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Abstract. We study the commutant
n

ρ(σ)
˛̨
σ ∈ n∗

i=1
Pi

o′
=: L∞

“
n∗

i=1
Pi

”
of

the right regular representation of the free product semigroup
n∗

i=1
Pi, where

Pi, i = 1, 2, . . . , n, n > 2, are discrete semigroups with involution, no divisors
of the identity, and the cancellation property. We obtain a description of the

invariant subspace structure of the left regular representation
n

λ(σ)
˛̨
σ ∈

n∗
i=1

Pi

o
extending Beurling’s theorem, and show that the analytic Toeplitz

algebra L∞
“

n∗
i=1

Pi

”
is reflexive (resp. hyper-reflexive) and has property A1

if n > 2. This leads also to an inner-outer factorization and Szegö type
theorem in this algebra when Pi (i = 1, 2, . . . , n) are certain totally ordered
semigroups.

Keywords: Reflexive algebra, free product semigroup, regular representa-
tion, inner-outer factorization.
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1. INTRODUCTION AND PRELIMINARIES

Let Pi, i = 1, 2, . . . , n, n > 1, be unital discrete semigroups with involution, no
divisors of the identity, and the cancellation property. In this paper we study the

analytic Toeplitz algebra L∞
(

n∗
i=1

Pi

)
which is the commutant

{
ρ(σ)

∣∣σ ∈ n∗
i=1

Pi

}′
of the right regular representation of the free product semigroup

n∗
i=1

Pi on the

Hilbert space `2
(

n∗
i=1

Pi

)
. Due to a canonical involution induced on

n∗
i=1

Pi, this

algebra is close related to
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R∞
(

n∗
i=1

Pi

)
:=
{
λ(σ)

∣∣σ ∈ n∗
i=1

Pi

}′
where λ is the left regular representation of

n∗
i=1

Pi. Thus, all the properties of

L∞
(

n∗
i=1

Pi

)
have an analogue for R∞

(
n∗
i=1

Pi

)
.

These algebras have been already studied in some very important particular
cases. When n = 1 and P1 = N we obtain

L∞(N) = R∞(N) = T (H∞),

the well-known algebra of all analytic Toeplitz operators on the Hardy space H2.
It was proved by Sarason ([28]) that T (H∞) is reflexive and by Davidson ([11])
that it is hyper-reflexive.

When P1 = P2 = · · · = Pn = N and n > 2 we obtain

L∞
(

n∗
i=1

N
)

= F∞(Hn),

the noncommutative analytic algebra introduced in [22] as the WOT-closure of the
noncommutative disc algebra An and used in [23] to obtain a WOT-continuous
functional calculus for n-tuples of operators (T1, T2, . . . , Tn) satisfying the condi-
tion

T1T
∗
1 + · · ·+ TnT

∗
n 6 I,

extending the Sz.-Nagy–Foiaş H∞-functional calculus for contractions ([29]).
A complete description of the invariant subspace structure of F∞(Hn) was

obtained in [19] (even in a more general setting), using a noncommutative version
of the Wold decomposition (see [20]), as well as an inner-outer factorization in
this algebras (see [21]). This algebra can be seen as the noncommutative analytic
Toeplitz algebra in n noncommuting variables. It has been studied later in [24],
[25], and [1]. Let us mention that Arias and the author proved in [1] that F∞(Hn)
is reflexive.

Recently, Davidson and Pitts ([13]) proved that this algebra is hyper-reflexive
and has property A1. They also studied in [12] the algebraic structure of F∞(Hn)
(in their notation Ln).

In both the particular cases mentioned above (P1 = P2 = · · · = Pn =
N, n > 1) a crucial role in proving reflexivity and hyper-reflexivity is played by
the following facts:

(i) any invariant subspace of
{
λ(σ)

∣∣σ ∈ n∗
i=1

N
}

is determined by inner

functions;
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(ii) if M is any invariant subspace of λ, then λ|M is unitarily equivalent to

a direct sum of copies of λ;

(iii) there are many invariant subspaces arising from the eigenvectors of the
adjoint

{
λ(σ)∗

∣∣σ ∈ n∗
i=1

N
}

.

None of these facts is necessarily true in our setting (see Theorem 2.10 and the

remarks preceding it). In Section 2, we give a characterization of the elements in
L∞
(

n∗
i=1

Pi

)
in terms of their symbols. Using the version of Wold’s decomposition

obtained in [26], we give a description of the invariant subspace structure of the
left regular representation

{
λ(σ)

∣∣σ ∈ n∗
i=1

Pi

}
, extending Beurling’s theorem ([6])

to our setting. Some properties of inner and outer functions and many examples

are also considered. We obtain an analogue of Szegö’s theorem to our setting.

On the other hand, we characterize the elements in `2
(

n∗
i=1

Pi

)
which admit

inner-outer factorization, when Pi (i = 1, 2, . . . , n) are certain totally ordered

semigroups.

Surprisingly, althought the properties (i), (ii), (iii) are not necessarily true in
our setting, the analytic Toeplitz algebra L∞

(
n∗
i=1

Pi

)
can be recovered from its

invariant subspaces determined by inner functions. We prove that L∞
(

n∗
i=1

Pi

)
is the set of all operators T ∈ `2

(
n∗
i=1

Pi

)
leaving each “inner”subspace invariant.

In particular, we prove, in Section 3, that L∞
(

n∗
i=1

Pi

)
is a reflexive algebra and

has property A1.

In [14], Davidson and the author studied generalized Cuntz algebras ([10])
and noncommutative disc algebras A

(
n∗
i=1

G+
i

)
associated to the free product

n∗
i=1

G+
i of discrete subsemigroups G+

i of R+. Moreover, we established a dila-

tion theorem for contractive representations of these semigroups which yielded a

variant of the von Neumann inequality, extending some results from [7], [15], [18],

[20], [22] and [25].

In Section 4, we prove that L∞
(

n∗
i=1

G+
i

)
is hyper-reflexive with distance

constant at most 56. In particular we show that the WOT-closure of the non-
commutative disc algebra A

(
n∗
i=1

G+
i

)
is hyper-reflexive with distance constant at

most 113. Let us mention that these hyper-reflexivity results can be extended to

a larger class of totally ordered semigroups Pi, i = 1, 2, . . . , n, for n > 2.

The case n=1 remains open. It would be interesting to know the structure

of L∞(P ) for P unital cancellative semigroup other than N, for example, if P is

the positive cone of an additive subgroup of R.
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After this paper was submitted for publication, we received a preprint from
Bercovici ([5]), which has a different generalization of the Davidson-Pitts hyper-
reflexivity result ([13]).

I am greatful to the referee for his helpful suggestions.

2. INVARIANT SUBSPACES AND INNER-OUTER FACTORIZATIONS

Let P be a unital discrete semigroup with the cancellation property, i.e., xy =
xz ⇒ y = z and yx = zx ⇒ y = z, and no divisors of the identity e ∈ P , i.e.,
xy = e if and only if x = y = e. We say that x 6 y if and only if there exists
z ∈ P such that y = xz. It is a routine to show that the relation “6” defines a
partial order on P . Let us call it the left invariant order relation on P . Let Pi,
1 6 i 6 n, be n unital discrete semigroups with the cancellation property and no
divisors of the identity. We also assume that Pi has an involution x 7→ x̃ such
that, ˜̃x = x and (xy)̃ = ỹx̃ for x, y ∈ Pi. If Pi is commutative we may take the
involution to be the identity on Pi, i.e., x̃ = x. Denote by

n∗
i=1

Pi the free product

semigroup amalgamated over the identity e ∈ Pi. For every f, g ∈ `2
(

n∗
i=1

Pi

)
we

define their convolution f ? g ∈ `∞
(

n∗
i=1

Pi

)
by

(f ? g)(τ) =
∑

σ,ω∈
n
∗

i=1
Pi

σω=τ

f(σ)g(ω).

Let us denote by {δσ}
σ∈

n
∗

i=1
Pi

the canonical basis of `2
(

n∗
i=1

Pi

)
. Let λ :

n∗
i=1

Pi →

B
(
`2
(

n∗
i=1

Pi

))
be the left regular representation of

n∗
i=1

Pi defined by

λ(σ)δτ = δστ for any σ, τ ∈ P.

It is clear that λ(σ)f = δσ ? f for any f ∈ `2
(

n∗
i=1

Pi

)
. Similarly, we denote by

ρ :
n∗
i=1

Pi → B
(
`2
(

n∗
i=1

Pi

))
the right regular representation of

n∗
i=1

Pi defined by

ρ(σ)δτ = δτσ for any σ, τ ∈ P.

Observe that λ and ρ commute, i.e.,

ρ(σ)λ(ω) = λ(ω)ρ(σ) for any σ, ω ∈ P.



Invariant subspaces and reflexive algebras 395

Let us mention also that the left regular representation {λ(σ)}
σ∈

n
∗

i=1
Pi

is

irreducible (see [26] for a more general result). We shall denote by P the set of all
polynomials p ∈ `2

(
n∗
i=1

Pi

)
of the form

p =
∑
finite

aσδσ, aσ ∈ C.

