ii) P has non-negative coefficients;
- (iii) the coefficients of the linear terms X_1, \ldots, X_n are all different from 0.

There is a complete Reinhardt domain in \mathbb{C}^n associated to each positive regular polynomial P, namely

(2.2)
$$\mathcal{P} = \{ z \in \mathbb{C}^n \mid P(|z|^2) < 1 \}$$

which we call the *P*-ball. For $P = \sum_{i=1}^{n} x_i$, the *P*-ball is just the unit ball \mathbb{B}^n in \mathbb{C}^n .

For a positive regular polynomial $P, X \in \mathcal{L}(\mathcal{H})$ positive and $m \in \mathbb{N}$, we will call a commuting multioperator T(P, m)-positive for X, if

(2.3)
$$\Delta_P^{(1)}(X) := (1-P)(C_T)(X) \ge 0$$

and

(2.4)
$$\Delta_P^{(m)}(X) := (1-P)^m (C_T)(X) \ge 0.$$

In this case,

(2.5)
$$\Delta_P^{(k)}(X) := (1-P)^k (C_T)(X) \ge 0 \quad \text{for } 1 \le k \le m,$$

as one obtains completely analogously to Lemma 2 in [6]. The tuple T is said to be (P,m)-positive, if it is (P,m)-positive for $\mathbf{1}_{\mathcal{H}}$. Furthermore, we call T a P-isometry, if $\Delta_P^{(1)} := \Delta_P^{(1)}(\mathbf{1}_{\mathcal{H}}) = 0$, and a P-unitary, if in addition T is normal. For $P = \sum_{i=1}^n x_i$, the (P,1)-positive operators are just the spherical contractions.

3. STANDARD MODELS

We will now develop in analogy to [6] a standard model for (P, m)-positive commuting tuples, consisting of a part which is the adjoint of a multiplication tuple — or, equivalently, a weighted backward multishift — and a *P*-unitary part.

For |P(x)| < 1, we have

(3.1)
$$\frac{1}{(1-P(x))^m} = \left(\sum_{j=0}^{\infty} P^j(x)\right)^m.$$

Therefore the function $x \mapsto 1/(1 - P(x))^m$ has a power series representation which converges compactly on $\{x \mid |P(x)| < 1\}$ and coincides with the Taylor series expansion at 0. For positive regular P, all Taylor coefficients are positive.

DEFINITION 3.1. Let P be a positive regular polynomial in n variables and let $m \in \mathbb{N}$. For each $\alpha \in \mathbb{N}_0^n$, let $\rho_P^m(\alpha)$ be the Taylor coefficient at index α of the function $x \mapsto 1/(1 - P(x))^m$ at 0.

We will denote the coefficients $\rho_P^m(\alpha)$, $\alpha \in \mathbb{N}_0^n$, as (P, m)-weights.

Now let $H^2(\rho_P^m)$ be the linear space of all formal power series $\sum_{\alpha \in \mathbb{N}_0^n} c_\alpha z^\alpha$ such that $\sum_{\alpha \in \mathbb{N}_0^n} |c_\alpha|^2 1/\rho_P^m(\alpha) < \infty$. The space $H^2(\rho_P^m)$ is obviously a Hilbert space with the inner product

(3.2)
$$\left\langle \sum_{\alpha \in \mathbb{N}_0^n} c_{\alpha} z^{\alpha}, \sum_{\alpha' \in \mathbb{N}_0^n} b_{\alpha'} z^{\alpha'} \right\rangle = \sum_{\alpha \in \mathbb{N}_0^n} c_{\alpha} \overline{b}_{\alpha} \frac{1}{\rho_P^m(\alpha)}.$$

It can be regarded as a space of holomorphic functions on the P-ball \mathcal{P} , and there is an obvious reproducing kernel:

LEMMA 3.2. The elements of $H^2(\rho_P^m)$ define holomorphic functions on the *P*-ball \mathcal{P} . Furthermore, let

(3.3)
$$\mathfrak{k}: \mathcal{P} \times \mathcal{P} \to \mathbb{C}, \quad \mathfrak{k}(z,w) = \frac{1}{(1 - P(\overline{z}w))^m}.$$

For each $z \in \mathcal{P}$, the function $\mathfrak{k}_z = \mathfrak{k}(z, \cdot)$ is a holomorphic function on \mathcal{P} and by identification with its Taylor series expansion at 0 an element of $H^2(\rho_P^m)$ such that

$$\langle f, \mathfrak{k}_z \rangle = f(z), \quad f \in H^2(\rho_P^m).$$

We have $\|\mathbf{t}_z\| = (1/(1 - P(|z|^2))^m)^{1/2}$ for $z \in \mathcal{P}$.

STANDARD MODELS UNDER POLYNOMIAL POSITIVITY CONDITIONS

(3.4)

$$Proof. \text{ For } f = \sum_{\alpha \in \mathbb{N}_0^n} c_\alpha w^\alpha \in H^2(\rho_P^m) \text{ and } z \in \mathcal{P}, \text{ we have}$$

$$\sum_{\alpha \in \mathbb{N}_0^n} |c_\alpha z^\alpha| \leq \Big(\sum_{\alpha \in \mathbb{N}_0^n} |c_\alpha|^2 \frac{1}{\rho_P^m(\alpha)}\Big)^{1/2} \Big(\sum_{\alpha \in \mathbb{N}_0^n} \rho_P^m(\alpha) |z^\alpha|^2\Big)^{1/2}$$

$$= \frac{1}{(1 - P(|z|^2))^{m/2}} \|f\|.$$

Thus f converges uniformly on compact subsets of \mathcal{P} and defines a holomorphic function on \mathcal{P} (see [9], Corollaries 1.16 and 1.17), which we again call f. Furthermore, one obtains for $z \in \mathcal{P}$

(3.5)
$$\begin{aligned} \|\mathfrak{k}_{z}\|^{2} &= \left\|\sum_{\alpha \in \mathbb{N}_{0}^{n}} \rho_{P}^{m}(\alpha)\overline{z}^{\alpha}w^{\alpha}\right\|^{2} = \sum_{\alpha \in \mathbb{N}_{0}^{n}} |z^{\alpha}|^{2}\rho_{P}^{m}(\alpha)\\ &= \frac{1}{(1 - P(|z|^{2}))^{m}} < \infty \end{aligned}$$

and $\langle f, \mathfrak{k}_z \rangle = \sum_{\alpha \in \mathbb{N}_0^n} c_{\alpha} z^{\alpha} = f(z).$

We define multiplication operators M_{z_i} , $i = 1, \ldots, n$, on $H^2(\rho_P^m)$ by $M_{z_i} \sum_{\alpha \in \mathbb{N}_0^n} c_{\alpha} z^{\alpha} = \sum_{\alpha \in \mathbb{N}_0^n} c_{\alpha} z^{\alpha+e_i}$.

For the study of the multiplication operators and the construction of the model, we need more information about the (P,m)-weights $(\rho_P^m(\alpha))$. Thus we give a more explicit form and a recursion formula for the weights.

Let us first introduce some notation. For a given positive regular polynomial P, let $I_P = \{\gamma \in \mathbb{N}_0^n \mid a_\gamma > 0\}$ and $\operatorname{mult}(P) = |I_P|$ be the number of nontrivial coefficients in P. We form the vector of the coefficients of P, $A = (a_\gamma)_{\gamma \in I_P} \in \mathbb{C}^{I_P}$. Furthermore, let for $K = (k_\gamma)_{\gamma \in I_P}$, $L = (l_\gamma)_{\gamma \in I_P} \in \mathbb{C}^{I_P}$

(3.6)
$$A^{K} := \prod_{\gamma \in I_{P}} a_{\gamma}^{k_{\gamma}}, \qquad |K| := \sum_{\gamma \in I_{P}} k_{\gamma},$$

(3.7)
$$\binom{|K|}{K} := \frac{|K|!}{\prod_{\gamma \in I_P} k_{\gamma}!}, \qquad \binom{L}{K} := \prod_{\gamma \in I_P} \binom{l_{\gamma}}{k_{\gamma}}$$

and

(3.8)
$$[K] := ([K]_1, \dots, [K]_n), \text{ where } [K]_i := \sum_{\gamma \in I_P} \gamma_i k_\gamma \text{ for } i \in \{1, \dots, n\}.$$

Write $K \leq L$ if $k_{\gamma} \leq l_{\gamma}$ for all $\gamma \in I_P$. We need some combinatorial results:

Sandra Pott

LEMMA 3.3. For $L \in \mathbb{N}_0^{I_P}$ and $m \in \mathbb{N}$,

$$(3.9) \qquad \binom{|L|}{L}\binom{|L|+m}{m} = \sum_{\substack{K \in \mathbb{N}_0^{I_P} \\ K \leqslant L}} \binom{|L-K|}{L-K}\binom{|K|}{K}\binom{|K|+m-1}{m-1}.$$

Proof. We obtain the identity

(3.10)
$$\sum_{\substack{K \leqslant L \\ |K| = r}} {L \choose K} = {|L| \choose r} \quad \text{for } r = 0, \dots, |L|$$

by induction over the number of nontrivial coefficients $\left|I_{P}\right|$ of P and the well-known fact

(3.11)
$$\sum_{q=0}^{r} \binom{|L|-l}{q} \binom{l}{r-q} = \binom{|L|}{r} \quad \text{for } 0 \leq l \leq |L|.$$

Now, we have

(3.12)

$$\sum_{\substack{K \in \mathbb{N}_{0}^{IP} \\ K \leqslant L}} \binom{|L-K|}{L-K} \binom{|K|}{K} \binom{|K|+m-1}{m-1}$$

$$= \sum_{r=0}^{|L|} \left[\sum_{\substack{K \leqslant L \\ |K|=r}} \binom{|L|-r}{L-K} \binom{r}{K} \binom{r+m-1}{m-1} \right]$$

$$= \binom{|L|}{L} \sum_{r=0}^{|L|} \left[\frac{(|L|-r)!r!}{|L|!} \binom{r+m-1}{m-1} \sum_{\substack{K \leqslant L \\ |K|=r}} \binom{L}{K} \right]$$

$$= \binom{|L|}{L} \sum_{r=0}^{|L|} \binom{r+m-1}{m-1}.$$

It remains to show that $\sum_{r=0}^{|L|} \binom{r+m-1}{m-1} = \binom{|L|+m}{m}$ for $m \in \mathbb{N}$, which is an easy induction.

