STATES OF TOEPLITZ-CUNTZ ALGEBRAS

NEAL J. FOWLER

Communicated by Norberto Salinas

ABSTRACT. We characterize the state space of a Toeplitz-Cuntz algebra \mathcal{TO}_n in terms of positive operator matrices Ω on Fock space which satisfy sl $\Omega \leq \Omega$, where sl Ω is the operator matrix obtained from Ω by taking the trace in the last variable. Essential states correspond to those matrices Ω which are sliceinvariant. As an application we show that a pure essential product state of the fixed-point algebra for the action of the gauge group has precisely a circle of pure extensions to \mathcal{TO}_n .

KEYWORDS: Cuntz algebras, Fock space, product states. MSC (2000): 46L30, 46A22, 47D25.

0. INTRODUCTION

Let \mathcal{TO}_n be the unital C^* -algebra which is universal for collections of n isometries with mutually orthogonal ranges; we call \mathcal{TO}_n a *Toeplitz-Cuntz* algebra. Since their introduction by Cuntz ([8]), these algebras have been profitably used in the study of normal *-endomorphisms of $\mathcal{B}(\mathcal{H})$, the algebra of bounded operators on a Hilbert space \mathcal{H} . The main idea is as follows. Let $\{v_k \mid 1 \leq k \leq n\}$ be the distinguished generating isometries in \mathcal{TO}_n . Every *-representation π of \mathcal{TO}_n on \mathcal{H} on gives rise to an endomorphism α of $\mathcal{B}(\mathcal{H})$ via

$$\alpha(A) = \sum_{k=1}^{n} \pi(v_k) A \pi(v_k)^*, \quad A \in \mathcal{B}(\mathcal{H}),$$

and every endomorphism is of this form for some n and π ; see [2], [13], [7].

Arves on has generalized these ideas to the continuous case through the use of product systems. Every representation φ of a continuous product system E on Hilbert space gives rise to a semigroup $\alpha = \{\alpha_t \mid t > 0\}$ of endomorphisms of $\mathcal{B}(\mathcal{H})$, and φ is said to be *essential* if each α_t is unital; such semigroups are called E_0 -semigroups, and are the primary objects of study in Arveson's series [2], [3], [4], [5].

One of Arveson's key results is that every product system E has an essential representation. To prove this he associates with E a universal C^* -algebra $C^*(E)$ whose representations are in bijective correspondence with representations of E, characterizes the state space of $C^*(E)$, and then uses this characterization to show that there are always certain states, called *essential* states, whose GNS representations give rise to essential representations of E.

In this paper we develop a discrete version of Arveson's method in which E is a product system over the positive integers \mathbb{N} . The algebras which arise as $C^*(E)$ are precisely the Toeplitz-Cuntz algebras: up to isomorphism there is a unique product system E^n over \mathbb{N} for each $n \in \{1, 2, \ldots, \infty\}$, and $C^*(E^n) \cong \mathcal{TO}_n$; see [10]. We write \mathcal{TO}_∞ for the Cuntz algebra \mathcal{O}_∞ , a notation which underlies an important advantage of our methods: they apply for both finite and infinite n, so that one does not have to study \mathcal{O}_∞ as a special case. While our methods are motivated by those of Arveson, our exposition avoids any explicit use of product systems: since the C^* -algebra being analyzed is a familiar one, we can use it as a starting point rather than the product system.

Our main result is Theorem 1.9, which characterizes the state space of \mathcal{TO}_n in terms of a class of positive linear functionals on the *-algebra \mathfrak{B} of operators on Fock space which have "bounded support"; these functionals are the analogues of Arveson's decreasing locally normal weights ([5]). In Theorem 1.15 we give a reformulation of this result in terms of the so-called *density matrices* associated with these functionals; these are certain infinite operator matrices on full Fock space over an *n*-dimensional Hilbert space. Roughly speaking, positive linear functionals on \mathcal{TO}_n correspond to positive matrices Ω of trace-class operators with the property that

$$\operatorname{sl}\Omega \leqslant \Omega$$
,

where $\operatorname{sl}\Omega$, the *slice* of Ω , is the operator matrix obtained from Ω by "taking the trace in the last variable".

Viewing \mathcal{TO}_n as the universal C^* -algebra of a product system, a state ρ of \mathcal{TO}_n is essential if its associated GNS representation π satisfies

$$\sum \pi(v_k)\pi(v_k)^* = I$$

In Proposition 2.1 we use the results of Section 1 to give some alternate characterizations of both essentiality and the complementary notion of singularity; perhaps the most useful aspect of this theorem is the characterization of essentiality in terms of invariance under the map β^* defined by

$$\beta^* \rho(v_{i_1} \cdots v_{i_k} v_{j_l}^* \cdots v_{j_1}^*) = \sum_{m=1}^n \rho(v_{i_1} \cdots v_{i_k} v_m v_m^* v_{j_l}^* \cdots v_{j_1}^*).$$

When n is finite, essential states of \mathcal{TO}_n are precisely those which factor through the canonical homomorphism of \mathcal{TO}_n onto the Cuntz algebra \mathcal{O}_n , and can thus be thought of as states of \mathcal{O}_n . This characterization of essentiality can be extended to include the case $n = \infty$, even though \mathcal{O}_∞ is simple. The idea is as follows. When $n = \infty$, Proposition 1.7 characterizes the state space of a certain concrete C^* -algebra \mathcal{U} which contains a copy of \mathcal{O}_∞ ; \mathcal{U} also contains the compact operators \mathcal{K} . We give a canonical procedure for extending states from \mathcal{O}_∞ to \mathcal{U} , and show that a state is essential if and only if its canonical extension is zero on \mathcal{K} . Section 2 concludes with Theorem 2.2, which gives an alternate approach to the singularessential decomposition.

A method which has been profitably used to study the state space of \mathcal{O}_n has been to focus first on states of its even-word subalgebra, and then on the problem of extending such states to \mathcal{O}_n ([9], [1], [13], [14], [7], [6]). When n is finite, this even-word subalgebra is a UHF algebra of type n^{∞} , and is thus somewhat less complicated and better understood than \mathcal{O}_n . For example, there is a large supply of states of this algebra readily at hand in the form of product states; indeed, these states have played a key rôle in the study of UHF algebras ([11], [15]). In Section 3 we study the problem of extending a pure periodic product state to \mathcal{O}_n . To include the case $n = \infty$ in a unified way we reformulate this problem: we consider instead the even-word subalgebra \mathcal{F}_n of the Toeplitz-Cuntz algebra \mathcal{TO}_n , and focus on pure periodic product states of \mathcal{F}_n which are essential. Our main result is Theorem 3.1, which parameterizes the space of all extensions of such a state by probability measures on the circle. Pure extensions correspond to point measures, and we have as an immediate corollary that the space of pure extensions of such a state is precisely a circle.

The author would like to thank M. Laca for the many helpful discussions during the preparation of this paper, and W. Arveson for the motivation to pursue this research.

