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Abstract. Let G1 and G2 be topological groupoids. We introduce a notion
of correspondence from G1 to G2. We show that there exists a correspondence
from C∗

r (G2) to C∗
r (G1) if there exists a correspondence from G1 to G2. Let f

be a homomorphism of G1 onto G2. We show that there is a correspondence
from G1 to G2 if f satisfies certain conditions. Moreover we show that it gives
an element of KK(C∗

r (G2), C
∗
r (G1)) if f satisfies an additional condition. We

study three examples where groupoids are topological spaces, topological
groups and transformation groups respectively.
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0. INTRODUCTION

The notion of correspondence was introduced by A. Connes in the theory of von
Neumann algebras (cf. [3]). We can define a notion of correspondence between C∗-
algebras. In this paper, we introduce a notion of correspondence between groupoids
and show that a correspondence between groupoids induces a correspondence be-
tween C∗-algebras. If a correspondence between C∗-algebras satisfies an additional
condition, then it gives a Kasparov module and an element of the KK-group. We
show that if a homomorphism between groupoids satisfies certain conditions, then
it gives an element of the KK-group of the associated C∗-algebras.

Let G1 and G2 be topological groupoids and let C∗
r (G1) and C∗

r (G2) be their
reduced groupoid C∗-algebras respectively. In Section 1, we introduce a notion of
correspondence from G1 to G2 and show that a correspondence from G1 to G2
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induces a correspondence from C∗
r (G2) to C∗

r (G1) (Theorem 1.4). Let f be a ho-
momorphism of G1 onto G2. In general, we cannot construct any homomorphisms
between C∗

r (G1) and C∗
r (G2). In Section 2, we show that there is a correspon-

dence from G1 to G2 if f satisfies certain conditions. It follows from Theorem 1.4
that there is a correspondence from C∗

r (G2) to C∗
r (G1). Moreover we show that

it gives an element of KK(C∗
r (G2), C∗

r (G1)) if f satisfies an additional condition.
In Section 3, we study three examples where groupoids are topological spaces,
topological groups and transformation groups respectively.

P.S. Muhly, J.N. Renault and D. Williams introduced a notion of equivalence
of groupoids in [8]. They showed that if the groupoids are equivalent then the
associated C∗-algebras are Morita equivalent ([8], Theorem 2.8). Our definition
of correspondence between groupoids is obtained by weakening the conditions in
that of equivalence between groupoids introduced by them. The proof of Theorem
1.4 is based on the proof of [8], Theorem 2.8. But we use another trick in the
proof of the positivity of the C∗-valued inner product. This trick is useful in later
arguments.

Let (V1, F1) and (V2, F2) be two foliated manifolds and f : V1/F1 → V2/F2 a
K-oriented morphism of quotient spaces. M. Hilsum and G. Skandalis constructed
an element f ! of KK(C∗(V1, F1), C∗(V2, F2)) ([5], see also [4]). It is interesting to
know the relations between their construction and ours. But it is a problem for
further investigation.

1. CORRESPONDENCE OF GROUPOIDS

For i = 1, 2, let Gi be a second countable locally compact Hausdorff groupoid.
We denote by s (resp. r) the source (resp. range) map of Gi. The unit space is
denoted by G(0)

i . We set Gi,x = s−1(x) for x ∈ G
(0)
i . We denote by G(2)

i the set
of composable pairs. We do not assume that r and s are open, but the existence
of the right Haar system implies that these maps are open ([12], I.2.4). Let Z be
a second countable locally compact Hausdorff space. We denote by ρ (resp. σ) a
continuous map of Z onto G

(0)
1 (resp. G

(0)
2 ). Let G1 ∗ Z (resp. Z ∗ G2) be the

subspace of G1 ×Z (resp. Z ×G2) consisting of all elements (γ1, z) (resp. (z, γ2))
with the property s(γ1) = ρ(z) (resp. σ(z) = r(γ2)).

Definition 1.1. A left action of G1 on Z is a continuous map (γ, z) ∈
G1 ∗ Z 7→ γ · z ∈ Z with the following properties:

(i) ρ(γ · z) = r(γ) for (γ, z) ∈ G1 ∗ Z;
(ii) γ′ · (γ · z) = (γ′γ) · z if both sides are defined;
(iii) ρ(z) · z = z for z ∈ Z.
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A right action of G2 on Z is a continuous map (z, γ) ∈ Z ∗ G2 7→ z · γ ∈ Z

with properties similar to the above.

We say that the left G1-space Z is proper if the map (γ, z) ∈ G1 ∗ Z 7→
(γ ·z, z) ∈ Z×Z is proper, that is, the inverse images of compact sets are compact.
The right proper space is defined similarly.

Definition 1.2. Let G1 and G2 be a second countable locally compact
Hausdorff groupoids and Z a second countable locally compact Hausdorff space.
The space Z is a correspondence from G1 to G2 if it satisfies the following prop-
erties:

(i) there exists a left proper action of G1 on Z such that ρ is an open map;
(ii) there exists a right proper action of G2 on Z;
(iii) the G1- and G2-actions commute;
(iv) the map ρ induces a bijection of Z/G2 onto G(0)

1 .