Furthermore, Equation (3.10) yields the identity

(3.13)
$$\sum_{\substack{K \leqslant L \\ |K|=r}} \binom{r}{K} \binom{|L| - |K|}{L - K} = \frac{r!(|L| - r)!}{|L|!} \binom{|L|}{L} \sum_{\substack{K \leqslant L \\ |K|=r}} \binom{L}{K} = \binom{|L|}{L}$$

for $0 \leq r \leq |L|$. Now we can characterize the (P, m)-weights more explicitly.

LEMMA 3.4. Let P be a positive regular polynomial and $m \in \mathbb{N}$. Then

(3.14)
$$\rho_P^m(\alpha) = \sum_{\substack{K \in \mathbb{N}_0^{I_P} \\ [K] = \alpha}} A^K \binom{|K| + m - 1}{|K|} \binom{|K|}{K} \quad \text{for } \alpha \in \mathbb{N}_0^n.$$

Proof. For m = 1 and |P(x)| < 1, we have

(3.15)
$$\frac{1}{1-P(x)} = \sum_{j=0}^{\infty} P(x)^j = \sum_{j=0}^{\infty} \left[\sum_{\substack{K \in \mathbb{N}_0^{I_P} \\ |K| = j}} \binom{|K|}{K} \prod_{\gamma \in I_P} a_{\gamma}^{k_{\gamma}} (x^{\gamma})^{k_{\gamma}} \right]$$
$$= \sum_{j=0}^{\infty} \left[\sum_{\substack{K \in \mathbb{N}_0^{I_P} \\ |K| = j}} A^K \binom{|K|}{K} x^{[K]} \right] = \sum_{\substack{\alpha \in \mathbb{N}_0^n}} x^{\alpha} \sum_{\substack{K \in \mathbb{N}_0^{I_P} \\ [K] = \alpha}} A^K \binom{|K|}{K}.$$

So, by uniqueness of the coefficients, (3.14) holds for m = 1. Now let (3.14) be valid for an arbitrary $m \in \mathbb{N}$. Then we obtain again by uniqueness and by Lemma 3.3 the identity for m + 1:

$$\begin{aligned} \frac{1}{(1-P(x))^{m+1}} &= \left(\sum_{\alpha \in \mathbb{N}_0^n} \rho_P^m(\alpha) x^\alpha\right) \left(\sum_{\alpha \in \mathbb{N}_0^n} \rho_P^1(\alpha) x^\alpha\right) \\ &= \left(\sum_{K \in \mathbb{N}_0^{I_P}} \binom{|K|}{K} \binom{|K|+m-1}{m-1} A^K x^{[K]} \right) \left(\sum_{J \in \mathbb{N}_0^{I_P}} \binom{|J|}{J} A^J x^{[J]} \right) \\ \end{aligned} (3.16) \qquad = \sum_{L \in \mathbb{N}_0^{I_P}} \left[A^L x^{[L]} \sum_{\substack{K \in \mathbb{N}_0^{I_P} \\ K \leqslant L}} \binom{|L-K|}{L-K} \binom{|K|+m-1}{m-1} \binom{|K|}{K} \right] \\ &= \sum_{\alpha \in \mathbb{N}_0^n} x^\alpha \left[\sum_{\substack{L \in \mathbb{N}_0^{I_P} \\ [L]=\alpha}} A^L \binom{|L|}{L} \binom{|L|+m}{m} \right]. \quad \blacksquare \end{aligned}$$

Let from now on $\rho_P^m(\alpha) = 0$ for $\alpha \in \mathbb{Z}^n \setminus \mathbb{N}_0^n$. Then we obtain the following recursion formulae for the (P, m)-weights:

REMARK 3.5. Let $P = \sum_{\gamma \in \mathbb{N}_0^n} a_{\gamma} x^{\gamma}$ be a positive regular polynomial and let $Q = 1 - (1 - P)^m = \sum_{\gamma \in \mathbb{N}_0^n} b_{\gamma} x^{\gamma}$. Then

(3.17)
$$\rho_P^m(\alpha) = \sum_{\gamma \in \mathbb{N}_0^n} b_\gamma \rho_P^m(\alpha - \gamma), \quad \alpha \in \mathbb{N}_0^n$$

Sandra Pott

and for m > 1,

(3.18)
$$\rho_P^m(\alpha) = \rho_P^{m-1}(\alpha) + \sum_{\gamma \in \mathbb{N}_0^n} a_\gamma \rho_P^m(\alpha - \gamma).$$

Proof. For $\alpha \in \mathbb{N}_0^n$, $\sum_{\gamma \in \mathbb{N}_0^n} b_\gamma \rho_P^m(\alpha - \gamma)$ is the coefficient at index α of the product power series $\left(\sum_{\alpha \in \mathbb{N}_0^n} \rho_P^m(\alpha) x^{\alpha}\right) \left(\sum_{\gamma \in \mathbb{N}_0^n} b_\gamma x^{\gamma}\right)$. We obtain Equation (3.17) by comparison of coefficients, since for |P(x)| < 1 we have

(3.19)
$$\sum_{\alpha \in \mathbb{N}_0^n} x^{\alpha} \sum_{\gamma \in \mathbb{N}_0^n} b_{\gamma} \rho_P^m (\alpha - \gamma) = (1 - P(x))^{-m} (1 - (1 - P(x))^m)$$
$$= \sum_{\alpha \in \mathbb{N}_0^n} \rho_P^m (\alpha) x^{\alpha} - 1.$$

Similarly, $\sum_{\gamma \in \mathbb{N}_0^n} a_{\gamma} \rho_P^m(\alpha - \gamma)$ is the α -coefficient of the product power series $\left(\sum_{\alpha \in \mathbb{N}_0^n} \rho_P^m(\alpha) x^{\alpha}\right) \left(\sum_{\gamma \in \mathbb{N}_0^n} a_{\gamma} x^{\gamma}\right)$, and we obtain for |P(x)| < 1, m > 1

(3.20)

$$\sum_{\alpha \in \mathbb{N}_{0}^{n}} x^{\alpha} \Big(\rho_{P}^{m}(\alpha) - \sum_{\gamma \in \mathbb{N}_{0}^{n}} a_{\gamma} \rho_{P}^{m}(\alpha - \gamma) \Big) - 1$$

$$= (1 - P(x))^{-m} - (1 - P(x))^{-m} P(x) - 1$$

$$= (1 - P(x))^{-m+1} - 1 = \sum_{\alpha \in \mathbb{N}_{0}^{n}} \rho_{P}^{m-1}(\alpha) x^{\alpha} - 1$$

implying (3.18). ∎

Now we can prove that the multiplication operators are well-defined bounded operators on $H^2(\rho_P^m)$.

LEMMA 3.6. $M_{z_1}, \ldots, M_{z_n} \in \mathcal{L}(H^2(\rho_P^m)).$

Proof. Let e_i be the *i*th unit vector in \mathbb{C}^n , i = 1, ..., n. It is sufficient to show that for some constant c > 0, $\rho_P^m(\alpha + e_i) \ge c\rho_P^m(\alpha)$ for all $\alpha \in \mathbb{N}_0^n$. But by Remark 3.5,

(3.21)
$$\rho_P^m(\alpha + e_i) \ge \sum_{\gamma \in \mathbb{N}_0^n} a_\gamma \rho_P^m(\alpha + e_i - \gamma) \ge a_{e_i} \rho_P^m(\alpha)$$

for $\alpha \in \mathbb{N}_0^n$, which proves the lemma.

The multiplication operators are obviously commuting.

For the separable Hilbert space \mathcal{H} , we can consider the Hilbert space tensor product $\mathcal{H} \otimes H^2(\rho_P^m) =: H^2_{\mathcal{H}}(\rho_P^m)$. This space can obviously be identified with the space of formal power series with coefficients in \mathcal{H} , $\sum_{\alpha \in \mathbb{N}_0^n} h_{\alpha} z^{\alpha}$ with $h_{\alpha} \in \mathcal{H}$ for $\alpha \in \mathbb{N}_0^n$, such that $\sum_{\alpha \in \mathbb{N}_0^n} \|h_{\alpha}\|^2 (1/\rho_P^m(\alpha)) < \infty$. The inner product on $H^2_{\mathcal{H}}(\rho_P^m)$ is then given by

$$\Big\langle \sum_{\alpha \in \mathbb{N}_0^n} h_\alpha z^\alpha \,, \, \sum_{\alpha' \in \mathbb{N}_0^n} h'_{\alpha'} z^{\alpha'} \Big\rangle = \sum_{\alpha \in \mathbb{N}_0^n} \langle h_\alpha, h'_\alpha \rangle \frac{1}{\rho_P^m(\alpha)}.$$

We can view $H^2_{\mathcal{H}}(\rho_P^m)$ as a space of \mathcal{H} -valued holomorphic functions on \mathcal{P} . From now on, we will denote the multiplication operators with the coordinates on $H^2_{\mathcal{H}}(\rho_P^m)$ as well as the ones on $H^2(\rho_P^m)$ by M_{z_1}, \ldots, M_{z_n} . By Lemma 3.6, these operators are also well-defined and bounded on $H^2_{\mathcal{H}}(\rho_P^m)$.