1. STATES OF \mathcal{TO}_n

FROM \mathcal{TO}_n TO \mathcal{K} AND BACK. Suppose $1 \leq i_1, \ldots, i_k \leq n$. We call $\mu = (i_1, \ldots, i_k)$ a *multi-index* and define $|\mu| := k$ and $v_{\mu} := v_{i_1} \cdots v_{i_k}$; of course $v_{\emptyset} := 1$. The set of all multi-indices will be denoted \mathcal{W} , and we define $\mathcal{W}_k := \{\mu \in \mathcal{W} \mid |\mu| = k\}$. With this notation, $\mathcal{TO}_n = \overline{\operatorname{span}}\{v_{\mu}v_{\nu}^* \mid \mu, \nu \in \mathcal{W}\}$.

When n is finite, the projection $p := 1 - \sum v_i v_i^*$ generates a closed, two-sided ideal \mathcal{J}_n of \mathcal{TO}_n which is isomorphic to the compact operators on an infinitedimensional, separable Hilbert space; indeed, $\{v_\mu p v_\nu^* \mid \mu, \nu \in \mathcal{W}\}$ is a self-adjoint system of matrix units for \mathcal{J}_n ([8]). Let q := 1 - p. Since q is an identity for $C^*(\{v_iq\})$ and $(v_jq)^*(v_iq) = \delta_{ij}q$, the map $v_i \mapsto v_iq$ extends to a *-endomorphism β' of \mathcal{TO}_n . If we then define $\delta' := \mathrm{id} - \beta'$, one checks easily that $\delta'(v_\mu v_\nu^*) = v_\mu p v_\nu^*$, and consequently $\delta'(\mathcal{TO}_n) \subset \mathcal{J}_n$.

To include the case $n = \infty$ we implement δ' spatially utilizing the Fock representation of \mathcal{TO}_n ([9]). Technically speaking, the representation we are about to define is only unitarily equivalent to the Fock representation; we prefer this version for purely notational reasons. Let

$$\mathcal{E} := \overline{\operatorname{span}}\{v_i \mid 1 \leqslant i \leqslant n\},\$$

and more generally, let

$$\mathcal{E}_k := \overline{\operatorname{span}}\{v_\mu \mid \mu \in \mathcal{W}_k\}, \quad k = 0, 1, 2, \dots,$$

so that $\mathcal{E} = \mathcal{E}_1$. If $f, g \in \mathcal{E}_k$, then g^*f is a scalar multiple of the identity, and the formula $g^*f = \langle f, g \rangle 1$ defines an inner product which makes \mathcal{E}_k a Hilbert space. Notice that the Hilbert space norm on \mathcal{E}_k agrees with the norm \mathcal{E}_k inherits as a subspace of \mathcal{TO}_n , and that $\{v_{\mu} \mid \mu \in \mathcal{W}_k\}$ is an orthonormal basis for \mathcal{E}_k . Let

$$F_{\mathcal{E}} := \bigoplus_{k=0}^{\infty} \mathcal{E}_k.$$

By this we mean nothing more than the abstract direct sum of Hilbert spaces; in particular, the inclusion maps $\mathcal{E}_k \hookrightarrow \mathcal{TO}_n$ do *not* factor through the canonical injections $\mathcal{E}_k \hookrightarrow F_{\mathcal{E}}$. We caution the reader that we will think of \mathcal{E}_k in three separate ways: as a subspace of the C^* -algebra \mathcal{TO}_n , as a Hilbert space, and as a subspace of $F_{\mathcal{E}}$. This is both a notational advantage and a potential cause of confusion.

For each integer $k \ge 0$, left multiplication by v_i is a linear isometry from \mathcal{E}_k to \mathcal{E}_{k+1} , and together these maps induce an isometry $l(v_i)$ on $F_{\mathcal{E}}$. Similarly, right

multiplication by v_i induces an isometry $r(v_i)$ on $F_{\mathcal{E}}$. Since $l(v_j)^*l(v_i) = \delta_{ij}I$, the map $v_i \mapsto l(v_i)$ extends to a *-representation l of \mathcal{TO}_n on $F_{\mathcal{E}}$; we call this the *Fock representation*. The representation which is more commonly referred to as the Fock representation is unitarily equivalent to l via the unitary $F_{\mathcal{E}} \to \bigoplus_{k=0}^{\infty} \mathcal{E}^{\otimes k}$ determined by

$$v_{i_1}\cdots v_{i_k}\mapsto v_{i_1}\otimes\cdots\otimes v_{i_k}, \quad (i_1,\ldots,i_k)\in\mathcal{W}.$$

By [9], l is faithful and irreducible. We will study \mathcal{TO}_n in this representation for the remainder of the paper.

For each pair of vectors $f, g \in F_{\mathcal{E}}$ we will denote by $f \otimes \overline{g}$ the rank-one operator $h \mapsto \langle h, g \rangle f$ on $F_{\mathcal{E}}$. Routine calculations show that when $n < \infty$ we have $l(v_{\mu}pv_{\nu}^{*}) = v_{\mu} \otimes \overline{v_{\nu}}$, so the image of the ideal \mathcal{J}_{n} in the Fock representation is \mathcal{K} , the compact operators on $F_{\mathcal{E}}$.

We implement δ' spatially as follows. Define a normal *-endomorphism β of $\mathcal{B}(F_{\mathcal{E}})$ by

$$\beta(A) := \sum_{i=1}^{n} r(v_i) A r(v_i)^*, \quad A \in \mathcal{B}(F_{\mathcal{E}}).$$

When n is infinite, the above series converges in the strong operator topology. One easily checks that β implements β' spatially when n is finite; i.e. $\beta(l(v_i)) = l(v_iq)$. Hence $\delta := id - \beta$ implements δ' spatially when $n < \infty$. Moreover,

(1.1)
$$\delta(l(v_{\mu}v_{\nu}^{*})) = v_{\mu} \otimes \overline{v_{\nu}}$$

holds whether or not n is finite, so we always have $\delta \circ l(\mathcal{TO}_n) \subseteq \mathcal{K}$.

OPERATORS OF BOUNDED SUPPORT. Let $P_k := I - \beta^{k+1}(I)$, the orthogonal projection of $F_{\mathcal{E}}$ onto $\bigoplus_{i=0}^{k} \mathcal{E}_i$. Let \mathfrak{B}_k be the von Neumann algebra of all operators $T \in \mathcal{B}(F_{\mathcal{E}})$ satisfying $T = P_k T P_k$, and let

$$\mathfrak{B} := \bigcup_{k=0}^{\infty} \mathfrak{B}_k,$$

the algebra of operators on $F_{\mathcal{E}}$ which have bounded support. This algebra is β -invariant; indeed, $\beta^i(P_k) = P_{k+i} - P_{i-1}$ for $i \ge 1, k \ge 0$. Consequently

(1.2)
$$\beta^i(A)\beta^j(B) = 0 \text{ if } A, B \in \mathfrak{B}_k \text{ and } |i-j| \ge k+1.$$

Since $\beta^k(I) \to 0$ strongly, δ is injective: if $\delta(A) = 0$, then $A = \beta(A)$, and hence $A = \beta^k(A) = \beta^k(A)\beta^k(I) = A\beta^k(I) \to 0$. The following proposition shows that \mathfrak{B} is contained in the range of δ , and establishes a formula for the inverse of δ on \mathfrak{B} . PROPOSITION 1.1. For each $B \in \mathfrak{B}$, the sum $\sum_{i=0}^{\infty} \beta^i(B)$ converges σ -weakly to a bounded operator $\lambda(B)$ on $F_{\mathcal{E}}$. The map $\lambda : \mathfrak{B} \to \mathcal{B}(F_{\mathcal{E}})$ is injective, *-linear, and its restriction to \mathfrak{B}_k is normal, completely positive and has norm k+1. Moreover, $\delta|\lambda(\mathfrak{B})$ is the inverse of λ .