We obtain Definition 1.2 by weakening the conditions in the definition of
equivalence between groupoids introduced by Muhly, Renault and Williams ([8],
Definition 2.1). Compared with their definition, we do not assume that the G1-
and G2-actions are free, we do not assume that σ is an open map and, above all,
we do not assume that σ induces a bijection of G1 \ Z onto G(0)

2 . For a subset V
of Z, let [V ]2 be the saturation of V with respect to the G2-action, that is, [V ]2 is
the set of elements z · γ of Z with z ∈ V and (z, γ) ∈ Z ∗G2. If the condition (iv)
of Definition 1.2 is satisfied, then we have [V ]2 = ρ−1ρ(V ). Therefore the quotient
map Z → Z/G2 is open if ρ is open. Moreover if the G2-action is proper, then
Z/G2 is a locally compact Hausdorff space.

Let B be a C∗-algebra. A right Hilbert B-module is a right B-module E
with a B-valued inner product such that E is complete with respect to the norm
‖ξ‖ = ‖〈ξ, ξ〉‖1/2 ([1], 13.1.1). We denote by LB(E) the set of bounded adjointable
operators on E ([1], 13.2.1) and we denote by KB(E) the closure of the linear span
of {θξ,η : ξ, η ∈ E}, where θξ,η is the element of LB(E) defined by θξ,η(ζ) = ξ〈η, ζ〉
for ζ ∈ E ([1], 13.2.3).

Definition 1.3. Let A and B be C∗-algebras. The pair (E, φ) is a corre-
spondence from A to B if it satisfies the following properties:

(i) E is a right Hilbert B-module;
(ii) φ is a ∗-homomorphism of A into LB(E).

If φ is a map of A intoKB(E), then (E, φ, 0) is a Kasparov module for trivially
graded C∗-algebras (A,B) ([1], 17.1.1) and gives an element [E] of KK(A,B).
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Note that a ∗-homomorphism between C∗-algebras induces a correspondence of
C∗-algebras and it gives a Kasparov module ([1], 17.1.2).

For i = 1, 2, let λi be a right Haar system of Gi. Let Cc(Gi) be the ∗-
algebra of continuous functions with compact supports, where the product and
the involution are defined as follows:

(ab)(γ) =
∫
Gi

a(γγ′−1)b(γ′) dλi
s(γ)(γ

′),

a∗(γ) = a(γ−1)

for a, b ∈ Cc(Gi) and γ ∈ Gi. For x ∈ G(0)
i , we set Hi,x = L2(Gi,x, λ

i
x). We define

a representation πi,x of Cc(Gi) on Hi,x by

(πi,x(a)ζ)(γ) =
∫
Gi

a(γγ′−1)ζ(γ′) dλi
x(γ′)

for a ∈ Cc(Gi), ζ ∈ Hi,x and γ ∈ Gi,x. We define the reduced norm ‖a‖ by

‖a‖ = sup
x∈G

(0)
i

‖πi,x(a)‖.

The reduced groupoid C∗-algebra C∗
r (Gi) is the completion of Cc(Gi) by the

reduced norm (cf. [2]).

Theorem 1.4. Let (Gi, λ
i) be a second countable locally compact Hausdorff

groupoid with a right Haar system λi for i = 1, 2 and Z a correspondence from G1

to G2. Then there exists a correspondence from C∗
r (G2) to C∗

r (G1).

Proof. We set Ã = Cc(G1), B̃ = Cc(G2) and Ẽ = Cc(Z). For a ∈ Ã and
ξ ∈ Ẽ, we define a function ξa on Z by

(ξa)(z) =
∫
G1

ξ(γ · z)a(γ) dλ1
ρ(z)(γ) (z ∈ Z).

As in [8], we can show that ξa ∈ Ẽ.
For ξ, η ∈ Ẽ, γ ∈ G1 and z ∈ Z with r(γ) = ρ(z), we set

〈ξ, η〉(γ) =
∫
G2

ξ(z · γ′−1)η(γ−1 · z · γ′−1) dλ2
σ(z)(γ

′).

The above integral exists since the G2-action is proper. It follows from the con-
dition (iv) of Definition 1.2 that 〈ξ, η〉(γ) is independent of the choice of z. As in
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[8], we can show that 〈ξ, η〉 ∈ Ã. Let M be the closed subset of G1 × Z consist-
ing of elements (γ, z) with the property r(γ) = ρ(z). We denote by S(γ, z) the
integral which defines 〈ξ, η〉(γ). Then S is a continuous function on M . We fix
(γ0, z0) ∈ M . For ε > 0, there exist a neighborhood V of γ0 and a neighborhood
U of z0 such that |S(γ0, z0) − S(γ, z)| < ε for every (γ, z) ∈ M ∩ (V × U). Since
ρ is open, ρ(U) is a neighborhood of ρ(z0). Since r is continuous, there exists
a neighborhood W of γ0 such that r(W ) ⊂ ρ(U). Then, for every γ ∈ W ∩ V ,
there exists z ∈ U such that r(γ) = ρ(z), that is, (γ, z) ∈M ∩ (V × U). Since we
have 〈ξ, η〉(γ) = S(γ, z) for (γ, z) ∈ M , this implies the continuity of 〈ξ, η〉. The
function 〈ξ, η〉 has compact support since the G1-action is proper.

Next we show that 〈ξ, ξ〉 > 0 for every ξ ∈ Ẽ. Since we do not have a B̃-
valued inner product, our proof is different from [8] and [14]. For x ∈ G(0)

1 , let Xx

be the subset of G1 × G1 × Z consisting of elements (γ, γ′, z) with the property
s(γ) = s(γ′) = ρ(z) = x. For ξ ∈ Ẽ, we define a function ψξ on Xx by

ψξ(γ, γ′, z) =
∫
G2

ξ(γ · z · γ−1
2 )ξ(γ′ · z · γ−1

2 ) dλ2
σ(z)(γ2).