As in the case of spherical contractions, the spectrum of a (P, 1)-positive multioperator is contained in the closure of the P-ball:

LEMMA 3.7. Let P be a positive regular polynomial and T a (P, 1)-positive commuting multioperator. Then the Taylor spectrum $\sigma(T)$ of T is contained in the closure $\overline{\mathcal{P}}$ of the P-ball.

Proof. This lemma is a special case of a more general result ([11], Theorem 1.12). We give a more elementary proof for our situation.

Let $\lambda \in \mathbb{C}^n \setminus \overline{\mathcal{P}}$. We will show that λ is not contained in the joint spectrum of T relative to the closed commutative subalgebra \mathcal{A} of $\mathcal{L}(\mathcal{H})$ generated by T_1, \ldots, T_n , i.e. we will show that the ideal I generated by $\lambda_1 \mathbf{1}_{\mathcal{H}} - T_1, \ldots, \lambda_n \mathbf{1}_{\mathcal{H}} - T_n$ in \mathcal{A} is equal to \mathcal{A} . Since the Taylor spectrum $\sigma(T)$ of T is contained in the joint spectrum of T relative to any closed commutative subalgebra of $\mathcal{L}(\mathcal{H})$ containing T, this means that λ is not in $\sigma(T)$.

Let $Q_{\lambda}(z) = (1/P(|\lambda|^2))P(\overline{\lambda}z)$. Then $Q_{\lambda}(\lambda) = 1$, and for $h \in \mathcal{H}$, $||h|| \leq 1$,

(3.22)
$$\|Q_{\lambda}(T)h\| = \frac{1}{P(|\lambda|^{2})} \|P(\overline{\lambda}T)h\|$$
$$\leq \frac{1}{P(|\lambda|^{2})} \Big(\sum_{\gamma \in I_{P}} a_{\gamma} |\lambda^{\gamma}|^{2}\Big)^{1/2} \Big(\sum_{\gamma \in I_{P}} a_{\gamma} ||T^{\gamma}h||^{2}\Big)^{1/2}$$
$$= \frac{1}{P(|\lambda|^{2})^{1/2}} \langle P(C_{T})(\mathbf{1}_{\mathcal{H}})h,h\rangle^{1/2} \leq \frac{1}{P(|\lambda|^{2})^{1/2}} < 1$$

by definition of \mathcal{P} . Thus $||Q_{\lambda}(T)|| < 1$, and $\mathbf{1}_{\mathcal{H}} - Q_{\lambda}(T)$ is invertible in \mathcal{A} . On the other hand, one easily verifies that

(3.23)
$$\mathbf{1}_{\mathcal{H}} - Q_{\lambda}(T) = Q_{\lambda}(\lambda) - Q_{\lambda}(T) = \frac{1}{P(|\lambda|^2)} \sum_{\gamma \in I_P} a_{\gamma} \overline{\lambda}^{\gamma} (\lambda^{\gamma} \mathbf{1}_{\mathcal{H}} - T^{\gamma}) \in I,$$

which finishes the proof.

We are now in the situation to state our model theorem:

THEOREM 3.8. Let P be a positive regular polynomial in n variables, $T = (T_1, \ldots, T_n)$ a commuting multioperator on the separable Hilbert space \mathcal{H} and $m \in \mathbb{N}$. Then the following are equivalent:

(i) T is (P, m)-positive;

(ii) there exist a Hilbert space \mathcal{N} , a *P*-unitary operator $N = (N_1, \ldots, N_n) \in \mathcal{L}(\mathcal{N})^n$ and an isometry $V = V_1 \oplus V_2 : \mathcal{H} \to H^2_{\mathcal{H}}(\rho_P^m) \oplus \mathcal{N}$ such that $VT = (M_z^* \oplus N)V$.

Proof. First we prove (i) \Rightarrow (ii).

CLAIM 1. Let T be (P,1)-positive for the positive operator $X \in \mathcal{L}(\mathcal{H})$. Then the sequence $(P(C_T)^k(X))_{k \in \mathbb{N}}$ converges to some positive operator \widetilde{P}_X in the strong operator topology (SOT) on $\mathcal{L}(\mathcal{H})$.

Proof. Since P is positive regular, $(P(C_T)^k(X))_{k \in \mathbb{N}}$ is a sequence of positive operators and thus bounded below by 0. Moreover, the sequence is decreasing because of

$$P(C_T)^k(X) - P(C_T)^{k+1}(X) = P(C_T)^k(1 - P(C_T))(X) \ge 0$$

and consequently converging to some positive operator \widetilde{P}_X in the SOT-topology.

Now define for $X \in \mathcal{L}(\mathcal{H}), X \ge 0$, and T(P, m)-positive for X the map

$$V_1^X : \mathcal{H} \to H^2_{\mathcal{H}}(\rho_P^m), \quad h \mapsto \sum_{\alpha \in \mathbb{N}_0^n} \rho_P^m(\alpha) \left((1 - P(C_T))^m(X) \right)^{1/2} T^{\alpha} h z^{\alpha}.$$

As one proves by induction completely analogously to [6], Lemmas 4 and 5 (see also [11], 2.1 and 2.8), we have

(3.24)
$$\sum_{j=0}^{k} {\binom{j+m-1}{m-1}} P(C_T)^j (1-P(C_T))^m \\ = 1 - \sum_{j=0}^{m-1} {\binom{k+j}{j}} P(C_T)^{k+1} (1-P(C_T))^j, \quad k \in \mathbb{N}$$

and

(3.25)
$$\lim_{k \to \infty} \binom{k+j}{j} \langle P(C_T)^{k+1} (1 - P(C_T))^j (X)h, h \rangle = 0, \quad h \in \mathcal{H},$$

for $j = 1, \ldots, m - 1$. We obtain

(3.26)
$$||V_1^X h||^2 = ||h||^2 - \lim_{k \to \infty} \langle P(C_T)^k(X)h, h \rangle = ||h||^2 - \langle \widetilde{P}_X h, h \rangle, \quad h \in \mathcal{H}$$

by

$$||V_{1}^{X}h||^{2} = \sum_{\alpha \in \mathbb{N}_{0}^{n}} \rho_{P}^{m}(\alpha) \left\langle (1 - P(C_{T}))^{m}(X)T^{\alpha}h, T^{\alpha}h \right\rangle$$

$$= \sum_{\alpha \in \mathbb{N}_{0}^{n}} \left[\sum_{\substack{K \in \mathbb{N}_{0}^{I_{P}} \\ [K] = \alpha}} \binom{|K| + m - 1}{m - 1} \binom{|K|}{K} A^{K} \left\langle C_{T}^{\alpha}(1 - P(C_{T}))^{m}(X)h, h \right\rangle \right]$$

$$= \sum_{j=0}^{\infty} \left[\sum_{\substack{K \in \mathbb{N}_{0}^{I_{P}} \\ |K| = j}} \binom{j + m - 1}{m - 1} \binom{j}{K} A^{K} \left\langle C_{T}^{[K]}(1 - P(C_{T}))^{m}(X)h, h \right\rangle \right]$$

$$= \sum_{j=0}^{\infty} \binom{j + m - 1}{m - 1} \left\langle P(C_{T})^{j}(1 - P(C_{T}))^{m}(X)h, h \right\rangle$$

$$= \|h\|^{2} - \lim_{k \to \infty} \sum_{j=0}^{m-1} \binom{k + j}{j} \left\langle P(C_{T})^{k+1}(1 - P(C_{T}))^{j}(X)h, h \right\rangle$$

$$= \|h\|^{2} - \lim_{k \to \infty} \left\langle P(C_{T})^{k}(X)h, h \right\rangle,$$

according to (3.24) and (3.25), with the limits existing because of Claim 1. For T (P,m)-positive and $V_1 = V_1^{\mathbf{1}_{\mathcal{H}}}$, one gets

(3.28)

$$V_{1} T_{i} h = \sum_{\alpha \in \mathbb{N}_{0}^{n}} \rho_{P}^{m}(\alpha) ((1 - P(C_{T})^{m}(\mathbf{1}_{\mathcal{H}}))^{1/2} T^{\alpha + e_{i}} h z^{\alpha}$$

$$= \sum_{\alpha \in \mathbb{N}_{0}^{n}} \frac{\rho_{P}^{m}(\alpha)}{\rho_{P}^{m}(\alpha + e_{i})} \rho_{P}^{m}(\alpha + e_{i}) ((1 - P(C_{T}))^{m}(\mathbf{1}_{\mathcal{H}}))^{1/2} T^{\alpha + e_{i}} h z^{\alpha}$$

$$= M_{z_{i}}^{*} \left(\sum_{\alpha \in \mathbb{N}_{0}^{n}} \rho_{P}^{m}(\alpha + e_{i}) ((1 - P(C_{T}))^{m}(\mathbf{1}_{\mathcal{H}}))^{1/2} T^{\alpha + e_{i}} h z^{\alpha + e_{i}} \right)$$

$$= M_{z_{i}}^{*} V_{1} h.$$

So we have constructed the first part of our model. In a second step we construct the *P*-unitary part, using the fact that $\tilde{P} = \tilde{P}_{1_{\mathcal{H}}}$ is invariant under $P(C_T)$. In the following, we write *s*-lim for the limits in the strong operator topology on $\mathcal{L}(\mathcal{H})$. LEMMA 3.9. Let T be a (P, 1)-positive commuting multioperator on \mathcal{H} and $\widetilde{P} = \widetilde{P}_{\mathbf{1}_{\mathcal{H}}} = s - \lim_{k \to \infty} P(C_T)^k(\mathbf{1}_{\mathcal{H}})$. Then there exist a Hilbert space \mathcal{N} , a P-unitary multioperator $N \in \mathcal{L}(\mathcal{N})^n$ and a contractive linear mapping $V_2 : \mathcal{H} \to \mathcal{N}$ such that $\|V_2h\|^2 = \langle \widetilde{P}h, h \rangle$ for $h \in \mathcal{H}$ and $V_2T = NV_2$.