Proof. We follow [5], Theorem 2.2. Fix $k \ge 0$. If $A, B \in \mathfrak{B}_k$, then by (1.2)

$$\beta^{i(k+1)}(A)\beta^{j(k+1)}(B) = \delta_{ij}\beta^{j(k+1)}(AB).$$

Consequently $\sum_{j=0}^{\infty} \beta^{j(k+1)}$ is a normal *-homomorphism from \mathfrak{B}_k to $\mathcal{B}(F_{\mathcal{E}})$. From this it is easy to see that $\sum_{i=0}^{\infty} \beta^i(B) = \sum_{l=0}^k \sum_{j=0}^{\infty} \beta^{j(k+1)+l}(B)$ converges strongly to an operator $\lambda_k(B)$ for each $B \in \mathfrak{B}_k$, and that λ_k is normal, completely positive and *-linear. The λ_k 's are clearly coherent, and thus define the desired map λ . Since $(P_k - P_{k-1})\lambda(P_k) = (k+1)(P_k - P_{k-1})$, the norm of λ_k is at least k+1; since λ_k

is the sum of k + 1 *-homomorphisms, we thus have $\|\lambda_k\| = k + 1$. By the normality of β we have $\beta(\lambda(B)) = \sum_{i=1}^{\infty} \beta^i(B)$, and thus $\delta(\lambda(B)) = B$ for each $B \in \mathfrak{B}$. Consequently λ is injective with inverse $\delta|\lambda(\mathfrak{B})$.

PROPOSITION 1.2. $\lambda(\mathfrak{B})$ and $\lambda(\mathfrak{B}\cap\mathcal{K})$ are irreducible *-subalgebras of $\mathcal{B}(F_{\mathcal{E}})$, and $\lambda(\mathfrak{B}\cap\mathcal{K})$ is a dense subalgebra of $l(\mathcal{TO}_n)$.

Proof. Since λ is *-linear, $\lambda(\mathfrak{B})$ and $\lambda(\mathfrak{B} \cap \mathcal{K})$ are self-adjoint subspaces of $\mathcal{B}(F_{\mathcal{E}})$. By (1.1) we have $\lambda(v_{\mu} \otimes \overline{v_{\nu}}) = l(v_{\mu}v_{\nu}^{*})$, and since λ is bounded when restricted to one of the subalgebras \mathfrak{B}_{k} , this shows that $\lambda(\mathfrak{B} \cap \mathcal{K})$ is a dense subspace of $l(\mathcal{TO}_{n})$. Suppose $A, B \in \lambda(\mathfrak{B})$; we will show that $AB \in \lambda(\mathfrak{B})$. To begin with, observe that if $C \in \mathfrak{B}_{c}$ and $D \in \mathfrak{B}_{d}$, then

(1.3)
$$C\lambda(D) = \sum_{k=0}^{c} C\beta^{k}(D) \in \mathfrak{B}_{c+d},$$

with a similar equation holding for $\lambda(C)D$. Since $\delta(A), \delta(B) \in \mathfrak{B}$, this implies that both $\delta(A)B = \delta(A)\lambda(\delta(B))$ and $A\delta(B) = \lambda(\delta(A))\delta(B)$ are in \mathfrak{B} . Using the identity

(1.4)
$$\delta(AB) = \delta(A)B + A\delta(B) - \delta(A)\delta(B),$$

we see that $\delta(AB) \in \mathfrak{B}$. Thus $AB \in \lambda(\mathfrak{B})$, so $\lambda(\mathfrak{B})$ is a *-algebra.

If in addition $\delta(A)$ and $\delta(B)$ are compact, then by (1.4), $\delta(AB)$ is compact as well. Thus $AB \in \lambda(\mathfrak{B} \cap \mathcal{K})$, so $\lambda(\mathfrak{B} \cap \mathcal{K})$ is also a *-algebra. These algebras are irreducible since $\lambda(\mathfrak{B} \cap \mathcal{K})$ is dense in the irreducible algebra $l(\mathcal{TO}_n)$. REMARK 1.3. If *n* is finite then $\mathfrak{B} \subset \mathcal{K}$, so that the algebras $\lambda(\mathfrak{B} \cap \mathcal{K})$ and $\lambda(\mathfrak{B})$ coincide. When *n* is infinite this is not the case. For arbitrary *n*, (1.3) shows that $\overline{\mathfrak{B}}$ is an ideal in $\overline{\lambda(\mathfrak{B})}$. Moreover, this ideal contains the compacts since \mathfrak{B} is irreducible and has nontrivial intersection with \mathcal{K} . When *n* is finite $\overline{\mathfrak{B}} = \mathcal{K}$.

DECREASING POSITIVE LINEAR FUNCTIONALS

DEFINITION 1.4. Suppose ω is a linear functional on \mathfrak{B} . We say that ω is *decreasing* if $\omega \circ \delta$ is positive on \mathfrak{B} ; that is, if

$$\omega(B^*B) - \omega(\beta(B^*B)) \ge 0, \quad B \in \mathfrak{B}.$$

PROPOSITION 1.5. Suppose ω is a linear functional on \mathfrak{B} . Then $\omega \circ \delta$ is positive on $\lambda(\mathfrak{B})$ iff ω is positive and decreasing, in which case $\omega \circ \delta$ extends uniquely to a positive linear functional $\Delta \omega$ of norm $\omega(P_0)$ on the C^* -algebra $\overline{\lambda(\mathfrak{B})}$.

Proof. Suppose $\omega \circ \delta$ is positive on $\lambda(\mathfrak{B})$. Then ω is decreasing since $\mathfrak{B} \subseteq \lambda(\mathfrak{B})$, and ω is positive since $\omega = \omega \circ \delta \circ \lambda$ and λ is positive.

Conversely, suppose ω is positive and decreasing. Then $(B_1, B_2) \mapsto \omega(B_2^*B_1)$ defines a positive semi-definite sesquilinear form on \mathfrak{B} , so there is a Hilbert space \mathcal{H}_{ω} and a linear map $\Omega : \mathfrak{B} \to \mathcal{H}_{\omega}$ such that $\Omega(\mathfrak{B})$ is dense in \mathcal{H}_{ω} and $\langle \Omega(B_1), \Omega(B_2) \rangle = \omega(B_2^*B_1)$ for every $B_1, B_2 \in \mathfrak{B}$. Since ω is decreasing, $\Omega(B) \mapsto$ $\Omega(\beta(B))$ extends uniquely to a linear contraction T on \mathcal{H}_{ω} . Define $\tau : \mathbb{Z} \to \mathcal{B}(\mathcal{H}_{\omega})$ by

(1.5)
$$\tau(k) := \begin{cases} T^k & \text{if } k \ge 0\\ T^{*(-k)} & \text{if } k < 0. \end{cases}$$

Since T is a contraction, τ is positive definite.

