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Abstract. We characterize the state space of a Toeplitz-Cuntz algebra T On

in terms of positive operator matrices Ω on Fock space which satisfy sl Ω 6 Ω,
where sl Ω is the operator matrix obtained from Ω by taking the trace in the
last variable. Essential states correspond to those matrices Ω which are slice-
invariant. As an application we show that a pure essential product state of
the fixed-point algebra for the action of the gauge group has precisely a circle
of pure extensions to T On.
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0. INTRODUCTION

Let T On be the unital C∗-algebra which is universal for collections of n isometries
with mutually orthogonal ranges; we call T On a Toeplitz-Cuntz algebra. Since
their introduction by Cuntz ([8]), these algebras have been profitably used in the
study of normal ∗-endomorphisms of B(H), the algebra of bounded operators on
a Hilbert space H. The main idea is as follows. Let {vk | 1 6 k 6 n} be the
distinguished generating isometries in T On. Every ∗-representation π of T On on
H on gives rise to an endomorphism α of B(H) via

α(A) =
n∑

k=1

π(vk)Aπ(vk)∗, A ∈ B(H),

and every endomorphism is of this form for some n and π; see [2], [13], [7].
Arveson has generalized these ideas to the continuous case through the use

of product systems. Every representation ϕ of a continuous product system E on
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Hilbert space gives rise to a semigroup α = {αt | t > 0} of endomorphisms of
B(H), and ϕ is said to be essential if each αt is unital; such semigroups are called
E0-semigroups, and are the primary objects of study in Arveson’s series [2], [3],
[4], [5].

One of Arveson’s key results is that every product system E has an essen-
tial representation. To prove this he associates with E a universal C∗-algebra
C∗(E) whose representations are in bijective correspondence with representations
of E, characterizes the state space of C∗(E), and then uses this characterization
to show that there are always certain states, called essential states, whose GNS
representations give rise to essential representations of E.

In this paper we develop a discrete version of Arveson’s method in which E is
a product system over the positive integers N. The algebras which arise as C∗(E)
are precisely the Toeplitz-Cuntz algebras: up to isomorphism there is a unique
product system En over N for each n ∈ {1, 2, . . . ,∞}, and C∗(En) ∼= T On; see
[10]. We write T O∞ for the Cuntz algebra O∞, a notation which underlies an
important advantage of our methods: they apply for both finite and infinite n, so
that one does not have to study O∞ as a special case. While our methods are
motivated by those of Arveson, our exposition avoids any explicit use of product
systems: since the C∗-algebra being analyzed is a familiar one, we can use it as a
starting point rather than the product system.

Our main result is Theorem 1.9, which characterizes the state space of T On

in terms of a class of positive linear functionals on the ∗-algebra B of operators on
Fock space which have “bounded support”; these functionals are the analogues of
Arveson’s decreasing locally normal weights ([5]). In Theorem 1.15 we give a re-
formulation of this result in terms of the so-called density matrices associated with
these functionals; these are certain infinite operator matrices on full Fock space
over an n-dimensional Hilbert space. Roughly speaking, positive linear function-
als on T On correspond to positive matrices Ω of trace-class operators with the
property that

sl Ω 6 Ω,

where sl Ω, the slice of Ω, is the operator matrix obtained from Ω by “taking the
trace in the last variable”.

Viewing T On as the universal C∗-algebra of a product system, a state ρ of
T On is essential if its associated GNS representation π satisfies∑

π(vk)π(vk)∗ = I.

In Proposition 2.1 we use the results of Section 1 to give some alternate character-
izations of both essentiality and the complementary notion of singularity; perhaps
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the most useful aspect of this theorem is the characterization of essentiality in

terms of invariance under the map β∗ defined by

β∗ρ(vi1 · · · vik
v∗jl
· · · v∗j1) =

n∑
m=1

ρ(vi1 · · · vik
vmv

∗
mv

∗
jl
· · · v∗j1).

When n is finite, essential states of T On are precisely those which factor through

the canonical homomorphism of T On onto the Cuntz algebra On, and can thus be

thought of as states of On. This characterization of essentiality can be extended

to include the case n = ∞, even though O∞ is simple. The idea is as follows.

When n = ∞, Proposition 1.7 characterizes the state space of a certain concrete

C∗-algebra U which contains a copy of O∞; U also contains the compact operators

K. We give a canonical procedure for extending states from O∞ to U , and show

that a state is essential if and only if its canonical extension is zero on K. Section 2

concludes with Theorem 2.2, which gives an alternate approach to the singular-

essential decomposition.

A method which has been profitably used to study the state space of On has

been to focus first on states of its even-word subalgebra, and then on the problem

of extending such states to On ([9], [1], [13], [14], [7], [6]). When n is finite, this

even-word subalgebra is a UHF algebra of type n∞, and is thus somewhat less

complicated and better understood than On. For example, there is a large supply

of states of this algebra readily at hand in the form of product states; indeed,

these states have played a key rôle in the study of UHF algebras ([11], [15]). In

Section 3 we study the problem of extending a pure periodic product state to On.

To include the case n = ∞ in a unified way we reformulate this problem: we

consider instead the even-word subalgebra Fn of the Toeplitz-Cuntz algebra T On,

and focus on pure periodic product states of Fn which are essential. Our main

result is Theorem 3.1, which parameterizes the space of all extensions of such a

state by probability measures on the circle. Pure extensions correspond to point

measures, and we have as an immediate corollary that the space of pure extensions

of such a state is precisely a circle.

The author would like to thank M. Laca for the many helpful discussions

during the preparation of this paper, and W. Arveson for the motivation to pursue

this research.
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1. STATES OF T On

From T On to K and back. Suppose 1 6 i1, . . . , ik 6 n. We call µ = (i1, . . . , ik)
a multi-index and define |µ| := k and vµ := vi1 · · · vik

; of course v∅ := 1. The set
of all multi-indices will be denoted W, and we define Wk := {µ ∈ W

∣∣ |µ| = k}.
With this notation, T On = span{vµv

∗
ν | µ, ν ∈ W}.