Following [22], we define F∞
(

n∗
i=1

Pi

)
as being the set of all g ∈ `2

(
n∗
i=1

Pi

)
for

which
‖g‖∞ := sup{‖g ? p‖2

∣∣ p ∈ P, ‖p‖2 6 1} <∞

where ‖ · ‖2 := ‖ · ‖
`2

(
n
∗

i=1
Pi

). If f ∈ F∞
(

n∗
i=1

Pi

)
and g ∈ `2

(
n∗
i=1

Pi

)
, then

f ? g = lim
n→∞

f ? pn

(the convergence being in `2
(

n∗
i=1

Pi

)
), where pn ∈ P and ‖pn − g‖2 → 0 as

n→∞. Similarly to [22], Theorem 3.2, one can show that
(
F∞

(
n∗
i=1

Pi

)
, ‖ · ‖∞

)
is a noncommutative Banach algebra. In the particular case when n = 1, P1 = N
we can identify F∞(N) with the Hardy space H∞. Let us remark that the free
semigroup

n∗
i=1

Pi has the involution

(g1 · · · gk )̃ = g̃k · · · g̃1 for any gj ∈ Pij .

Let us define the operator

U : `2
(

n∗
i=1

Pi

)
→ `2

(
n∗
i=1

Pi

)
by setting U(ϕ) = ϕ̃, where for every ϕ ∈ `2

(
n∗
i=1

Pi

)
we denote by ϕ̃ the element

in `2
(

n∗
i=1

Pi

)
determined by ϕ̃(σ) = ϕ(σ̃), σ ∈ n∗

i=1
Pi. It is clear that U is a unitary

operator such that U2 = I and U(ϕ ? ψ) = U(ψ) ? U(ϕ) for all ϕ,ψ ∈ `2
(

n∗
i=1

Pi

)
.

Following [21], an operator T ∈ `2
(

n∗
i=1

Pi

)
is called

(i) multi-analytic if Tλ(σ) = λ(σ)T for any σ ∈ n∗
i=1

Pi;

(ii) inner if T is multi-analytic and isometric;
(iii) outer if T is multi-analytic and T

(
`2
(

n∗
i=1

Pi

))
is dense in `2

(
n∗
i=1

Pi

)
.

On the other hand, we say that a function ϕ ∈ `2
(

n∗
i=1

Pi

)
is outer if and only if

{ϕ ? p | p ∈ P} is dense in `2
(

n∗
i=1

Pi

)
. Similarly to [24], Proposition 1.1, one can

prove the following.
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Theorem 2.1. Let Pi, 1 6 i 6 n, be unital discrete semigroups with in-
volution, the cancellation property, and no divisors of the identity. An operator
A ∈ B

(
`2
(

n∗
i=1

Pi

))
is multi-analytic if and only if there exists ϕ ∈ F∞

(
n∗
i=1

Pi

)
such that

Ah = h ? ϕ̃, h ∈ `2
(

n∗
i=1

Pi

)
.

We denote A := R
ϕ̃
, the right multiplication by ϕ̃. To each ϕ ∈ F∞

(
n∗
i=1

Pi

)
we associate an operator

Lϕ : `2
(

n∗
i=1

Pi

)
→ `2

(
n∗
i=1

Pi

)
uniquely defined by Lϕg := ϕ ? g for g ∈ `2

(
n∗
i=1

Pi

)
. Notice that if ϕ ∈ P, and

ϕ =
∑

aσδσ

then Lϕ =
∑
aσλ(σ). Observe that the mapping

ϕ ∈ F∞
(

n∗
i=1

Pi

)
7→ Lϕ ∈ B

(
`2
(

n∗
i=1

Pi

))
is an isometric homomorphism. Denote the commutant of

{
ρ(σ)

∣∣σ ∈ n∗
i=1

Pi

}
by

L∞
(

n∗
i=1

Pi

)
and, similarly, R∞

(
n∗
i=1

Pi

)
:=
{
λ(σ)

∣∣σ ∈ n∗
i=1

Pi

}′
.

Corollary 2.2. The double commutant of
{
λ(σ)

∣∣σ ∈ n∗
i=1

Pi

}
is equal to

(2.1) L∞
(

n∗
i=1

Pi

)
=
{
Lϕ
∣∣ϕ ∈ F∞( n∗

i=1
Pi

)}
.

Proof. According to Theorem 2.1, any element X ∈
{
λ(σ)

∣∣σ ∈ n∗
i=1

Pi

}′
has the form X = R

ϕ̃
for some ϕ ∈ F∞

(
n∗
i=1

Pi

)
. Let A ∈ B

(
`2
(

n∗
i=1

Pi

))
such

that AR
ϕ̃

= R
ϕ̃
A for any ϕ ∈ F∞

(
n∗
i=1

Pi

)
. Since R

ϕ̃
= U∗LϕU , it follows

that UAU∗Lϕ = LϕUAU
∗ for any ϕ ∈ F∞

(
n∗
i=1

Pi

)
. In particular, we have

UAU∗λ(σ) = λ(σ)UAU∗ for any σ ∈ n∗
i=1

Pi. Using again Theorem 2.1, there is

ψ ∈ F∞
(

n∗
i=1

Pi

)
such that UAU∗ = R

ψ̃
. Hence, A = U∗R

ψ̃
U = U∗2LϕU

2 = Lϕ.

Conversely, if ϕ,ψ ∈ F∞
(

n∗
i=1

Pi

)
and ω ∈ n∗

i=1
Pi, then

LϕRψ̃(δω) = ϕ ? (δω ? ψ̃) = (ϕ ? δω) ? ψ̃ = R
ψ̃
Lϕ(δω).

Hence, LϕRψ̃ = R
ψ̃
Lϕ. Since λ(σ) = U∗ρ(σ̃)U and using again Theorem 2.1, we

deduce the relation (2.1). This completes the proof.
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Is the algebra L∞
(

n∗
i=1

Pi

)
equal to the WOT closure of the left regular

representation algebra? This is the case when P1 = · · ·Pn = N.

Corollary 2.3. L∞
(

n∗
i=1

Pi

)
coincides with its double commutant.

Corollary 2.4. Let ϕ ∈ F∞
(

n∗
i=1

Pi

)
. Then Lϕ is invertible in

B
(
`2
(

n∗
i=1

Pi

))
if and only if it is invertible in L∞

(
n∗
i=1

Pi

)
.

Let us remark that if ϕ ∈ F∞
(

n∗
i=1

Pi

)
such Lϕ is invertible, then ϕ is an

outer function.
We say that ϕ ∈ F∞

(
n∗
i=1

Pi

)
is inner if the multi-analytic operator R

ϕ̃
is

inner. The proof of the following characterization for inner functions is similar to
[1], Proposition 1.6, so we omit it.

Proposition 2.5. Let ϕ ∈ F∞
(

n∗
i=1

Pi

)
. The following statements are

equivalent:
(i) ϕ is inner;
(ii) Lϕ is an isometry;

(iii)
{
ϕ ? δσ

∣∣σ ∈ n∗
i=1

Pi
}

is an orthonormal set in `2
(

n∗
i=1

Pi

)
;

(iv) ‖ϕ‖2 = ‖ϕ‖∞ = 1.

A closed subspaceM⊂ `2
(

n∗
i=1

Pi

)
is invariant for {λ(σ)}

σ∈
n
∗

i=1
Pi

if λ(σ)M⊂

M for any σ ∈ n∗
i=1

Pi. A subspace L ⊂ `2
(

n∗
i=1

Pi

)
is called wandering for

{λ(σ)}
σ∈

n
∗

i=1
Pi

if

λ(σ)L ⊥ λ(ω)L

for any σ, ω ∈ n∗
i=1

Pi, σ 6= ω. We say that two inner functions ϕ,ψ ∈ F∞
(

n∗
i=1

Pi

)
are orthogonal if

`2
(

n∗
i=1

Pi

)
? ϕ̃ ⊥ `2

(
n∗
i=1

Pi

)
? ψ̃.

Using the version of the Wold decomposition from [26], we can obtain a description
of the invariant subspaces for λ(σ), σ ∈ n∗

i=1
Pi. Our Beurling type theorem ([6]) is

the following.

Theorem 2.6. Let Pi, 1 6 i 6 n, be unital discrete semigroups with involu-
tion, the cancellation property, and no divisors of the identity. A closed subspace
M ⊂ `2

(
n∗
i=1

Pi

)
is invariant for each λ(σ), σ ∈ n∗

i=1
Pi, if and only if there is

N0, N1 ⊂M reducing subspaces for λ(σ)|M, σ ∈ n∗
i=1

Pi, such that

M = N0 ⊕N1
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where

(2.2) N0 =
⊕
j∈J

[
`2
(

n∗
i=1

Pi

)
? ϕ̃j

]
,

with {ϕj}j∈J orthogonal inner functions and

(2.3) N1 = PM
∨

σ,ω∈
n
∗

i=1
Pi

ω 66σ

λ(σ)∗λ(ω)N1,

where PM is the orthogonal projection on M. Moreover, this representation is
essentially unique.