Suppose now that $B \in \mathfrak{B}$. By (1.4),

$$\begin{split} \delta(\lambda(B)^*\lambda(B)) &= \delta(\lambda(B^*))\lambda(B) + \lambda(B^*)\delta(\lambda(B)) - \delta(\lambda(B^*))\delta(\lambda(B)) \\ &= B^*\lambda(B) + \lambda(B^*)B - B^*B = \sum_{i=0}^{\infty} B^*\beta^i(B) + \sum_{j=1}^{\infty}\beta^j(B^*)B, \end{split}$$

where by (1.3) each of the sums is only finitely non-zero. Since

$$\langle \tau(k)\Omega(B), \Omega(B) \rangle = \begin{cases} \omega(B^*\beta^k(B)) & \text{if } k \ge 0\\ \omega(\beta^{-k}(B^*)B) & \text{if } k < 0, \end{cases}$$

we thus have

$$\omega\circ\delta(\lambda(B)^*\lambda(B))=\sum_{k=-\infty}^{\infty}\langle\tau(k)\Omega(B),\Omega(B)\rangle\geqslant 0,$$

so $\omega \circ \delta$ is positive on $\lambda(\mathfrak{B})$.

Since $\lambda(P_0) = \sum_{n=0}^{\infty} \beta^n (I - \beta(I)) = I$, the algebra $\lambda(\mathfrak{B})$ unital. Hence to show that $\omega \circ \delta$ is bounded on $\lambda(\mathfrak{B})$ it suffices to establish the relation

(1.6)
$$\limsup_{k \to \infty} |\omega \circ \delta(A^k)|^{\frac{1}{k}} \leq ||A||, \quad A \in \lambda(\mathfrak{B}).$$

For this, suppose $A \in \lambda(\mathfrak{B})$ and k is a positive integer. Then $\delta(A) \in \mathfrak{B}_a$ for some positive integer a, and repeated applications of (1.4) and (1.3) give that $\delta(A^k) \in \mathfrak{B}_{ka}$. Now P_{ka} is the unit in \mathfrak{B}_{ka} , so

$$|\omega \circ \delta(A^k)| \leqslant \omega(P_{ka}) \|\delta(A^k)\|.$$

Since ω is decreasing,

$$\omega(P_{ka}) = \sum_{i=0}^{ka} \omega(\beta^i(P_0)) \leqslant \sum_{i=0}^{ka} \omega(P_0) = (ka+1)\omega(P_0).$$

These last two inequalities together with the fact that $\|\delta\| \leq 2$ give

$$|\omega \circ \delta(A^k)| \leq 2(ka+1)\omega(P_0) ||A||^k,$$

from which (1.6) follows immediately. Finally,

$$\|\Delta\omega\| = \omega \circ \delta(I) = \omega \circ \delta(\lambda(P_0)) = \omega(P_0).$$

DEFINITION 1.6. Denote by \mathcal{P}_{β} the cone of decreasing positive linear functionals on \mathfrak{B} , partial-ordered by the relation

$$\omega_1 \leqslant \omega_2 \quad \text{iff} \quad \omega_2 - \omega_1 \in \mathcal{P}_{\beta}.$$

PROPOSITION 1.7. The map $\omega \mapsto \Delta \omega$ is an affine order isomorphism of \mathcal{P}_{β} onto the positive part of the dual of $\overline{\lambda(\mathfrak{B})}$.

Proof. It is clear from the construction that $\omega \mapsto \Delta \omega$ is affine. To see that it is surjective, suppose ρ is a positive linear functional on $\overline{\lambda(\mathfrak{B})}$. Let $\omega = \rho \circ \lambda$. Then $\omega \circ \delta$ agrees with ρ on $\lambda(\mathfrak{B})$ and hence is positive. By Proposition 1.5 this implies that ω is positive and decreasing, and clearly $\Delta \omega = \rho$. Since $\omega(B) = \Delta \omega(\lambda(B))$ for each $B \in \mathfrak{B}$, the map $\omega \mapsto \Delta \omega$ is injective. Lastly, observe that $\omega_1 \leq \omega_2$ iff $\omega_2 - \omega_1 \in \mathcal{P}_\beta$, which by Proposition 1.5 is equivalent to the condition that $(\omega_2 - \omega_1) \circ \delta$ be positive on $\lambda(\mathfrak{B})$. This in turn is obviously equivalent to the condition that $\Delta \omega_1 \leq \Delta \omega_2$. When n is finite recall that $\overline{\lambda(\mathfrak{B})} = \overline{\lambda(\mathfrak{B} \cap \mathcal{K})} = l(\mathcal{TO}_n)$, so we have an affine isomorphism

(1.7)
$$\omega \mapsto \Delta \omega \circ l$$

of \mathcal{P}_{β} onto the state space of \mathcal{TO}_n . When *n* is infinite the algebra $\overline{\lambda(\mathfrak{B})}$ properly contains $l(\mathcal{O}_{\infty})$, and consequently (1.7) gives an affine map of \mathcal{P}_{β} onto the state space of \mathcal{O}_{∞} which is not injective. The following definition is the key to identifying a subcone of \mathcal{P}_{β} on which this map is an isomorphism.

DEFINITION 1.8. A linear functional ω on \mathfrak{B} is *locally normal* if its restriction to each of the von Neumann subalgebras \mathfrak{B}_k is normal. We denote by \mathcal{W}_β the subcone of \mathcal{P}_β consisting of all decreasing positive linear functionals on \mathfrak{B} which are locally normal.

We now prove our main theorem, which improves on Proposition 1.7 in the sense that it characterizes the state space not just of \mathcal{TO}_n for *n* finite, but also of \mathcal{O}_{∞} .

THEOREM 1.9. Suppose $\{v_1, \ldots, v_n\}$ are the distinguished generating isometries of the Toeplitz-Cuntz algebra \mathcal{TO}_n ; we include the case $n = \infty$ by writing \mathcal{TO}_{∞} for the Cuntz algebra \mathcal{O}_{∞} . Let $\mathcal{E} \subseteq \mathcal{TO}_n$ be the closed linear span of $\{v_1, \ldots, v_n\}$, let $F_{\mathcal{E}}$ be full Fock space over \mathcal{E} , let \mathfrak{B} be the algebra of operators on $F_{\mathcal{E}}$ which have bounded support, and let \mathcal{W}_β be the partially-ordered cone of decreasing locally normal positive linear functionals on \mathfrak{B} . For each $\omega \in \mathcal{W}_\beta$ there is a unique positive linear functional ρ on \mathcal{TO}_n which satisfies

(1.8)
$$\rho(v_{\mu}v_{\nu}^{*}) = \omega(v_{\mu} \otimes \overline{v_{\nu}}), \quad \mu, \nu \in \mathcal{W}.$$

Moreover, the map $\omega \mapsto \rho$ is an affine order isomorphism of W_{β} onto the positive part of the dual of TO_n .

Proof. Suppose $\omega \in \mathcal{W}_{\beta}$, and let $\rho := \Delta \omega \circ l$, where l is the Fock representation of \mathcal{TO}_n and $\Delta \omega$ is as in Proposition 1.5. Then ρ satisfies (1.8), and ρ is uniquely determined by (1.8) since elements of the form $v_{\mu}v_{\nu}^*$ have dense linear span in \mathcal{TO}_n . If n is finite then every linear functional on \mathfrak{B} is automatically locally normal, so that \mathcal{W}_{β} is all of \mathcal{P}_{β} . Since $\overline{\lambda(\mathfrak{B})} = l(\mathcal{TO}_n)$, the theorem thus reduces to Proposition 1.7.