Then ψξ is continuous on Xx since the G2-action is proper. It follows from the
condition (iv) of Definition 1.2 that we have ψξ(γ, γ′, z) = ψξ(γ, γ′, z′) for (γ, γ′, z),
(γ, γ′, z′) ∈ Xx. We fix an element z0 ∈ Z with ρ(z0) = x. For γ, γ′ ∈ G1,x and
z ∈ Z with r(γ) = ρ(z), we have

〈ξ, ξ〉(γγ′−1) = ψξ(γ, γ′, γ−1 · z) = ψξ(γ, γ′, z0).

Then we have, for every ζ ∈ Cc(G1,x),

(π1,x(〈ξ, ξ〉)ζ|ζ) =
∫
G1

∫
G1

ψξ(γ, γ′, z0)ζ(γ′)ζ(γ) dλ1
x(γ′) dλ1

x(γ)

=
∫
G2

∣∣∣∣ ∫
G1

ξ(γ · z0 · γ−1
2 )ζ(γ) dλ1

x(γ)
∣∣∣∣2 dλ2

σ(z0)
(γ2) > 0.

Since Cc(G1,x) is dense in H1,x, we have π1,x(〈ξ, ξ〉) > 0 for every x ∈ G(0)
1 . Since

the field of representations {π1,x : x ∈ G(0)
1 } is faithful, we have 〈ξ, ξ〉 > 0.

For b ∈ B̃ and ξ ∈ Ẽ, we define a function bξ on Z by

(bξ)(z) =
∫
G2

b(γ−1)ξ(z · γ−1) dλ2
σ(z)(γ) (z ∈ Z).

As in [8], we can show that bξ ∈ Ẽ.
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We will show that 〈bξ, bξ〉 6 ‖b‖2〈ξ, ξ〉 for b ∈ B̃ and ξ ∈ Ẽ, where ‖b‖
is the norm of C∗

r (G2). In [8], they showed this inequality using the results [8],

Proposition 2.10 and [13], Proposition 4.2. Here we show the inequality directly.

For x ∈ G(0)
1 , letXx and ψbξ be as above. We fix an element z0 ∈ Z with ρ(z0) = x.

It follows from the condition (iv) of Definition 1.2 that we have

〈bξ, bξ〉(γγ′−1) = ψbξ(γ, γ′, z0)

for γ, γ′ ∈ G1,x. For ζ ∈ Cc(G1,x), we define a function ξ̃ on G2,σ(z0) by

ξ̃(γ2) =
∫
G1

ξ(γ · z0 · γ−1
2 )ζ(γ) dλ1

x(γ) (γ2 ∈ G2,σ(z0)).

Since the G2-action is proper, we have ξ̃ ∈ Cc(G2,σ(z0)). Since we have

∫
G1

(bξ)(γ · z0 · γ−1
2 )ζ(γ) dλ1

x(γ) = (π2,σ(z0)(b)ξ̃)(γ2),

it follows that

(π1,x(〈bξ, bξ〉)ζ|ζ) =
∫
G1

∫
G1

ψbξ(γ, γ′, z0)ζ(γ′)ζ(γ) dλ1
x(γ′) dλ1

x(γ)

=
∫
G2

|(π2,σ(z0)(b)ξ̃)(γ2)|2 dλ2
σ(z0)

(γ2)

= ‖π2,σ(z0)(b)ξ̃‖
2 6 ‖b‖2‖ξ̃‖2.

By a similar calculation we have (π1,x(〈ξ, ξ〉)ζ|ζ) = ‖ξ̃‖2. Since Cc(G1,x) is dense

in H1,x, we have

π1,x(〈bξ, bξ〉) 6 ‖b‖2π1,x(〈ξ, ξ〉)

for every x ∈ G(0)
1 . Therefore we have 〈bξ, bξ〉 6 ‖b‖2〈ξ, ξ〉.

We denote by E the completion of Ẽ with respect to the norm ‖ξ‖ =

‖〈ξ, ξ〉‖1/2. Then E is a right Hilbert C∗
r (G1)-module and a left C∗

r (G2)-module.

We define a ∗-homomorphism φ of C∗
r (G2) to LC∗

r (G1)(E) by φ(b)ξ = bξ for

b ∈ C∗
r (G2) and ξ ∈ E. Then (E, φ) is a correspondence from C∗

r (G2) to C∗
r (G1).
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2. HOMOMORPHISMS OF GROUPOIDS

Let G1 and G2 be as in Section 1 and let f be a continuous homomorphism of G1

onto G2. We denote by f (0) the restriction of f to G(0)
1 , which is a map onto G(0)

2 .
Let H be the kernel of f , that is, the set of all γ ∈ G1 such that f(γ) ∈ G(0)

2 . Then
H is a closed subgroupoid of G1 and we have H(0) = G

(0)
1 . We have a natural

right action of H on G1. Since H is closed, this action is proper. We define a map
(r, s)H of H into H(0) ×H(0) by (r, s)H(γ) = (rH(γ), sH(γ)) for γ ∈ H, where rH
and sH are the range map and the source map of H respectively. In this section
we will prove the following theorems.

Theorem 2.1. Let G1 and G2 be two second countable locally compact Haus-
dorff groupoids, let f be a continuous homomorphism of G1 onto G2 and let H be
the kernel of f . Suppose that the following conditions are satisfied:

(C1) the quotient map q : G1 → G1/H is an open map;
(C2) the map r : G1 → G

(0)
1 is an open map;

(C3) the map (r, s)H : H → H(0) ×H(0) is a proper map;
(C4) f(G1,x) = G2,f(x) for all x ∈ G(0)

1 ;
(C5) f is an open map;
(C6) f (0) is locally one-to-one.