When n is finite, the projection p := 1−
∑
viv

∗
i generates a closed, two-sided

ideal Jn of T On which is isomorphic to the compact operators on an infinite-
dimensional, separable Hilbert space; indeed, {vµpv

∗
ν | µ, ν ∈ W} is a self-adjoint

system of matrix units for Jn ([8]). Let q := 1 − p. Since q is an identity for
C∗({viq}) and (vjq)∗(viq) = δijq, the map vi 7→ viq extends to a ∗-endomorphism
β′ of T On. If we then define δ′ := id−β′, one checks easily that δ′(vµv

∗
ν) = vµpv

∗
ν ,

and consequently δ′(T On) ⊂ Jn.
To include the case n = ∞ we implement δ′ spatially utilizing the Fock

representation of T On ([9]). Technically speaking, the representation we are about
to define is only unitarily equivalent to the Fock representation; we prefer this
version for purely notational reasons. Let

E := span{vi | 1 6 i 6 n},

and more generally, let

Ek := span{vµ | µ ∈ Wk}, k = 0, 1, 2, . . . ,

so that E = E1. If f, g ∈ Ek, then g∗f is a scalar multiple of the identity, and the
formula g∗f = 〈f, g〉1 defines an inner product which makes Ek a Hilbert space.
Notice that the Hilbert space norm on Ek agrees with the norm Ek inherits as a
subspace of T On, and that {vµ | µ ∈ Wk} is an orthonormal basis for Ek. Let

FE :=
∞⊕

k=0

Ek.

By this we mean nothing more than the abstract direct sum of Hilbert spaces;
in particular, the inclusion maps Ek ↪→ T On do not factor through the canonical
injections Ek ↪→ FE . We caution the reader that we will think of Ek in three
separate ways: as a subspace of the C∗-algebra T On, as a Hilbert space, and as
a subspace of FE . This is both a notational advantage and a potential cause of
confusion.

For each integer k > 0, left multiplication by vi is a linear isometry from Ek

to Ek+1, and together these maps induce an isometry l(vi) on FE . Similarly, right
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multiplication by vi induces an isometry r(vi) on FE . Since l(vj)∗l(vi) = δijI, the
map vi 7→ l(vi) extends to a ∗-representation l of T On on FE ; we call this the
Fock representation. The representation which is more commonly referred to as

the Fock representation is unitarily equivalent to l via the unitary FE →
∞⊕

k=0

E⊗k

determined by

vi1 · · · vik
7→ vi1 ⊗ · · · ⊗ vik

, (i1, . . . , ik) ∈ W.

By [9], l is faithful and irreducible. We will study T On in this representation for
the remainder of the paper.

For each pair of vectors f, g ∈ FE we will denote by f ⊗ g the rank-one
operator h 7→ 〈h, g〉f on FE . Routine calculations show that when n <∞ we have
l(vµpv

∗
ν) = vµ ⊗ vν , so the image of the ideal Jn in the Fock representation is K,

the compact operators on FE .
We implement δ′ spatially as follows. Define a normal ∗-endomorphism β of

B(FE) by

β(A) :=
n∑

i=1

r(vi)Ar(vi)∗, A ∈ B(FE).

When n is infinite, the above series converges in the strong operator topology. One
easily checks that β implements β′ spatially when n is finite; i.e. β(l(vi)) = l(viq).
Hence δ := id− β implements δ′ spatially when n <∞. Moreover,

(1.1) δ(l(vµv
∗
ν)) = vµ ⊗ vν

holds whether or not n is finite, so we always have δ ◦ l(T On) ⊆ K.

Operators of bounded support. Let Pk := I − βk+1(I), the orthogonal

projection of FE onto
k⊕

i=0

Ei. Let Bk be the von Neumann algebra of all operators

T ∈ B(FE) satisfying T = PkTPk, and let

B :=
∞⋃

k=0

Bk,

the algebra of operators on FE which have bounded support. This algebra is β-
invariant; indeed, βi(Pk) = Pk+i − Pi−1 for i > 1, k > 0. Consequently

(1.2) βi(A)βj(B) = 0 if A,B ∈ Bk and |i− j| > k + 1.

Since βk(I) → 0 strongly, δ is injective: if δ(A) = 0, then A = β(A), and
hence A = βk(A) = βk(A)βk(I) = Aβk(I) → 0. The following proposition shows
that B is contained in the range of δ, and establishes a formula for the inverse of
δ on B.
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Proposition 1.1. For each B ∈ B, the sum
∞∑

i=0

βi(B) converges σ-weakly to

a bounded operator λ(B) on FE . The map λ : B → B(FE) is injective, ∗-linear, and
its restriction to Bk is normal, completely positive and has norm k+1. Moreover,
δ|λ(B) is the inverse of λ.

Proof. We follow [5], Theorem 2.2. Fix k > 0. If A,B ∈ Bk, then by (1.2)

βi(k+1)(A)βj(k+1)(B) = δijβ
j(k+1)(AB).

Consequently
∞∑

j=0

βj(k+1) is a normal ∗-homomorphism from Bk to B(FE). From

this it is easy to see that
∞∑

i=0

βi(B) =
k∑

l=0

∞∑
j=0

βj(k+1)+l(B) converges strongly to an

operator λk(B) for each B ∈ Bk, and that λk is normal, completely positive and
∗-linear. The λk’s are clearly coherent, and thus define the desired map λ. Since
(Pk − Pk−1)λ(Pk) = (k+ 1)(Pk − Pk−1), the norm of λk is at least k+ 1; since λk

is the sum of k + 1 ∗-homomorphisms, we thus have ‖λk‖ = k + 1.

By the normality of β we have β(λ(B)) =
∞∑

i=1

βi(B), and thus δ(λ(B)) = B

for each B ∈ B. Consequently λ is injective with inverse δ|λ(B).

Proposition 1.2. λ(B) and λ(B∩K) are irreducible ∗-subalgebras of B(FE),
and λ(B ∩ K) is a dense subalgebra of l(T On).

Proof. Since λ is ∗-linear, λ(B) and λ(B ∩ K) are self-adjoint subspaces of
B(FE). By (1.1) we have λ(vµ ⊗ vν) = l(vµv

∗
ν), and since λ is bounded when

restricted to one of the subalgebras Bk, this shows that λ(B ∩ K) is a dense
subspace of l(T On). Suppose A,B ∈ λ(B); we will show that AB ∈ λ(B). To
begin with, observe that if C ∈ Bc and D ∈ Bd, then

(1.3) Cλ(D) =
c∑

k=0

Cβk(D) ∈ Bc+d,

with a similar equation holding for λ(C)D. Since δ(A), δ(B) ∈ B, this implies
that both δ(A)B = δ(A)λ(δ(B)) and Aδ(B) = λ(δ(A))δ(B) are in B. Using the
identity

(1.4) δ(AB) = δ(A)B +Aδ(B)− δ(A)δ(B),

we see that δ(AB) ∈ B. Thus AB ∈ λ(B), so λ(B) is a ∗-algebra.
If in addition δ(A) and δ(B) are compact, then by (1.4), δ(AB) is compact

as well. Thus AB ∈ λ(B∩K), so λ(B∩K) is also a ∗-algebra. These algebras are
irreducible since λ(B ∩ K) is dense in the irreducible algebra l(T On).