It remains only to show that when n is infinite,

(1.9)
$$\omega \mapsto \Delta \omega \circ l$$

maps \mathcal{W}_{β} bijectively onto the positive part of the dual of \mathcal{O}_{∞} . To begin with, suppose $\omega_1, \omega_2 \in \mathcal{W}_{\beta}$ are such that $\Delta \omega_1 \circ l = \Delta \omega_2 \circ l$. Then $\Delta \omega_1$ and $\Delta \omega_2$ agree on $l(\mathcal{O}_{\infty}) \supseteq \lambda(\mathfrak{B} \cap \mathcal{K})$, so for each $K \in \mathfrak{B} \cap \mathcal{K}$ we have

$$\omega_1(K) = \Delta \omega_1(\lambda(K)) = \Delta \omega_2(\lambda(K)) = \omega_2(K).$$

Since ω_1 and ω_2 are locally normal, this implies that $\omega_1 = \omega_2$. Thus (1.9) is injective.

To show surjectivity, suppose ρ is a positive linear functional on \mathcal{O}_{∞} . Define ω_0 on $\mathfrak{B} \cap \mathcal{K}$ by $\omega_0 := \rho \circ l^{-1} \circ \lambda$, and for each k let T_k be the unique positive trace-class operator in \mathfrak{B}_k such that $\omega_0(K) = \operatorname{tr}(T_k K)$ for each $K \in \mathfrak{B}_k \cap \mathcal{K}$. The formula

(1.10)
$$\omega(B) := \operatorname{tr}(T_k B), \quad B \in \mathfrak{B}_k,$$

gives the unique extension of ω_0 to a positive linear functional ω on \mathfrak{B} which is locally normal. Once we establish that ω is decreasing, surjectivity of (1.9) follows immediately: for each $K \in \mathfrak{B} \cap \mathcal{K}$,

$$\Delta\omega(\lambda(K)) = \omega \circ \delta(\lambda(K)) = \omega_0(K) = \rho \circ l^{-1}(\lambda(K)),$$

so that $\rho = \Delta \omega \circ l$.

We will show that $\omega \circ \delta$ is positive on $\lambda(\mathfrak{B})$; by Proposition 1.5 this implies that ω is decreasing. For each $B \in \mathfrak{B}$ define a function $\varphi_B : \mathbb{Z} \to \mathbb{C}$ by

$$\varphi_B(k) := \begin{cases} \omega(B^*\beta^k(B)) & \text{if } k \ge 0\\ \omega(\beta^{-k}(B^*)B) & \text{if } k < 0. \end{cases}$$

As in the proof of Proposition 1.5,

$$\omega \circ \delta(\lambda(B)^*\lambda(B)) = \sum_{k=-\infty}^{\infty} \varphi_B(k), \quad B \in \mathfrak{B},$$

so it suffices to show that each φ_B is positive definite. We will do this by showing that φ_K is positive definite for each $K \in \mathfrak{B} \cap \mathcal{K}$, and that any φ_B can be obtained as a pointwise limit of such functions.

Let $E_k := \beta^k(I) - \beta^{k+1}(I)$, the orthogonal projection of $F_{\mathcal{E}}$ onto \mathcal{E}_k . For each $z \in \mathbb{T}$, let $U_z := \sum_{k=0}^{\infty} z^k E_k$. Each of the unitaries U_z is a multiplier of $\mathfrak{B} \cap \mathcal{K}$, and since $\beta(U_z) = \overline{z} U_z \beta(I)$ we have

$$\varphi_K(k) = z^k \varphi_{U_z K}(k), \quad K \in \mathfrak{B} \cap \mathcal{K}, \, k \in \mathbb{Z}.$$

Let $\widehat{\varphi}_K$ denote the Fourier transform of φ_K . For each $K \in \mathfrak{B} \cap \mathcal{K}$ and $z \in \mathbb{T}$,

$$\widehat{\varphi}_{K}(z) = \sum_{k=-\infty}^{\infty} \varphi_{K}(k) z^{k} = \sum_{k=-\infty}^{\infty} \varphi_{U_{\bar{z}}K}(k) = \rho(\lambda(U_{\bar{z}}K)^{*}\lambda(U_{\bar{z}}K)) \ge 0,$$

so that $\hat{\varphi}_K$ is positive. By Herglotz's Theorem, this implies that φ_K is positive definite.

Lastly, suppose $B \in \mathfrak{B}$, say $B \in \mathfrak{B}_m$. Let (K_α) be a bounded net in $\mathfrak{B}_m \cap \mathcal{K}$ which converges to B in the strong operator topology on \mathfrak{B}_m . Then $K^*_\alpha \to B^*$ in the σ -weak topology, and hence $\beta^k(K^*_\alpha) \to \beta^k(B^*)$ σ -weakly for any $k \ge 0$. Since this latter net is bounded in norm, $\beta^k(K^*_\alpha)K_\alpha \to \beta^k(B^*)B$ weakly, hence σ -weakly. From this it is apparent that $\varphi_{K_\alpha}(k) \mapsto \varphi_B(k)$ for each $k \in \mathbb{Z}$. Thus φ_B is positive definite.

We conclude this section by giving a reformulation of Theorem 1.9 in terms of density matrices. Suppose ω is a locally normal linear functional on \mathfrak{B} . Then for each positive integer k there is a unique trace-class operator T_k in \mathfrak{B}_k such that

$$\omega(B) = \operatorname{tr}(T_k B), \quad B \in \mathfrak{B}_k.$$

These density operators are coherent in the sense that $T_k = P_k T_{k+1} P_k$ for each k. Define $\Omega_{ij} : \mathcal{E}_j \to \mathcal{E}_i$ by

$$\Omega_{ij} := E_i T_k E_j,$$

where E_i is the orthogonal projection of $F_{\mathcal{E}}$ onto \mathcal{E}_i , and k is any integer greater than both i and j; we think of T_k as having operator matrix $(\Omega_{ij})_{i,j=0}^k$. The *density matrix* of ω is the infinite operator matrix $\Omega := (\Omega_{ij})$. If $x \in \mathcal{E}_j$ and $y \in \mathcal{E}_i$, we may write $\langle \Omega x, y \rangle$ rather than $\langle \Omega_{ij} x, y \rangle$.

DEFINITION 1.10. Suppose $\Omega = (\Omega_{ij})$ is an infinite operator matrix; i.e., $\Omega_{ij} \in \mathcal{B}(\mathcal{E}_j, \mathcal{E}_i)$ for every pair i, j of nonnegative integers. For each k let T_k be the operator in \mathfrak{B}_k determined by

$$\langle T_k x, y \rangle = \langle \Omega x, y \rangle \quad x \in \mathcal{E}_j, \ y \in \mathcal{E}_i, \ 0 \leq i, j \leq k.$$

We say that Ω is *positive* if each T_k is positive, and *locally trace-class* if each T_k is trace-class.

It is evident that an infinite operator matrix Ω is the density matrix of a locally normal linear functional if and only if it is locally trace-class, and that a density matrix Ω is positive if and only if its associated linear functional ω is positive.

We now characterize those density matrices which correspond to linear functionals which are decreasing. For this, we first need a lemma. LEMMA 1.11. Suppose T is a trace-class operator on a separable Hilbert space \mathcal{H} , and U_1, U_2, U_3, \ldots are isometries on \mathcal{H} with mutually orthogonal ranges. Then

(1.11)
$$\sum_{k=1}^{\infty} U_k^* T U_k$$

converges in trace-class norm (and hence in operator norm as well).

