J. OPERATOR THEORY © Copyright by THETA, 1999
41(1999), 391-420

A GENERALIZATION OF BEURLING’S THEOREM
AND A CLASS OF REFLEXIVE ALGEBRAS

GELU POPESCU

Communicated by William B. Arveson

n ! n
ABSTRACT. We study the commutant {p(U) } g€ * Pi} =: Eoo( * Pi) of

the right regular representation of the free product semigroup ;1 P;, where
i=

Pi,i=1,2,...,n,n = 2, are discrete semigroups with involution, no divisors
of the identity, and the cancellation property. We obtain a description of the

invariant subspace structure of the left regular representation {)\(U) ! o €
_;Ll Pi} extending Beurling’s theorem, and show that the analytic Toeplitz
i=

algebra £ ‘;1 Pi) is reflexive (resp. hyper-reflexive) and has property A
if n > 2. This leads also to an inner-outer factorization and Szegd type
theorem in this algebra when P; (i = 1,2,...,n) are certain totally ordered
semigroups.
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1. INTRODUCTION AND PRELIMINARIES

Let P, i = 1,2,...,n, n > 1, be unital discrete semigroups with involution, no

divisors of the identity, and the cancellation property. In this paper we study the

/

analytic Toeplitz algebra EOO( 4:1 H-) which is the commutant {p(a) |oe :kll Pi}
1= 1=

of the right regular representation of the free product semigroup _;Ll P; on the
im

Hilbert space 62( ':kll PZ-). Due to a canonical involution induced on _glPl-, this
1= 1=

algebra is close related to
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ROO( E Pi) = {)\(0) |0 S igl pi}/

1=1

where A is the left regular representation of ;Lle-. Thus, all the properties of
i=

E‘X’( 7_; H) have an analogue for R"O( ‘7_;1 Pi).

These algebras have been already studied in some very important particular
cases. When n =1 and P; = N we obtain

LZ(N) = R*(N) = T(H™),

the well-known algebra of all analytic Toeplitz operators on the Hardy space H?2.
It was proved by Sarason ([28]) that 7 (H®°) is reflexive and by Davidson ([11])
that it is hyper-reflexive.

When P, = P, =---= P, =N and n > 2 we obtain

£( 4 N) = =0,

the noncommutative analytic algebra introduced in [22] as the WOT-closure of the
noncommutative disc algebra A, and used in [23] to obtain a WOT-continuous
functional calculus for n-tuples of operators (11,75, ..., T, ) satisfying the condi-
tion

DT+ + T < 1,

extending the Sz.-Nagy-Foiag H*-functional calculus for contractions ([29]).

A complete description of the invariant subspace structure of F*°(H,,) was
obtained in [19] (even in a more general setting), using a noncommutative version
of the Wold decomposition (see [20]), as well as an inner-outer factorization in
this algebras (see [21]). This algebra can be seen as the noncommutative analytic
Toeplitz algebra in n noncommuting variables. It has been studied later in [24],
[25], and [1]. Let us mention that Arias and the author proved in [1] that F°*°(H,,)
is reflexive.

Recently, Davidson and Pitts ([13]) proved that this algebra is hyper-reflexive
and has property A;. They also studied in [12] the algebraic structure of F*°(H,,)
(in their notation £,).

In both the particular cases mentioned above (P, = P, = -+ = B, =
N, n > 1) a crucial role in proving reflexivity and hyper-reflexivity is played by
the following facts:

(i) any invariant subspace of {)\(0) |o € _%N } is determined by inner

1=

functions;
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(ii) if M is any invariant subspace of A, then A|M is unitarily equivalent to
a direct sum of copies of A;

(iii) there are many invariant subspaces arising from the eigenvectors of the
adjoint {)\(U)* o€ £1 N}.

None of these facts is necessarily true in our setting (see Theorem 2.10 and the

remarks preceding it). In Section 2, we give a characterization of the elements in
C"O( % R—) in terms of their symbols. Using the version of Wold’s decomposition
ObtaiIZI_eii in [26], we give a description of the invariant subspace structure of the
left regular representation {)\(0) |o € igl Pi}, extending Beurling’s theorem ([6])
to our setting. Some properties of inner and outer functions and many examples
are also considered. We obtain an analogue of Szegd’s theorem to our setting.
On the other hand, we characterize the elements in 52( gl Pi) which admit
inner-outer factorization, when P; (i = 1,2,...,n) are Cer‘zgin totally ordered
semigroups.
, (iil) are not necessarily true in
P

Surprisingly, althought the properties (i), (ii)
;L ) can be recovered from its
1=

our setting, the analytic Toeplitz algebra [,OO( .

invariant subspaces determined by inner functions. We prove that £°°< ;1 Pi>
1=
is the set of all operators T' € €2< :kll Pi) leaving each “inner”subspace invariant.
=

In particular, we prove, in Section 3, that /.’,‘X’( g1 Pi) is a reflexive algebra and
has property A;.
In [14], Davidson and the author studied generalized Cuntz algebras ([10])

and noncommutative disc algebras .A( ;1 Gj) associated to the free product
i=

z‘i G;" of discrete subsemigroups G;’ of RT. Moreover, we established a dila-
tion theorem for contractive representations of these semigroups which yielded a
variant of the von Neumann inequality, extending some results from [7], [15], [18],
[20], [22] and [25].

In Section 4, we prove that L“(El G’j‘) is hyper-reflexive with distance
constant at most 56. In particular we show that the WOT-closure of the non-
commutative disc algebra A( £1 Gj) is hyper-reflexive with distance constant at
most 113. Let us mention that these hyper-reflexivity results can be extended to
a larger class of totally ordered semigroups P;, i =1,2,...,n, for n > 2.

The case n=1 remains open. It would be interesting to know the structure
of L>°(P) for P unital cancellative semigroup other than N, for example, if P is

the positive cone of an additive subgroup of R.
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After this paper was submitted for publication, we received a preprint from
Bercovici ([5]), which has a different generalization of the Davidson-Pitts hyper-
reflexivity result ([13]).

I am greatful to the referee for his helpful suggestions.

2. INVARIANT SUBSPACES AND INNER-OUTER FACTORIZATIONS

Let P be a unital discrete semigroup with the cancellation property, i.e., xy =
rz =y =z and yr = zx = y = z, and no divisors of the identity e € P, i.e.,
xzy = e ifand only if z = y = e. We say that x < y if and only if there exists
z € P such that y = zz. It is a routine to show that the relation “<” defines a
partial order on P. Let us call it the left invariant order relation on P. Let P;,
1 <4 < n, be n unital discrete semigroups with the cancellation property and no
divisors of the identity. We also assume that P; has an involution x — % such
that, 7 =2 and (xy)~: yx for z,y € P;. If P; is commutative we may take the
involution to be the identity on P;, i.e., * = x. Denote by 51 P; the free product

semigroup amalgamated over the identity e € P;. For every f,g € f2< ;1 Pi> we
1=

define their convolution f g € EOO( '21 Pi> by
=

(fxa)r) =D flo)gw).

n
owe x P;
=1

OW=T

Let us denote by {(5(,}0_e " the canonical basis of 52( ‘1;1 Pi>. Let \: EIPZ- —
i=1 B -
B(ﬂz( gl Pl>> be the left regular representation of _%Ll P; defined by
Mo)d, =0, for any o,7 € P.