States of Toeplitz-Cuntz algebras 127

Remark 1.3. If n is finite then B ⊂ K, so that the algebras λ(B ∩ K) and
λ(B) coincide. When n is infinite this is not the case. For arbitrary n, (1.3) shows
that B is an ideal in λ(B). Moreover, this ideal contains the compacts since B is
irreducible and has nontrivial intersection with K. When n is finite B = K.

Decreasing positive linear functionals

Definition 1.4. Suppose ω is a linear functional on B. We say that ω is
decreasing if ω ◦ δ is positive on B; that is, if

ω(B∗B)− ω(β(B∗B)) > 0, B ∈ B.

Proposition 1.5. Suppose ω is a linear functional on B. Then ω ◦ δ is
positive on λ(B) iff ω is positive and decreasing, in which case ω ◦ δ extends
uniquely to a positive linear functional ∆ω of norm ω(P0) on the C∗-algebra λ(B).

Proof. Suppose ω ◦ δ is positive on λ(B). Then ω is decreasing since B ⊆
λ(B), and ω is positive since ω = ω ◦ δ ◦ λ and λ is positive.

Conversely, suppose ω is positive and decreasing. Then (B1, B2) 7→ ω(B∗2B1)
defines a positive semi-definite sesquilinear form on B, so there is a Hilbert
space Hω and a linear map Ω : B → Hω such that Ω(B) is dense in Hω and
〈Ω(B1),Ω(B2)〉 = ω(B∗2B1) for every B1, B2 ∈ B. Since ω is decreasing, Ω(B) 7→
Ω(β(B)) extends uniquely to a linear contraction T on Hω. Define τ : Z → B(Hω)
by

(1.5) τ(k) :=
{
T k if k > 0
T ∗(−k) if k < 0.

Since T is a contraction, τ is positive definite.
Suppose now that B ∈ B. By (1.4),

δ(λ(B)∗λ(B)) = δ(λ(B∗))λ(B) + λ(B∗)δ(λ(B))− δ(λ(B∗))δ(λ(B))

= B∗λ(B) + λ(B∗)B −B∗B =
∞∑

i=0

B∗βi(B) +
∞∑

j=1

βj(B∗)B,

where by (1.3) each of the sums is only finitely non-zero. Since

〈τ(k)Ω(B),Ω(B)〉 =
{
ω(B∗βk(B)) if k > 0
ω(β−k(B∗)B) if k < 0,

we thus have

ω ◦ δ(λ(B)∗λ(B)) =
∞∑

k=−∞

〈τ(k)Ω(B),Ω(B)〉 > 0,
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so ω ◦ δ is positive on λ(B).

Since λ(P0) =
∞∑

n=0
βn(I−β(I)) = I, the algebra λ(B) unital. Hence to show

that ω ◦ δ is bounded on λ(B) it suffices to establish the relation

(1.6) lim sup
k→∞

|ω ◦ δ(Ak)| 1k 6 ‖A‖, A ∈ λ(B).

For this, suppose A ∈ λ(B) and k is a positive integer. Then δ(A) ∈ Ba for
some positive integer a, and repeated applications of (1.4) and (1.3) give that
δ(Ak) ∈ Bka. Now Pka is the unit in Bka, so

|ω ◦ δ(Ak)| 6 ω(Pka)‖δ(Ak)‖.

Since ω is decreasing,

ω(Pka) =
ka∑
i=0

ω(βi(P0)) 6
ka∑
i=0

ω(P0) = (ka+ 1)ω(P0).

These last two inequalities together with the fact that ‖δ‖ 6 2 give

|ω ◦ δ(Ak)| 6 2(ka+ 1)ω(P0)‖A‖k,

from which (1.6) follows immediately. Finally,

‖∆ω‖ = ω ◦ δ(I) = ω ◦ δ(λ(P0)) = ω(P0).

Definition 1.6. Denote by Pβ the cone of decreasing positive linear func-
tionals on B, partial-ordered by the relation

ω1 6 ω2 iff ω2 − ω1 ∈ Pβ .

Proposition 1.7. The map ω 7→ ∆ω is an affine order isomorphism of Pβ

onto the positive part of the dual of λ(B).

Proof. It is clear from the construction that ω 7→ ∆ω is affine. To see that it
is surjective, suppose ρ is a positive linear functional on λ(B). Let ω = ρ◦λ. Then
ω ◦ δ agrees with ρ on λ(B) and hence is positive. By Proposition 1.5 this implies
that ω is positive and decreasing, and clearly ∆ω = ρ. Since ω(B) = ∆ω(λ(B))
for each B ∈ B, the map ω 7→ ∆ω is injective. Lastly, observe that ω1 6 ω2

iff ω2 − ω1 ∈ Pβ , which by Proposition 1.5 is equivalent to the condition that
(ω2 − ω1) ◦ δ be positive on λ(B). This in turn is obviously equivalent to the
condition that ∆ω1 6 ∆ω2.
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When n is finite recall that λ(B) = λ(B ∩ K) = l(T On), so we have an affine
isomorphism

(1.7) ω 7→ ∆ω ◦ l

of Pβ onto the state space of T On. When n is infinite the algebra λ(B) properly
contains l(O∞), and consequently (1.7) gives an affine map of Pβ onto the state
space ofO∞ which is not injective. The following definition is the key to identifying
a subcone of Pβ on which this map is an isomorphism.

Definition 1.8. A linear functional ω on B is locally normal if its restriction
to each of the von Neumann subalgebras Bk is normal. We denote by Wβ the
subcone of Pβ consisting of all decreasing positive linear functionals on B which
are locally normal.

We now prove our main theorem, which improves on Proposition 1.7 in the
sense that it characterizes the state space not just of T On for n finite, but also of
O∞.

Theorem 1.9. Suppose {v1, . . . , vn} are the distinguished generating isome-
tries of the Toeplitz-Cuntz algebra T On; we include the case n = ∞ by writing
T O∞ for the Cuntz algebra O∞. Let E ⊆ T On be the closed linear span of
{v1, . . . , vn}, let FE be full Fock space over E, let B be the algebra of operators
on FE which have bounded support, and let Wβ be the partially-ordered cone of
decreasing locally normal positive linear functionals on B. For each ω ∈ Wβ there
is a unique positive linear functional ρ on T On which satisfies

(1.8) ρ(vµv
∗
ν) = ω(vµ ⊗ vν), µ, ν ∈ W.

Moreover, the map ω 7→ ρ is an affine order isomorphism of Wβ onto the positive
part of the dual of T On.