Proof. First suppose $T \ge 0$. Let $\{e_i\}$ be an orthonormal basis for \mathcal{H} . If $l > m \ge 1$, then

$$\operatorname{tr}\left(\sum_{k=1}^{l} U_{k}^{*}TU_{k} - \sum_{k=1}^{m} U_{k}^{*}TU_{k}\right) = \sum_{i=1}^{\infty} \sum_{k=m+1}^{l} \langle U_{k}^{*}TU_{k}e_{i}, e_{i} \rangle$$
$$= \sum_{k=m+1}^{l} \sum_{i=1}^{\infty} \langle TU_{k}e_{i}, U_{k}e_{i} \rangle.$$

But

$$\sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \langle TU_k e_i, U_k e_i \rangle \leqslant \operatorname{tr} T < \infty,$$

so the sequence $\left(\sum_{k=1}^{m} U_k^* T U_k\right)_{m=1}^{\infty}$ is Cauchy in the trace-class norm. Since the algebra of trace-class operators is complete in this norm, the infinite sum (1.11) converges as claimed. Since every trace-class operator can be written as a linear combination of four positive trace-class operators, (1.11) converges in trace-class norm for every trace-class operator T.

DEFINITION 1.12. Suppose T is a trace-class operator on $F_{\mathcal{E}}$. The *slice* of T is the operator

$$\operatorname{sl} T := \sum_{k=1}^{n} r(v_k)^* T r(v_k),$$

where $r(v_k)$ is right creation by v_k on $F_{\mathcal{E}}$. Note that when $n = \infty$ the sum converges to a trace-class operator (Lemma 1.11).

If $\Omega = (\Omega_{ij})$ is a locally trace-class operator matrix, we denote by sl Ω the locally trace-class operator matrix $(\text{sl }\Omega_{i+1,j+1})$.

REMARK 1.13. Suppose $S \in \mathcal{B}(\mathcal{E}_j, \mathcal{E}_i)$ and $A \in \mathcal{B}(\mathcal{E})$ are trace-class operators such that T(xy) = (Sx)(Ay) for $x \in \mathcal{E}_j$ and $y \in \mathcal{E}$. (The unitary $x \otimes y \mapsto xy$

132

transforms T into the tensor product $S \otimes A$.) Then

$$(\operatorname{sl} T)x = \sum_{k=1}^{n} r(v_k)^* Tr(v_k)x = \sum_{k=1}^{n} r(v_k)^* T(xv_k)$$
$$= \sum_{k=1}^{n} r(v_k)^* (Sx)(Av_k) = \sum_{k=1}^{n} \langle Av_k, v_k \rangle Sx = \operatorname{tr}(A)Sx,$$

so slicing has the effect of taking the trace in the last variable.

LEMMA 1.14. Suppose ω is a locally-normal linear functional on \mathfrak{B} with density matrix Ω . Then $\omega \circ \beta$ has density matrix $\mathrm{sl}\,\Omega$.

Proof. Let T_k be the trace-class operator in \mathfrak{B}_k such that $\omega(B) = \operatorname{tr}(T_k B)$ for $B \in \mathfrak{B}_k$, so that T_k has operator matrix $(\Omega_{ij})_{i,j=0}^k$. Suppose $B \in \mathfrak{B}_k$. Then $\beta(B) \in \mathfrak{B}_{k+1}$, and thus

$$\omega \circ \beta(B) = \operatorname{tr}(T_{k+1}\beta(B)) = \sum_{i=1}^{\infty} \operatorname{tr}(T_{k+1}r(v_i)Br(v_i)^*)$$
$$= \sum_{i=1}^{\infty} \operatorname{tr}(r(v_i)^*T_{k+1}r(v_i)B) = \operatorname{tr}((\operatorname{sl} T_{k+1})B).$$

Thus $\omega \circ \beta$ has density matrix sl Ω .

We now give our reformulation of Theorem 1.9.

THEOREM 1.15 Suppose $\{v_1, \ldots, v_n\}$ are the distinguished generating isometries of the Toeplitz-Cuntz algebra \mathcal{TO}_n ; we include the case $n = \infty$ by writing \mathcal{TO}_{∞} for the Cuntz algebra \mathcal{O}_{∞} . Let $\mathcal{E} \subseteq \mathcal{TO}_n$ be the closed linear span of $\{v_1, \ldots, v_n\}$, and let $F_{\mathcal{E}}$ be full Fock space over \mathcal{E} . Suppose Ω is a positive locally trace-class operator matrix on $F_{\mathcal{E}}$ which satisfies $\mathrm{sl} \Omega \leq \Omega$. Then there is a unique positive linear functional ρ on \mathcal{TO}_n which satisfies

$$\rho(v_{\mu}v_{\nu}^{*}) = \langle \Omega v_{\mu}, v_{\nu} \rangle, \quad \mu, \nu \in \mathcal{W}.$$

Moreover, the map $\Omega \mapsto \rho$ is an affine order isomorphism of such operator matrices onto the positive part of the dual of \mathcal{TO}_n .

Proof. The equation $\omega(v_{\mu} \otimes \overline{v_{\nu}}) = \langle \Omega v_{\mu}, v_{\nu} \rangle$ establishes an affine order isomorphism $\omega \mapsto \Omega$ between \mathcal{W}_{β} and positive locally trace-class operator matrices on $F_{\mathcal{E}}$ which satisfy $\mathrm{sl}\,\Omega \leq \Omega$, so the theorem follows immediately from Theorem 1.9.

2. SINGULAR AND ESSENTIAL STATES

A state ρ of \mathcal{TO}_n with GNS representation $\pi : \mathcal{TO}_n \to \mathcal{B}(\mathcal{H})$ is said to be essential if $\sum \pi(v_i v_i^*)$ is the identity operator on \mathcal{H} , and singular if $\sum_{\mu \in \mathcal{W}_k} \pi(v_\mu v_\mu^*)$ decreases strongly to zero in k. When n is finite \mathcal{TO}_n has a unique ideal \mathcal{J}_n , and it is not hard to show that essential states of \mathcal{TO}_n are precisely those which are singular with respect to this ideal; similarly, singular states are \mathcal{J}_n -essential. As a result, every state of \mathcal{TO}_n has a unique decomposition into essential and singular components, a result which was generalized to the case $n = \infty$ in [13].

We can view the singular/essential decomposition of a state ρ of \mathcal{O}_{∞} as the decomposition with respect to an ideal as follows. Let ω be the unique decreasing locally normal positive linear functional on \mathfrak{B} such that $\rho = \Delta \omega \circ l$, as in Theorem 1.9. The C^* -algebra $\overline{\lambda(\mathfrak{B})}$ contains the ideal \mathcal{K} of compact operators on $F_{\mathcal{E}}$ (Remark 1.3), so we can decompose the functional $\Delta \omega$ of Proposition 1.7 with respect to this ideal. Restricting to $\overline{\lambda(\mathfrak{B} \cap \mathcal{K})} = l(\mathcal{O}_{\infty})$ and pulling back to \mathcal{O}_{∞} gives the singular/essential decomposition of ρ ; this will follow from Proposition 2.1 (1d) and (2d).