Then G1/H is a correspondence from G1 to G2.

Theorem 2.2. Let (Gi, λ
i) be a second countable locally compact Hausdorff

groupoid with a right Haar system λi for i = 1, 2 and let f be a continuous homo-
morphism of G1 onto G2. Suppose that the conditions (C1), (C3)–(C6) and the
following condition are satisfied:

(C7) f (0) is a proper map.
Then there exists a correspondence (E, φ) from C∗

r (G2) to C∗
r (G1) such that

the range of φ is contained in KC∗
r (G1)(E). Therefore (E, φ, 0) is a Kasparov

module for (C∗
r (G2), C∗

r (G1)) and it gives an element of KK(C∗
r (G2), C∗

r (G1)).

P.S. Muhly and D.P. Williams introduced the notion of a proper groupoid
for a principal groupoid in [9]. If H is principal, then it is a proper groupoid if
and only if (r, s)H is proper ([9], Lemma 2.1). Here we do not assume that H is
principal and we do not use the term “proper groupoid”.

First, we will prove Theorem 2.1. We assume that the conditions (C1) and
(C2) are satisfied. Set Z = G1/H. We define a map ρ of Z onto G(0)

1 by ρ(q(γ)) =
r(γ) for γ ∈ G1 and a map σ of Z onto G

(0)
2 by σ(q(γ)) = s(f(γ)) for γ ∈ G1.

These mappings are well-defined. The maps ρ and σ are continuous and ρ is an
open map by (C2). Let G1 ∗Z and Z ∗G2 be the sets defined in Section 1. Define
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a left action of G1 on Z by γ · q(γ′) = q(γγ′) for (γ, q(γ′)) ∈ G1 ∗ Z. This is
well-defined and the action is continuous by (C1). Then we have the following
proposition.

Proposition 2.3. Suppose that the condition (C3) is satisfied. Then the
left action of G1 on Z, defined above, is proper.

Proof. Let α1 be the map of G1 ∗Z into Z×Z defined by α1(γ, z) = (γ ·z, z).
Let K1 and K2 be compact subsets of Z. We will show that α−1

1 (K1 × K2) is
compact. It follows from the condition (C1) that, for i = 1, 2, there exists a
compact subset K ′

i of G1 such that q(K ′
i) = Ki. Let X be the closed subset of

G1×H ×G1 consisting of elements (γ1, γ2, γ3) with the properties s(γ1) = rH(γ2)
and sH(γ2) = r(γ3). We define a map ψ of X into G1 by ψ(γ1, γ2, γ3) = γ1γ2γ3.
Let (γ, z) be an element of G1 ∗Z such that α1(γ, z) ∈ K1 ×K2. Then there exist
elements γ1 of K ′

1 and γ2 of K ′
2 such that q(γ1) = γ ·z and q(γ2) = z. Since we have

q(γ1) = γ ·z = q(γγ2), there exists an element γ0 of H such that γ1γ0 = γγ2. Then
(γ1, γ0, γ

−1
2 ) is an element of (K ′

1×H×K ′
2
−1)∩X and we have ψ(γ1, γ0, γ

−1
2 ) = γ.

We set Ci = s(K ′
i) for i = 1, 2, which is a compact subset of G(0)

1 = H(0). Then
γ0 is an element of (r, s)−1

H (C1 × C2). We set C = (r, s)−1
H (C1 × C2), which is a

compact set by (C3). We set K ′ = (K ′
1 ×C ×K ′

2
−1)∩X, which is also a compact

set. Therefore ψ(K ′) is a compact set and (γ, z) is an element of ψ(K ′)×K2. Thus
we have proved that α−1

1 (K1 ×K2) is a subset of ψ(K ′)×K2. This completes the
proof of the proposition.

We will define the right action of G2 on Z. To do this, we assume that
the condition (C4) is satisfied. Let (z, γ2) be an element of Z ∗ G2 and γ1 an
element of G1 such that z = q(γ1). Since we have s(f(γ1)) = r(γ2), there exists
the product f(γ1)γ2. By (C4), there exists γ ∈ G1 such that f(γ) = f(γ1)γ2 and
r(γ) = ρ(z). We define z · γ2 to be q(γ). We will show that this is well-defined.
Let γ′1 be an element of G1 such that z = q(γ′1) and γ′ an element of G1 such
that f(γ′) = f(γ′1)γ2 and r(γ′) = ρ(z). There exists an element γ′′ ∈ H such that
γ1 = γ′1γ

′′ and we have f(γ1) = f(γ′1). Thus we have f(γ′) = f(γ). On the other
hand, there exists an element γ0 = γ−1γ′. Since f is a homomorphism, f(γ0) is
an element of G(0)

2 and γ0 is an element of H. This implies that q(γ) = q(γ′).
Therefore z · γ2 is well-defined.

Proposition 2.4. Suppose that the conditions (C5) and (C6) are satisfied.
Then the map (z, γ) ∈ Z ∗G2 → z · γ ∈ Z is a proper action of G2 on Z.