It is clear that A(o)f = 0, x f for any f € 62( ;1 Pi). Similarly, we denote by
i

p: gl P, — B(éQ( ‘%1 Pi)) the right regular representation of g1 P; defined by
p(0)o, = 6.5 for any o,7 € P.
Observe that A and p commute, i.e.,

p(o)A\w) = AMw)p(c) for any o,w € P.
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Let us mention also that the left regular representation {)\(0)}0e s is

i=1
irreducible (see [26] for a more general result). We shall denote by P the set of all
polynomials p € €2< gl Pi) of the form

p= Z as0s, ags € C.
finite
Following [22], we define F‘X’( _;1 Pi) as being the set of all g € 52( glP,;) for
which
lglloe := sup{llg*pll2[p € P, [lpll2 < 1} < o0

where || - o= - /. A IffeFoo(;’ Pi> andgeﬂ(;’ H),then
52( * Pi) i=1 i=1

i=1

f*xg= lim fxp,
n—oo

the convergence being in £2 ¥ P;)), where p, € P and ||p, — g|l2 — 0 as
i=1
=

n — oo. Similarly to [22], Theorem 3.2, one can show that (FOO( ;Ll Pi), Il - ||OO)
i=

is a noncommutative Banach algebra. In the particular case when n =1,P; = N

we can identify F*°(N) with the Hardy space H*. Let us remark that the free

semigroup :ktl P; has the involution
i=

(91---9k) =gr--- g1 for any g; € P;,.

Let us define the operator

U:eQ(Qla) —>42< 3 Pi)

*
i= i=1
by setting U(yp) = @, where for every ¢ € €2< gl PZ-> we denote by ¢ the element

in 62( z B-) determined by @(o) = ¢(7), 0 € El P;. Tt is clear that U is a unitary

=1

operator such that U? = I and U(px ) = U(y)) x U(p) for all ¢, € 52( glp,;).

Following [21], an operator T € 62( e R-) is called

i=1
(1) multi-analytic if TA(c) = A(0)T for any o € gl P;;
(ii) inner if T is multi-analytic and isometric;
(iii) outer if T is multi-analytic and T(F( gl PZ)) is dense in 52( gl Pi).

On the other hand, we say that a function ¢ € €2< ‘Zél Pi) is outer if and only if
i=

{oxp|pe€ P} is dense in 62( ';1 Pi). Similarly to [24], Proposition 1.1, one can
prove the following.
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THEOREM 2.1. Let P;, 1 < ¢ < n, be unital discrete semigroups with in-
volution, the cancellation property, and no divisors of the identity. An operator
Ae B<€2( gl PZ>) is multi-analytic if and only if there exists ¢ € F°°< gl PZ-)
such that " "

Ah=h*@, h 652(513).

We denote A := R;7 the right multiplication by ¢. To each ¢ € F°°< El PZ->

we associate an operator
Lo (% P)—¢&( kPR
i=1 i=1

uniquely defined by L,g := ¢ g for g € 62( gl Pi>. Notice that if ¢ € P, and

o= a,0,

then L, = Y a,A(0). Observe that the mapping

o2y p) <o 2, 7)

is an isometric homomorphism. Denote the commutant of {p | o€ * P,}
£°°< ¥ Pi) and, similarly, ROO( ¥ Pi> = {)\(0) | cE ¥ Pi} .
i=1 i=1 i=1

COROLLARY 2.2. The double commutant of {)\(U) |oe %1 Pi} is equal to

(2.1) (3 R)={r,lpcF=( % P)}

Proof. According to Theorem 2.1, any element X € {)\(U) ’G‘ € i£1 Pi}l
has the form X = R~ for some ¢ € F‘X’( _El R-). Let A € B(@(Z_El PZ)> such
that AR~ = R~A for any ¢ € FOO(:1 H—). Since R; = U*L,U, it follows
that UAU*L, = L,UAU™ for any ¢ € FO"(iE1 Pi>. In particular, we have
UAU*A(o) = AMo)UAU* for any o € igl P;. Using again Theorem 2.1, there is
= F‘X’(ﬁl 3) such that UAU* = R. Hence, A = U*RzU = U"L,U% =

Conversely, if ¢, 9 € F“(igl Pi) and w € Z_Elpi, then

LQOR{Z((SUJ) =@* (60.1 *J) = ((P*(Sw) *{& = R{ZLsa(éw)

Hence, LS(,R{/; = R;;L(p. Since A(0) = U*p(0)U and using again Theorem 2.1, we
deduce the relation (2.1). This completes the proof. 1
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Is the algebra £°°< _;1 PZ-> equal to the WOT closure of the left regular

representation algebra? This is the case when P, = --- P, = N.

COROLLARY 2.3. ,CO"( ‘:1 Pi> coincides with its double commutant.
i=

COROLLARY 2.4. Let ¢ € F°°<E1Pi>. Then L, s invertible in

B(EQ( _gl Pz>) if and only if it is invertible in £°°< _;1 Pi)-

Let us remark that if ¢ € FOO( Z P,») such L, is invertible, then ¢ is an
outer function. =

We say that ¢ € F°°<£1 Pi) is inner if the multi-analytic operator R; is
inner. The proof of the following characterization for inner functions is similar to
[1], Proposition 1.6, so we omit it.

PRrROPOSITION 2.5. Let ¢ € Foo(g1 Pi). The following statements are
equivalent:
(i) ¢ is inner;
(ii) Ly is an isometry;
(i) {¢*ds |0 € gl P;} is an orthonormal set in €2< gl Pi>;
(iv) [lelle = f[#lloo = 1.
A closed subspace M C 62( e R-) is invariant for {/\(cr)}gE n o, A Ae)M C

i=1
=1

M for any o € ‘%1 P;. A subspace L C 62( gl Pi) is called wandering for

SCINP
i=1
Ao)L L AMw)L
for any o,w € ‘7_;1 P;, 0 # w. We say that two inner functions ¢, € F°°< gl Pi)
are orthogonal if

zQ( glpi) w31 ﬁ( ,:’EIPZ-) 0.
Using the version of the Wold decomposition from [26], we can obtain a description
of the invariant subspaces for A(o), o € ‘%Ll P;. Our Beurling type theorem ([6]) is

the following.

THEOREM 2.6. Let P;, 1 < i < n, be unital discrete semigroups with involu-
tion, the cancellation property, and no divisors of the identity. A closed subspace
M C 52( ‘Zl Pi) is invariant for each \(o), o € ';11 P;, if and only if there is

=z i

No, N1 C M reducing subspaces for \(o)|M, o € _%Ll P;, such that

M=Nyd M
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where

2( 7 =
(2.2) No=@B[e2(F P)*ail:

jeJ
with {¢;}es orthogonal inner functions and
(2.3) Ni=Pu \/  Ao)AMw)N,
oweE s P;
i=1
wgo

where Py is the orthogonal projection on M. Moreover, this representation is
essentially unique.