Again allowing n to be either finite or infinite, we follow [13] and define a positive linear functional $\alpha^* \rho$ by

$$\alpha^* \rho(x) := \sum_{i=1}^n \rho(v_i x v_i^*), \quad x \in \mathcal{TO}_n$$

In [13], Corollary 2.9, Laca characterized singular and essential states of \mathcal{TO}_n using the monotonically nonincreasing sequence $(\|\alpha^{*k}\rho\|)_{k=1}^{\infty}$: ρ is essential iff this sequence is constant and singular iff it converges to zero.

Let ω be such that $\rho = \Delta \omega \circ l$, as in Theorem 1.9. Then $\omega \circ \beta$ is a locally normal positive linear functional on \mathfrak{B} which is decreasing since $(\omega \circ \beta) \circ \delta = (\omega \circ \delta) \circ \beta$ is positive on \mathfrak{B} . Define

$$\beta^* \rho := \Delta(\omega \circ \beta) \circ l.$$

If $\mu, \nu \in \mathcal{W}$, then

(2.1)
$$\beta^* \rho(v_{\mu} v_{\nu}^*) = \omega \circ \beta(v_{\mu} \otimes \overline{v_{\nu}}) = \omega \Big(\sum_{i=1}^n r(v_i) (v_{\mu} \otimes \overline{v_{\nu}}) r(v_i)^* \Big)$$
$$= \sum_{i=1}^n \omega(v_{\mu} v_i \otimes \overline{v_{\nu} v_i}) = \sum_{i=1}^n \rho(v_{\mu} v_i v_i^* v_{\nu}^*).$$

In particular $\|\beta^{*k}\rho\| = \beta^{*k}\rho(1) = \sum_{\mu \in \mathcal{W}_k} \rho(v_\mu v_\mu^*) = \|\alpha^{*k}\rho\|$, so Laca's characterization can be stated in terms of β^* . What is not immediately apparent is that essentiality is equivalent to β^* -invariance.

We remind the reader of the notation $E_k := \beta^k(I) - \beta^{k+1}(I)$, the orthogonal projection of $F_{\mathcal{E}}$ onto \mathcal{E}_k .

PROPOSITION 2.1. Suppose ρ is a positive linear functional on \mathcal{TO}_n and ω is the unique decreasing locally normal positive linear functional on \mathfrak{B} such that $\rho = \Delta \omega \circ l$. Let Ω be the density matrix of ω . Statements (1a)–(1f) below are equivalent, as are statements (2a)–(2d):

(1a) ρ is essential;	(2a) ρ is singular;
(1b) $\omega(E_k)$ is constant in k;	(2b) $\lim \omega(E_k) = 0;$
(1c) $\omega \circ \delta(B) = 0$ for each $B \in \mathfrak{B}$;	(2c) ρ is normal in the
(1d) $\Delta \omega$ is <i>K</i> -singular;	$Fock \ representation;$
(1e) $\operatorname{sl}\Omega = \Omega;$	(2d) $\Delta \omega$ is <i>K</i> -essential.
(1f) $\rho = \beta^* \rho;$	

Proof. Since $\{v_{\mu} \mid \mu \in \mathcal{W}_k\}$ is an orthonormal basis for \mathcal{E}_k and ω is locally normal,

$$\omega(E_k) = \sum_{\mu \in \mathcal{W}_k} \omega(v_\mu \otimes \overline{v_\mu}) = \sum_{\mu \in \mathcal{W}_k} \rho(v_\mu v_\mu^*) = \|\alpha^{*k}\rho\|.$$

Thus $(1a) \Leftrightarrow (1b)$ and $(2a) \Leftrightarrow (2b)$ follow from [13], Corollary 2.9.

(1b) \Leftrightarrow (1c) Since $\delta(E_k) = E_k - E_{k+1}$, (1c) \Rightarrow (1b) is immediate. For the converse, simply observe that $\omega \circ \delta | \mathfrak{B}$ is a positive linear functional whose restriction to the C^* -algebra \mathfrak{B}_k has norm $\omega \circ \delta(P_k) = \omega \circ \delta \left(\sum_{i=0}^k E_i\right) = 0$.

(1c) \Leftrightarrow (1d) Since $\mathfrak{B} \subseteq \lambda(\mathfrak{B})$ and $\Delta \omega = \omega \circ \delta$ on $\lambda(\mathfrak{B})$, (1c) implies that $\Delta \omega$ vanishes on \mathfrak{B} , and hence on $\overline{\mathfrak{B}}$. Since $\mathcal{K} \subseteq \overline{\mathfrak{B}}$, this gives (1d). Conversely, if $\Delta \omega(K) = 0$ for each $K \in \mathcal{K}$, then $\omega \circ \delta(K) = 0$ for each $K \in \mathfrak{B} \cap \mathcal{K}$. Since δ is σ -weakly continuous and maps \mathfrak{B}_k into \mathfrak{B}_{k+1} , (1c) follows from local normality of ω .

(1c) \Leftrightarrow (1e) By Lemma 1.14, $\omega = \omega \circ \beta$ iff sl $\Omega = \Omega$.

(1c) \Leftrightarrow (1f) By Proposition 1.7, $\omega = \omega \circ \beta$ iff $\rho = \beta^* \rho$.

 $(2a) \Rightarrow (2c)$ This follows from [13], Theorem 2.11.

 $(2c) \Rightarrow (2b)$ Suppose $\rho = \varphi \circ l$ for some $\varphi \in \mathcal{B}(F_{\mathcal{E}})_*$. Then φ and $\Delta \omega$ agree on $l(\mathcal{TO}_n)$, so $\varphi \circ \lambda$ and ω agree on $\mathfrak{B} \cap \mathcal{K}$. Fix k, and let $\{P_\alpha\}$ be a net of finite rank projections which increases to E_k . By the normality of φ and local normality of λ ,

$$\omega(E_k) = \lim \omega(P_\alpha) = \lim \varphi \circ \lambda(P_\alpha) = \varphi \circ \lambda(E_k) = \varphi(\beta^k(I)),$$

which decreases to zero.

(2c) \Leftrightarrow (2d) Suppose again that $\rho = \varphi \circ l$ for some $\varphi \in \mathcal{B}(F_{\mathcal{E}})_*$. Fix $B \in \mathfrak{B}$, say $B \in \mathfrak{B}_m$, and let $\{K_\alpha\}$ be a net of compact operators in \mathfrak{B}_m which converges σ -weakly to B. Then

$$\Delta\omega(\lambda(B)) = \omega(B) = \lim \omega(K_{\alpha}) = \lim \varphi \circ \lambda(K_{\alpha}) = \varphi(\lambda(B)),$$

so that φ extends $\Delta \omega$ as well. The converse is immediate.

THEOREM 2.2. Suppose ρ is a positive linear functional on \mathcal{TO}_n , and let ω be the unique decreasing locally normal positive linear functional on \mathfrak{B} such that $\rho = \Delta \omega \circ l$. Then $\omega \circ \delta | \mathfrak{B}$ extends uniquely to a normal positive linear functional φ on $\mathcal{B}(F_{\mathcal{E}})$, and the singular part of ρ is $\varphi \circ l$.