Proof. Let $\mathcal{K} = \overline{\widetilde{P}^{1/2}\mathcal{H}}$ and $V_2 : \mathcal{H} \to \mathcal{K}, h \mapsto \widetilde{P}^{1/2}h$. For $i = 1, \ldots, n$, the linear map $W_i : \widetilde{P}^{1/2}\mathcal{H} \to \mathcal{K},$

(3.29)
$$W_i V_2 h = V_2 T_i h \quad \text{for } h \in \mathcal{H},$$

is well-defined and bounded, since

$$(3.30) \quad \|W_i V_2 h\|^2 = \langle T_i^* \widetilde{P} T_i h, h \rangle \leqslant a_{e_i}^{-1} \langle P(C_T)(\widetilde{P}) h, h \rangle = a_{e_i}^{-1} \|V_2 h\|^2, \quad h \in \mathcal{H}.$$

So we can extend W_i to a bounded linear map $\mathcal{K} \to \mathcal{K}$, which we also call W_i . By (3.29) and continuity, we have $WV_2 = V_2T$ for $W = (W_1, \ldots, W_n)$ and consequently

(3.31)
$$V_2^*(P(C_W)(\mathbf{1}_{\mathcal{K}}))V_2 = P(C_T)(V_2^*V_2) = P(C_T)(\widetilde{P}) = V_2^*V_2$$

because of the SOT-continuity of $P(C_T)$.

Now $P(C_W)(\mathbf{1}_{\mathcal{K}}) = \mathbf{1}_{\mathcal{K}}$, since $V_2\mathcal{H}$ is dense in \mathcal{K} . Thus W is a P-isometry. To replace W by a P-unitary tuple, we need the following lemma:

LEMMA 3.10. Every P-isometry is subnormal, and its minimal normal extension is a P-unitary.

Proof. Let $W \in \mathcal{L}(W)^n$ be a *P*-isometry. Then the tuple $(a_{\gamma}^{1/2}W^{\gamma})_{\gamma \in I_P}$ is a spherical isometry and consequently by [1], Proposition 2, a subnormal tuple. Since a_{e_1}, \ldots, a_{e_n} are all not 0, in particular the tuple $W = (W_1, \ldots, W_n)$ is subnormal. Let $N = (N_1, \ldots, N_n)$ be its minimal normal extension on the Hilbert space $\mathcal{N} \supseteq \mathcal{K}$. Then $(a_{\gamma}^{1/2}N^{\gamma})_{\gamma \in I_P}$ is the minimal normal extension of the tuple $(a_{\gamma}^{1/2}W^{\gamma})_{\gamma \in I_P}$ and by [1] also a spherical isometry, which implies that N is a *P*-unitary.

Now let for a (P, m)-positive multioperator T on \mathcal{H}

(3.32)
$$V = V_1 \oplus V_2 : \mathcal{H} \to H^2_{\mathcal{H}}(\rho_P^m) \oplus \mathcal{N}.$$

The mapping V is an isometry, and $VT = (M_z^* \oplus N)V$. Note that only the first part of the model depends on m.

For the proof of the reverse direction, we have only to show that $M_z^* \in \mathcal{L}(H^2(\rho_P^m))^n$ is (P,m)-positive for arbitrary m. Then the (P,m)-positivity of M_z^* on $H^2_{\mathcal{H}}(\rho_P^m)$ follows, and we obtain the (P,m)-positivity of T by the fact that any P-unitary is (P,m)-positive for every m and that (P,m)-positivity is preserved under the direct sum $M_z^* \oplus N$, the restriction to the invariant subspace $V\mathcal{H}$ and the unitary transformation $\mathcal{H} \to V\mathcal{H}$.

LEMMA 3.11. For every $m \in \mathbb{N}$, the commuting multioperator $M_z^* \in \mathcal{L}(H^2(\rho_P^m))^n$ is (P,m)-positive. Moreover, $(1 - P(C_{M_z^*}))^m(\mathbf{1})$ is the orthogonal projection onto the subspace of constants in $H^2(\rho_P^m)$.

Proof. For $\alpha, \beta \in \mathbb{N}_0^n$, we have

(3.33)
$$M_z^{\beta} M_z^{*\beta} z^{\alpha} = \begin{cases} \frac{\rho_P^m(\alpha - \beta)}{\rho_P^m(\alpha)} z^{\alpha} & \text{if } \beta \leqslant \alpha, \\ 0 & \text{otherwise} \end{cases}$$

So obviously $(1 - P(C_{M_z^*}))^m(\mathbf{1})z^\alpha = z^\alpha$ for $\alpha = 0$. Let as before $\rho_P^m(\alpha) = 0$ for $\alpha \in \mathbb{Z}^n \setminus \mathbb{N}_0^n$. Since the spaces $\mathbb{C} \cdot z^\alpha$ are invariant under $M_z^\beta M_z^{*\beta}$, thus also invariant under $(1 - P(C_{M_z^*}))(\mathbf{1})$ and $(1 - P(C_{M_z^*}))^m(\mathbf{1})$, it remains to show that

(3.34)
$$\langle (1 - P(C_{M_z^*}))(\mathbf{1})z^{\alpha}, z^{\alpha} \rangle \ge 0, \quad \alpha \ge 0$$

(3.35)
$$\langle (1 - P(C_{M_z^*}))^m (\mathbf{1}) z^\alpha, z^\alpha \rangle = 0, \quad \alpha \ge 0, \, \alpha \ne 0.$$

By Equation (3.33), we have

(3.36)
$$\langle (1 - P(C_{M_z^*}))(\mathbf{1})z^{\alpha}, z^{\alpha} \rangle = \frac{1}{\rho_P^m(\alpha)^2} \left(\rho_P^m(\alpha) - \sum_{\gamma \in I_P} a_{\gamma} \rho_P^m(\alpha - \gamma) \right)$$

and

(3.37)
$$\langle (1 - P(C_{M_z^*}))^m(\mathbf{1}) z^\alpha, z^\alpha \rangle = \frac{1}{\rho_P^m(\alpha)^2} \bigg(\rho_P^m(\alpha) - \sum_{\gamma \in \mathbb{N}_0^n} b_\gamma \rho_P^m(\alpha - \gamma) \bigg),$$

where $\sum_{\gamma \in \mathbb{N}_0^n} b_{\gamma} x^{\gamma}$ is the polynomial $1 - (1 - P)^m$. The rest of the proof now results from Remark 3.5.

This finishes the proof of Theorem 3.8.

Via the isometric isomorphism

(3.38)
$$H^2_{\mathcal{H}}(\rho_P^m) \to l^2(\mathbb{N}^n_0, \mathcal{H}), \quad \sum_{\alpha \in \mathbb{N}^n_0} h_\alpha z^\alpha \mapsto \left(\frac{1}{\rho_P^m(\alpha)^{1/2}} h_\alpha\right)_{\alpha \in \mathbb{N}^n_0},$$

the multioperator M_z^* may be looked upon as a weighted multi-backward shift. So $V_1\mathcal{H} \subseteq H^2_{\mathcal{H}}(\rho_P^m)$ may be regarded as the shift part of our model, and $V_2\mathcal{H} \subseteq \mathcal{N}$ is the *P*-unitary part.

In case m = n = 1 and P = x, the (P, m)-positive operators are just the contractions, and our model is the well-known coisometric extension for contractions.

If P is the polynomial $\sum_{i=1}^{n} x_i$, the P-ball $\mathcal{P} = \{z \in \mathbb{C}^n \mid P(|z|^2) < 1\}$ is just the unit ball \mathbb{B}^n of \mathbb{C}^n , and the P-unitaries are just the spherical unitaries. For this case, Theorem 3.8 was proved by V. Müller and F.-H. Vasilescu in [6]. The positivity conditions $\Delta_P^{(m)} \ge 0$, $1 \le m \le n$, were examined earlier by A. Athavale, who showed in [1], Remark 1 to Proposition 4, that the tuple T then has a spherical dilation.

The standard model of Müller and Vasilescu reproduces this result: as one easily verifies, for the above P the space $H^2(\rho_P^m)$ is just the Hardy space

$$H^{2}(\mathbb{B}^{n}) = \bigg\{ f: \mathbb{B}^{n} \to \mathbb{C} \text{ holomorphic } \Big| \, \|f\|^{2} := \sup_{0 < r < 1} \int_{\partial \mathbb{B}^{n}} |f(rz)|^{2} \, \mathrm{d}\sigma < \infty \bigg\},$$

where σ is the normalized surface measure on $\partial \mathbb{B}^n$, since

$$\int_{\partial \mathbb{B}^n} |z^{\alpha}|^2 \,\mathrm{d}\sigma = (n-1)!\alpha!/(n-1-|\alpha|)!$$

for $\alpha \in \mathbb{N}_0^n$ (see e.g. [10], Proposition 1.4.9). The adjoint of the multiplication tuple here of course has a spherical dilation, for example the multioperator $M_{\overline{z}} \in \mathcal{L}(L^2(\partial \mathbb{B}^n, \sigma))^n$ via the isometric inclusion $H^2(\mathbb{B}^n) \hookrightarrow L^2(\partial \mathbb{B}^n, \sigma)$. Thus $M_z^* \oplus N$, where N is a spherical unitary, has a spherical dilation, and T, being unitarily equivalent to the restriction of $M_z^* \oplus N$ to an invariant subspace, has a spherical dilation, too.