Proof. Applying Theorem 2.4 from [26] to the semigroup of isometries
{/\(0)|M}06 » ,» we obtain a unique orthogonal decomposition M = No & My

=1

with the property that Ay and N reduce each isometry A(o)|M, o € ‘21 P;, and
i

N(): @ )\((J)(ﬂ), /\/’12./\/19./\/'07

n
ce x P;
i=1

where £ is the wandering subspace for {A(o)\/\/l}ge n , given by

=1

(2.4) L=Mo \V  PumA@) Aw)M|.
o,we ¥ P;
i=1
wgo
Moreover, we have
Ni=Pu \/ M) Mw)M.
owe ¥ P;
i=1
wgo
Let {@,}es be an orthonormal basis for the Hilbert space £. Since £ is a wan-
dering subspace for (o), i.e.,
(2.5) Ao)L L AMw)L

for any o,w € 'Z;fl P;, 0 # w, it is clear that
1=
0o %@ Lo, *xp; foranyo,we ‘Z1Pi’ o # w.
=
According to Proposition 2.5, we deduce that ¢; is an inner function. The orthog-

=@ [e( 7))

jeJ n

onal decomposition

follows immediately using again the relation (2.5). The uniqueness part follows
from [26], Theorem 2.4, so we omit it. 1
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An intrinsic description of the subspace N7 would be interesting.

COROLLARY 2.7. If p1,p9 € FOO( ;1 Pi) are inner functions such that
1=

(p1*€2( Z Pi):gog*éz( Z Pi),
i=1 i=1
then there exists a € C, |a| =1, such that 1 = aps.

COROLLARY 2.8. If1 € F‘X’( gl Pi) is an inner function, then €2< :1 B) *

{/}v s an tnvariant subspace for /30"( ;1 Pi>.
1=
Proof. Let v € F OO( %1 Pi) be an inner function. Then R;; is an isometry
—— 2 % P wdis clos (7 p e
and range Rw 4 (iil P,) * 1) is closed. If ¢ € F (l:l Pl>, then Lwa Rng,

and we have

Lo (62(131 Pi) *1;> - LS"RJ(EQ(zgl P’)) - R;/;L‘P (32(1‘51 Pl))
(R - (3, 7) v

This completes the proof. 1§

COROLLARY 2.9. Let P;, 1 < i < n, be unital discrete semigroups with
involution, the cancellation property, and no divisors of the identity. If Py,..., P,
are totally ordered by the left invariant order relation “<”, then the relations (2.3)
and (2.4) are equivalent to

Ni= \/ MoM and L=MO6

o€ s P; oc X P;
i=1 i=1
o#e o#e
In the particular case when P, = --- = P, = N, the subspace N7 = {0},

due to the Wold decomposition from [20]. Moreover, if n = 1 and P, = N, then
Theorem 2.6 coincides with Beurling’s theorem ([6]). In our setting, according to
Theorem 2.6, the invariant subspaces of {)\(0)}0e » , are not all generated by

inner functions, i.e., of the form (2.2), so N7 # {O}f:1
Let us consider an example. Let Gj(l < ¢ < n) be n positive cones of discrete
additive subgroups of R, such that they are dense in R*. Define M C ¢? ( £1 G;“)
by
M= B Mo)(Cd).
ce % Gf

i=1

o#0
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Now it is easy to see that

and it cannot be of the form (2.2).
Notice that, according to the Wold decomposition ([26]), {A(c)| M}

oc ¥ G;r
i=1
is not unitarily equivalent to a direct sum of copies of {)\(O’)}Ue e Using the

i=1
same idea, it is easy to construct many other invariant subspaces of {\(c)} .
(e N
x G

which are not generated by inner functions.
The following result shows that there are very few invariant subspaces for

{/\(O’)}UE n 4+ arising from the eigenvectors of the adjoint {)\(0)*}0E oo

i=1 i=1

THEOREM 2.10. Assume that all the semigroups G;", i =1,2,...,n, are

dense in RT. Then there is only one 1-codimensional invariant subspace for A(c),
o€ gl GF, and thisis M= @ \o)(C).
= o€ ¥ Gzr
i=1
o#0
Proof. Assume that there is ¢ € 62(51 Gf), l¢ll2 < 1 such that {p}t is
invariant for each A(¢), o € ,:1 G7. This shows that, for each w € ,:1 G, there
i= =

is u(w) € C such that A(w)*¢ = p(w)p for any w € gl G7T. Since {)\(a)}ae n oo

i=1

. . . . . n
is a semigroup of operators, we infer that u is a semicharacter of * G;-". Assume
i=1

1=

p,00) = 1. Then, for any w € e , we have
< . 1 (2
i=

(¢, 0u) = (@, Mw)do) = (u(w)p, do) = p(w).

Therefore p = Y p(w)d,. Since ¢ € £2< El

Gj), we must have
» +
Y WP <t
we ¥ G;r
i=1

i=

According to [14], Theorem 3.2, there exists ig € {1,2,...,n} such that u(g) =0
for any g € G with i # ip. On the other hand, as in the proof of [14], Theorem 1.4,
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thereis 0 < r < 1 and v € CA}'iO such that u(g;,) = r%0~(g;,) for any g¢;, € Gjo.
Therefore,

o= > r5(gi))dg,

Jig EG;:)

with

> P <L

+
giOEGiO

Since G;; is dense in RT, the later inequality is true if and only if » = 0. This
shows that ¢ = §p, which completes the proof. 1

Let us also notice that if M C ¢2 ( gl G} ) is an invariant subspace for the left

1=
regular representation {)\(0)}0e n .+ such that there is g € M with Pes,g # 0,
i=1 "

then there is an inner function ¢ € F°°< ';1 G:r) such that
ez( glaj) *F C M.

Indeed, since g € M and Pgs,g # 0 it is clear that M # V  Alo)M

o€ % G:r
i=1
o#0
and therefore there exists a function ¢ € M & V  A(e)M]|. This implies
o€ & G;"
i=1
o#0

82( :kll Gj) * o C M. It would be nice to know if any invariant subspace of
i=

{)\(O’)}UE n 4+ contains an “inner” invariant subspace. We expect a negative an-
i=1
swer to this question.
Now let us prove some extremal properties of outer functions. The following
theorem as well as its consequences were proved in [24] in the particular case when
P =-.- = P, = N. Here, we extend those results to our setting, obtaining an

analogue of Szegd’s theorem.

THEOREM 2.11. Let P;, 1 < i < n, be unital discrete semigroups with involu-
tion, the cancellation property, and no divisors of the identity. If ¢ € F°°< ;1 PZ->
1=

is an outer function, then |p(e)| = |w(e)| for any ¢ € FOO( %1 Pi) such that
LiLy = L Ly.

Conversely, if ¥ € FOO( _;1 Pi) s outer and ¢ € F°°( '521 PZ-) such that
lp(e)| = |¥(e)| and L, Ly, = Ly, Ly, then ¢ is outer.