Proof. Suppose ω ∈ Wβ , and let ρ := ∆ω ◦ l, where l is the Fock represen-
tation of T On and ∆ω is as in Proposition 1.5. Then ρ satisfies (1.8), and ρ is
uniquely determined by (1.8) since elements of the form vµv

∗
ν have dense linear

span in T On. If n is finite then every linear functional on B is automatically
locally normal, so that Wβ is all of Pβ . Since λ(B) = l(T On), the theorem thus
reduces to Proposition 1.7.

It remains only to show that when n is infinite,

(1.9) ω 7→ ∆ω ◦ l
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maps Wβ bijectively onto the positive part of the dual of O∞. To begin with,
suppose ω1, ω2 ∈ Wβ are such that ∆ω1 ◦ l = ∆ω2 ◦ l. Then ∆ω1 and ∆ω2 agree
on l(O∞) ⊇ λ(B ∩ K), so for each K ∈ B ∩ K we have

ω1(K) = ∆ω1(λ(K)) = ∆ω2(λ(K)) = ω2(K).

Since ω1 and ω2 are locally normal, this implies that ω1 = ω2. Thus (1.9) is
injective.

To show surjectivity, suppose ρ is a positive linear functional on O∞. Define
ω0 on B ∩ K by ω0 := ρ ◦ l−1 ◦ λ, and for each k let Tk be the unique positive
trace-class operator in Bk such that ω0(K) = tr(TkK) for each K ∈ Bk ∩K. The
formula

(1.10) ω(B) := tr(TkB), B ∈ Bk,

gives the unique extension of ω0 to a positive linear functional ω on B which is
locally normal. Once we establish that ω is decreasing, surjectivity of (1.9) follows
immediately: for each K ∈ B ∩ K,

∆ω(λ(K)) = ω ◦ δ(λ(K)) = ω0(K) = ρ ◦ l−1(λ(K)),

so that ρ = ∆ω ◦ l.
We will show that ω ◦ δ is positive on λ(B); by Proposition 1.5 this implies

that ω is decreasing. For each B ∈ B define a function ϕB : Z → C by

ϕB(k) :=
{
ω(B∗βk(B)) if k > 0
ω(β−k(B∗)B) if k < 0.

As in the proof of Proposition 1.5,

ω ◦ δ(λ(B)∗λ(B)) =
∞∑

k=−∞

ϕB(k), B ∈ B,

so it suffices to show that each ϕB is positive definite. We will do this by showing
that ϕK is positive definite for each K ∈ B∩K, and that any ϕB can be obtained
as a pointwise limit of such functions.

Let Ek := βk(I) − βk+1(I), the orthogonal projection of FE onto Ek. For

each z ∈ T, let Uz :=
∞∑

k=0

zkEk. Each of the unitaries Uz is a multiplier of B ∩ K,

and since β(Uz) = zUzβ(I) we have

ϕK(k) = zkϕUzK(k), K ∈ B ∩ K, k ∈ Z.
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Let ϕ̂K denote the Fourier transform of ϕK . For each K ∈ B ∩ K and z ∈ T,

ϕ̂K(z) =
∞∑

k=−∞

ϕK(k)zk =
∞∑

k=−∞

ϕUz̄K(k) = ρ(λ(Uz̄K)∗λ(Uz̄K)) > 0,

so that ϕ̂K is positive. By Herglotz’s Theorem, this implies that ϕK is positive
definite.

Lastly, suppose B ∈ B, say B ∈ Bm. Let (Kα) be a bounded net in Bm ∩K
which converges to B in the strong operator topology on Bm. Then K∗

α → B∗

in the σ-weak topology, and hence βk(K∗
α) → βk(B∗) σ-weakly for any k > 0.

Since this latter net is bounded in norm, βk(K∗
α)Kα → βk(B∗)B weakly, hence

σ-weakly. From this it is apparent that ϕKα(k) 7→ ϕB(k) for each k ∈ Z. Thus
ϕB is positive definite.

We conclude this section by giving a reformulation of Theorem 1.9 in terms
of density matrices. Suppose ω is a locally normal linear functional on B. Then
for each positive integer k there is a unique trace-class operator Tk in Bk such
that

ω(B) = tr(TkB), B ∈ Bk.

These density operators are coherent in the sense that Tk = PkTk+1Pk for each k.
Define Ωij : Ej → Ei by

Ωij := EiTkEj ,

where Ei is the orthogonal projection of FE onto Ei, and k is any integer greater
than both i and j; we think of Tk as having operator matrix (Ωij)k

i,j=0. The density
matrix of ω is the infinite operator matrix Ω := (Ωij). If x ∈ Ej and y ∈ Ei, we
may write 〈Ωx, y〉 rather than 〈Ωijx, y〉.

Definition 1.10. Suppose Ω = (Ωij) is an infinite operator matrix; i.e.,
Ωij ∈ B(Ej , Ei) for every pair i, j of nonnegative integers. For each k let Tk be the
operator in Bk determined by

〈Tkx, y〉 = 〈Ωx, y〉 x ∈ Ej , y ∈ Ei, 0 6 i, j 6 k.

We say that Ω is positive if each Tk is positive, and locally trace-class if each Tk is
trace-class.

It is evident that an infinite operator matrix Ω is the density matrix of a
locally normal linear functional if and only if it is locally trace-class, and that
a density matrix Ω is positive if and only if its associated linear functional ω is
positive.

We now characterize those density matrices which correspond to linear func-
tionals which are decreasing. For this, we first need a lemma.
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Lemma 1.11. Suppose T is a trace-class operator on a separable Hilbert
space H, and U1, U2, U3, . . . are isometries on H with mutually orthogonal ranges.
Then

(1.11)
∞∑

k=1

U∗kTUk

converges in trace-class norm (and hence in operator norm as well).

Proof. First suppose T > 0. Let {ei} be an orthonormal basis for H. If
l > m > 1, then

tr
( l∑

k=1

U∗kTUk −
m∑

k=1

U∗kTUk

)
=

∞∑
i=1

l∑
k=m+1

〈U∗kTUkei, ei〉

=
l∑

k=m+1

∞∑
i=1

〈TUkei, Ukei〉.

But
∞∑

k=1

∞∑
i=1

〈TUkei, Ukei〉 6 trT <∞,

so the sequence
( m∑

k=1

U∗kTUk

)∞
m=1

is Cauchy in the trace-class norm. Since the

algebra of trace-class operators is complete in this norm, the infinite sum (1.11)
converges as claimed. Since every trace-class operator can be written as a linear
combination of four positive trace-class operators, (1.11) converges in trace-class
norm for every trace-class operator T .

Definition 1.12. Suppose T is a trace-class operator on FE . The slice of
T is the operator

slT :=
n∑

k=1

r(vk)∗Tr(vk),

where r(vk) is right creation by vk on FE . Note that when n = ∞ the sum
converges to a trace-class operator (Lemma 1.11).