The existence of a spherical dilation implies a von Neumann-type inequality over \mathbb{B}^n and consequently the existence of a contractive $\mathcal{A}(\mathbb{B}^n)$ -functional calculus for T, where $\mathcal{A}(\mathbb{B}^n) = \{f : \overline{\mathbb{B}}^n \to \mathbb{C} \text{ continuous } | f | \mathbb{B}^n \text{ holomorphic} \}.$

But since the multioperator $M_z^* \in \mathcal{L}(H^2_{\mathcal{H}}(\rho_P^m))^n = \mathcal{L}(H^2_{\mathcal{H}}(\mathbb{B}^n))^n$ has an obvious $H^{\infty}(\mathbb{B}^n)$ -functional calculus defined by

(3.39)
$$f(M_z^*) = (M_{\check{f}})^*, \quad f \in H^{\infty}(\mathbb{B}^n)$$

with $f(z) = \overline{f(\overline{z})}$, every (P, n)-positive operator for which the model given by Theorem 3.8 consists only of the first part has even an $H^{\infty}(\mathbb{B}^n)$ -functional calculus. So, according to Lemma 3.9 in the proof of Theorem 3.8, every (P, n)-positive multioperator T with s- $\lim_{k\to\infty} P(C_T)^k(\mathbf{1}_{\mathcal{H}}) = 0$ has a $H^{\infty}(\mathbb{B}^n)$ -functional calculus. This result is contained in [6] and may also be obtained by means of an operatorvalued Poisson integral formula ([14]).

So for general positive regular polynomials P, a natural question to ask is whether $H^2(\rho_P^m)$ may be identified for suitable m with a well-known Hilbert space of holomorphic functions on the P-ball \mathcal{P} and thus one can obtain a rich functional calculus for $M_z^* \in \mathcal{L}(H^2(\rho_P^m))^n$ (and consequently for (P,m)-positive T) by this identification.

In the next section, we will show that such an identification is possible by passing to an equivalent norm.

4. THE FUNCTIONAL MODEL

THEOREM 4.1. Let P be a positive regular polynomial and m = mult(P) > n. Furthermore, let μ be the normalization of the positive measure $(1 - P(|z|^2))^{m-n-1} d\lambda$ on \mathcal{P} , where $d\lambda$ denotes Lebesgue measure. Then the space $H^2(\rho_P^m)$ and the Bergman space

$$B^{2}(\mathcal{P},\mu) = \left\{ f: \mathcal{P} \to \mathbb{C} \text{ holomorphic } \big| \int_{\mathcal{P}} |f(z)|^{2} \, \mathrm{d}\mu < \infty \right\}$$

coincide as sets of functions on \mathcal{P} , and the identifying map id : $B^2(\mathcal{P},\mu) \rightarrow H^2(\rho_P^m)$ is a topological isomorphism.

Proof. Let us first introduce some notations. With $P = \sum_{\gamma \in \mathbb{N}_0^n} a_{\gamma} x^{\gamma}$, $I_P = \{\gamma \in \mathbb{N}_0^n \mid a_{\gamma} > 0\}$ and $|I_P| = \text{mult}(P) = m$, identify \mathbb{C}^m with \mathbb{C}^{I_P} and denote the elements of \mathbb{C}^m by $w = (w_{\gamma})_{\gamma \in I_P}$. Let $\tau : \mathbb{C}^m \to \mathbb{C}^n$, $w = (w_{\gamma})_{\gamma \in I_P} \mapsto (w_{e_1}, \ldots, w_{e_n})$, and $\kappa : \mathbb{C}^m \to \mathbb{C}^n$, $w = (w_{\gamma})_{\gamma \in I_P} \mapsto (a_{e_1}^{-1/2} w_{e_1}, \ldots, a_{e_n}^{-1/2} w_{e_n})$. Now define the holomorphic map

(4.1)
$$\varphi : \mathbb{C}^m \to \mathbb{C}^m, \quad \varphi(w)_{\gamma} = \begin{cases} a_{\gamma}^{1/2} w_{\gamma} & \text{if } \gamma \in e_1, \dots, e_n, \\ w_{\gamma} + a_{\gamma}^{1/2} \tau(w)^{\gamma} & \text{otherwise.} \end{cases}$$

The map φ is biholomorphic, since

(4.2)
$$\varphi^{-1}: \mathbb{C}^m \to \mathbb{C}^m, \quad \varphi^{-1}(w)_{\gamma} = \begin{cases} a_{\gamma}^{-1/2} w_{\gamma} & \text{if } \gamma \in e_1, \dots, e_n, \\ w_{\gamma} - a_{\gamma}^{1/2} \kappa(w)^{\gamma} & \text{otherwise;} \end{cases}$$

is obviously a holomorphic inverse map. Let $D = \varphi^{-1}(\mathbb{B}^m)$. Then D is strictly pseudoconvex, since \mathbb{B}^m is strictly pseudoconvex (see e.g. [9], II.2.7), and we have

$$(4.3) \qquad D \cap (\mathbb{C}^n \times \{0\} \times \dots \times \{0\})$$
$$= \left\{ w \in \mathbb{C}^m \mid w_{\gamma} = 0 \text{ for } \gamma \notin \{e_1, \dots, e_n\}, \sum_{\gamma \in I_P} a_{\gamma} |\tau(w)^{\gamma}|^2 < 1 \right\}$$
$$= \mathcal{P} \times \{0\} \times \dots \times \{0\}.$$

Moreover, $\mathcal{M} = \varphi(\mathcal{P})$ is a complex submanifold of \mathbb{B}^m such that $\mathcal{M} = \{w \in \mathbb{B}^m \mid w_\gamma = a_\gamma^{1/2} \kappa(w)^\gamma\}.$

Let Q be the polynomial in m variables that corresponds to the unit ball, $Q \in \mathbb{C}[(X_{\gamma})_{\gamma \in I_P}], \ Q = \sum_{\gamma \in I_P} x_{\gamma}.$

We will now construct the identifying map $B^2(\mathcal{P},\mu) \to H^2(\rho_P^m)$ in several steps.

Step 1. The restriction. As in (3.8), let $[\cdot] : \mathbb{N}_0^m = \mathbb{N}_0^{I_P} \to \mathbb{N}_0^n$, $[\beta]_i = \sum_{\gamma \in I_P} \gamma_i \beta_{\gamma}$.

LEMMA 4.2. With $A = (a_{\gamma})_{\gamma \in I_P}$ and the notation in (3.6), the map

(4.4)
$$\pi: H^2(\mathbb{B}^m) \to H^2(\rho_P^m), \quad \sum_{\beta \in \mathbb{N}_0^m} c_\beta w^\beta \mapsto \sum_{\beta \in \mathbb{N}_0^m} c_\beta A^{\beta/2} z^{[\beta]}$$

is well-defined, surjective, linear and has norm 1.

Proof. First notice that the (P, m)-weights may be expressed in terms of (Q, m)-weights: For $\alpha \in \mathbb{N}_0^n$, we have

(4.5)
$$\rho_P^m(\alpha) = \sum_{\substack{\beta \in \mathbb{N}_0^m \\ [\beta] = \alpha}} A^\beta \binom{|\beta| + m - 1}{m - 1} \binom{|\beta|}{\beta} = \sum_{\substack{\beta \in \mathbb{N}_0^m \\ [\beta] = \alpha}} A^\beta \rho_Q^m(\beta).$$

As one shows easily by induction over r, for any $a_1, \ldots, a_r, b_1, \ldots, b_r \in \mathbb{R}$ with $a_1, \ldots, a_r \ge 0$ and $b_1, \ldots, b_r > 0$ one has

(4.6)
$$\frac{\left(\sum_{i=1}^{r} a_i\right)^2}{\sum_{i=1}^{r} b_i} \leqslant \sum_{i=1}^{r} \frac{a_i^2}{b_i}$$

Consequently we obtain for arbitrary $f = \sum_{\beta \in \mathbb{N}_0^m} c_\beta w^\beta \in H^2(\mathbb{B}^m), \, \alpha \in \mathbb{N}_0^n$

(4.7)
$$\frac{\left|\sum_{\beta \in \mathbb{N}_{0}^{m}} A^{\beta/2} c_{\beta}\right|^{2}}{\left|\beta\right| = \alpha} \leqslant \frac{\left(\sum_{\beta \in \mathbb{N}_{0}^{m}} A^{\beta/2} |c_{\beta}|\right)^{2}}{\sum_{\substack{\beta \in \mathbb{N}_{0}^{m} \\ |\beta\right| = \alpha}} A^{\beta} \rho_{Q}^{m}(\beta)} \leqslant \sum_{\substack{\beta \in \mathbb{N}_{0}^{m} \\ |\beta\right| = \alpha}} \frac{|c_{\beta}|^{2}}{\rho_{Q}^{m}(\beta)}$$

and

(4.8)
$$\|\pi(f)\|^2 = \sum_{\alpha \in \mathbb{N}_0^n} \frac{1}{\rho_P^m(\alpha)} \Big| \sum_{\substack{\beta \in \mathbb{N}_0^m \\ [\beta] = \alpha}} A^{\beta/2} c_\beta \Big|^2 \leqslant \|f\|^2.$$

To show the surjectivity of π , consider the map $\iota : H^2(\rho_P^m) \to H^2(\mathbb{B}^m), g = \sum_{\alpha \in \mathbb{N}_0^n} c_\alpha \sum_{\substack{\beta \in \mathbb{N}_0^m \\ [\beta] = \alpha}} A^{\beta/2}(\rho_Q^m(\beta)/\rho_P^m(\alpha))w^{\beta}$. Then ι is well-defined and isometric, since $\iota(g) \in H^2(\mathbb{B}^m)$ with $\|\iota(g)\|^2 = \sum_{\alpha \in \mathbb{N}_0^n} |c_\alpha|^2 \sum_{\substack{\beta \in \mathbb{N}_0^n \\ [\beta] = \alpha}} A^{\beta}(\rho_Q^m(\beta)/\rho_P^m(\alpha)^2) = \|g\|^2$ by Equation (4.5), and $\pi \circ \iota = \mathbf{1}$.