Proof. We will show that the above map is continuous. We fix an element
(z, γ2) of Z ∗ G2. Let V be an open neighborhood of z · γ2 in Z. By (C6), we
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may assume that f (0) is one-to-one on ρ(V ). Let γ1 be an element of G1 such
that z = q(γ1) and γ an element of G1 such that f(γ) = f(γ1)γ2 and r(γ) = ρ(z).
Then we have z · γ2 = q(γ). By (C5), f(q−1(V )) is an open neighborhood of f(γ)
in G2. We denote by β2 the map of G(2)

2 into G2 defined by β2(γ′, γ′′) = γ′γ′′.
Since β2 is continuous, there exist an open neighborhood W ′ of f(γ1) and an open
neighborhood U of γ2 such that β2 maps (W ′ × U) ∩ G(2)

2 into f(q−1(V )). We
denote by W ′′ the intersection of f−1(W ′) and r−1(r(q−1(V ))), which is an open
neighborhood of γ1 by (C2). Set W = q(W ′′), which is an open neighborhood of
z by (C1). Let (z′, γ′2) be an element of the intersection of W ×U and Z ∗G2 and
γ′1 an element of W ′′ such that z′ = q(γ′1). Since (f(γ′1), γ

′
2) is an element of the

intersection of W ′ × U and G
(2)
2 , f(γ′1)γ

′
2 belongs to f(q−1(V )). Therefore there

exists an element γ′ of q−1(V ) such that f(γ′) = f(γ′1)γ
′
2. We have f (0)(r(γ′)) =

f (0)(r(γ′1)) and r(γ′) and r(γ′1) belong to ρ(V ). By (C6), we have r(γ′) = r(γ′1) =
ρ(z′). Thus we have z′ · γ′2 = q(γ′) ∈ V . This implies that the map is continuous.

Let α2 be the map of Z∗G2 into Z×Z defined by α2(z, γ) = (z, z ·γ). We will
show that α2 is proper. We define a map Φ of Z onto G2 by Φ(q(γ)) = f(γ). Since
we have Φ−1(V ) = q(f−1(V )) for every subset V of G2, Φ is continuous by (C1).
Set Zx = ρ−1(x) for x ∈ G

(0)
1 . Then Φ is one-to-one on Zx. Let Y be the closed

subset of Z×Z consisting of elements (z1, z2) with the property ρ(z1) = ρ(z2). For
(z1, z2) ∈ Y , the product Φ(z1)−1Φ(z2) is defined and (z1,Φ(z1)−1Φ(z2)) is an ele-
ment of Z∗G2. Define a map Ψ of Y into Z∗G2 by Ψ(z1, z2) = (z1,Φ(z1)−1Φ(z2)).
Since Φ is continuous, Ψ is also continuous. Since we have Φ(z ·γ) = Φ(z)γ, Ψ◦α2

is the identity map. For (z1, z2) ∈ Y , set γ = Φ(z1)−1Φ(z2). Then we have
Φ(z1 · γ) = Φ(z2). Since Φ is one-to-one on Zρ(z1), we have z1 · γ = z2. Therefore
α2 ◦ Ψ is the identity map. Thus we have proved that α−1

2 = Ψ. Hence α2 is a
homeomorphism and it is a proper map.

Proof of Theorem 2.1. It is clear that the G1- and the G2-actions commute.
Let z = q(γ) and z′ = q(γ′) be elements of Z such that ρ(z) = ρ(z′). Then we
have z′ = z ·γ2 for γ2 = f(γ−1γ′). This implies that ρ induces a bijection of Z/G2

onto G(0)
1 . By virtue of Propositions 2.3 and 2.4, Z is a correspondence from G1

to G2.

Since α2 is one-to-one from the proof of Proposition 2.4, the action of G2 on
Z is free, that is, z · γ2 = z implies that γ2 = σ(z). Therefore ρ : Z → G

(0)
1 is a

principal fibration with structure groupoid G2 (cf. [5]).
Second, we will prove Theorem 2.2. Since Gi has a Haar system, the range

and the source maps are open. In particular, the condition (C2) is satisfied.
Therefore G1/H is a correspondence from G1 to G2 by Theorem 2.1 and there
exists a correspondence from C∗

r (G2) to C∗
r (G1) by Theorem 1.4. Let (E, φ) be
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the correspondence constructed in the proof of Theorem 1.4 from Z = G1/H. Let
q1 be the quotient map of Z onto G1 \ Z. Since q and s are open, q1 is open.
Then G1 \ Z is a locally compact Hausdorff space since the G1-action is proper.
We define a continuous map σ̃ of G1 \ Z onto G(0)

2 by σ̃(q1(z)) = σ(z). Let Ω be
the subspace of (G1 \ Z) ×G2 consisting of all elements (w, γ) with the property
σ̃(w) = r(γ).

Lemma 2.5. Suppose that the condition (C7) is satisfied. Then σ̃ is a proper
map.

Proof. Let RH be the image of (r, s)H . Then RH is an equivalence relation of
G

(0)
1 . We denote by qH the quotient map of G(0)

1 onto G(0)
1 /RH . We define a map

ϕ of G1\Z onto G(0)
1 /RH by ϕ(q1◦q(γ)) = qH ◦s(γ). Then ϕ is a homeomorphism.

We define a continuous map f̃ (0) of G(0)
1 /RH onto G(0)

2 by f̃ (0)(qH(u)) = f (0)(u).
Then f̃ (0) is a proper map by (C7). Therefore σ̃ is proper since f̃ (0) ◦ ϕ = σ̃.

We set B̃ = Cc(G2) and Ẽ = Cc(Z) as in the proof of Theorem 1.4. For
ξ, η ∈ Ẽ, define a function ω(ξ, η) on Ω by

ω(ξ, η)(q1(z), γ2) =
∫
G1

ξ(γ1 · z)η(γ1 · z · γ2) dλ1
ρ(z)(γ1)

for (z, γ2) ∈ Z ∗ G2. Then ω(ξ, η) is an element of Cc(Ω) since the G1- and the
G2-actions are proper.