Proof. Applying Theorem 2.4 from [26] to the semigroup of isometries
{λ(σ)|M}

σ∈
n
∗

i=1
Pi

, we obtain a unique orthogonal decomposition M = N0 ⊕ N1

with the property that N0 and N1 reduce each isometry λ(σ)|M, σ ∈ n∗
i=1

Pi, and

N0 =
⊕

σ∈
n
∗

i=1
Pi

λ(σ)(L), N1 = M	N0,

where L is the wandering subspace for {λ(σ)|M}
σ∈

n
∗

i=1
Pi

given by

(2.4) L = M	

[ ∨
σ,ω∈

n
∗

i=1
Pi

ω 66σ

PMλ(σ)∗λ(ω)M

]
.

Moreover, we have
N1 = PM

∨
σ,ω∈

n
∗

i=1
Pi

ω 66σ

λ(σ)∗λ(ω)N1.

Let {ϕ̃j}j∈J be an orthonormal basis for the Hilbert space L. Since L is a wan-
dering subspace for λ(σ), i.e.,

(2.5) λ(σ)L ⊥ λ(ω)L

for any σ, ω ∈ n∗
i=1

Pi, σ 6= ω, it is clear that

δσ ? ϕ̃j ⊥ δω ? ϕ̃j for any σ, ω ∈ n∗
i=1

Pi, σ 6= ω.

According to Proposition 2.5, we deduce that ϕj is an inner function. The orthog-
onal decomposition

N0 =
⊕
j∈J

[
`2
(

n∗
i=1

Pi

)
? ϕ̃j

]
follows immediately using again the relation (2.5). The uniqueness part follows
from [26], Theorem 2.4, so we omit it.
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An intrinsic description of the subspace N1 would be interesting.

Corollary 2.7. If ϕ1, ϕ2 ∈ F∞
(

n∗
i=1

Pi

)
are inner functions such that

ϕ1 ? `
2
(

n∗
i=1

Pi

)
= ϕ2 ? `

2
(

n∗
i=1

Pi

)
,

then there exists α ∈ C, |α| = 1, such that ϕ1 = αϕ2.

Corollary 2.8. If ψ ∈ F∞
(

n∗
i=1

Pi

)
is an inner function, then `2

(
n∗
i=1

Pi

)
?

ψ̃ is an invariant subspace for L∞
(

n∗
i=1

Pi

)
.

Proof. Let ψ ∈ F∞
(

n∗
i=1

Pi

)
be an inner function. Then R

ψ̃
is an isometry

and rangeR
ψ̃

= `2
(

n∗
i=1

Pi

)
? ψ̃ is closed. If ϕ ∈ F∞

(
n∗
i=1

Pi

)
, then LϕRψ̃ = R

ψ̃
Lϕ

and we have

Lϕ

(
`2
(

n∗
i=1

Pi

)
? ψ̃
)

= LϕRψ̃

(
`2
(

n∗
i=1

Pi

))
= R

ψ̃
Lϕ

(
`2
(

n∗
i=1

Pi

))
⊂ R

ψ̃

(
`2
(

n∗
i=1

Pi

))
= `2

(
n∗
i=1

Pi

)
? ψ̃.

This completes the proof.

Corollary 2.9. Let Pi, 1 6 i 6 n, be unital discrete semigroups with
involution, the cancellation property, and no divisors of the identity. If P1, . . . , Pn
are totally ordered by the left invariant order relation “6”, then the relations (2.3)
and (2.4) are equivalent to

N1 =
∨

σ∈
n
∗

i=1
Pi

σ 6=e

λ(σ)N1 and L = M	

[ ∨
σ∈

n
∗

i=1
Pi

σ 6=e

λ(σ)M

]
.

In the particular case when P1 = · · · = Pn = N, the subspace N1 = {0},
due to the Wold decomposition from [20]. Moreover, if n = 1 and P1 = N, then
Theorem 2.6 coincides with Beurling’s theorem ([6]). In our setting, according to
Theorem 2.6, the invariant subspaces of {λ(σ)}

σ∈
n
∗

i=1
Pi

are not all generated by

inner functions, i.e., of the form (2.2), so N1 6= {0}.
Let us consider an example. LetG+

i (1 6 i 6 n) be n positive cones of discrete

additive subgroups of R, such that they are dense in R+. Define M⊂ `2
(

n∗
i=1

G+
i

)
by

M =
⊕

σ∈
n
∗

i=1
G+

i

σ 6=0

λ(σ)(C δ0).
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Now it is easy to see that

M =
∨

σ∈
n
∗

i=1
G+

i

σ 6=0

λ(σ)M

and it cannot be of the form (2.2).
Notice that, according to the Wold decomposition ([26]), {λ(σ)|M}

σ∈
n
∗

i=1
G+

i

is not unitarily equivalent to a direct sum of copies of {λ(σ)}
σ∈

n
∗

i=1
G+

i

. Using the

same idea, it is easy to construct many other invariant subspaces of {λ(σ)}
σ∈

n
∗

i=1
G+

i

which are not generated by inner functions.
The following result shows that there are very few invariant subspaces for

{λ(σ)}
σ∈

n
∗

i=1
G+

i

arising from the eigenvectors of the adjoint {λ(σ)∗}
σ∈

n
∗

i=1
G+

i

.

Theorem 2.10. Assume that all the semigroups G+
i , i = 1, 2, . . . , n, are

dense in R+. Then there is only one 1-codimensional invariant subspace for λ(σ),
σ ∈ n∗

i=1
G+
i , and this is M =

⊕
σ∈

n
∗

i=1
G+

i

σ 6=0

λ(σ)(C).

Proof. Assume that there is ϕ ∈ `2
(

n∗
i=1

G+
i

)
, ‖ϕ‖2 6 1 such that {ϕ}⊥ is

invariant for each λ(σ), σ ∈ n∗
i=1

G+
i . This shows that, for each ω ∈ n∗

i=1
G+
i , there

is µ(ω) ∈ C such that λ(ω)∗ϕ = µ(ω)ϕ for any ω ∈ n∗
i=1

G+
i . Since {λ(σ)}

σ∈
n
∗

i=1
G+

i

is a semigroup of operators, we infer that µ is a semicharacter of
n∗
i=1

G+
i . Assume

〈ϕ, δ0〉 = 1. Then, for any ω ∈ n∗
i=1

G+
i , we have

〈ϕ, δω〉 = 〈ϕ, λ(ω)δ0〉 = 〈µ(ω)ϕ, δ0〉 = µ(ω).

Therefore ϕ =
∑

ω∈
n
∗

i=1
G+

i

µ(ω)δω. Since ϕ ∈ `2
(

n∗
i=1

G+
i

)
, we must have

∑
ω∈

n
∗

i=1
G+

i

|µ(ω)|2 6 1.

According to [14], Theorem 3.2, there exists i0 ∈ {1, 2, . . . , n} such that µ(g) = 0
for any g ∈ G+

i with i 6= i0. On the other hand, as in the proof of [14], Theorem 1.4,
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there is 0 6 r 6 1 and γ ∈ Ĝi0 such that µ(gi0) = rgi0γ(gi0) for any gi0 ∈ G+
i0

.
Therefore,

ϕ =
∑

gi0∈G
+
i0

rgi0γ(gi0)δgi0

with ∑
gi0∈G

+
i0

|rgi0 |2 6 1.

Since G+
i0

is dense in R+, the later inequality is true if and only if r = 0. This
shows that ϕ = δ0, which completes the proof.

Let us also notice that ifM⊂ `2
(

n∗
i=1

G+
i

)
is an invariant subspace for the left

regular representation {λ(σ)}
σ∈

n
∗

i=1
G+

i

such that there is g ∈ M with PC δ0g 6= 0,

then there is an inner function ϕ ∈ F∞
(

n∗
i=1

G+
i

)
such that

`2
(

n∗
i=1

G+
i

)
? ϕ̃ ⊂M.

Indeed, since g ∈ M and PCδ0g 6= 0 it is clear that M 6=
∨

σ∈
n
∗

i=1
G+

i

σ 6=0

λ(σ)M

and therefore there exists a function ϕ̃ ∈ M 	

[ ∨
σ∈

n
∗

i=1
G+

i

σ 6=0

λ(σ)M

]
. This implies

`2
(

n∗
i=1

G+
i

)
? ϕ̃ ⊂ M. It would be nice to know if any invariant subspace of

{λ(σ)}
σ∈

n
∗

i=1
G+

i

contains an “inner” invariant subspace. We expect a negative an-

swer to this question.
Now let us prove some extremal properties of outer functions. The following

theorem as well as its consequences were proved in [24] in the particular case when
P1 = · · · = Pn = N. Here, we extend those results to our setting, obtaining an
analogue of Szegö’s theorem.

Theorem 2.11. Let Pi, 1 6 i 6 n, be unital discrete semigroups with involu-
tion, the cancellation property, and no divisors of the identity. If ϕ ∈ F∞

(
n∗
i=1

Pi

)
is an outer function, then |ϕ(e)| > |ψ(e)| for any ψ ∈ F∞

(
n∗
i=1

Pi

)
such that

L∗ϕLϕ = L∗ψLψ.