If Ω = (Ωij) is a locally trace-class operator matrix, we denote by sl Ω the
locally trace-class operator matrix (sl Ωi+1,j+1).

Remark 1.13. Suppose S ∈ B(Ej , Ei) and A ∈ B(E) are trace-class opera-
tors such that T (xy) = (Sx)(Ay) for x ∈ Ej and y ∈ E . (The unitary x⊗ y 7→ xy
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transforms T into the tensor product S ⊗A.) Then

(slT )x =
n∑

k=1

r(vk)∗Tr(vk)x =
n∑

k=1

r(vk)∗T (xvk)

=
n∑

k=1

r(vk)∗(Sx)(Avk) =
n∑

k=1

〈Avk, vk〉Sx = tr(A)Sx,

so slicing has the effect of taking the trace in the last variable.

Lemma 1.14. Suppose ω is a locally-normal linear functional on B with
density matrix Ω. Then ω ◦ β has density matrix sl Ω.

Proof. Let Tk be the trace-class operator in Bk such that ω(B) = tr(TkB)
for B ∈ Bk, so that Tk has operator matrix (Ωij)k

i,j=0. Suppose B ∈ Bk. Then
β(B) ∈ Bk+1, and thus

ω ◦ β(B) = tr(Tk+1β(B)) =
∞∑

i=1

tr(Tk+1r(vi)Br(vi)∗)

=
∞∑

i=1

tr(r(vi)∗Tk+1r(vi)B) = tr((slTk+1)B).

Thus ω ◦ β has density matrix sl Ω.

We now give our reformulation of Theorem 1.9.

Theorem 1.15 Suppose {v1, . . . , vn} are the distinguished generating iso-
metries of the Toeplitz-Cuntz algebra T On; we include the case n = ∞ by writing
T O∞ for the Cuntz algebra O∞. Let E ⊆ T On be the closed linear span of
{v1, . . . , vn}, and let FE be full Fock space over E. Suppose Ω is a positive locally
trace-class operator matrix on FE which satisfies sl Ω 6 Ω. Then there is a unique
positive linear functional ρ on T On which satisfies

ρ(vµv
∗
ν) = 〈Ωvµ, vν〉, µ, ν ∈ W.

Moreover, the map Ω 7→ ρ is an affine order isomorphism of such operator matrices
onto the positive part of the dual of T On.

Proof. The equation ω(vµ ⊗ vν) = 〈Ωvµ, vν〉 establishes an affine order iso-
morphism ω 7→ Ω betweenWβ and positive locally trace-class operator matrices on
FE which satisfy sl Ω 6 Ω, so the theorem follows immediately from Theorem 1.9.
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2. SINGULAR AND ESSENTIAL STATES

A state ρ of T On with GNS representation π : T On → B(H) is said to be essential
if

∑
π(viv

∗
i ) is the identity operator on H, and singular if

∑
µ∈Wk

π(vµv
∗
µ) decreases

strongly to zero in k. When n is finite T On has a unique ideal Jn, and it is not hard
to show that essential states of T On are precisely those which are singular with
respect to this ideal; similarly, singular states are Jn-essential. As a result, every
state of T On has a unique decomposition into essential and singular components,
a result which was generalized to the case n = ∞ in [13].

We can view the singular/essential decomposition of a state ρ of O∞ as the
decomposition with respect to an ideal as follows. Let ω be the unique decreasing
locally normal positive linear functional on B such that ρ = ∆ω ◦ l, as in Theo-
rem 1.9. The C∗-algebra λ(B) contains the ideal K of compact operators on FE

(Remark 1.3), so we can decompose the functional ∆ω of Proposition 1.7 with
respect to this ideal. Restricting to λ(B ∩ K) = l(O∞) and pulling back to O∞
gives the singular/essential decomposition of ρ; this will follow from Proposition
2.1 (1d) and (2d).

Again allowing n to be either finite or infinite, we follow [13] and define a
positive linear functional α∗ρ by

α∗ρ(x) :=
n∑

i=1

ρ(vixv
∗
i ), x ∈ T On.

In [13], Corollary 2.9, Laca characterized singular and essential states of T On

using the monotonically nonincreasing sequence (‖α∗kρ‖)∞k=1: ρ is essential iff this
sequence is constant and singular iff it converges to zero.

Let ω be such that ρ = ∆ω ◦ l, as in Theorem 1.9. Then ω ◦ β is a locally
normal positive linear functional on B which is decreasing since (ω ◦ β) ◦ δ =
(ω ◦ δ) ◦ β is positive on B. Define

β∗ρ := ∆(ω ◦ β) ◦ l.

If µ, ν ∈ W, then

(2.1)

β∗ρ(vµv
∗
ν) = ω ◦ β(vµ ⊗ vν) = ω

( n∑
i=1

r(vi)(vµ ⊗ vν)r(vi)∗
)

=
n∑

i=1

ω(vµvi ⊗ vνvi) =
n∑

i=1

ρ(vµviv
∗
i v
∗
ν).
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In particular ‖β∗kρ‖ = β∗kρ(1) =
∑

µ∈Wk

ρ(vµv
∗
µ) = ‖α∗kρ‖, so Laca’s characteri-

zation can be stated in terms of β∗. What is not immediately apparent is that
essentiality is equivalent to β∗-invariance.

We remind the reader of the notation Ek := βk(I)−βk+1(I), the orthogonal
projection of FE onto Ek.

Proposition 2.1. Suppose ρ is a positive linear functional on T On and ω
is the unique decreasing locally normal positive linear functional on B such that
ρ = ∆ω ◦ l. Let Ω be the density matrix of ω. Statements (1a)–(1f) below are
equivalent, as are statements (2a)–(2d):

(1a) ρ is essential; (2a) ρ is singular;
(1b) ω(Ek) is constant in k; (2b) limω(Ek) = 0;
(1c) ω ◦ δ(B) = 0 for each B ∈ B; (2c) ρ is normal in the
(1d) ∆ω is K-singular; Fock representation;
(1e) sl Ω = Ω; (2d) ∆ω is K-essential.
(1f) ρ = β∗ρ;

Proof. Since {vµ | µ ∈ Wk} is an orthonormal basis for Ek and ω is locally
normal,

ω(Ek) =
∑

µ∈Wk

ω(vµ ⊗ vµ) =
∑

µ∈Wk

ρ(vµv
∗
µ) = ‖α∗kρ‖.