Thus the map π can be regarded as the orthogonal projection from $H^2(\mathbb{B}^m)$ onto the closed subspace $H^2(\rho_P^m)$. This close relationship between $H^2(\rho_P^m)$ and $H^2(\mathbb{B}^m)$ and the definitions of φ and π become clearer by considering the following idea:

Let $T = (T_1, \ldots, T_n)$ be a (P, m)-positive multioperator on \mathcal{H} and let $V_1 : \mathcal{H} \to H^2_{\mathcal{H}}(\rho_P^m)$ be the map constructed in Theorem 3.8. Let W be the commuting m-tuple $(W_{\gamma})_{\gamma \in I_P}, W_{\gamma} = a_{\gamma}^{1/2} T^{\gamma}$. Then

(4.9)
$$(1-P)(C_T) = (1-Q)(C_W)$$

and thus W is (Q, m)-positive. Again by Theorem 3.8, now applied to the *m*-tuple W, we obtain the map $\widetilde{V}_1 : \mathcal{H} \to H^2_{\mathcal{H}}(\mathbb{B}^m)$ as first part of the model for the tuple W. Therefore

$$(\mathbf{1}_{\mathcal{H}} \otimes \pi) \circ \widetilde{V}_{1}(h) = (\mathbf{1}_{\mathcal{H}} \otimes \pi) \Big(\sum_{\beta \in \mathbb{N}_{0}^{m}} \rho_{Q}^{m}(\beta) ((1-Q)^{m}(C_{W})(\mathbf{1}_{\mathcal{H}}))^{1/2} W^{\beta} h w^{\beta} \Big)$$

$$= \sum_{\alpha \in \mathbb{N}_{0}^{n}} \sum_{\substack{\beta \in \mathbb{N}_{0}^{m} \\ [\beta] = \alpha}} \rho_{Q}^{m}(\beta) A^{\beta} ((1-P)^{m}(C_{T})(\mathbf{1}_{\mathcal{H}}))^{1/2} T^{[\beta]} h z^{\alpha}$$

$$= \sum_{\alpha \in \mathbb{N}_{0}^{n}} \rho_{P}^{m}(\alpha) ((1-P)^{m}(C_{T})(\mathbf{1}_{\mathcal{H}}))^{1/2} T^{\alpha} h z^{\alpha} = V_{1}(h)$$

Sandra Pott

for $h \in \mathcal{H}$, and we have

(4.11)
$$(\mathbf{1}_{\mathcal{H}} \otimes \pi) \circ \widetilde{V}_1 = V_1.$$

In particular, the map $\mathbf{1}_{\mathcal{H}} \circ \pi$ is isometric on $\widetilde{V}_1 \mathcal{H}$, since

(4.12)
$$\|V_1h\|^2 = \lim_{k \to \infty} \langle P(C_T)^k(\mathbf{1}_{\mathcal{H}})h, h \rangle = \lim_{k \to \infty} \langle Q(C_W)^k(\mathbf{1}_{\mathcal{H}})h, h \rangle = \|\widetilde{V}_1h\|^2.$$

The submanifold $\mathcal{M} = \left\{ w \in \mathbb{B}^m \mid w_{\gamma} = a_{\gamma}^{1/2} \kappa(w)^{\gamma} \right\}$ corresponds to the identities $W_{\gamma} = a_{\gamma}^{1/2} T^{\gamma}$. The map π may be regarded as the restriction of functions in $H^2(\mathbb{B}^m)$ to the submanifold \mathcal{M} , up to the biholomorphic map φ . For $z \in \mathcal{P}$ and $f = \sum_{\beta \in \mathbb{N}_0^m} c_{\beta} w^{\beta} \in H^2(\mathbb{B}^m)$, we have

(4.13)
$$f \circ \varphi(z) = \sum_{\beta \in \mathbb{N}_0^m} c_\beta (\varphi(z))^\beta = \sum_{\beta \in \mathbb{N}_0^m} c_\beta \prod_{\gamma \in I_P} a_\gamma^{\beta_\gamma/2} (z^\gamma)^{\beta_\gamma} = \sum_{\beta \in \mathbb{N}_0^m} c_\beta A^{\beta/2} z^{[\beta]} = \pi(f)(z).$$

Altogether, we have the following commutative diagram.

(4.14)
$$\begin{split} \widetilde{V}_{1}\mathcal{H} & \hookrightarrow & H^{2}_{\mathcal{H}}(\mathbb{B}^{m}) \\ \widetilde{V}_{1} \nearrow & \downarrow \wr & \mathbf{1} \otimes \iota \uparrow \downarrow \mathbf{1}_{\mathcal{H}} \otimes \pi = \cdot \circ \varphi|_{\mathcal{P}} \\ \mathcal{H} & \xrightarrow{V_{1}} & V_{1}\mathcal{H} & \hookrightarrow & H^{2}_{\mathcal{H}}(\rho_{P}^{m}). \end{split}$$

Step 2. The TRANSFORMATION. Recall that the Hardy space $H^p(\Omega)$, $1 , over a bounded strictly pseudoconvex set <math>\Omega \subseteq \mathbb{C}^n$ with C^2 -boundary can be obtained in the following way (see e.g. [5], Section 8.3):

Let $\varrho : U \to \mathbb{R}$ be a strictly plurisubharmonic defining C^2 -function for Ω , defined on some region $U \supset \overline{\Omega}$. That means,

(4.15)
$$\Omega = \{ z \in U \mid \varrho(z) < 0 \}.$$

Now for $\varepsilon > 0$ let $\Omega_{\varepsilon} = \{z \in U \mid \varrho(z) < \varepsilon\}$. For sufficiently small ε_0 , $\partial \Omega_{\varepsilon}$ is a real C^2 -manifold for each ε with $0 < \varepsilon < \varepsilon_0$. Let σ_{ε} be the surface measure on $\partial \Omega_{\varepsilon}$ and define

(4.16)
$$H^{p}(\Omega) = \left\{ f: \Omega \to \mathbb{C} \text{ holomorphic } \Big| \, \|f\|_{p} = \left(\sup_{\varepsilon_{0} > \varepsilon > 0} \int_{\partial \Omega_{\varepsilon}} |f(z)|^{p} \, \mathrm{d}\sigma_{\varepsilon} \right)^{1/p} < \infty \right\}.$$

Then $H^p(\Omega, \|\cdot\|_p)$ is a Banach space. The space $H^p(\Omega)$ is independent of the choice of the defining function ρ in the sense that any two plurisubharmonic defining C^2 -functions for Ω induce equivalent norms on $H^p(\Omega)$. Furthermore, by passing to nontangential boundary values $H^p(\Omega)$ may be embedded topologically into $L^p(\partial\Omega, \sigma)$, where σ is the surface measure on $\partial\Omega$.

Our aim is to show that the biholomorphic map $\varphi:D\to \mathbb{B}^m$ induces a topological isomorphism

(4.17)
$$U_{\varphi}: H^2(\mathbb{B}^m) \to H^2(D), \quad f \mapsto f \circ \varphi.$$

This can be done by using the transformation formula and looking at the Jacobimatrix for φ on ∂D , but an alternative characterization of $H^p(\Omega)$ and an equivalent norm to $\|\cdot\|_p$ give a much shorter and less technical proof. We have

(4.18) $H^p(\Omega) = \{ f : \Omega \to \mathbb{C} \text{ holomorphic } | |f|^p \text{ has a harmonic majorant on } \Omega \},\$

and if Ω is connected, for any $z\in \Omega$

(4.19)
$$||f||_{p,z} = \left(\inf\{g(z) \mid g: \Omega \to \mathbb{R} \text{ harmonic, } g \ge |f|^p\}\right)^{1/p}$$

defines an equivalent norm to $\|\cdot\|_p$ on $H^p(\Omega)$ (see e.g. [15], Section 2.2).

Since composition with the biholomorphic map φ maps the class of realvalued harmonic functions on \mathbb{B}^m bijectively onto the class of real-valued harmonic functions on D, for any fixed $z_0 \in D$ and any $f \in H^2(\mathbb{B}^m)$ we have

(4.20)
$$\|f \circ \varphi\|_{2,z_0}^2 = \inf\{g(z_0) \mid g : D \to \mathbb{R} \text{ harmonic, } g \ge |f \circ \varphi|^2\}$$
$$= \inf\{g(\varphi(z_0)) \mid g : \mathbb{B}^m \to \mathbb{R} \text{ harmonic, } g \ge |f|^2\}$$
$$= \|f\|_{2,\varphi(z_0)}^2,$$

and U_{φ} in (4.17) is thus a topological isomorphism with inverse $U_{\varphi^{-1}}$.