Conversely, if ψ ∈ F∞
(

n∗
i=1

Pi

)
is outer and ϕ ∈ F∞

(
n∗
i=1

Pi

)
such that

|ϕ(e)| > |ψ(e)| and L∗ϕLϕ = L∗ψLψ, then ϕ is outer.
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Proof. Suppose that ϕ is an outer function in F∞
(

n∗
i=1

Pi

)
. We have

|ϕ(e)|2 = inf
kω∈`2

(
n
∗

i=1
Pi

)
∥∥∥∥∥Rϕ̃(δe)−

∑
ω∈

n
∗

i=1
Pi

ω 6=e

λ(ω)(kω)

∥∥∥∥∥
2

.

Since this infimum is attained with kω = λ(ω)∗R
ϕ̃
(δe), ω ∈ n∗

i=1
Pi, ω 6= e, and

R
ϕ̃

(
`2
(

n∗
i=1

Pi

))
is dense in `2

(
n∗
i=1

Pi

)
, we deduce

|ϕ(e)|2 = inf
hω∈`2

(
n
∗

i=1
Pi

)
∥∥∥∥∥Rϕ̃(δe)−

∑
ω∈

n
∗

i=1
Pi

ω 6=e

λ(ω)R
ϕ̃
(hω)

∥∥∥∥∥
2

= inf
hω∈`2

(
n
∗

i=1
Pi

)
〈
R∗
ϕ̃
R
ϕ̃

(
δe−

∑
ω∈

n
∗

i=1
Pi

ω 6=e

λ(ω)(hω)

)
,

(
δe−

∑
ω∈

n
∗

i=1
Pi

ω 6=e

λ(ω)(hω)

)〉

= inf
p∈P0

〈R∗
ϕ̃
R
ϕ̃
(δe − p), (δe − p)〉.

Therefore,
|ϕ(e)| = inf

p∈P0
‖(δe − p) ? ϕ̃‖2,

where P0 is the set of all polynomials p in `2
(

n∗
i=1

Pi

)
with p(e) = 0. Since

L∗ϕLϕ = L∗ψLψ, we obtain

|ϕ(e)|2 = inf
p∈P0

〈R∗
ϕ̃
R
ϕ̃
(δe − p), (δe − p)〉 = inf

p∈P0
〈R∗

ψ̃
R
ψ̃
(δe − p), (δe − p)〉

= inf
p∈P0

‖R
ψ̃
(δe − p)‖2 > inf

q∈P0
‖R

ψ̃
(δe)− q‖2 = |ψ(e)|2.

Now, suppose ϕ,ψ ∈ F∞
(

n∗
i=1

Pi

)
such that ψ is outer, |ϕ(e)| > |ψ(e)|, and

L∗ϕLϕ = L∗ψLψ. Due to the later relation and since Lψ has dense range, there is

an isometry X ∈ B
(
`2
(

n∗
i=1

Pi

))
such that XLψ = Lϕ. Notice that

(2.6) X ∈
{
R
g̃

∣∣ g ∈ F∞( n∗
i=1

Pi

)}′
.

Indeed, according to Corollary 2.2, we have

(R
g̃
X −XR

g̃
)Lψ = (R

g̃
Lϕ − LϕRg̃)−X(LψRg̃ −R

g̃
Lψ) = 0.
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Since Lϕ has dense range, it follows that (2.6) holds. According to Corollary 2.3

and Proposition 2.5, there exists an inner function f ∈ F∞
(

n∗
i=1

Pi

)
such that

X = Lf . Since LfLψ = Lϕ, we have

|ψ(e)| 6 |ϕ(e)| = |f(e)ψ(e)| = ‖PC δeLf (ψ(e)δe)‖2
6 ‖Lf (ψ(e)δe)‖2 = ‖ψ(e)f‖2 6 ‖ψ(e)δe‖2 = |ψ(e)|.

Hence, ψ(e)f(e)δe = ψ(e)f . Therefore, f(ω) = 0 for any ω ∈ n∗
i=1

Pi, ω 6= e. Since

f is inner, we deduce that f = αδe for some α ∈ C, |α| = 1. Therefore αψ = ϕ.
This completes the proof.

Corollary 2.12. If ϕ,ψ are outer functions in F∞
(

n∗
i=1

Pi

)
such that

L∗ϕLϕ = L∗ψLψ, then ϕ = αψ for some α ∈ C with |α| = 1.

Corollary 2.13. If ϕ ∈ F∞
(

n∗
i=1

Pi

)
is an outer function, then

|ϕ(e)| = inf
p∈P0

‖ϕ ? (δe − p)‖2 (Szegö infimum)

where P0 is the set of all polynomials p in `2
(

n∗
i=1

Pi

)
with p(e) = 0.

In the particular case when P1 = · · · = Pn = N (n > 2), an inner-outer
factorization for the elements in L∞

(
n∗
i=1

N
)

(resp. `2
(

n∗
i=1

N
)
) was obtained in

[21] (resp. [1]). In what follows, we characterize the elements ψ ∈ `2
(

n∗
i=1

Pi

)
,

ψ 6= 0, which admit inner-outer factorization, when P1, . . . , Pn are semigroups, as
considered in this section, and totally ordered by the left invariant order relation
“6”. Denote

L0 =
[ ∨
σ∈

n
∗

i=1
Pi

λ(σ)ψ̃
]
	
[ ∨
σ∈

n
∗

i=1
Pi

σ 6=e

λ(σ)ψ̃
]
.

We say that ψ has the property (L) if

(L)
∨

σ∈
n
∗

i=1
Pi

λ(σ)ψ̃ =
∨

σ∈
n
∗

i=1
Pi

λ(σ)PL0 ψ̃

where PL0 is the orthogonal projection onto L0, or equivalently, if f ∈ `2
(

n∗
i=1

Pi

)
and f ⊥ λ(σ)PL0 ψ̃ for any σ ∈ n∗

i=1
Pi, then f ⊥ λ(σ)ψ̃ for any σ ∈ n∗

i=1
Pi.
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Theorem 2.14. Let Pi, 1 6 i 6 n, be unital discrete semigroups with in-
volution, the cancellation property, and no divisors of the identity. Assume that
Pi, 1 6 i 6 n, are totally ordered by the left invariant order relation “6”. Then
ψ ∈ `2

(
n∗
i=1

Pi

)
, ψ 6= 0 admits a factorization ψ = ϕ ? g with ϕ inner and g outer

functions if and only if ψ has property (L).

Moreover, the factorization is essentially unique and ψ ∈ F∞
(

n∗
i=1

Pi

)
if and

only if g ∈ F∞
(

n∗
i=1

Pi

)
and ‖ψ‖∞ = ‖g‖∞.

Proof. Suppose ψ = ϕ ? g where ϕ is inner and g is outer function. Since g
is outer there is pn ∈ P such that ‖pn ? g̃ − δe‖2 → 0 as n→∞. Hence,

(2.7)
∨

σ∈
n
∗

i=1
Pi

λ(σ)ψ̃ =
∨

σ∈
n
∗

i=1
Pi

(δσ ? g̃) ? ϕ̃ = `2
(

n∗
i=1

Pi

)
? ϕ̃.

Similarly, one can see that

∨
σ∈

n
∗

i=1
Pi

σ 6=e

λ(σ)ψ̃ =
∨

σ∈
n
∗

i=1
Pi

σ 6=e

λ(σ)ϕ̃.

Since ϕ is inner, we infer that

L0 =

[ ∨
σ∈

n
∗

i=1
Pi

λ(σ)ψ̃

]
	

[ ∨
σ∈

n
∗

i=1
Pi

σ 6=e

λ(σ)ψ̃

]
= C ϕ̃.

Hence, PL0 ψ̃ = αϕ̃ for some α ∈ C \ {0}. Now, if f ∈ `2
(

n∗
i=1

Pi

)
with f ⊥

λ(σ)PL0 ψ̃ for any σ ∈ n∗
i=1

Pi, then f ⊥ `2
(

n∗
i=1

Pi

)
? ϕ̃. Taking into account (2.7),

we deduce that f ⊥ λ(σ)ψ̃ for any σ ∈ n∗
i=1

Pi, which shows that ψ has property (L).

Conversely, suppose that ψ has property (L). Since L0 is a wandering sub-
space for {λ(σ)}

σ∈
n
∗

i=1
Pi

, it follows that ϕ̃ := PL0 ψ̃ is an inner function in

F∞
(

n∗
i=1

Pi

)
. Thus,

M :=
∨

σ∈
n
∗

i=1
Pi

λ(σ)ψ̃ = `2
(

n∗
i=1

Pi

)
? ϕ̃.
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Hence, there exists g̃ ∈ `2
(

n∗
i=1

Pi

)
such that ψ̃ = g̃ ? ϕ̃. Since ϕ̃ ∈ M, there is

pn ∈ P such that ‖ϕ̃− pn ? ψ̃‖2 → 0 as n→∞. Therefore, we have

R
ϕ̃
(δe) = ϕ̃ = lim

n→∞
(pn ? ψ̃) =

(
lim
n→∞

pn ? g̃
)
? ϕ̃ = R

ϕ̃

(
lim
n→∞

pn ? g̃
)
.