Thus (1a) ⇔ (1b) and (2a) ⇔ (2b) follow from [13], Corollary 2.9.
(1b) ⇔ (1c) Since δ(Ek) = Ek − Ek+1, (1c) ⇒ (1b) is immediate. For

the converse, simply observe that ω ◦ δ|B is a positive linear functional whose

restriction to the C∗-algebra Bk has norm ω ◦ δ(Pk) = ω ◦ δ
( k∑

i=0

Ei

)
= 0.

(1c) ⇔ (1d) Since B ⊆ λ(B) and ∆ω = ω ◦ δ on λ(B), (1c) implies that
∆ω vanishes on B, and hence on B. Since K ⊆ B, this gives (1d). Conversely,
if ∆ω(K) = 0 for each K ∈ K, then ω ◦ δ(K) = 0 for each K ∈ B ∩ K. Since δ
is σ-weakly continuous and maps Bk into Bk+1, (1c) follows from local normality
of ω.

(1c) ⇔ (1e) By Lemma 1.14, ω = ω ◦ β iff sl Ω = Ω.
(1c) ⇔ (1f) By Proposition 1.7, ω = ω ◦ β iff ρ = β∗ρ.
(2a) ⇒ (2c) This follows from [13], Theorem 2.11.
(2c) ⇒ (2b) Suppose ρ = ϕ ◦ l for some ϕ ∈ B(FE)∗. Then ϕ and ∆ω agree

on l(T On), so ϕ ◦ λ and ω agree on B ∩ K. Fix k, and let {Pα} be a net of finite
rank projections which increases to Ek. By the normality of ϕ and local normality
of λ,

ω(Ek) = limω(Pα) = limϕ ◦ λ(Pα) = ϕ ◦ λ(Ek) = ϕ(βk(I)),
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which decreases to zero.

(2c) ⇔ (2d) Suppose again that ρ = ϕ ◦ l for some ϕ ∈ B(FE)∗. Fix B ∈ B,
say B ∈ Bm, and let {Kα} be a net of compact operators in Bm which converges
σ-weakly to B. Then

∆ω(λ(B)) = ω(B) = limω(Kα) = limϕ ◦ λ(Kα) = ϕ(λ(B)),

so that ϕ extends ∆ω as well. The converse is immediate.

Theorem 2.2. Suppose ρ is a positive linear functional on T On, and let ω
be the unique decreasing locally normal positive linear functional on B such that
ρ = ∆ω ◦ l. Then ω ◦ δ|B extends uniquely to a normal positive linear functional
ϕ on B(FE), and the singular part of ρ is ϕ ◦ l.

Proof. Suppose ω is a decreasing locally normal positive linear functional on
B. Then ω ◦ δ|B is a locally normal positive linear functional, and ω ◦ δ(Pk) =
ω(E0) − ω(Ek+1) 6 ω(E0) for every k > 0. It follows that ω ◦ δ is bounded on
B: if B ∈ Bk, then |ω ◦ δ(B)| 6 ω ◦ δ(Pk)‖B‖ 6 ω(E0)‖B‖. Thus ω ◦ δ extends
uniquely to a positive linear functional ψ on B. By Remark 1.3, K ⊂ B, so there
is a unique ϕ ∈ B(FE)∗ which coincides with ψ on K. But then ϕ(K) = ω ◦ δ(K)
for every K ∈ B ∩ K, which by local normality implies that ϕ extends ω ◦ δ|B.

Let ρs := ϕ ◦ l. By Proposition 2.1 (2c), ρs is singular. Let ωs be the unique
decreasing locally normal positive linear functional on B such that ρs = ∆ωs ◦ l,
and let ωe be the locally normal linear functional ω − ωs. By Theorem 1.9 and
Proposition 2.1 (1c), the proof will be complete once we establish that ωe is positive
and ωe ◦ δ|B = 0.

For every K ∈ B ∩ K we have ωe(K) = ω(K) − ωs(K) = ω(K) − ϕ(λ(K)),
so by local normality we have ωe = ω − ϕ ◦ λ. Consequently ωe ◦ δ|B = 0.

To show that ωe is positive, we fix a positive integer m and show that the
bounded linear functional ωe|Bm achieves its norm at Pm, the identity element of
the C∗-algebra Bm.

For every k > 0 we have ωe = ωe ◦ βk, so

‖ωe|Bm‖ = ‖ωe ◦ βk|Bm‖ 6 ‖ω ◦ βk|Bm‖+ ‖ωs ◦ βk|Bm‖

= ω ◦ βk(Pm) + ωs ◦ βk(Pm) =
m∑

i=0

(ω(Ek+i) + ωs(Ek+i))

6 (m+ 1)(ω(Ek) + ωs(Ek)),
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since ω(Ek) and ωs(Ek) are monotonically nonincreasing in k. By Proposi-
tion 2.1 (2b), lim

k→∞
ωs(Ek) = 0, so ‖ωe|Bm‖ 6 (m + 1) lim

k→∞
ω(Ek). On the other

hand,

ωe(Pm) = ωe ◦βk(Pm) =
m∑

i=0

(ω(Ek+i)−ωs(Ek+i)) > (m+1)(ω(Ek+m)−ωs(Ek)),

so ωe(Pm) > (m+ 1) lim
k→∞

ω(Ek). Thus ωe is positive.

3. EXTENDING PRODUCT STATES

For each λ ∈ T the isometries {λvi | 1 6 i 6 n} satisfy the relations (λvj)∗(λvi) =
δij1, and hence there is a ∗-endomorphism γλ of T On such that γλ(vi) = λvi.
Each γλ is actually an automorphism since γλ ◦ γλ−1 is the identity on T On; in
fact γ is a continuous automorphic action of T on T On, called the gauge action.
Denote by Fn the fixed-point algebra of this action, and let Φ denote the canonical
conditional expectation of T On onto Fn; that is,

Φ(x) :=
∫
T

γλ(x)dm(λ), x ∈ T On,

where m is normalized Haar measure. In terms of generating monomials,

Fn = span{vµv
∗
ν | |µ| = |ν|} and Φ(vµv

∗
ν) =

{
vµv

∗
ν if |µ| = |ν|

0 otherwise.