1=
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Proof. Suppose that ¢ is an outer function in F °°< ':kll PZ-). We have

1=

2

lo(e)]” = pi?fn )R;;(ée)— ST AWk -
h izl Fi weg P;
w;e

Since this infimum is attained with k, = /\(w)*Rg((Se)7 w e ‘:kll P, w # e, and
i

Rg(ﬁ(igl P,)) is dense in 62( : Pi), we deduce

i=1

e = inf  ||R=(6.)— Y Aw)Rs(hy)
hweﬁ( 'il Pi) we P
ke
= inf <R§R;<5e— > A(w)(hw)>,<6e— > A(w)(hw)>>
hoetr( % P)) . .
i=1 we,v:IPi weiLPi
wH#e wH#e
:plen7£0<R$R;(5e —p), (0e = p))-
Therefore,

lp(e)| = plen7£0 |(0e — p) * @l|2,

n

where Py is the set of all polynomials p in 62( * PZ-> with p(e) = 0. Since
LiL, = Lj,Ly, we obtain

2 s * D _ _ — 3 * P _ _
lp(e)l” = inf (RERZ(0e —p), (0 — p)) = inf (RERG(0e —p), (0 —p))
— inf [|R~(6, — p)||> > inf |R~(5.) — q||? = 2
Jnf ([R50 —p)I” > nf [R5(0) —ql” = |¥(e)]

Now, suppose @, € F‘X’(glPi) such that ¢ is outer, |p(e)| = |u¥(e)|, and

LiL, = Lj,Ly. Due to the later relation and since Ly, has dense range, there is

an isometry X € B(£2( ¥ P,)) such that XLy, = L,. Notice that
n /

(2.6) Xe{RﬂgeF“(‘flPi)}.

Indeed, according to Corollary 2.2, we have

(RzX — XR:)Ly = (R-Ly — LyRy) — X (LyR=— R=Ly) = 0.
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Since L, has dense range, it follows that (2.6) holds. According to Corollary 2.3
and Proposition 2.5, there exists an inner function f € FOO( gl H-) such that
X =Ly. Since LyLy = L, we have

[p(e)] < lple)] = |f(e)p(e)| = [[Pes. Ly ((e)de)ll2
< ILp(h(e)de)llz = llb(e) fllz < Nl (e)dellz = [¥(e)]-

Hence, 9(e)f(e)d. = 1p(e) f. Therefore, f(w) =0 for any w € gl P;, w # e. Since
f is inner, we deduce that f = «d, for some a € C, |a] = 1. Therefore ap = .

This completes the proof. 1§

COROLLARY 2.12. If p,% are outer functions in F“(E Pi) such that
LyLy, = Ly Ly, then ¢ = ay for some a € C with [af = 1.

COROLLARY 2.13. Ifp € F°°( ‘%1 Pi) is an outer function, then

lp(e)| = inf [lo* (0 —p)ll2  (Szegd infimum)
PEPo

where Py is the set of all polynomials p in EQ( ';1 Pi) with p(e) = 0.

In the particular case when P = --- = P, = N (n > 2), an inner-outer
factorization for the elements in EOO( ‘;Ll N) (resp. €2< ;1 N)) was obtained in
i= i=

[21] (resp. [1]). In what follows, we characterize the elements ¢ € 62( _;1 PZ-),
1 # 0, which admit inner-outer factorization, when Py, ..., P, are semigroups, as

considered in this section, and totally ordered by the left invariant order relation

“<”. Denote
Eoz{ \/ A(U)J}e[ \/ A(o—)zz].

cE * P cE % P
i=1 i=1

o#e
We say that 1 has the property (L) if

(L) \/ )‘ \/ )‘ P[lo

06* P; UE*PL-

i=1 i=1

where Ppg, is the orthogonal projection onto Ly, or equivalently, if f € €2< gl Pi>
and f L No)Pp, for any o € ‘%1 P;, then f L A\(o)9 for any o € gl P,
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THEOREM 2.14. Let P;, 1 < i < n, be unital discrete semigroups with in-
volution, the cancellation property, and no divisors of the identity. Assume that
P;, 1 < i < n, are totally ordered by the left invariant order relation “<”. Then
P € £2< _%1 PZ-) , ¥ # 0 admits a factorization v = ¢ x g with ¢ inner and g outer
function;_if and only if ¢ has property (L).

Moreover, the factorization is essentially unique and ¥ € F>° (1;1 Pi> if and

only if g € Foo(iLPi) and || Y]lco = 9|l -

Proof. Suppose ¥ = ¢ x g where ¢ is inner and g is outer function. Since g

is outer there is p,, € P such that ||p, x g — del]2 — 0 as n — oo. Hence,

(2.7) ANoyh =/ (50*@*5:@2(?13)*@.

1=

n n
o€ x P; o€ x P;
i=1 i=1

Similarly, one can see that

V oW =\ Mo

n n
o€ x P; o€ x P;
i=1 i=1

o#e o#e

Since ¢ is inner, we infer that

ﬁozl \V Mow|le| V Mow|=Cé
o€ ¥ P, o€ * P
B 0‘;6

Hence, P, = a@ for some a € C\ {0}. Now, if f € 62(51 H) with f L
(o) Py for any o € z‘ElP’" then f L €2<£1 Pi) x . Taking into account (2.7),
we deduce that f L (o)t for any o € 251 P;, which shows that ¢ has property (L).

Conversely, suppose that ¢ has property (L). Since £y is a wandering sub-

space for {/\(0)}0€ n o it follows that ¢ := Pr,¢ is an inner function in
i=1

F°°<£1Pi>. Thus,
M=\ Aoy = Ez(iflPi) 3.

n
oc x P

=1
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Hence, there exists g € 62( _:kll PZ-) such that 1Z = g*@. Since p € M, there is
1=
prn € P such that ||@ — p, x || — 0 as n — oo. Therefore, we have

R(0.) =@ = lim (pax ) = (lim po#3) *$ = Rz( lim p3).

¥ n—oo

Hence, R~(6. — lim p,*g) = 0. Since R~ is an isometry, it follows that lim p,
_ ¥ n— 00 ¥ n—oo
g = 6. which shows that ¢ is an outer function.

Let us prove the uniqueness. Suppose that ¢ = p1xg1 = waxga, where @1, @2
are inner and g1, go are outer functions. Then 62( .:kll Pi> * P = 12 v:kll P,») * Oy

1= 1=

and according to Corollary 2.7, ¢1 = ays for some a € C, || = 1. On the other
hand, we have

g1 %P1 — g2 * P2 = (ag1 — G2) * P2 = R;Z(aﬁl —g2) =0.

Since ¢ is inner, we infer that ag; = g2. Notice that, for any p € P, one has
(@ *g)*pllz = [lo* (9*p)ll2 = llg * pll2. Hence, we deduce that g € FOO<£1PZ'>

if and only if v = p*g € F°°( _gl H). This completes the proof. 1§

Notice that the subspace Ly always has dimension 0 or 1. When do these two
possibilities occur? What is the significance of the subspace when it is non-zero ?
Perhaps an answer will show what property (L) really means.

3. REFLEXIVITY AND PROPERTY A; FOR SOME ANALYTIC TOEPLITZ ALGEBRAS

Let H be a Hilbert space and B(H) be the algebra of all bounded operators on H.
If A € B('H) then the set of all invariant subspaces of A is denoted by Lat A. For
any U C B(H) define
LatU = () Lat A.
AelU

If S is any collection of subspaces of H, then
AlgS:={Ae€ B(H)|S C Lat A}.

An operator algebra U C B(H) is reflexive if AlgLatU = U.

Throughout this section, P;, i = 1,2,...,n, n > 2, are unital discrete can-
cellative semigroups with involution and no divisors of the identity. In what fol-
lows, we consider a few examples of inner functions in F°°(£1 PZ-) which will be

very useful to prove the main result of this section.
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LEMMA 3.1. Let o € ';Ll P, 0 #e, and let (2) = . arz® be a function in
= k=0
the Hardy space H?. Define @, € €2< %1 Pi) by setting
(3.1) Yo = I;)akéak where oF =g .- 0.
= k times

Then ¢ is inner (resp. outer) in H™ (resp. H?) if and only if v, is inner (resp.

outer) in F“( gl Pi) (resp. €2< '%1 Pl)) .