Hence, R
ϕ̃

(
δe− lim

n→∞
pn ? g̃

)
= 0. Since R

ϕ̃
is an isometry, it follows that lim

n→∞
pn ?

g̃ = δe which shows that g is an outer function.
Let us prove the uniqueness. Suppose that ψ = ϕ1?g1 = ϕ2?g2, where ϕ1, ϕ2

are inner and g1, g2 are outer functions. Then `2
(

n∗
i=1

Pi

)
? ϕ̃1 = `2

(
n∗
i=1

Pi

)
? ϕ̃2

and according to Corollary 2.7, ϕ1 = αϕ2 for some α ∈ C, |α| = 1. On the other
hand, we have

g̃1 ? ϕ̃1 − g̃2 ? ϕ̃2 = (αg̃1 − g̃2) ? ϕ̃2 = R
ϕ̃2

(αg̃1 − g̃2) = 0.

Since ϕ2 is inner, we infer that αg̃1 = g̃2. Notice that, for any p ∈ P, one has
‖(ϕ ? g) ? p‖2 = ‖ϕ ? (g ? p)‖2 = ‖g ? p‖2. Hence, we deduce that g ∈ F∞

(
n∗
i=1

Pi

)
if and only if ψ = ϕ ? g ∈ F∞

(
n∗
i=1

Pi

)
. This completes the proof.

Notice that the subspace L0 always has dimension 0 or 1. When do these two
possibilities occur? What is the significance of the subspace when it is non-zero ?
Perhaps an answer will show what property (L) really means.

3. REFLEXIVITY AND PROPERTY A1 FOR SOME ANALYTIC TOEPLITZ ALGEBRAS

Let H be a Hilbert space and B(H) be the algebra of all bounded operators on H.
If A ∈ B(H) then the set of all invariant subspaces of A is denoted by LatA. For
any U ⊂ B(H) define

LatU =
⋂
A∈U

LatA.

If S is any collection of subspaces of H, then

AlgS := {A ∈ B(H) | S ⊂ LatA}.

An operator algebra U ⊂ B(H) is reflexive if Alg LatU = U .
Throughout this section, Pi, i = 1, 2, . . . , n, n > 2, are unital discrete can-

cellative semigroups with involution and no divisors of the identity. In what fol-
lows, we consider a few examples of inner functions in F∞

(
n∗
i=1

Pi

)
which will be

very useful to prove the main result of this section.
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Lemma 3.1. Let σ ∈ n∗
i=1

Pi, σ 6= e, and let ϕ(z) =
∞∑
k=0

akz
k be a function in

the Hardy space H2. Define ϕσ ∈ `2
(

n∗
i=1

Pi

)
by setting

(3.1) ϕσ :=
∞∑
k=0

akδσk where σk := σ · · ·σ︸ ︷︷ ︸
k times

.

Then ϕ is inner (resp. outer) in H∞ (resp. H2) if and only if ϕσ is inner (resp.
outer) in F∞

(
n∗
i=1

Pi

)
(resp. `2

(
n∗
i=1

Pi

)
) .

Proof. Let ϕ ∈ H2 and let ϕσ ∈ `2
(

n∗
i=1

Pi

)
be defined as above. We show

that {ϕσ ? δω | ω ∈
n∗
i=1

Pi} is an orthonormal set in `2
(

n∗
i=1

Pi

)
if and only if ϕ is

inner in H∞.
Fix ω1, ω2 ∈

n∗
i=1

Pi and denote

S = 〈δ
ω̃1
? ϕ̃σ, δω̃2

? ϕ̃σ〉.

If ω1, ω2 are not comparable, i.e., ω1 66 ω2 and ω2 66 ω1 then S = 0. Suppose that
ω1 6 ω2, that is, ω2 = ω1ω3 for some unique ω3 ∈

n∗
i=1

Pi. Hence,

S = 〈ϕ̃σ, δω̃3
? ϕ̃σ〉.

We have two subcases to consider. If ω3 is infinitely divisible by σ 6= e, then it is
easy to see that S = 0. Indeed, notice that

〈δσn , δσm ? δω3〉 = 0

for any n,m ∈ {0, 1, 2, . . .}. It remains the case when ω3 = σkµ with σ 66 µ and
k = 0, 1, . . .. We have

S = 〈ϕσ, ϕσ ? δσk ? δµ〉.

Now, if µ 6= e, then it is clear that S = 0 because σ 66 µ. On the other hand, if
µ = e, then

S = 〈ϕσ, ϕσ ? δσk〉 = 〈ϕ(z), ϕ(z)zk〉H2 .

Therefore, {ϕσ ? δω | ω ∈
n∗
i=1

Pi} is an orthonormal set in `2
(

n∗
i=1

Pi

)
if and only if

{ϕ(z)zk | k = 0, 1, . . .} is an orthonormal set in the Hardy space H2. According
to Proposition 2.5, we infer that ϕ is inner in H∞ if and only if ϕσ is inner in
F∞

(
n∗
i=1

Pi

)
.



Invariant subspaces and reflexive algebras 407

Now suppose that ϕ ∈ H2 is outer, that is, there exists a sequence qn ∈ H2

of analytic polynomials such that ‖ϕqn − 1‖H2 → 0 as n → ∞. This implies
‖ϕσ ? (qn)σ− δe‖2 → 0 as n→∞ and hence ϕσ is outer. Conversely, suppose that
ϕσ is outer in `2

(
n∗
i=1

Pi

)
. Then there exist polynomials pn ∈ P such that

(3.2) ‖ϕσ ? pn − δe‖2 → 0

as n→∞. Let H2
σ :=

∨
k>0

δσk and notice that

`2
(

n∗
i=1

Pi

)
= H2

σ ⊕
[ ⊕
σ 66µ
µ6=e

H2
σ ? δµ

]
⊕
[ ∨
γ is infinitely
divisible by σ

H2
σ ? δγ

]
,

and H2
σ is a reducing subspace for Lϕσ

. Since PLϕσ
= Lϕσ

P where P is the

orthogonal projection of `2
(

n∗
i=1

Pi

)
onto H2

σ, the relation (3.2) implies

‖Lϕσ
Ppn − δe‖2 → 0

as n → ∞. It is clear that Ppn = (qn)σ for some analytic polynomial qn in H2.
Therefore, we have

‖ϕqn − 1‖H2 = ‖ϕσ ? (qn)σ − δe‖2 → 0

as n→∞. This completes the proof.

Corollary 3.2. The function λδσ is inner in F∞
(

n∗
i=1

Pi

)
for every σ ∈

n∗
i=1

Pi and |λ| = 1.

Let us remark that one can also prove that the mapping

ϕ ∈ H∞ 7→ ϕσ ∈ F∞
(

n∗
i=1

Pi

)
is an isometry.

The following result is an extension of [1], Lemma 3.2, which we need in what
follows.

Lemma 3.3. If ω ∈ n∗
i=1

Pi, ω 6= e, and λ ∈ C, |λ| < 1, then

fω,λ = (δω − λδe) ? (δe − λδω)−1
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is inner in F∞
(

n∗
i=1

Pi

)
and

(3.3)
⋂

0<|λ|<1

ω∈
n
∗

i=1
Pi, ω 6=e

[
fω,λ ? `

2
(

n∗
i=1

Pi

)]
= {0}.

Proof. Let b(z) = (z − λ)/(1− λz) be the Möbius map of the unit disc D ={
z ∈ C

∣∣ |z| < 1
}
. Since b(z) is inner in H∞ and bω = fω,λ, according to

Lemma 3.1, we deduce that fω,λ is inner in F∞
(

n∗
i=1

Pi

)
.

Let us denote Φω,λ :=
∞∑
k=0

λkδωk , where ω0 = e. One can prove that Φω,λ ⊥

fω,λ ? `
2
(

n∗
i=1

Pi

)
for any λ ∈ D \ {0}, and any ω ∈ n∗

i=1
Pi, ω 6= e. Indeed, since

δe − λδω is invertible in F∞
(

n∗
i=1

Pi

)
, we have

〈(δω − λδe) ? δσ,Φω,λ〉 = 〈δωσ,Φω,λ〉 − λ〈δσ,Φω,λ〉 = 0

for any σ ∈ n∗
i=1

Pi. If ψ ∈ fω,λ ? `2
(

n∗
i=1

Pi

)
for any λ ∈ D \ {0}, ω ∈ n∗

i=1
Pi, ω 6= e,

then 〈ψ,Φω,λ〉 = 0, i.e.,

∞∑
k=0

λk〈ψ, δωk〉 = 0 for any λ ∈ D \ {0}, ω ∈ n∗
i=1

Pi, ω 6= e.

This implies 〈ψ, δωk〉 = 0 for any k = 0, 1, . . ., ω ∈ n∗
i=1

Pi, ω 6= e. Hence, 〈ψ, δσ〉 = 0

for any σ ∈ n∗
i=1

Pi, that is, ψ = 0. Therefore, the relation (3.3) is satisfied.

There is a canonical homomorphism of
n∗
i=1

Pi onto
n∏
i=1

Pi which is the identity

on each Pi. Let the image of an element σ be denoted by |σ|, which we will call
the lenght of σ.