Lemma 2.6. For ξ, η, ζ ∈ Ẽ and b ∈ B̃, the following equations hold:

(θξ,ηζ)(z) =
∫
G2

ω(ξ, η)(q1(z), γ−1
2 )ζ(z · γ−1

2 ) dλ2
σ(z)(γ2),

ω(bξ, η)(q1(z), γ2) =
∫
G2

b(γ2γ
−1)ω(ξ, η)(q1(z · (γ2γ

−1)), γ) dλ2
s(γ2)

(γ).

Proof. Let Xρ(z) be the set defined as in the proof of Theorem 1.4. We define
a continuous function ψη,ζ on Xρ(z) by

ψη,ζ(γ, γ′, z′) =
∫
G2

η(γ · z′ · γ−1
2 )ζ(γ′ · z′ · γ−1

2 ) dλ2
σ(z′)(γ2).

For γ1 ∈ G1,ρ(z) and z0 ∈ Z with r(γ1) = ρ(z), we have, as in the proof of
Theorem 1.4,

〈η, ζ〉(γ1) = ψη,ζ(γ1, ρ(z), γ−1
1 · z0) = ψη,ζ(γ1, ρ(z), z).
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Since we have
(θξ,ηζ)(z) =

∫
G1

ξ(γ1 · z)〈η, ζ〉(γ1) dλ1
ρ(z)(γ1),

the first equation follows. The second equation follows from a direct computation.

Proposition 2.7. Suppose that the condition (C7) is satisfied. Let b be an
element of B̃ and let C be a compact subset of G2 such that the interior of C
contains the support of b. For every ε > 0, there exist positive elements ξi and ηi

of Ẽ (i = 1, . . . , n) such that∣∣∣∣ n∑
i=1

ω(bξi, ηi)(w, γ2)− b(γ2)
∣∣∣∣ < ε

for all (w, γ2) ∈ Ω and
n∑

i=1

ω(bξi, ηi)(w, γ2) = 0 if γ2 /∈ C.

Proof. Set K = s(C). Let U be a relatively compact open subset of G2 such
thatK ⊂ U . Since σ̃ is proper by Lemma 2.5, σ̃−1(K) and σ̃−1(r(U)) are compact.
Since q1 and r are open, there exist a relatively compact open set U0 in Z and a
compact subset K0 of U0 such that q1(U0) = σ̃−1(r(U)) and q1(K0) = σ̃−1(K).
We denote by K̃ the intersection of K0 ×K and Z ∗G2 and by Ũ the intersection
of U0 × U and Z ∗ G2. Let α2 be the homeomorphism of Z ∗ G2 onto Y defined
in the proof of Proposition 2.4. Since α2(K̃) is a closed subset of the diagonal of
Z×Z, there exist non-negative elements ξ1, . . . , ξn of Cc(Z) such that if we define

an element ϕ of Cc(Y ) by ϕ(z1, z2) =
n∑

i=1

ξi(z1)ξi(z2), then the support of ϕ is

contained in α2(Ũ) and ϕ is positive on α2(K̃). Set κ0 =
n∑

i=1

ω(ξi, ξi). Then we

have κ0(w, σ̃(w)) > 0 if σ̃(w) ∈ K and κ0(w, γ) = 0 if γ /∈ U . Define a continuous
function h on Z by

h(z) =
∫
G2

κ0(q1(z · γ−1), γ) dλ2
σ(z)(γ).

Then there exists a continuous function h̃ on G1 \ Z such that h = h̃ ◦ q1. Note
that h̃ is positive on σ̃−1(K) and zero outside σ̃−1(s(U)). Let k̃ be a non-negative
continuous function on G1 \ Z such that k̃ = h̃−1 on σ̃−1(K). Define an element

ηi of Cc(Z) by ηi(z) = k̃(q1(z))ξi(z). We set κ =
n∑

i=1

ω(ξi, ηi). Since κ(q1(z), γ) =

k̃(q1(z · γ))κ0(q1(z), γ),
∫
κ(q1(z · γ−1), γ) dλ2

σ(z)(γ) is one if σ(z) ∈ K and zero

outside s(U).



114 Marta Macho Stadler and Moto O’uchi

Set κb =
n∑

i=1

ω(bξi, ηi). Choose U so small that it has the following property:

|b(γ2γ
−1) − b(γ2)| < ε for γ2 ∈ C and γ ∈ U with s(γ2) = s(γ). It follows from

Lemma 2.6 that we have, for (z, γ2) ∈ Z ∗G2 and γ2 ∈ C,

|κb(q1(z), γ2)− b(γ2)| 6
∫
G2

|b(γ2γ
−1)− b(γ2)|κ(q1(z · (γ2γ

−1)), γ) dλ2
s(γ2)

(γ) < ε.

Denote by D the support of b and by V the interior of C. Let β2 be the map
of G(2)

2 onto G2 defined by β2(γ′, γ′′) = γ′γ′′ and Q the set defined by Q =
β2((D × U) ∩G(2)

2 ). Then κb(q1(z), γ2) 6= 0 implies that γ2 ∈ Q. We choose U so
small that Q ⊂ V . Then we have κb(w, γ2) = 0 if γ2 /∈ C.

Proof of Theorem 2.2. Let b and C be as in Proposition 2.7. For ε > 0, let
ξi and ηi be elements which satisfy the condition of Proposition 2.7. For ζ ∈ Ẽ,
we set

g =
n∑

i=1

θbξi,ηi
ζ − bζ.