Proof. Let ¢ € H? and let ¢, € 62( gl Pl-> be defined as above. We show

that {ps *dy |w € _gl P;} is an orthonormal set in 62( _%1 Pi) if and only if ¢ is

inner in H*°.

. n
Fix w1, wq € .*1 P; and denote
1=

S = <5:;1 *@,,5;2 *@,T).

If wy,ws are not comparable, i.e., w; € wo and we € wy then S = 0. Suppose that

. . n
w1 < wo, that is, wy = wiws for some unique ws € _*1Pi. Hence,
1=

S = (B b3, * Bo).

We have two subcases to consider. If ws is infinitely divisible by o # e, then it is
easy to see that S = 0. Indeed, notice that

<50'"7 5(7711 * 50.13> - 0

for any n,m € {0,1,2,...}. It remains the case when w3 = 0"y with o £ u and
k=0,1,.... We have

S = (o, Qo * O *0p).

Now, if 4 # e, then it is clear that S = 0 because ¢ £ p. On the other hand, if
© = e, then
S = {Por o x Ggr) = (p(2), p(2)2") 2.

Therefore, {p, *xd, | w € '%1 P;} is an orthonormal set in 62( E R-) if and only if

{p(2)2* | k = 0,1,...} is an orthonormal set in the Hardy space H?. According
to Proposition 2.5, we infer that ¢ is inner in H*° if and only if ¢, is inner in
F‘X’( : Pi).

i=1

1=
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Now suppose that ¢ € H? is outer, that is, there exists a sequence ¢, € H?
of analytic polynomials such that ||¢g, — 1|y — 0 as n — oo. This implies
oo * (qn)o — dell2 — 0 as n — oo and hence ¢, is outer. Conversely, suppose that

p, is outer in 62( ‘:kll H). Then there exist polynomials p,, € P such that
i=

(3-2) 60 * Pn = ella — 0

as n — oo. Let H2 := \/ d,+ and notice that
k>0

@(iip”) =H?® [@Hj*au] @ [ \/ Hg*éw},

olu v is infinitely
n#e divisible by o

and HZ is a reducing subspace for L, . Since PL,, = L, P where P is the

orthogonal projection of 52( g1 Pi) onto H2, the relation (3.2) implies
HL%PPn —dell2 — 0

as n — oo. It is clear that Pp, = (gn), for some analytic polynomial ¢, in H?2.

Therefore, we have

legn = a2 = ll¢o * (gn)e — dell2 — 0
as n — o0o. This completes the proof. 1

COROLLARY 3.2. The function A, is inner in FOO( 2 Pi) for every o €
gl P; and |\ = 1.

Let us remark that one can also prove that the mapping
e H® s o, € F°°( _QIPZ)
i=

is an isometry.
The following result is an extension of [1], Lemma 3.2, which we need in what

follows.

LEMMA 3.3. Ifw € _;1 P, w#e, and A€ C, |\ <1, then

for = (60 — Ade) x (0 — A3,,) 1
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s inner in FOO( * H-) and
i=1

(3.3) N {fw *52(513)] — {0}
0<|A|<1 N
weil P;,w#e

Proof. Let b(z) = (z — A)/(1 — Az) be the M&bius map of the unit disc D =
{z € C||z] < 1}. Since b(z) is inner in H>* and b, = f,x, according to
i P).

Lemma 3.1, we deduce that f, x is inner in F°°< *
1=

o0
Let us denote @, 5 1= > A\E§, ., where w® = e. One can prove that D,n L
k=0

fo *62( 47_;1 PZ-) for any A € D\ {0}, and any w € g1Pi’ w # e. Indeed, since
5, — A0, is invertible in F°°( * R), we have

i=1

<(5w - )\55) *603 (I)w,)\> = <5wa> (ﬁw,)\> - )\<507 (pw,)\> =0

for any o € ‘%Llpi' Ify e fw’/\*€2(.21

P,») for any A e D\ {0}, w € glPi, w#e,
then (¢, @, ) =0, Le.,

S N, 0,) =0 forany A€ D\ {0}, w € iEIPi7 w#e.

This implies (¢, 0,1) = 0 forany k =0,1,...,w € gl P;, w # e. Hence, (¢,0,) =0

for any o € ';1 P;, that is, ©» = 0. Therefore, the relation (3.3) is satisfied. 1

There is a canonical homomorphism of * P; onto H P; which is the identity
1=

on each P;. Let the image of an element ¢ be denoted by |o|, which we will call
the lenght of o.

EXAMPLE 3.4. For each g = (g1,...,9n) € [[ P; denote
i=1

—g).

Let Y, := span{d, | w € Qq} C 82( gl Pi). If f eY, with ||[f|l2 = 1, then f is

Qi={we ¥ P
=1

inner. Indeed, if wi,ws € Q4 and o, 1 € ;1 P;, then wio = wop if and only if wy =
1=

wy and o = p. On the other hand, if f = )" a,d, € Yy and o, € ‘%L1 P, o # p,
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then fxd, L f«0,. Since ||f|2 = 1, using Proposition 2.5, we infer that f is
inner.

EXAMPLE 3.5. Let {0;}ier C ;1 P; be with the property that for any 4,5 €
1=
I,i# j,0; & ojand o £ o;. If 3 |a;|?> = 1, then ¢ := Y a;0,, is inner.

el el
In particular, if {o1,...,0%} C '$1Pi has the property that any two monomials
1=
0i,0; € {o1,...,01} start with elements belonging to different semigroups P;

k
> aid,, is inner.
i=1 i=1

(i=1,2,...,n) and zk: la;|> = 1, then ¢ :=
EXAMPLE 3.6. Let {i1,...,ix} and {j1,...,7,} be disjoint subsets of
{1,2,...,n}. If f € (P, %% P;, ) with || f[ =1 and 0 € Pj, x---x Pj ,0 # e
then f*d, is an inner function in F' ‘X’( >T|<L Pi). Moreover, if ¢ is any inner function
of type considered in Example 3.5, theﬁ 1f * (p is inner.
Let 01,00 € Py, x---* P;, and wj,ws € 31 P;. Notice that, for any o €
Pj, *---xPj,,

show now that if wi,ws € glPi,wl # wo, then (fx0y)*0,, L (f*0s)*0y,. Since

010w = 090wy if and only if 09y = 09 and w; = wy. It is easy to

|f *ds|l2 = 1, it follows that f % d, is inner. The last part follows in a similar

manner.
The following theorem extends the main result from [1] to our setting.

THEOREM 3.7. Let P;, 1 <i<n,n =2, be unital discrete semigroups with
inwvolution, the cancellation property, and no divisors of the identity. Then the
algebra £°°( _:kll PZ-> is reflexive.

1=

Proof. For simplicity, denote E‘X’( gl H) := L. We need to prove that
AlgLat £ C L. Let us fix A € AlgLat £>°. According to Corollary 2.8, for
every  inner in F°°< gl PZ-), 52( _%Ll PZ-) *p € Lat £ and hence, A<€2< -inkl PZ-) *

6) - 62( gl R-) * @. Therefore, to each inner function ¢ corresponds a unique
function ¢ € EQ( gl Pi> such that

(3.4) Ap =1 x .