Example 3.4. For each g = (g1, . . . , gn) ∈
n∏
i=1

Pi denote

Ωg :=
{
ω ∈ n∗

i=1
Pi

∣∣∣ |ω| = g
}
.

Let Yg := span{δω | ω ∈ Ωg} ⊂ `2
(

n∗
i=1

Pi

)
. If f ∈ Yg with ‖f‖2 = 1, then f is

inner. Indeed, if ω1, ω2 ∈ Ωg and σ, µ ∈ n∗
i=1

Pi, then ω1σ = ω2µ if and only if ω1 =

ω2 and σ = µ. On the other hand, if f =
∑
aωδω ∈ Yg and σ, µ ∈ n∗

i=1
Pi, σ 6= µ,
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then f ? δσ ⊥ f ? δµ. Since ‖f‖2 = 1, using Proposition 2.5, we infer that f is
inner.

Example 3.5. Let {σi}i∈I ⊂
n∗
i=1

Pi be with the property that for any i, j ∈
I, i 6= j, σi 66 σj and σj 66 σi. If

∑
i∈I

|ai|2 = 1, then ϕ :=
∑
i∈I

aiδσi
is inner.

In particular, if {σ1, . . . , σk} ⊂
n∗
i=1

Pi has the property that any two monomials

σi, σj ∈ {σ1, . . . , σk} start with elements belonging to different semigroups Pi

(i = 1, 2, . . . , n) and
k∑
i=1

|ai|2 = 1, then ϕ :=
k∑
i=1

aiδσi is inner.

Example 3.6. Let {i1, . . . , ik} and {j1, . . . , jp} be disjoint subsets of
{1, 2, . . . , n}. If f ∈ `2(Pi1 ∗ · · · ∗Pik) with ‖f‖2 = 1 and σ ∈ Pj1 ∗ · · · ∗Pjp , σ 6= e

then f ?δσ is an inner function in F∞
(

n∗
i=1

Pi

)
. Moreover, if ϕ is any inner function

of type considered in Example 3.5, then f ? ϕ is inner.
Let σ1, σ2 ∈ Pi1 ∗ · · · ∗Pik and ω1, ω2 ∈

n∗
i=1

Pi. Notice that, for any σ ∈
Pj1 ∗ · · · ∗Pjp , σ1σω1 = σ2σω2 if and only if σ1 = σ2 and ω1 = ω2. It is easy to

show now that if ω1, ω2 ∈
n∗
i=1

Pi, ω1 6= ω2, then (f ?δσ)?δω1 ⊥ (f ?δσ)?δω2 . Since

‖f ? δσ‖2 = 1, it follows that f ? δσ is inner. The last part follows in a similar
manner.

The following theorem extends the main result from [1] to our setting.

Theorem 3.7. Let Pi, 1 6 i 6 n, n > 2, be unital discrete semigroups with
involution, the cancellation property, and no divisors of the identity. Then the
algebra L∞

(
n∗
i=1

Pi

)
is reflexive.

Proof. For simplicity, denote L∞
(

n∗
i=1

Pi

)
:= L∞. We need to prove that

Alg LatL∞ ⊂ L∞. Let us fix A ∈ Alg LatL∞. According to Corollary 2.8, for
every ϕ inner in F∞

(
n∗
i=1

Pi

)
, `2
(

n∗
i=1

Pi

)
? ϕ̃ ∈ LatL∞ and hence, A

(
`2
(

n∗
i=1

Pi

)
?

ϕ̃
)
⊂ `2

(
n∗
i=1

Pi

)
? ϕ̃. Therefore, to each inner function ϕ corresponds a unique

function ψ ∈ `2
(

n∗
i=1

Pi

)
such that

(3.4) Aϕ̃ = ψ ? ϕ̃.

In particular, for each ω ∈ n∗
i=1

Pi, there is ψω ∈ `2
(

n∗
i=1

Pi

)
such that Aδω = ψω?δω.

Let g = (g1, . . . , gn) ∈
n∏
i=1

Pi with g 6= (e, . . . , e) and

Ωg =
{
ω ∈ n∗

i=1
Pi
∣∣ |ω| = g

}
.
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In general, Ωg is not a singleton. Fix ω0 ∈ Ωg and let ω ∈ Ωg, ω 6= ω0. According to
Example 3.4, f̃ = 1√

2
(δ
ω̃0

+δ
ω̃
) is inner (notice that σ ∈ Ωg if and only if σ̃ ∈ Ω

g̃
).

According to (3.4), there is ψ ∈ `2
(

n∗
i=1

Pi

)
such that

(3.5) Af = ψ ? f =
1√
2
(ψ ? δω0 + ψ ? δω).

On the other hand, we have

(3.6) Af =
1√
2
(Aδω0 +Aδω) =

1
2
(ψω0 ? δω0 + ψω ? δω).

Since ω0, ω ∈ Ωg, ω 6= ω0 we have `2
(

n∗
i=1

Pi

)
? δω0 ⊥ `2

(
n∗
i=1

Pi

)
? δω (see Exam-

ple 3.4). Hence, using the relations (3.5), (3.6), we infer that ψ?δω0 = ψω0 ?δω0 and
ψ ? δω = ψω ? δω. Since δω0 and δω are inner, we have ψ = ψω0 = ψω. Therefore,

(3.7) ψω = ψω0 for any ω ∈ Ωg.

If Ωg is a singleton, then (3.7) is trivial. Notice that

n∗
i=1

Pi = {e} ∪
⋃

g∈
n∏

i=1

Pi

g 6=(e,...,e)

Ωg.

Let us fix an element g0 = (g0
1 , . . . , g

0
n) ∈

n∏
i=1

Pi with g0
i ∈ Pi \ {e}, i = 1, . . . , n,

and fix
ω0 ∈ Ω0 =

{
ω ∈ n∗

i=1
Pi
∣∣ |ω| = g0

}
.

Choose an arbitrary g ∈
n∏
i=1

Pi with g 6= (e, . . . , e) and g 6= g0. Since n > 2,

there exist ω1 ∈ Ω0 and σ1 ∈ Ωg such that they start with elements belonging to
different semigroups Pi, i = 1, . . . , n. The function h = 1√

2
(δω1 + δσ1) is inner (see

Example 3.5) and, according to (3.4), there exists ψh ∈ `2
(

n∗
i=1

Pi

)
such that

Ah̃ = ψh ? h̃ =
1√
2
(ψh ? δω̃1

+ ψh ? δσ̃1
).

On the other hand, we have

Ah̃ =
1√
2
(ψω1 ? δω̃1

+ ψσ1 ? δσ̃1
)
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for some ψω1 , ψσ1 ∈ `2
(

n∗
i=1

Pi

)
. Since `2

(
n∗
i=1

Pi

)
? δ

ω̃1
⊥ `2

(
n∗
i=1

Pi

)
? δ

σ̃1
we infer

that ψω1 = ψσ1 = ψh.
Since ω0, ω1 ∈ Ω0, we already proved (see (3.7)) that ψω0 = ψω1 = ψω for

any ω ∈ Ω0. On the other hand, due to similar reasons, ψσ1 = ψσ for any σ ∈ Ωg.
Therefore, ψω0 = ψω = ψσ for any ω ∈ Ω0 and σ ∈ Ωg. Hence, ψω0 = ψσ for any
σ ∈ n∗

i=1
Pi \ {e}.

The above results show that there exists h ∈ `2
(

n∗
i=1

Pi

)
such that

Aδω = h ? δω

for any ω ∈ n∗
i=1

Pi, ω 6= e. Since A is a bounded operator, it is clear that h ∈

L∞
(

n∗
i=1

Pi

)
. Let B := A − Lh and h′ := Aδe. It is clear that B ∈ Alg LatL∞,

Bδω = 0 if ω 6= e, ω ∈ n∗
i=1

Pi, and Bδe = h′′, where h′′ := h′ − h.

According to (3.4), for any inner function ϕ ∈ F∞
(

n∗
i=1

Pi

)
, Bϕ̃ = ψ ? ϕ̃ for

some ψ ∈ `2
(

n∗
i=1

Pi

)
. This shows that 〈ϕ̃, δe〉h′′ = ψ?ϕ̃, hence, h′′ ∈ `2

(
n∗
i=1

Pi

)
?ϕ̃

for any inner function ϕ with 〈ϕ̃, δe〉 6= 0. According to Lemma 3.3, we infer that
h′′ = 0, which implies A = Lh ∈ L∞. This completes the proof.

Taking into account the results we have obtained so far, we can easily extend
Theorem 2.10 from [13] to our setting, and show that L∞

(
n∗
i=1

Pi

)
has property

A1. The proof follows the same lines but we shall include it for completeness of
exposition.

Theorem 3.8. Let Pi, 1 6 i 6 n, n > 2, be unital discrete semigroups with
involution, the cancellation property, and no divisors of the identity. If Φ is a
weak-∗ continuous linear functional on L∞

(
n∗
i=1

Pi

)
, and ε > 0, then there are

elements x, y ∈ `2
(

n∗
i=1

Pi

)
such that

Φ(A) = (Ax, y) for any A ∈ L∞
(

n∗
i=1

Pi

)
,

and ‖x‖, ‖y‖ 6 ‖ϕ‖+ ε.