We are interested in product states of Fn. To explain what we mean by
this, let K̃ := K(E) × C, endowed with the structure of a unital ∗-algebra via
(A, λ)(B,µ) = (AB + λB + µA, λµ) and (A, λ)∗ = (A∗, λ). When E is infinite-
dimensional, K̃ is ∗-isomorphic to the concrete C∗-algebra K(E) + CI, but when
dim E <∞ this is not the case. Nevertheless, it is not difficult to show that there
is a unique C∗-norm on K̃. The map

vi1 · · · vim
v∗jm

· · · v∗j1 7→ (vi1 ⊗ vj1 , 0)⊗ · · · ⊗ (vim
⊗ vjm

, 0)⊗ (0, 1)⊗ (0, 1)⊗ · · ·

embeds Fn in the infinite tensor product K̃⊗∞. If (ρk)∞k=1 is a sequence of states
of K(E), so that ρ̃k(K,λ) = ρk(K) + λ defines a sequence of states of K̃, we call

the restriction of the product state
∞⊗

k=1

ρ̃k to Fn a product state of Fn.
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Now suppose (ek)∞k=1 is a sequence of unit vectors in E . For each k, let
ρk denote the vector state of K(E) corresponding to ek, and let ρ denote the
corresponding product state of Fn. It is evident that ρ is pure and determined by

(3.1) ρ(vi1 · · · vimv
∗
jm
· · · v∗j1) = 〈vi1 , e1〉 · · · 〈vim

, em〉〈em, vjm
〉 · · · 〈e1, vj1〉.

The remainder of this paper is devoted to classifying all extensions to T On of such
a state.

One can always extend ρ by precomposing with Φ; the resulting extension
ρ ◦Φ is called the gauge-invariant extension. The most extreme situation is when
this extension is pure, in which case it is the unique state extending ρ. By [14],
Theorem 4.3, this occurs precisely when the sequence (ek) is aperiodic in the sense
that the series

(3.2)
∞∑

i=1

(1− |〈ei, ei+p〉|)

diverges for each positive integer p. In all other cases we say that (ek) is periodic,
and call the smallest positive integer p for which the series in (3.2) converges the
period of (ek).

Suppose then that (ek) has finite period p. Notice from (3.1) that if we
multiply each of the vectors ek by a complex number of modulus one, we obtain a
sequence which gives rise to the same product state ρ. Consequently, we are free
to rephase so that 〈ei, ei+p〉 is always real and nonnegative.

Theorem 3.1. Suppose {v1, . . . , vn} are the distinguished generating isome-
tries of the Toeplitz-Cuntz algebra T On; we include the case n = ∞ by writing
T O∞ for the Cuntz algebra O∞. Let E ⊆ T On be the closed linear span of
{v1, . . . , vn}, and suppose (ek) is a sequence of unit vectors in E which is periodic
with finite period p > 1, and for which 〈ei, ei+p〉 is always nonnegative. Let ρ be
the corresponding pure product state of Fn determined by (3.1). There is an affine
isomorphism σ 7→ ρσ from P (T), the space of Borel probability measures on the
circle T, to the space of all states of T On which extend ρ, given by

(3.3) ρσ(vi1 · · · vik
v∗jl
· · · v∗j1) = λk,l〈vi1 , e1〉 · · · 〈vik

, ek〉〈el, vjl
〉 · · · 〈e1, vj1〉,

where

(3.4) λk,l =

{
σ̂

(
k−l
p

) ∞∏
i=1

〈el+i, ek+i〉 if k − l ∈ pZ

0 otherwise,
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and σ̂ is the Fourier transform of σ.

Proof. For each k > 0 let ek := e1 · · · ek ∈ T On, where of course e0 := 1.
Note that ek ∈ Ek = span{vµ | µ ∈ Wk}. Equation (3.1) can now be written more
tersely as

ρ(vµv
∗
ν) = 〈vµ, e|µ|〉〈e|ν|, vν〉, µ, ν ∈ W, |µ| = |ν|,

which in turn extends by linearity and continuity to

ρ(xy∗) = 〈x, ek〉〈ek, y〉, x, y ∈ Ek.

Similarly, (3.3) can be written as

(3.5) ρσ(xy∗) = λk,l〈x, ek〉〈el, y〉, x ∈ Ek, y ∈ El.

Suppose now that ρ̃ is a state of T On which extends ρ. By Schwarz inequality,

(3.6) |ρ̃(xy∗)| 6 ρ(xx∗)
1
2 ρ(yy∗)

1
2 = |〈x, ek〉〈y, el〉|, x ∈ Ek, y ∈ El.

Let x1 := 〈x, ek〉ek, x2 := x− x1, y1 := 〈y, el〉el and y2 := y − y1. Then

ρ̃(xy∗) = ρ̃(x1y
∗
1) + ρ̃(x1y

∗
2) + ρ̃(x2y

∗
1) + ρ̃(x2y

∗
2) = ρ̃(x1y

∗
1);

that is,

(3.7) ρ̃(xy∗) = ρ̃(eke∗l )〈x, ek〉〈el, y〉, x ∈ Ek, y ∈ El.

For each k, l > 0 define
λk,l := ρ̃(eke∗l ).

Comparing (3.5) and (3.7), it is apparent that we must exhibit a Borel probability
measure σ such that (3.4) is satisfied.

For each positive integer k∑
µ∈Wk

ρ̃(vµv
∗
µ) =

∑
µ∈Wk

|〈vµ, ek〉|2 = ‖ek‖2 = 1,

so by [13], Corollary 2.9, ρ̃ is essential. By Proposition 2.1 (1f), this implies that
ρ̃ = β∗ρ̃. In particular, for each k, l > 0

λk,l = ρ̃(eke∗l ) = β∗ρ̃(eke∗l ) =
n∑

i=1

ρ̃(ekviv
∗
i e
∗
l )

=
n∑

i=1

ρ̃(ek+1e∗l+1)〈ekvi, ek+1〉〈el+1, elvi〉 (by (3.7))

=
n∑

i=1

λk+1,l+1〈vi, ek+1〉〈el+1, vi〉 = λk+1,l+1〈el+1, ek+1〉,
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and by induction

(3.8) λk,l = λk+j,l+j

j∏
i=1

〈el+i, ek+i〉 ∀ j.

Suppose now that p divides |k − l|. Since we have phased the sequence
(ei) so that 〈ei, ei+p〉 is always nonnegative, the assumption that (ei) has period
p means that

∑
|1 − 〈ei, ei+p〉| < ∞. By [12], Proposition 1.2, it follows that∑

|1− 〈ei, ei+m〉| <∞ whenever p divides m. In particular we have

∞∑
i=1

|1− 〈el+i, ek+i〉| <∞,

which implies that there is a positive integer i0 such that

lim
j→∞

i0+j∏
i=i0

〈el+i, ek+i〉

exists and is nonzero. Together with (3.8), this shows that lim
m→∞

λk+m,l+m exists;
indeed

lim
m→∞

λk+m,l+m = λk+i0−1,l+i0−1

( ∞∏
i=i0

〈el+i, ek+i〉
)−1

.

Since this limit depends only on the quantity k − l, we can define a function
τ : Z → C by τa−b := lim

m→∞
λap+m,bp+m for a, b > 0.