In particular, for each w € _%Ll P;, thereis ), € 62( gl H-) such that Ad,, = Y, *0,,.

Let g = (g1,.--,9n) € [[ P; with g # (e,...,e) and
i=1

(2

Qy={we iEIP,» |lw| =g}
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In general, 2, is not a singleton. Fixwg € 0y and let w € 4, w # wy. According to
Example 3.4, f = %(5;0 +0~) is inner (notice that o € Q, if and only if 7 € Qg).
According to (3.4), there is 1) € 52( ;1 B) such that

1=

(3.5) Af =v+f= 7(1/1*5w0+1/1*5 w)-

On the other hand, we have

(3.6) Af = (A5, + A8,) = %(%0 x By + Wy % 0,).

V2

Since wg,w € Qy,w # wy we have €2< *1P> * 0y L 62( nl i) * 0, (see Exam-

ple 3.4). Hence, using the relations (3.5), (3.6), we infer that 0., = 1w, *0w, and
Y * 8y = 1, % d,,. Since d,,, and §,, are inner, we have ¢ = 1, = 1,,. Therefore,

(3.7) Yy =1, forany w e Q.

If ©, is a singleton, then (3.7) is trivial. Notice that

F Pi={e}u U Q.
gEHP

g#(e, €)

n
Let us fix an element gy = (¢?,...,9%) € [[ P; with g0 € P\ {e},i=1,...,n

i=1
and fix

wo € Qo = {weiEIPinl Zgo}-

Choose an arbitrary g € H P; with g # (e,...,e) and g # go. Since n > 2,

there exist wy € Qp and (71 6 Q4 such that they start with elements belonging to
different semigroups P;,i =1,...,n. The function h = ﬁ(éwl +d,,) is inner (see

Example 3.5) and, according to (3.4), there exists ¢y, € 62( ‘%1 Pi) such that

Ah =y xh = —(¢h*5~ + b 0= ).

g

On the other hand, we have

AE 7(7;%1*5 +’l/)0'1*6 )
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for some Y, , Vs, € 62(51 PZ->. Since €2< E;

that ¥, = Y, = Yp.
Since wp,w; € Qp, we already proved (see (3.7)) that ¥, = ¥, = ¢, for

PZ-> xoy L 62(51 PZ-) *d> we infer

any w € )y. On the other hand, due to similar reasons, ¥, = ¥, for any o € €.
Therefore, 1, = ¥, = ¥, for any w € Qg and o € ;. Hence, 9, = 9, for any
o€ ¥ Pi\{e}

i=1

The above results show that there exists h € 62( ¥ Pi) such that
Ab, = hxd,

for any w € .:kll P;, w # e. Since A is a bounded operator, it is clear that h €
i=

E‘X’( z Pi>. Let B := A— Ly and h' := Ad,.. It is clear that B € AlgLat £,

i=1

Bé,=0ifw+e, we _glpi, and Bd, = b, where b := h' — h.
According to (3.4), for any inner function ¢ € FOO( gl Pi), Bp =1 for

some 1) € €2< ':kll Pi). This shows that (@, d.)h"” = 1¥x@, hence, " € 62( .:kll P,»)*@
1= 1=

for any inner function ¢ with (@, d.) # 0. According to Lemma 3.3, we infer that

h" =0, which implies A = L;, € L. This completes the proof. 1

Taking into account the results we have obtained so far, we can easily extend

Theorem 2.10 from [13] to our setting, and show that /300( ;1 PZ) has property
i=

Aq. The proof follows the same lines but we shall include it for completeness of

exposition.

THEOREM 3.8. Let P;, 1 <1< n,n > 2, be unital discrete semigroups with
involution, the cancellation property, and no divisors of the identity. If ® is a

weak-x continuous linear functional on EOO( _:kll H), and € > 0, then there are
1=

elements x,y € €2< '21 Pi) such that
1=

D(A) = (Az,y) forany A€ Eoo( g1 Pi),

and [|z|[, [lyll < llll +e-

Proof. Let ® be a weak-* continuous linear functional on EOO( ;1 H) and
1=

fix ¢ > 0. According to Hahn-Banach theorem, there is a trace-class operator
K e B(EQ<E1P¢)) with [|K|); := Tr(K) < |l¢]| + ¢ and ®(A) = Tr(AK) for all

Ae E”( ‘3;1 Pi>. The singular decomposition of K yields
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Kh = Zsk<hafk>gk

where {fr}32,, {gr}72, are orthonormal sequences in KQ( K Pz), sp = 0, and

i=1

> sk = ||K||1. Define z = Z sk ( k*x @r) and y = Z sk ( frx * @1), where

{pr}72, are orthogonal inner functlons ie., okl = ||g0k||OO =1 and

CLER) L[ R) <5

for j # k. For example, fix g € P, \ {e}, w € P1 \ {e}, and define v; := 64y,
. o)
j=1,2, ... where ¢ =g---g. It is easy to see now that ||z|2 = ||y|lla = >_ s =
—— k=1
j times
||K||1. Notice that €2< * P) * @, are invariant subspaces (see Theorem 2.6) for

{A\(o >}ae ;, Gt and hence, according to Corollary 2.8, they are invariant to any

Ae £°°< Z) On the other hand,
(3.8) R* AR~ =A

for any A € EOO( ‘%Ll Pi). Indeed, since A = L, for some ¢ € F°°( ‘%1 R-), we
have

ARJJ. (50) =9 x (50 * QZJ) = W) * 50) * &j = R;;J.A((Sa)

for any o € * P;. Since y; is inner, R g is an isometry. Therefore, the relation
(3.8) holds. Usmg all these facts, we deduce

(p(A) =Tr AK Z Sk Agk, fk Z Sk <R:;kAR<pkgka fk>
= k=1

= sk A(gr * k), fr * Pr) = <Z gk*&k)vzsllgmfk*ﬂzk>

1 k=1 k=1

This completes the proof. 1§

COROLLARY 3.9. The weak-+ and WOT topologies on ﬁoo( ‘%Ll Pi) coincide.
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4. HYPER-REFLEXIVITY FOR SOME ANALYTIC TOEPLITZ ALGEBRAS

The algebra U € B(H) is said to be hyper-reflexive ([4]) if there is a constant M
such that

(4.1) dist(T,U) < M sup |PzTP.|
LeLatU

for any T' € B(H), where P, is the orthogonal projection from H onto £ and
Pj = Iy — Py. The constant of hyper-refexivity is the smallest number M with
property (4.1). The list of algebras known to be hyper-reflexive is rather short.
It includes, for example, nest algebras ([3], [17]), injective von Neumann algebras
([8]), the analytic Toeplitz algebra LOO( _:kll N) (see [11] for n = 1 and [13] for
n > 2), and very few others (see [9], [27}).1_

In this section, we provide a new class of hyper-reflexive algebras, including
EOO( '21 Gj), where Gj, i =1,2,...,n, n > 2, are positive cones of discrete
additiZ\_fe subgroups of real numbers. In particular, we show that the WOT-closure
of the noncommutative disc algebra .A( ,:"Ll G;") (see [14]) is hyper-reflexive.

We need first a few preliminary restil_ts. Asin Section 3, let P;,i =1,2,...,n,
n > 2, be unital discrete cancellative semigroups with involution and no divisors
of the identity.