Proof. Let Φ be a weak-∗ continuous linear functional on L∞
(

n∗
i=1

Pi

)
and

fix ε > 0. According to Hahn-Banach theorem, there is a trace-class operator
K ∈ B

(
`2
(

n∗
i=1

Pi

))
with ‖K‖1 := Tr(K) 6 ‖ϕ‖ + ε and Φ(A) = Tr(AK) for all

A ∈ L∞
(

n∗
i=1

Pi

)
. The singular decomposition of K yields
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Kh =
∞∑
k=1

sk〈h, fk〉gk

where {fk}∞k=1, {gk}∞k=1 are orthonormal sequences in `2
(

n∗
i=1

Pi

)
, sk > 0, and

∞∑
k=1

sk = ‖K‖1. Define x =
∞∑
k=1

s
1/2
k (gk ? ϕ̃k) and y =

∞∑
k=1

s
1/2
k (fk ? ϕ̃k), where

{ϕk}∞k=1 are orthogonal inner functions, i.e., ‖ϕk‖2 = ‖ϕk‖∞ = 1 and

`2
(

n∗
i=1

Pi

)
? ϕ̃j ⊥ `2

(
n∗
i=1

Pi

)
? ϕ̃k

for j 6= k. For example, fix g ∈ Pn \ {e}, ω ∈ P1 \ {e}, and define ψj := δgjω,

j = 1, 2, . . ., where gj = g · · · g︸ ︷︷ ︸
j times

. It is easy to see now that ‖x‖2 = ‖y‖2 =
∞∑
k=1

sk =

‖K‖1. Notice that `2
(

n∗
i=1

Pi

)
? ϕ̃j are invariant subspaces (see Theorem 2.6) for

{λ(σ)}
σ∈

n
∗

i=1
G+

i

, and hence, according to Corollary 2.8, they are invariant to any

A ∈ L∞
(

n∗
i=1

Pi

)
. On the other hand,

(3.8) R∗
ϕ̃j
AR

ϕ̃j
= A

for any A ∈ L∞
(

n∗
i=1

Pi

)
. Indeed, since A = Lψ for some ψ ∈ F∞

(
n∗
i=1

Pi

)
, we

have

AR
ϕ̃j

(δσ) = ψ ? (δσ ? ϕ̃j) = (ψ ? δσ) ? ϕ̃j = R
ϕ̃j
A(δσ)

for any σ ∈ n∗
i=1

Pi. Since ϕj is inner, R
ϕ̃j

is an isometry. Therefore, the relation

(3.8) holds. Using all these facts, we deduce

ϕ(A) = Tr(AK) =
∞∑
k=1

sk〈Agk, fk〉 =
∞∑
k=1

sk〈R∗ϕk
ARϕk

gk, fk〉

=
∞∑
k=1

sk〈A(gk ? ϕ̃k), fk ? ϕ̃k〉 =
〈 ∞∑
k=1

s
1/2
k A(gk ? ϕ̃k),

∞∑
k=1

s
1/2
k fk ? ϕ̃k

〉
= 〈Ax, y〉.

This completes the proof.

Corollary 3.9. The weak-∗ and WOT topologies on L∞
(

n∗
i=1

Pi

)
coincide.
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4. HYPER-REFLEXIVITY FOR SOME ANALYTIC TOEPLITZ ALGEBRAS

The algebra U ∈ B(H) is said to be hyper-reflexive ([4]) if there is a constant M
such that

(4.1) dist(T,U) 6 M sup
L∈LatU

‖P⊥L TPL‖

for any T ∈ B(H), where PL is the orthogonal projection from H onto L and
P⊥L = IH − PL. The constant of hyper-refexivity is the smallest number M with
property (4.1). The list of algebras known to be hyper-reflexive is rather short.
It includes, for example, nest algebras ([3], [17]), injective von Neumann algebras
([8]), the analytic Toeplitz algebra L∞

(
n∗
i=1

N
)

(see [11] for n = 1 and [13] for

n > 2), and very few others (see [9], [27]).
In this section, we provide a new class of hyper-reflexive algebras, including

L∞
(

n∗
i=1

G+
i

)
, where G+

i , i = 1, 2, . . . , n, n > 2, are positive cones of discrete

additive subgroups of real numbers. In particular, we show that the WOT-closure
of the noncommutative disc algebra A

(
n∗
i=1

G+
i

)
(see [14]) is hyper-reflexive.

We need first a few preliminary results. As in Section 3, let Pi, i = 1, 2, . . . , n,
n > 2, be unital discrete cancellative semigroups with involution and no divisors
of the identity.

A WOT-closed algebra U is said to have infinite multiplicity if it is unitarily
equivalent to an algebra of the form B ⊗ I where I is the identity operator on an
infinite dimensional space. We need to recall a well-known result about algebras
of infinite multiplicity.

Theorem 4.1. Every WOT-closed algebra of infinite multiplicity is hyper-
reflexive with distance constant at most 9.

This theorem is a consequence of some results from [2], [8], [11], and [16] (see
[13], Theorem 2.7). The following result will be constantly used in this section.
To simplify our notation, denote L∞

(
n∗
i=1

Pi

)
:= L∞.

Lemma 4.2. Let W ⊂ `2
(

n∗
i=1

Pi

)
be an infinite dimensional wandering sub-

space for λ(σ), σ ∈ n∗
i=1

Pi, and denote X :=
⊕

σ∈
n
∗

i=1
Pi

λ(σ)W. Then X is invariant

for L∞ and for any T ∈ B
(
`2
(

n∗
i=1

Pi

))
we have

(4.2) dist (T |X ,L∞|X ) 6 10 sup
L∈Lat (L∞|X )

‖P⊥L (T |X )PL‖
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where PL is the orthogonal projection of `2
(

n∗
i=1

Pi

)
onto L.

Proof. As in the proof of Theorem 2.6, we infer that there exist orthogonal
inner functions ψj ∈ F∞

(
n∗
i=1

Pi

)
, j ∈ J, with cardJ = dimW such that

X =
⊕
j∈J

`2
(

n∗
i=1

Pi

)
? ψ̃j .

According to Corollary 2.8, `2
(

n∗
i=1

Pi

)
? ψ̃j is invariant for L∞ and hence X is

invariant for L∞. Since

L∞ =
{
R
ψ̃

∣∣ψ ∈ F∞( n∗
i=1

Pi

)}′
,

it is clear that L∞ is WOT-closed in B
(
`2
(

n∗
i=1

Pi

))
and hence, L∞|X is WOT-

closed. For each j ∈ J , define Wj : `2
(

n∗
i=1

Pi

)
→ `2

(
n∗
i=1

Pi

)
? ψ̃j by Wjf = R

ψ̃j
f

for all f ∈ `2
(

n∗
i=1

Pi

)
. Since ψj is an inner function, it follows that Wj is a unitary

operator. On the other hand, if ψ ∈ F∞
(

n∗
i=1

Pi

)
, then

LϕWjf = LϕRψ̃j
f = R

ψ̃j
Lϕf = WjLϕf

for any f ∈ `2
(

n∗
i=1

Pi

)
. Therefore,

W ∗
j

(
Lϕ|`2

(
n∗
i=1

Pi

)
? ψ̃j

)
Wj = Lϕ

for any j ∈ J . Since L∞|`2
(

n∗
i=1

Pi

)
? ψ̃j is unitarily equivalent to L∞, and the

subspaces `2
(

n∗
i=1

Pi

)
? ψ̃j , j ∈ J , are orthogonal and invariant to L∞, it is easy to

see that L∞|X is unitarily equivalent to L∞ ⊗ I, where I is the identity operator
on a Hilbert space of dimension equal to dimW.

Since L∞|X is a WOT-closed algebra of infinite multiplicity, using The-
orem 4.1, we infer that it is hyper-reflexive with distance constant at most 9.
Therefore, we can deduce that

(4.3) dist (PX (T |X ),L∞|X ) 6 9 sup
L∈Lat (L∞|X )

‖P⊥L (T |X )PL‖.

On the other hand,

dist (P⊥X (T |X ),L∞|X ) 6 ‖P⊥X (T |X )‖ 6 sup
L∈Lat (L∞|X )

‖P⊥L (T |X )PL‖.

Combining this inequality with (4.3), we obtain (4.2). This completes the proof.
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Lemma 4.3. Let M⊂ `2
(

n∗
i=1

Pi

)
be an invariant subspace for L∞

(
n∗
i=1

Pi

)
.

If there is a wandering subspace W ⊂M for {λ(σ)}
σ∈

n
∗

i=1
Pi

, then

‖Lϕ‖ = ‖Lϕ|M‖

for any ϕ ∈ F∞
(

n∗
i=1

Pi

)
.

Proof. According to Corollary 2.8, the subspace N :=
⊕

σ∈
n
∗

i=1
Pi

λ(σ)W is in-

variant for L∞
(

n∗
i=1

Pi

)
. Notice that

‖Lϕ‖ > ‖Lϕ|M‖ > ‖Lϕ|N‖ = ‖Lϕ‖.