Step 3. The EXTENSION. Now we come to the main step of our construction of the identification $B^2(\mathcal{P},\mu) \to H^2(\rho_P^m)$, using a theorem of A. Cumenge.

We will show that for a measure $\tilde{\mu}$ equivalent to μ , there is a bounded linear extension operator $E : B^2(\mathcal{P}, \tilde{\mu}) \to H^2(D)$ and that the restriction $R : H^2(D) \to B^2(\mathcal{P}, \tilde{\mu})$ is well-defined, bounded and surjective. To apply the theorem of Cumenge, we first have to show that \mathcal{P} may be extended to a complex manifold transverse to ∂D , i.e. that there is a complex submanifold $\tilde{\mathcal{P}}$ of \mathbb{C}^m intersecting ∂D transversally such that $\mathcal{P} = D \cap \tilde{\mathcal{P}}$. Let $\widetilde{\mathcal{P}} = \mathbb{C}^n \times \{0\} \times \cdots \times \{0\}$. Then $\mathcal{P} = D \cap \widetilde{\mathcal{P}}$ by (4.3). The function $r : \mathbb{C}^m \to \mathbb{R}, r(z) = \sum_{\gamma \in I_P} |z_{\gamma}|^2 - 1$, is a strictly plurisubharmonic defining C^{∞} -function for \mathbb{B}^m . Thus $\varrho = \varphi \circ r$ is a strictly plurisubharmonic defining C^{∞} -function for D.

To prove that $\widetilde{\mathcal{P}}$ intersects ∂D transversally, we have to show that

(4.21)
$$d\varrho(z) \wedge \left(\bigwedge_{\gamma \in I_P \setminus \{e_1, \dots, e_n\}} dz_{\gamma}\right) \neq 0 \quad \text{for all } z \in \widetilde{\mathcal{P}} \cap \partial D$$

(see e.g. [9], p. 118). So it suffices to prove that for every $z \in \widetilde{\mathcal{P}} \cap \partial D$, there is an $i \in \{1, \ldots, n\}$ such that $\partial \varrho / \partial z_{e_i}(z) \neq 0$. On $\widetilde{\mathcal{P}}$, identify z with $\widetilde{z} = \tau(z) \in \mathbb{C}^n$ to obtain $\varrho(z) = \sum_{\gamma \in I_P} a_{\gamma} |z^{\gamma}|^2$. Now let $z \in \widetilde{\mathcal{P}} \cap \partial D$. Since $0 \notin \partial D$, there is an i with $\tau(z)_i \neq 0$, and we obtain

(4.22)
$$\frac{\partial \varrho}{\partial z_{e_i}}(z) = \frac{\partial \varrho}{\partial \widetilde{z}_i}(\widetilde{z}) = a_{e_1} \overline{\tau(z)}_i + \sum_{\substack{\gamma \in I_P \setminus \{e_1, \dots, e_n\} \\ \gamma_i \neq 0}} \gamma_i a_\gamma \overline{\tau(z)^{\gamma}} \tau(z)^{\gamma - e_i}} \\ = \overline{\tau(z)}_i \left(a_{e_i} + \sum_{\substack{\gamma \in I_P \setminus \{e_1, \dots, e_n\} \\ \gamma_i \neq 0}} \gamma_i a_\gamma |\tau(z)^{\gamma - e_i}|^2 \right) \neq 0,$$

since the second factor is strictly positive.

Now \mathcal{P} is a complex submanifold of codimension m-n of the smoothly bounded strictly pseudoconvex set D. Thus we are in the situation of Theorem 0.1 in [2]: let $\tilde{\mu}$ be the measure dist $(z, \partial D)$ d λ on \mathcal{P} . Then $f|\mathcal{P} \in B^2(\mathcal{P}, \tilde{\mu})$ for every $f \in H^2(\partial D)$, and there exists a bounded linear extension operator $E: B^2(\mathcal{P}, \tilde{\mu}) \to$ $H^2(D), Eg|\mathcal{P} = g$ for $g \in B^2(\mathcal{P}, \tilde{\mu})$.

Moreover, the restriction operator $R: H^2(D) \to B^2(\mathcal{P}, \tilde{\mu})$ is bounded since $\tilde{\mu}$ is a Carleson measure on D by Hörmander's formulation of Carleson's Theorem and by Lemme II.1.1 in [2] (see [2], Section II.1, and [4], Theorem 4.3). It is surjective since $R \circ E = \mathbf{1}_{B^2(\mathcal{P},\tilde{\mu})}$. The map $\pi \circ U_{\varphi^{-1}} \circ E : B^2(\mathcal{P},\tilde{\mu}) \to H^2(\rho_P^m)$ now maps each function $g \in B^2(\mathcal{P},\tilde{\mu})$ onto itself. It is bounded by construction and has the bounded inverse $R \circ U_{\varphi} \circ \iota$. Altogether, we have the following commutative diagram:

$$\begin{array}{ccc} H^2(D) & \stackrel{U_{\varphi^{-1}}}{\longrightarrow} & H^2(\mathbb{B})^m \\ E \uparrow \downarrow R & & \uparrow \downarrow \\ B^2(\mathcal{P}, \widetilde{\mu}) & \stackrel{\sim}{\xrightarrow{}} & H^2(\rho_P^m) \end{array}$$

STANDARD MODELS UNDER POLYNOMIAL POSITIVITY CONDITIONS

It remains to compare μ and $\tilde{\mu}$.

Step 4. The EQUIVALENCE OF THE MEASURES. It suffices to show that there are constants $c_1, c_2 > 0$ such that

(4.23)
$$c_1 \operatorname{dist}(z, \partial D) \leq 1 - P(|z_1|^2, \dots, |z_n|^2) \leq c_2 \operatorname{dist}(z, \partial D), \quad z \in \partial \mathcal{P}.$$

Then $B^2(\mathcal{P},\mu)$ and $B^2(\mathcal{P},\tilde{\mu})$ coincide as sets and carry equivalent norms.

The second inequality just follows by the Lipschitz continuity of the map $z \mapsto P(|z_1|^2, \ldots, |z_n|^2)$ on the compact set $\overline{\mathcal{P}}$. For the first inequality, choose for $z \in \mathcal{P}$ some $w \in \partial \mathcal{P}$ such that $z = \lambda w$ for a suitable $\lambda \in [0, 1)$. Then

(4.24)

$$1 - P(|z_1|^2, \dots, |z_n|^2) = \sum_{\gamma \in I_P} a_{\gamma}(|w^{\gamma}|^2 - |z^{\gamma}|^2)$$

$$\geqslant (1 - \lambda^2) \sum_{i=1}^n a_{e_i} |w_i|^2 \ge c(1 - \lambda) ||w||^2$$

$$\geqslant c_1(1 - \lambda) ||w|| = c_1 ||w - z|| \ge c_1 \text{dist}(z, \partial \mathcal{P})$$

for suitable constants $c, c_1 > 0$, since $\partial \mathcal{P}$ is bounded away from 0. Thus we obtain (4.23), which finishes the proof of the theorem.

5. DILATIONS

The identifying map $B^2(\mathcal{P},\mu) \to H^2(\rho_P^m)$ obviously intertwines the multiplication operators with the coordinate functions on $B^2(\mathcal{P},\mu)$ and $H^2(\rho_P^m)$. So its adjoint intertwines the adjoints of the multiplication operators, and we obtain the following easy consequence of Theorem 3.8 and Theorem 4.1. Let as before P be a positive regular polynomial with m = mult(P) > n, μ the normalization of the measure $(1 - P(|z_1|^2, \ldots, |z_n|^2))^{m-n-1} d\lambda$ on \mathcal{P} and let $M = (M_1, \ldots, M_n)$ be the tuple of multiplication operators with the coordinate functions on $B^2_{\mathcal{H}}(\mathcal{P},\mu)$.

COROLLATY 5.1. The following are equivalent:

(i) T is topologically equivalent to a (P, m)-positive multioperator;

(ii) T is topologically equivalent to the restriction of $M^* \oplus N \in \mathcal{L}(B^2_{\mathcal{H}}(\mathcal{P},\mu) \oplus \mathcal{N})^n$ to an invariant subspace, where N is a P-unitary operator on some separable Hilbert space \mathcal{N} .

Moreover, the functional model for a (P, m)-positive multioperator T implies — up to topological equivalence — the existence of a P-unitary dilation for T. Unlike the situation of the unit ball, we cannot obtain a P-unitary dilation directly. We have to check the complete boundedness of the map $q \mapsto q(T)$ on the algebra of polynomials, equipped with the supremum norm on \mathcal{P} . THEOREM 5.2. Let T be a (P,m)-positive commuting multioperator. Then T is topologically equivalent to a multioperator S which has a P-unitary dilation.

Proof. By Corollary 5.1, T is topologically equivalent to the restriction of $M^* \oplus N$ to an invariant subspace. Thus it is sufficient to show that M^* has a P-unitary dilation.

The algebra $\mathbb{C}[X_1, \ldots, X_n]$ carries an operator algebra structure as a subalgebra of the commutative C^* -algebra $\mathcal{C}(\partial \mathcal{P})$ of continuous functions on $\partial \mathcal{P}$. We denote this operator algebra by $\operatorname{Pol}(\mathcal{P})$.

REMARK 5.3. The algebra homomorphism

(5.1)
$$\Phi: \operatorname{Pol}(\mathcal{P}) \to \mathcal{L}(B^2_{\mathcal{H}}(\mathcal{P}, \mu)), \quad q \mapsto q(M^*)$$

is completely contractive.