A WOT-closed algebra U is said to have infinite multiplicity if it is unitarily
equivalent to an algebra of the form B ® I where [ is the identity operator on an
infinite dimensional space. We need to recall a well-known result about algebras
of infinite multiplicity.

THEOREM 4.1. Every WOT-closed algebra of infinite multiplicity is hyper-
reflexive with distance constant at most 9.

This theorem is a consequence of some results from [2], [8], [11], and [16] (see
[13], Theorem 2.7). The following result will be constantly used in this section.
To simplify our notation, denote Eoo( Q Pi) = L,

LEMMA 4.2. Let W C Zg( gl Pi) be an infinite dimensional wandering sub-

space for A\(o), o € _%Ll P;, and denote X := @ MNo)W. Then X is invariant
h o€ x P;

[3

[ %3

1

for L2° and for any T € B(£2< gl Pl)> we have

(4.2) dist (T|X,L°|X) <10  sup  ||PFH(T|X)P.||
LeLat (£2°]X)
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where Pr is the orthogonal projection of €2< _:kLl PZ-> onto L.
1=

Proof. As in the proof of Theorem 2.6, we infer that there exist orthogonal
inner functions v; € F°°< gl R), j € J, with card J = dim W such that

- 2( L p -
= EBK (iilﬂ) * Y-
jeJ
According to Corollary 2.8, 62( gl H) * Jj is invariant for £ and hence X" is
invariant for £°°. Since -
n !/
£ = {R’ZW) € Foo(iilpi)} ’

it is clear that £>° is WOT-closed in B(Ez( :kl R)) and hence, £L>*|X is WOT-

=1

closed. For each j € J, define W; : 52( ;1 Pi> — 62( ;1 B-) *Jj by W, f = R{;.f
1= = J

1=

for all f € €2( .:kll Pi). Since v); is an inner function, it follows that W is a unitary
i=

operator. On the other hand, if ¢ € F‘X’(ﬁl Pi), then
LW, f = Llef;jf = R%Lq,f =W;L,f
for any f € £2 ( 151 Pi). Therefore,
Wi (Ll P)xdy )W = Ly
for any j € J. Since £>|¢? (igl Pi) sz is unitarily equivalent to £°°, and the

subspaces Z2< ‘:1 Pi> *%,j € J, are orthogonal and invariant to £, it is easy to
see that L>|X s unitarily equivalent to L% ® I, where I is the identity operator
on a Hilbert space of dimension equal to dim W.

Since L£*|X is a WOT-closed algebra of infinite multiplicity, using The-
orem 4.1, we infer that it is hyper-reflexive with distance constant at most 9.
Therefore, we can deduce that

(4.3) dist (Py(T|X), L¥|X) <9 sup  [|PA(T|)P].
LELat (£5°]X)

On the other hand,

dist (Py (T|X), LX) < [|[Px (T|X)[| < sup [Pz (T|X)Pe].
LELat (£5°]X)

Combining this inequality with (4.3), we obtain (4.2). This completes the proof. &
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K2

LEMMA 4.3. Let M C 62( '%11 PZ-> be an invariant subspace for £°°(

g1 H) ’
If there is a wandering subspace W C M for {\(o)}

n ., then
* P

=1

[<AS
Lol = 1Ly M|

for any p € F*> (gl Pi).

Proof. According to Corollary 2.8, the subspace N := € A(o)W is in-

variant for EOO( %1 Pi). Notice that
Lol 2 |1 Lo M| 2 | Lo IVl = | Ly |-

The last equality holds because L,|A is unitarily equivalent to a direct sum of

a := dim W copies of L,. This ends the proof. 1

We provide now a new class of hyper-reflexive algebras, including
/300( ,:‘llGj)7 where G
1=

7 7

i =1,2,...,n, n > 2, are positive cones of discrete
additive subgroups of real numbers. For the sake of simplicity, we prove the
hyper-reflexivity for £°°< ‘:;1 Gj‘)

The proof uses somg ideas from [13], Theorem 2.9, but is quite different at
some points because of the new obstructions which occur in our more general

setting (see Section 1).

THEOREM 4.4. Let G

7,1 =1,2,...,n, n > 2, be positive cones of dis-

crete additive subgroups of real numbers. Then the algebra L£>° ( 1£1 Gz) 1s hyper-
reflexive and for any T € B(EQ(’El GI)) we have

dist (T, 500( Zlag)) <56 sup |PATP.,

LeLatEOC( ¥ af

where Py is the orthogonal projection from (2 ( k%l Gﬁ) onto L.

Proof. Let T € B(Ez( * Gz)) be a fixed operator. Setting
k=1

C = sup HPE‘TPgH,

ceLatL>| % GF
k=1
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we need to prove that
(4.4) dist (T, £OO(£1G;)) < 560C.

For each i = 1,2,...,n, choose a decreasing sequence {g;m}5°_; C G; \ {0} such
that g;,m, — inf(G \ {0}) as m — oo. For each j = 1,2, and m = 1,2,..., define
the subspace

2( T 2( 7
o= [ @ ¢ (kilGﬁ)*dgm*chj ® @ ¢ (k;G-’:)*égm]
1€{1,2,...,n} i€{1,2,...,n}
i i#j
ngG;rﬂ[gjmpO)
According to Corollary 2.8, the subspaces Xj,,, j = 1,2, are invariant to

n
coo(klélc:,j). Notice that X := Xim + Xom = eae?(kﬁlag) 8, . Ac-
= =1 =

cording to Lemma 4.2, there are elements A;,, € .Coo(k:kLl GZ‘), i=1,2,..., such
that -

Notice that X1, N o, is an invariant subspace for E‘X’(k::lGZ) containing a

wandering subspace, for example d,,  *d,, . According to Lemma 4.3, we have

gim g2m

||A1m - AQm” == ||(A1m - AQm)‘le N XQm”
< (A = D)X + (T = Azm )| Xom|| < 20C,

and hence

(4.6) A — Aim]| <100, i=1,2,

where A, := (A1 + A2m)/2. Combining (4.5) with (4.6), we obtain
(4.7) T — Ay)|Xim|l < 20C  for each i = 1, 2.

For any h € X,,, there exist f; € X, @ = 1,2 such that f; L fo and h = f1 + fo
(notice that Py,, Px,, = Px,,, Px,, ). Therefore, we have

(T = Am)| X |[< sup {[[(T" = Am) foll + (T — Am) f2l[}
heX,,

llAll=1

1/2
(T = A)| X2 + (T = Ap) [ Ko |2)

< 20V2C.
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since 2( ¥ GF) 4y, © E(F GP) o

and {0y}~ is an increasing union of these subspaces. On the other hand, applying

Gi(ma1) it is clear that &, C X,41

again Lemma 4.3 and using (4.5), we have
[Aiml = | Aim |Xim|| < 10C + [T

Therefore, ||Ap| < 10C + ||T||. Since the unit ball of B<€2<I£1 G;)) is
WOT-compact, let A be a WOT-limit of a subsequence of {A,,}. We deduce that
acr=( t Gf) and

k=1

(4.8) I(T — A)[{do}*]| < 20v2C.