The last equality holds because Lϕ|N is unitarily equivalent to a direct sum of
α := dimW copies of Lϕ. This ends the proof.

We provide now a new class of hyper-reflexive algebras, including
L∞
(

n∗
i=1

G+
i

)
, where G+

i , i = 1, 2, . . . , n, n > 2, are positive cones of discrete

additive subgroups of real numbers. For the sake of simplicity, we prove the
hyper-reflexivity for L∞

(
n∗
i=1

G+
i

)
.

The proof uses some ideas from [13], Theorem 2.9, but is quite different at
some points because of the new obstructions which occur in our more general
setting (see Section 1).

Theorem 4.4. Let G+
i , i = 1, 2, . . . , n, n > 2, be positive cones of dis-

crete additive subgroups of real numbers. Then the algebra L∞
(

n∗
k=1

G+
k

)
is hyper-

reflexive and for any T ∈ B
(
`2
(

n∗
k=1

G+
k

))
we have

dist
(
T,L∞

(
n∗
k=1

G+
k

))
6 56 sup

L∈LatL∞
(

n
∗

k=1
G+

k

) ‖P⊥L TPL‖,

where PL is the orthogonal projection from `2
(

n∗
k=1

G+
k

)
onto L.

Proof. Let T ∈ B
(
`2
(

n∗
k=1

G+
k

))
be a fixed operator. Setting

C = sup
L∈LatL∞

(
n
∗

k=1
G+

k

) ‖P⊥L TPL‖,
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we need to prove that

(4.4) dist
(
T,L∞

(
n∗
k=1

G+
k

))
6 56C.

For each i = 1, 2, . . . , n, choose a decreasing sequence {gim}∞m=1 ⊂ G+
i \ {0} such

that gim → inf(G+
i \ {0}) as m → ∞. For each j = 1, 2, and m = 1, 2, . . ., define

the subspace

Xjm =

[ ⊕
i∈{1,2,...,n}

i 6=j
gj∈G+

j
∩[gjm,∞)

`2
(

n∗
k=1

G+
k

)
? δgim

? δgj

]
⊕

[ ⊕
i∈{1,2,...,n}

i 6=j

`2
(

n∗
k=1

G+
k

)
? δgim

]
.

According to Corollary 2.8, the subspaces Xjm, j = 1, 2, are invariant to

L∞
(

n∗
k=1

G+
k

)
. Notice that Xm := X1m + X2m =

n⊕
i=1

`2
(

n∗
k=1

G+
k

)
? δgim . Ac-

cording to Lemma 4.2, there are elements Aim ∈ L∞
(

n∗
k=1

G+
k

)
, i = 1, 2, . . ., such

that

(4.5) ‖(T −Aim)|Xim‖ 6 10C.

Notice that X1m ∩ X2m is an invariant subspace for L∞
(

n∗
k=1

G+
k

)
containing a

wandering subspace, for example δg1m
? δg2m

. According to Lemma 4.3, we have

‖A1m −A2m‖ = ‖(A1m −A2m)|X1m ∩ X2m‖
6 ‖(A1m − T )|X1m‖+ ‖(T −A2m)|X2m‖ 6 20C,

and hence

(4.6) ‖Am −Aim‖ 6 10C, i = 1, 2,

where Am := (A1m +A2m)/2. Combining (4.5) with (4.6), we obtain

(4.7) ‖(T −Am)|Xim‖ 6 20C for each i = 1, 2.

For any h ∈ Xm, there exist fi ∈ Xim, i = 1, 2 such that f1 ⊥ f2 and h = f1 + f2
(notice that PX1mPX2m = PX2mPX1m). Therefore, we have

‖(T −Am)|Xm‖6 sup
h∈Xm

‖h‖=1

{‖(T −Am)f1‖+ ‖(T −Am)f2‖}

6
(
‖(T −Am)|X1m‖2 + ‖(T −Am)|X2m‖2

)1/2
6 20

√
2C.
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Since `2
(

n∗
k=1

G+
k

)
? δgim ⊂ `2

(
n∗
k=1

G+
k

)
? δgi(m+1) , it is clear that Xm ⊂ Xm+1

and {δ0}⊥ is an increasing union of these subspaces. On the other hand, applying
again Lemma 4.3 and using (4.5), we have

‖Aim‖ = ‖Aim|Xim‖ 6 10C + ‖T‖.

Therefore, ‖Am‖ 6 10C + ‖T‖. Since the unit ball of B
(
`2
(

n∗
k=1

G+
k

))
is

WOT-compact, let A be a WOT-limit of a subsequence of {Am}. We deduce that
A ∈ L∞

(
n∗
k=1

G+
k

)
and

(4.8) ‖(T −A)|{δ0}⊥‖ 6 20
√

2C.

Let us fix ω ∈ n∗
k=1

G+
k , ω 6= 0 and λ ∈ C, |λ| < 1. According to Lemma 3.3, the

Möbius function
ϕω,λ := (δω − λδ0) ? (δ0 − λδω)−1

is inner in F∞
(

n∗
k=1

G+
k

)
. Therefore, N := `2

(
n∗
k=1

G+
k

)
? ϕω,λ is an invariant

subspace for L∞
(

n∗
k=1

G+
k

)
. Let us fix g ∈ G+

n \ {0} and define ψj := δωgj
,

j = 1, 2, . . ., where gj = g + · · ·+ g︸ ︷︷ ︸
j times

. Since n > 2, it is easy to see that we can

choose ω and g such that

`2
(

n∗
k=1

G+
k

)
? ψj ⊥ `2

(
n∗
k=1

G+
k

)
? ψk.

for j 6= k, and
`2
(

n∗
k=1

G+
k

)
? ψj ⊥ `2

(
n∗
k=1

G+
k

)
? ϕω,λ

for any j = 1, 2, . . .. For example, take ω ∈ G+
1 \ {0} and g ∈ G+

n \ {0}. Notice
that

M :=
[ ∞⊕
j=1

`2
(

n∗
k=1

G+
k

)
? ψj

]
⊕N

is an invariant subspace for L∞
(

n∗
k=1

G+
k

)
with infinite dimensional wandering

subspace containing ϕω,λ. Using again Lemma 4.2, we deduce that there is an

operator B ∈ L∞
(

n∗
k=1

G+
k

)
such that

(4.9) ‖(T −B)|N‖ 6 ‖(T −B)|M‖ 6 10C.

Notice that N ∩ {δ0}⊥ is an invariant subspace for L∞
(

n∗
k=1

G+
k

)
containing an

wandering subspace, namely the one generated by δg ∗ϕλ,ω, where g ∈ G+
n \{0} is
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fixed as above. According to Lemma 4.3, the relations (4.8) and (4.9), we deduce
that

(4.10)
‖B −A‖ = ‖(B −A)|N ∩ {δ0}⊥‖

6 ‖(B − T )|N‖+ ‖(T −A)|{δ0}⊥‖ 6 (10 + 20
√

2)C.

Since ϕλ,ω = −λδ0 + g for some g ∈ {δ0}⊥ and ‖ϕλ,ω‖2 = 1, we have

‖(T−A)(λδ0)‖ 6 ‖(T−A)ϕλ,ω‖+‖(T−A)g‖ 6 ‖(T−A)|N‖+‖(T−A)|{δ0}⊥‖ ‖g‖2.

On the other hand, using again Lemma 4.3, we infer that

‖(T −A)|N‖ 6 ‖(T −B)|N‖+ ‖(B −A)|N‖ 6 ‖(T −B)|N‖+ ‖B −A‖.

Combining these inequalities, we obtain

‖(T −A)(λδ0)‖ 6 ‖(T −B)|N‖+ ‖B −A‖+ ‖(T −A)|{δ0}⊥‖ ‖h‖2.

Since ‖h‖2 =
√

1− |λ|2, using (4.8), (4.9), and (4.10), we obtain

|λ| ‖(T −A)δ0‖ 6 20(1 +
√

2)C + 20
√

2C
√

1− |λ|2.

Since this inequality holds for any 0 < λ < 1, setting λ→ 1, we deduce

‖(T −A)δ0‖ 6 20(1 +
√

2)C.

Using the Cauchy-Schwarz inequality, we obtain

‖T −A‖ 6
(
‖(T −A)δ0‖2 + ‖(T −A)|{δ0}⊥‖2

)1/2 = 20
√

5 + 2
√

2C < 56C.

Hence, the relation (4.4) follows, so L∞
(

n∗
k=1

G+
k

)
is hyper-reflexive. This com-

pletes the proof.

A consequence of Theorem 3.8, Theorem 4.4, and [11] or [16] is the following.

Corollary 4.5. Every WOT-closed unital subalgebra of L∞
(

n∗
k=1

G+
k

)
is

hyper-reflexive with constant at most 113.

In particular, the WOT-closure of the noncommutative disc algebra
A
(

n∗
i=1

G+
i

)
is hyper-reflexive. Let us remark that Theorem 4.4 holds true for

the Toeplitz algebra L∞
(

n∗
i=1

Pi

)
, when Pi (i = 1, . . . , n; n > 2) are unital discrete

cancellative semigroups with involution, and totally ordered by the left invariant
order “6”. Notice that the proof is similar to that of Theorem 4.4.
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