We claim that τ is positive definite; that is, we claim that for any finite

collection z0, . . . , zm of complex numbers, the sum
m∑

a,b=0

zazbτa−b is real and non-

negative. To see this, define a sequence (wi) in T On by wi :=
m∑

a=0
zae(a+i)p. Then

m∑
a,b=0

zazbτa−b = lim
i→∞

m∑
a,b=0

λ(a+i)p,(b+i)pzazb

= lim
i→∞

m∑
a,b=0

ρ̃(e(a+i)pe∗(b+i)p)zazb = lim
i→∞

ρ̃(wiw
∗
i ) > 0,

as claimed.
By Herglotz’s Theorem there is Borel probability measure σ on T such that

τ = σ̂. We claim that (3.4) is satisfied. The case k − l ∈ pZ follows immediately
from (3.8) by letting j →∞. If p does not divide k−l, then by [12], Proposition 1.2,
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the series
∞∑

i=1

(1−|〈el+i, ek+i〉|) diverges, so that the infinite product
∞∏

i=1

|〈el+i, ek+i〉|

diverges as well; in particular,

lim
j→∞

j∏
i=1

〈el+i, ek+i〉 = 0.

Since by (3.6) we have |λk+j,l+j | 6 1 for each j, it follows from (3.8) that λk,l = 0.

This completes the proof that every extension of ρ is of the form ρσ.

Conversely, suppose σ is a Borel probability measure on T. Define coefficients

λk,l as in (3.4), and, resuming the notation and terminology of Section 1, define a

locally normal linear functional ω on B by

(3.9) ω(B) :=
m∑

k,l=0

λk,l〈Bel, ek〉, B ∈ Bm.

We claim that ω is positive and decreasing, and that the functional ∆ω ◦ l of

Proposition 1.5 is the desired state ρσ satisfying (3.5).

For c = 0, 1, . . . , p − 1, let Hc be the Hilbert space inductive limit of the

isometric inclusions Em ↪→ Em+1 determined by

x1 · · ·xm 7→ x1 · · ·xmem+c+1, xi ∈ E .

Modulo the isomorphisms x1 · · ·xm ∈ Em 7→ x1 ⊗ · · · ⊗ xm ∈ E⊗m, Hc is just the

infinite tensor product E⊗∞ with canonical unit vector ec+1 ⊗ ec+2 ⊗ ec+3 ⊗ · · ·

introduced in [16]. Consequently [12], Proposition 1.1 applies: if (fi) is a sequence

of unit vectors in E such that
∞∑

i=1

|1 − 〈ec+i, fi〉| < ∞, then f1f2f3 · · · is a unit

vector in Hc. In particular, for each a > 0 we can define a vector fc,a ∈ Hc by

fc,a := eap+c+1eap+c+2eap+c+3 · · · .

By (3.4), λap+c,bp+c = σ̂(a− b)〈fc,b, fc,a〉.

Suppose now that B is an operator of bounded support on FE . Choose M
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so that B ∈ BMp+p−1. Then

ω(B∗B) =
Mp+p−1∑

k,l=0

λk,l〈Bel, Bek〉 =
p−1∑
c=0

M∑
a,b=0

λap+c,bp+c〈Bebp+c, Beap+c〉

=
p−1∑
c=0

M∑
a,b=0

σ̂(a− b)〈fc,b, fc,a〉〈Bebp+c, Beap+c〉

=
p−1∑
c=0

∫
T

M∑
a,b=0

γb−a〈fc,b ⊗Bebp+c, fc,a ⊗Beap+c〉dσ(γ)

=
p−1∑
c=0

∫
T

〈 M∑
b=0

γbfc,b ⊗Bebp+c,
M∑

a=0

γafc,a ⊗Beap+c

〉
dσ(γ)

=
p−1∑
c=0

∫
T

∥∥∥ M∑
a=0

γafc,a ⊗Beap+c

∥∥∥2

dσ(γ) > 0,

so ω is positive.
To see that ω is decreasing, suppose B ∈ Bm. Then β(B) ∈ Bm+1, so

ω ◦ β(B) =
m+1∑
k,l=0

λk,l〈β(B)el, ek〉 =
m+1∑
k,l=0

λk,l

n∑
i=1

〈r(vi)Br(vi)∗el, ek〉

=
m+1∑
k,l=1

λk,l

n∑
i=1

〈el, vi〉〈vi, ek〉〈Bel−1, ek−1〉

=
m+1∑
k,l=1

λk,l〈el, ek〉〈Bel−1, ek−1〉

=
m∑

k,l=0

λk+1,l+1〈el+1, ek+1〉〈Bel, ek〉 = ω(B)

since from (3.4) it is evident that λk,l = λk+1,l+1〈el+1, ek+1〉 for every k, l.
Let ρσ = ∆ω ◦ l. If x ∈ Ek and y ∈ El, then

ρσ(xy∗) = ω(x⊗ y) = λk,l〈(x⊗ y)el, ek〉 = λk,l〈x, ek〉〈el, y〉,

so ρσ satisfies (3.5) as claimed.
Since the Fourier transform is linear, it is evident from the defining formulas

(3.3) and (3.4) that the map σ 7→ ρσ is affine. It remains only to show that σ 7→ ρσ

is injective. For this, suppose a ∈ Z. Since we have phased the sequence (ei) so
that 〈ei, ei+p〉 is always nonnegative, by [12], Proposition 1.2, the assumption
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that the series
∑
|1 − 〈ei, ei+p〉| converges implies that

∑
|1 − 〈ei, ei+ap〉| also

converges. Consequently, the infinite product
∏
〈ei, ei+ap〉 converges; that is, there

is a positive integer ia such that
∞∏

i=ia

〈ei, ei+ap〉 exists and is nonzero. Since

ρσ(eia+ap−1e∗ia−1) = σ̂(a)
∞∏

i=ia

〈ei, ei+ap〉

and the Fourier transform is injective, this shows that σ 7→ ρσ is injective.

Corollary 3.2. Suppose ρ is a pure essential product state of Fn with finite
period p. Then the gauge group acts p-to-1 transitively on the extensions of ρ to
pure states of T On. In particular, ρ has precisely a circle of extensions to pure
states of T On.

Proof. Suppose ρ̃ is an extension of ρ to a pure state of T On. Then there is
a Borel probability measure σ on T such that ρ̃ is the extension ρσ of Theorem 3.1.
Moreover, since ρ̃ is pure, there is a z ∈ T such that σ is the point measure at z.
If λ ∈ T, then the pure state ρ̃ ◦ γλ is equal to ρϕ, where ϕ is the point measure at
λpz. Thus the gauge group acts p-to-1 transitively on the extensions of ρ to pure
states of T On.

Remark 3.3. We conjecture that Corollary 3.2 holds more generally for
non-product states.
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