Let us fix w € lﬁl GF,w#0and A € C, |A| <1. According to Lemma 3.3, the

Mo6bius function
Puw, X = (5w — /\(50) * (50 — X5w)_l

. . . mn n . . .
is inner in F°°< * G:) Therefore, N := 62( * GZ) * (P, A IS an invariant
k=1 k=1 ’

subspace for L“(k%l Gg) Let us fix g € G} \ {0} and define ¢; = duyg,,
j=1,2,..., where g; = g+ ---+g. Since n > 2, it is easy to see that we can
—_—
j times
choose w and g such that

e(,F,6E) xvs LE( FGE) x

for j # k, and
E(E,Gt) wvs LE(F GF) o

for any j = 1,2,.... For example, take w € G} \ {0} and g € G} \ {0}. Notice
that -
— 2( ¥ ot ,
M= [G?g (kile) *%] oN
=

is an invariant subspace for /.Zoo(lﬁl GZ) with infinite dimensional wandering
subspace containing ¢, ». Using again Lemma 4.2, we deduce that there is an
operator B € L’O"(k%l Gz) such that

(4.9) (T = BN < (T = B)IM]| < 10C.

Notice that NN {dp}* is an invariant subspace for £°°<k:klng) containing an

wandering subspace, namely the one generated by d, * ¢ ,, where g € G}t \ {0} is



418 GELU POPESCU

fixed as above. According to Lemma 4.3, the relations (4.8) and (4.9), we deduce
that

1B — All = [[(B = AW {ao}|
< (B =T)N + (T = Ao} ]| < (10 +20v2)C.

(4.10)
Since ¢y = —Ady + g for some g € {5o}+ and |[¢x |2 = 1, we have
(T—=A)(Aéo) || < (T =A)prwll+HIT=A)gll < (T—A)IN+IT=A) {0} [ 1912
On the other hand, using again Lemma 4.3, we infer that
(T = AN < IT = B)NVI + (B = AN < (T = B)IV|[ + 1B = All.
Combining these inequalities, we obtain
1T = A)(Aoo) | < (T = B)N |+ [|1B = All + 1T — A)[{do} || | 2] 2.
Since ||hlls = /1 — [A]2, using (4.8), (4.9), and (4.10), we obtain
A (T — A)dol| < 20(1 +V2)C + 20v2C/1 — [A]2.
Since this inequality holds for any 0 < A < 1, setting A\ — 1, we deduce

(T — A)éo|| < 20(1 + V2)C.

Using the Cauchy-Schwarz inequality, we obtain

17 = Al < (I(T = A)do > + (T = {0} [1%)""* = 20y/5 +2v2C < 56C.

Hence, the relation (4.4) follows, so COO(IEI G;) is hyper-reflexive. This com-
pletes the proof. 1

A consequence of Theorem 3.8, Theorem 4.4, and [11] or [16] is the following.

COROLLARY 4.5. FEvery WOT-closed unital subalgebra of Eoo(lﬁl Gz) 1s

hyper-reflexive with constant at most 113.

In particular, the WOT-closure of the noncommutative disc algebra
A( '21 G;r) is hyper-reflexive. Let us remark that Theorem 4.4 holds true for
.

the Toeplitz algebra £°°< :kbl Pi), when P; (i =1,...,n; n > 2) are unital discrete
1=

cancellative semigroups with involution, and totally ordered by the left invariant

order “<”. Notice that the proof is similar to that of Theorem 4.4.



INVARIANT SUBSPACES AND REFLEXIVE ALGEBRAS 419

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Partially supported by NSEF DMS-9531954.

REFERENCES

. A. Arias, G. Poprescu, Factorization and reflexivity on Fock spaces, Integral Equa-
tions Operator Theory 23(1995), 268-286.

. W.B. ARVESON, Operator algebras and invariant subspaces, Ann. of Math. 100(1974),
433-532.

. W.B. ARVESON, Interpolation problems in nest algebras, J. Funct. Anal. 20(1975),
208-233.

. W.B. ARVESON, Ten Lectures in Operator Algebras, CBMS Regional Conf. Ser. in
Math., vol. 55, Amer. Math. Soc., Providence 1984.
. H. BErcovicl, Hyper-reflexivity and the factorization of linear functionals, J. Funct.
Anal. 158(1998), 242-252.
. A. BEURLING, On two problems concerning linear transformations in Hilbert spaces,
Acta. Math. 81(1949), 239-255.
. J.W. BUNCE, Models for n-tuples of noncommuting operators, J. Funct. Anal. 57
(1984), 21-30.
. E. CHRISTENSEN, Perturbations of operator algebras. I, Indiana Univ. Math. J.
26(1977), 891-904.
. E. CHRISTENSEN, Extensions of derivations, J. Funct. Anal. 27(1978), 234-247.
. J. CunTz, Simple C*-algebras generated by isometries, Comm. Math. Phys. 57
(1977), 173-185.
K.R. DAVIDSON, The distance to the analytic Toeplitz operators, [llinois J. Math.
31(1987), 265-273.
K.R. DavipsoN, D. PitTs, The algebraic structure of noncommutative analytic
Toeplitz algebras, Math. Ann. 311(1998), 275-303.
K.R. DAVIDSON, D. PITTS, Invariant subspaces and hyper-reflexivity for free semi-
group algebras, preprint, 1996.
K.R. DAvIDSON, G. PoPEscu, Noncommutative disc algebras for semigroups, Canad.
J. Math. 50(1998), 290-311.
A.E. FrazHo, Complements to models for noncommuting operators, J. Funct. Anal.
59(1984), 445-461.
J. Kraus, D.R. LARSON, Reflexivity and distance formulae, J. London Math. Soc.
53(1986), 340-356.
E.C. LaNcCE, Cohomology and perturbations of nest algebras, Proc. London Math.
Soc. 43(1981), 334-356.
W. MLAK, Unitary dilations in case of ordered groups, Ann. Polon. Math. 17(1960),
331-328.
G. Poprescu, Characteristic functions for infinite sequences of noncommuting oper-
ators, J. Operator Theory 22(1989), 51-71.
G. PoprEscu, Isometric dilations for infinite sequences of noncommuting operators,
Trans. Amer. Math. Soc. 316(1989), 523-536.
G. PopEscu, Multi-analytic operators and some factorization theorems, Indiana
Univ. Math. J. 38(1989), 693-710.
G. Porescu, Von Neumann inequality for (B(H)")1, Math. Scand. 68(1991), 292
304.



420 GELU POPESCU

23. G. Popescu, Functional calculus for noncommuting operators, Michigan Math. J.
42(1995), 345-356.

24. G. PopEscu, Multi-analytic operators on Fock spaces, Math. Ann. 303(1995), 31-46.

25. G. Popescu, Noncommutative disc algebras and their representations, Proc. Amer.
Math. Soc. 124(1996), 2137-2148.

26. G. PoprEescu, Noncommutative Wold decompositions for semigroups of isometries,
Indiana Univ. Math. J. 47(1998), 277-296.

27. S. ROSENOER, Distance estimates for von Neumann algebras Proc. Amer. Math. Soc.
86(1982), 248-252.

28. D. SARASON, Invariant subspaces and unstarred operator algebras, Pacific J. Math.
17(1966), 511-517.

29. B.Sz.-Nacy, C. Foias, Harmonic Analysis on Operators on Hilbert Space, North—
Holland, Amsterdam 1970.

GELU POPESCU
Division of Mathematics and Statistic
The University of Texas at San Antonio
San Antonio, TX 78249
U.S.A.

E-mail: gpopescu@math.utsa.edu

Received June 30, 1997; revised May 13, 1998.