For x ∈ G(0)
1 and δ ∈ Cc(G1,x), we will calculate (π1,x(〈g, g〉)δ|δ). Fix an element

z0 ∈ Z with ρ(z0) = x. As in the proof of Theorem 1.4, we have

(π1,x(〈g, g〉)δ|δ) =
∫
G2

∣∣∣∣ ∫
G1

g(γ · z0 · γ−1
2 )δ(γ) dλ1

x(γ)
∣∣∣∣2 dλ2

σ(z0)
(γ2).

By Lemma 2.6, we have

g(γ · z0 · γ−1
2 ) =

∫
G2

(κb(q1(z0 · γ−1
2 ), γ′2

−1)− b(γ′2
−1))ζ(γ · z0 · (γ′2γ2)−1) dλ2

r(γ2)
(γ′2).

Define an element ζ̃ of Cc(G2,σ(z0)) by

ζ̃(γ2) =
∫
G1

ζ(γ · z0 · γ−1
2 )δ(γ) dλ1

x(γ).

By Proposition 2.7, we have

(π1,x(〈g, g〉)δ|δ) 6 ε2
∫
G2

( ∫
G2

χC(γ′2
−1)|ζ̃(γ′2γ2)|dλ2

r(γ2)
(γ′2)

)2

dλ2
σ(z0)

(γ2),
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where χC is the characteristic function of C. There exists a constant M such that∫
χC(γ) dλ2

x(γ) and
∫
χC(γ−1) dλ2

x(γ) are smaller than M for every x ∈ G
(0)
2 .

Then we have

(π1,x(〈g, g〉)δ|δ) 6 ε2M

∫
G2

∫
G2

χC(γ2γ
−1
3 )|ζ̃(γ3)|2 dλ2

σ(z0)
(γ3) dλ2

σ(z0)
(γ2)

= ε2M

∫
G2

(
|ζ̃(γ3)|2

∫
G2

χC(γ4) dλ2
r(γ3)

(γ4)
)

dλ2
σ(z0)

(γ3)

6 ε2M2‖ζ̃‖2.

Since ‖ζ̃‖2 = (π1,x(〈ζ, ζ〉)δ|δ), we have 〈g, g〉 6 ε2M2〈ζ, ζ〉. Therefore we have∥∥∥ n∑
i=1

θbξi,ηi
− φ(b)

∥∥∥ 6 εM . This implies that φ(b) is an element of KC∗
r (G1)(E).

3. EXAMPLES

Let Gi (i = 1, 2), f and H be as in Theorem 2.1. Suppose that they satisfy
the conditions (C1)–(C6). Set Z = G1/H. Denote by λi a right Haar system of
Gi. It follows from Theorems 1.4 and 2.1 that we have a correspondence from
C∗

r (G2) to C∗
r (G1). Denote by (E, φ) the correspondence constructed in the proof

of Theorem 1.4. If the condition (C7) is satisfied, then (E, φ, 0) is a Kasparov
module and gives an element of KK(C∗

r (G2), C∗
r (G1)) by Theorem 2.2. In this

section, we will study three examples where groupoids Gi are topological spaces,
topological groups and transformation groups, respectively.

(i) Topological spaces. Let Xi be a topological space and suppose that
Gi = Xi. Then f is a continuous map of X1 onto X2 and C∗

r (Gi) is the C∗-
algebra C0(Xi) of continuous functions on Xi vanishing at infinity. Note that
f = f (0), H = X1 and X1/H = X1. We have E = C0(X1) and it is naturally a
right Hilbert C0(X1)-module. Then φ is a ∗-homomorphism of C0(X2) into the
multiplier algebra M(C0(X1)) of C0(X1) defined by φ(b) = b(f(x)) for b ∈ C0(X2)
and x ∈ X1. If (C7) is satisfied, then f is a proper map and φ maps C0(X2) into
C0(X1).

(ii) Topological groups. Let Γi be a topological group and suppose that
Gi = Γi. Then f is a homomorphism of Γ1 onto Γ2 and H is the kernel of f .
By (C5), f is an open map. Therefore Γ1/H is isomorphic to Γ2 as topological
groups. We identify Γ1/H and Γ2. Then f is the quotient map of Γ1 onto Γ1/H.
Since G(0)

i = {e}, f (0) is a trivial map and (C7) is always satisfied. Note also that
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H is a compact group by (C3). Let νi be a right Haar measure on Γi. Set λi = νi.
Let ∆i be the modular function of Γi and let ν0 be a Haar measure of H. We may
suppose that νi and ν0 satisfy the following equation:∫

Γ2

∫
H

a(gh)∆2(ġ) dν0(h) dν2(ġ) =
∫
Γ1

a(g)∆1(g) dν1(g)

for a ∈ Cc(Γ1).
Set πi = πi,e, where πi,e is the representation of C∗

r (Γi) on Hi,e = L2(Γi, νi).
We define an anti∗-automorphism a 7→ ∨

a of C∗
r (Γi) by

∨
a(g) = a(g−1) for a ∈

Cc(Γi). Note that Z = Γ1/H = Γ2. Since H is compact, ξ ◦ f is an element of
Cc(Γ1) for every ξ ∈ Cc(Z). By a calculation as in the proof of Theorem 1.4, we
have

‖π1((ξ ◦ f)∨)ζ‖2 = ν0(H)(π1(〈ξ, ξ〉)ζ|ζ)

for ξ ∈ Cc(Z) and ζ ∈ Cc(Γ1). This implies that ‖ξ ◦ f‖C∗
r (Γ1) = ν0(H)1/2‖ξ‖E for

ξ ∈ Cc(Z). Therefore there exists a unique linear map f∗ : E → C∗
r (Γ1) such that

f∗(ξ) = ξ ◦ f for ξ ∈ Cc(Z). Then we have ‖f∗(ξ)‖ = ν0(H)1/2‖ξ‖E . We have, for
ξ, η ∈ E, a ∈ C∗

r (Γ1) and b ∈ Cc(Γ2),

f∗(ξa) =
∨
a f∗(ξ)

〈ξ, η〉 = ν0(H)−1(f∗(η)f∗(ξ)∗)
∨

f∗(bξ) = ν0(H)−1f∗(ξ)f∗(b)
∨
.