Proof. Let $M_n(\mathcal{L}(B^2_{\mathcal{H}}(\mathcal{P},\mu)))$ be the C^* -algebra of $n \times n$ -matrices over $\mathcal{L}(B^2_{\mathcal{H}}(\mathcal{P},\mu))$ and let $M_n(\operatorname{Pol}(\mathcal{P}))$ be the algebra of $n \times n$ -matrices over $\operatorname{Pol}(\mathcal{P})$, carrying the norm $\|(q_{i,j})\|_n = \sup\{\|(q_{i,j}(z))\| \mid z \in \mathcal{P}\}$, where $\|(q_{i,j}(z))\|$ denotes the usual operator norm of the complex $n \times n$ -matrix $(q_{i,j}(z))$. We have to show that for each n, the map

(5.2)
$$\Phi^{(n)}: M_n(\operatorname{Pol}(\mathcal{P})) \to M_n(\mathcal{L}(B^2_{\mathcal{H}}(\mathcal{P},\mu))), \quad (q_{i,j}) \mapsto (q_{i,j}(M^*))$$

is a contraction.

For $q \in \mathbb{C}[X_1, \ldots, X_n]$, let $\overset{\vee}{q}$ be the polynomial obtained by complex conjugation of the coefficients of q. Then for $(q_{i,j}) \in M_n(\operatorname{Pol}(\mathcal{P})), \|\Phi^{(n)}((q_{i,j}))\| = \|(q_{i,j}(M^*))\| = \|(\overset{\vee}{q}_{j,i}(M))\|$, and for $f = (f_1, \ldots, f_n) \in B^2_{\mathcal{H}}(\mathcal{P}, \mu)^n = B^2_{\mathcal{H}^n}(\mathcal{P}, \mu)$ we have

(5.3)
$$\begin{split} \|(\check{q}_{j,i}(M))f\|^{2} &= \int_{\mathcal{P}} \|((\check{q}_{j,i}(M))f)(z)\|^{2} \,\mathrm{d}\mu = \int_{\mathcal{P}} \|(\check{q}_{j,i}(z)\mathbf{1}_{B_{\mathcal{H}}^{2}(\mathcal{P},\mu)})f(z)\|^{2} \,\mathrm{d}\mu \\ &\leqslant \int_{\mathcal{P}} \|(\check{q}_{j,i}(z))\|^{2} \|f(z)\|^{2} \,\mathrm{d}\mu \leqslant \|(\check{q}_{j,i})\|_{n}^{2} \|f\|^{2} = \|(q_{i,j})\|_{n}^{2} \|f\|^{2}. \end{split}$$

Thus $\Phi^{(n)}$ is a contraction, and the remark is proved.

To finish the proof of the theorem, note that by a corollary to Arveson's Extension Theorem (see [7], Corollary 6.7) the map Φ dilates to a homomorphism $\Psi : \mathcal{C}(\mathcal{P}) \to \mathcal{L}(\mathcal{K})$ with some Hilbert space $\mathcal{K} \supseteq B^2_{\mathcal{H}}(\mathcal{P}, \mu)$. Then the tuple $K = (\Psi(z_1), \ldots, \Psi(z_n))$ is a normal multioperator dilating M^* , and the Taylor spectrum

of K is contained in $\partial \mathcal{P}$. By the Spectral Theorem for normal multioperators (see [13], Theorem 7.26), we have

(5.4)
$$P(C_K)(\mathbf{1}_{\mathcal{K}}) = \int_{\partial \mathcal{P}} P(|z|^2) \, \mathrm{d}E = \mathbf{1}_{\mathcal{K}}$$

where E is the spectral measure for the tuple K on \mathcal{K} .

In particular, Theorem 5.2 implies that each (P,m)-positive multioperator satisfies a von Neumann-type inequality with respect to the *P*-ball \mathcal{P} . Let $\mathcal{A}(\mathcal{P})$ be the Banach algebra of complex-valued continuous functions on $\overline{\mathcal{P}}$ which are holomorphic on \mathcal{P} , together with the supremum norm on \mathcal{P} .

COROLLARY 5.4. Let T be a (P,m)-positive multioperator. Then T has a continuous $\mathcal{A}(\mathcal{P})$ -functional calculus. In particular, there is a constant c > 0 such that

(5.5)
$$\|q(T)\| \leq c \sup \{ |q(z)| \mid z \in \mathcal{P} \} \quad for \ q \in \mathbb{C}[X_1, \dots, X_n].$$

Proof. As one easily sees by the Spectral Theorem for normal multioperators (see [13], Theorem 7.26) and by Lemma 3.7, a P-unitary multioperator U satisfies the von Neumann-inequality

(5.6)
$$\|q(U)\| \leq \sup\left\{|q(z)| \mid z \in \mathcal{P}\right\} \text{ for } q \in \mathbb{C}[X_1, \dots, X_n].$$

The corollary now follows from Theorem 3.8, since the polynomials are dense in $\mathcal{A}(\mathcal{P})$.

In case the model for T provided by Theorem 5.2 consists only of the multiplication operator part, i.e. in case $P(C_T)^s(\mathbf{1}_{\mathcal{H}})$ converges strongly to 0 for $s \to \infty$, we can strengthen this result. Let $A: H^2_{\mathcal{H}}(\rho_P^m) \to B^2_{\mathcal{H}}(\mathcal{P},\mu)$ be the isomorphism intertwining M_z^* on $H^2_{\mathcal{H}}(\rho_P^m)$ and M^* on $B^2_{\mathcal{H}}(\mathcal{P},\mu)$ mentioned in the beginning of this paragraph. Then

(5.7)
$$H^{\infty}(\mathcal{P}) \to \mathcal{L}(\mathcal{H}), \quad f \mapsto V^* A^{-1} M_{\check{f}}^* A V,$$

where $V : \mathcal{H} \to H^2_{\mathcal{H}}(\rho_P^m)$ is the isometry constructed in Theorem 3.8, \check{f} is the holomorphic map $z \mapsto \overline{f(\overline{z})}$ on \mathcal{P} and $M_{\check{f}}$ is the bounded operator of multiplication with \check{f} on $B^2_{\mathcal{H}}(\mathcal{P},\mu)$, defines a continuous algebra homomorphism with norm less or equal to $||A|| ||A^{-1}||$, mapping the coordinate functions to the components of T. Thus (5.7) gives a continuous $H^{\infty}(\mathcal{P})$ -functional calculus for T. In a forthcoming paper ([9]), the developed standard model for (P, m)positive multioperators T will be applied to give necessary conditions for the
existence of non-trivial joint invariant subspaces of T.

Acknowledgements. This paper constitutes part of the author's Ph.D. Dissertation written at the University of Saarbrücken under the direction of Prof. Dr. Ernst Albrecht. I would like to thank Prof. Albrecht for many valuable discussions and suggestions.

REFERENCES

- A. ATHAVALE, On the intertwining of joint isometries, J. Operator Theory 23(1990), 339–350.
- 2. A. CUMENGE, Extension dans des classes de Hardy de fonctions holomorphes et estimations de type "mesures de Carleson" pour l'equation $\overline{\partial}$, Ann. Inst. Fourier (Grenoble) **33**(1983), 59–97.
- S.W. DRURY, A generalization of von Neumann's inequality to complex ball, Proc. Amer. Math. Soc. 68(1978), 300–304.
- L. HÖRMANDER, L^p-Estimates for (pluri-)subharmonic functions, Math. Scand. 20 (1967), 65–78.
- S.G. KRANTZ, Function Theory of Several Complex Variables, Pure and Applied Mathematics Series, John Wiley and Sons Inc., New York 1982.
- V. MÜLLER, F.-H. VASILESCU, Standard models for some commuting multioperators, *Proc. Amer. Math. Soc.* 117(1993), 979–989.
- V. PAULSEN, Completely Bounded Maps and Dilations, Pitman Res. Notes Math. Ser., vol. 146, Longman, London 1986.
- 8. S. POTT, Invariant subspaces for tuples with normal dilations, in *Banach Algebra*, Walter DeGruyter, Berlin 1998, pp. 397–413.
- M.R. RANGE, Holomorphic Functions and Integral Representations in Several Complex Variables, Grad. Texts in Math., vol. 108, Springer-Verlag, New York 1986.
- 10. W. RUDIN, Function Theory in Unit Ball of \mathbb{C}^n , Grundlehren Math. Wiss., vol. 241, Springer Verlag, New York 1980.
- 11. J. SCHULT, Modelle kommutierender Operatoren, Diplomarbeit, University of Saarbrücken 1994.
- B. Sz.-NAGY, C. FOIAŞ, *Harmonic Analysis on Hilbert Spaces*, North Holland Publishing Company, Amsterdam 1970.
- F.-H. VASILESCU, Analytic Functional Calculus and Spectral Decompositions, D. Reidel Publishing Company, Dordrecht 1982.

STANDARD MODELS UNDER POLYNOMIAL POSITIVITY CONDITIONS

- 14. F.-H. VASILESCU, An operator-valued Poisson kernel, J. Funct. Anal. 110(1992), 47–72.
- 15. R. WOLFF, Spectral theory on Hardy spaces in several complex variables, Ph.D. Dissertation, Westfälische Wilhelms-Universität Münster 1996.

SANDRA POTT Fachbereich Mathematik Universität des Saarlandes D–66041 Saarbrucken GERMANY

 $Current \ address:$

Department of Mathematics and Statistics University of Edinburgh Edinburgh EH9 3JZ U.K. E-mail: sandra@maths.ed.ac.uk

Received June 24, 1997.