The last equation does not hold for every b ∈ C∗
r (Γ2) since we cannot define f∗(b)

if b does not belong to Cc(Γ2).

(iii) Transformation groups. Let Γi be a topological group and Xi a right
Γi-space. Define Gi = Xi ×Γi. The groupoid structure of Gi is defined as follows:
r(x, g) = x, s(x, g) = xg and (x, g)(xg, g′) = (x, gg′), where we identify G

(0)
i

with Xi. Moreover, suppose that there exist a map f (0) of X1 onto X2 and a
homomorphism ϕ of Γ1 onto Γ2 such that f(x, g) = (f (0)(x), ϕ(g)) and f (0)(xg) =
f (0)(x)ϕ(g). By (C5), f (0) and ϕ are open maps. Let Ξ be the kernel of ϕ. We
identify Γ1/Ξ with Γ2. Then ϕ is the quotient map. We have H = X1 × Ξ and
Z = X1 ×Γ2. The condition (C3) is satisfied if and only if the Ξ-action is proper.
The map ρ : Z → X1 is defined by ρ(x, g2) = x, and the G1-action on Z is defined
by (xg−1

1 , g1)·(x, g2) = (xg−1
1 , g1 ·g2) for (xg−1

1 , g1) ∈ G1 and (x, g2) ∈ Z. The map
σ : Z → X2 is defined by σ(x, g2) = f (0)(x)g2, and the G2-action on Z is defined
by (x, g2) · (f (0)(x)g2, g3) = (x, g2g3) for (x, g2) ∈ Z and (f (0)(x)g2, g3) ∈ G2.
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Let νi be a right Haar measure on Γi and ∆i the modular function of Γi. Set
ν̃i = ∆iνi; this is a left Haar measure on Γi. In this example, we may choose ν1
and ν2 independently. The right Haar system λi is given by the formula:∫

Gi

a(γ) dλi
x(γ) =

∫
Γi

a(xg−1, g) dνi(g)

for a ∈ Cc(Gi). Let µi be a positive Radon measure on Xi such that the support
of µi is Xi. Define a measure mi on Gi by

mi =
∫
Xi

λi
x dµi(x).

Then we have

L2(Gi,mi) =
∫
Xi

⊕
L2(Gi,x, λ

i
x) dµi(x).

Define a faithful representation πi of C∗
r (Gi) on L2(Gi,mi) by

πi =
∫
Xi

⊕
πi,x dµi(x).

Denote by ‖ · ‖L2(Z) the norm of L2(Z, µ1 × ν̃2). Note that we use here the left
Haar measure ν̃2. It follows from the proof of Theorem 1.4 that Cc(Z) is a right
Cc(G1)-module. Set π(ξ)ζ = ξζ for ξ ∈ Cc(Z) and ζ ∈ Cc(G1), that is,

(π(ξ)ζ)(x, g2) =
∫
Γ1

ξ(xg−1, g · g2)ζ(xg−1, g) dν1(g)

for (x, g2) ∈ Z. By a calculation as in the proof of Theorem 1.4, we have

‖π(ξ)ζ‖2
L2(Z) = (π1(〈ξ, ξ〉)ζ|ζ).

Therefore we can extend π(ξ) to a bounded operator of L2(G1,m1) to L2(Z, µ1 ×
ν̃2), which we denote again by π(ξ). Since we have ‖π(ξ)‖ = ‖ξ‖E for ξ ∈ Cc(Z),
we can extend π to an isometry of E to L(L2(G1,m1), L2(Z, µ1 × ν̃1)), which we
denote again by π. Then we have, for ξ, η ∈ E and a ∈ C∗

r (G1),

π1(〈ξ, η〉) = π(ξ)∗π(η)

π(ξa) = π(ξ)π1(a).
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Moreover we suppose that f (0) is proper. Then f (0)
∗ (µ1) is a positive Radon

measure on X2 and we may assume that µ2 = f
(0)
∗ (µ1). Define an isometry U

of L2(G2,m2) to L2(Z, µ1 × ν̃2) by (Uζ)(x, g2) = ζ(f (0)(x)g2, g−1
2 ). Let µ1 =∫

X2

µy dµ2(y) be the decomposition of µ1 by f (0). Note that µy is a positive Borel

measure on X1 such that µy is supported by (f (0))−1(y). Then we have

(U∗ζ)(yg−1
2 , g2) =

∫
X1

ζ(x, g−1
2 ) dµy(x).

Set P = UU∗. Then we have, for b ∈ C∗
r (G2) and ξ ∈ E,

Uπ2(b)U∗π(ξ) = Pπ(bξ).

Remark. In the study of foliations, homomorphisms between holonomy
groupoids appears in many cases. For example, see [6], [7], [10], [11], [15]. It
is interesting to apply our results to these homomorphisms. But interesting holon-
omy groupoids are sometimes non-Hausdorff. Therefore it is necessary to extend
our results to non-Hausdorff groupoids.
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