Proof. Suppose ω is a decreasing locally normal positive linear functional on \mathfrak{B} . Then $\omega \circ \delta | \mathfrak{B}$ is a locally normal positive linear functional, and $\omega \circ \delta(P_k) = \omega(E_0) - \omega(E_{k+1}) \leqslant \omega(E_0)$ for every $k \ge 0$. It follows that $\omega \circ \delta$ is bounded on \mathfrak{B} : if $B \in \mathfrak{B}_k$, then $|\omega \circ \delta(B)| \leqslant \omega \circ \delta(P_k) ||B|| \leqslant \omega(E_0) ||B||$. Thus $\omega \circ \delta$ extends uniquely to a positive linear functional ψ on $\overline{\mathfrak{B}}$. By Remark 1.3, $\mathcal{K} \subset \overline{\mathfrak{B}}$, so there is a unique $\varphi \in \mathcal{B}(F_{\mathcal{E}})_*$ which coincides with ψ on \mathcal{K} . But then $\varphi(K) = \omega \circ \delta(K)$ for every $K \in \mathfrak{B} \cap \mathcal{K}$, which by local normality implies that φ extends $\omega \circ \delta |\mathfrak{B}$.

Let $\rho_{\rm s} := \varphi \circ l$. By Proposition 2.1 (2c), $\rho_{\rm s}$ is singular. Let $\omega_{\rm s}$ be the unique decreasing locally normal positive linear functional on \mathfrak{B} such that $\rho_{\rm s} = \Delta \omega_{\rm s} \circ l$, and let $\omega_{\rm e}$ be the locally normal linear functional $\omega - \omega_{\rm s}$. By Theorem 1.9 and Proposition 2.1 (1c), the proof will be complete once we establish that $\omega_{\rm e}$ is positive and $\omega_{\rm e} \circ \delta | \mathfrak{B} = 0$.

For every $K \in \mathfrak{B} \cap \mathcal{K}$ we have $\omega_{e}(K) = \omega(K) - \omega_{s}(K) = \omega(K) - \varphi(\lambda(K))$, so by local normality we have $\omega_{e} = \omega - \varphi \circ \lambda$. Consequently $\omega_{e} \circ \delta | \mathfrak{B} = 0$.

To show that $\omega_{\rm e}$ is positive, we fix a positive integer m and show that the bounded linear functional $\omega_{\rm e}|\mathfrak{B}_m$ achieves its norm at P_m , the identity element of the C^* -algebra \mathfrak{B}_m .

For every $k \ge 0$ we have $\omega_{\rm e} = \omega_{\rm e} \circ \beta^k$, so

$$\begin{split} \|\omega_{\mathbf{e}}|\mathfrak{B}_{m}\| &= \|\omega_{\mathbf{e}} \circ \beta^{k}|\mathfrak{B}_{m}\| \leqslant \|\omega \circ \beta^{k}|\mathfrak{B}_{m}\| + \|\omega_{\mathbf{s}} \circ \beta^{k}|\mathfrak{B}_{m}\| \\ &= \omega \circ \beta^{k}(P_{m}) + \omega_{\mathbf{s}} \circ \beta^{k}(P_{m}) = \sum_{i=0}^{m} (\omega(E_{k+i}) + \omega_{\mathbf{s}}(E_{k+i})) \\ &\leqslant (m+1)(\omega(E_{k}) + \omega_{\mathbf{s}}(E_{k})), \end{split}$$

since $\omega(E_k)$ and $\omega_s(E_k)$ are monotonically nonincreasing in k. By Proposition 2.1 (2b), $\lim_{k\to\infty} \omega_s(E_k) = 0$, so $\|\omega_e|\mathfrak{B}_m\| \leq (m+1) \lim_{k\to\infty} \omega(E_k)$. On the other hand,

$$\omega_{\mathbf{e}}(P_m) = \omega_{\mathbf{e}} \circ \beta^k(P_m) = \sum_{i=0}^m (\omega(E_{k+i}) - \omega_{\mathbf{s}}(E_{k+i})) \ge (m+1)(\omega(E_{k+m}) - \omega_{\mathbf{s}}(E_k))$$

so $\omega_{\rm e}(P_m) \ge (m+1) \lim_{k \to \infty} \omega(E_k)$. Thus $\omega_{\rm e}$ is positive.

3. EXTENDING PRODUCT STATES

For each $\lambda \in \mathbb{T}$ the isometries $\{\lambda v_i \mid 1 \leq i \leq n\}$ satisfy the relations $(\lambda v_j)^*(\lambda v_i) = \delta_{ij}1$, and hence there is a *-endomorphism γ_{λ} of \mathcal{TO}_n such that $\gamma_{\lambda}(v_i) = \lambda v_i$. Each γ_{λ} is actually an automorphism since $\gamma_{\lambda} \circ \gamma_{\lambda^{-1}}$ is the identity on \mathcal{TO}_n ; in fact γ is a continuous automorphic action of \mathbb{T} on \mathcal{TO}_n , called the *gauge* action. Denote by \mathcal{F}_n the fixed-point algebra of this action, and let Φ denote the canonical conditional expectation of \mathcal{TO}_n onto \mathcal{F}_n ; that is,

$$\Phi(x) := \int_{\mathbb{T}} \gamma_{\lambda}(x) \mathrm{d}m(\lambda), \quad x \in \mathcal{TO}_n,$$

where m is normalized Haar measure. In terms of generating monomials,

$$\mathcal{F}_n = \overline{\operatorname{span}}\{v_{\mu}v_{\nu}^* \mid |\mu| = |\nu|\} \quad \text{and} \quad \Phi(v_{\mu}v_{\nu}^*) = \begin{cases} v_{\mu}v_{\nu}^* & \text{if } |\mu| = |\nu| \\ 0 & \text{otherwise.} \end{cases}$$

We are interested in *product states* of \mathcal{F}_n . To explain what we mean by this, let $\widetilde{\mathcal{K}} := \mathcal{K}(\mathcal{E}) \times \mathbb{C}$, endowed with the structure of a unital *-algebra via $(A, \lambda)(B, \mu) = (AB + \lambda B + \mu A, \lambda \mu)$ and $(A, \lambda)^* = (A^*, \overline{\lambda})$. When \mathcal{E} is infinitedimensional, $\widetilde{\mathcal{K}}$ is *-isomorphic to the concrete C^* -algebra $\mathcal{K}(\mathcal{E}) + \mathbb{C}I$, but when dim $\mathcal{E} < \infty$ this is not the case. Nevertheless, it is not difficult to show that there is a unique C^* -norm on $\widetilde{\mathcal{K}}$. The map

$$v_{i_1}\cdots v_{i_m}v_{j_m}^*\cdots v_{j_1}^*\mapsto (v_{i_1}\otimes \overline{v_{j_1}},0)\otimes\cdots\otimes (v_{i_m}\otimes \overline{v_{j_m}},0)\otimes (0,1)\otimes (0,1)\otimes\cdots$$

embeds \mathcal{F}_n in the infinite tensor product $\widetilde{\mathcal{K}}^{\otimes\infty}$. If $(\rho_k)_{k=1}^{\infty}$ is a sequence of states of $\mathcal{K}(\mathcal{E})$, so that $\widetilde{\rho}_k(K,\lambda) = \rho_k(K) + \lambda$ defines a sequence of states of $\widetilde{\mathcal{K}}$, we call the restriction of the product state $\bigotimes_{k=1}^{\infty} \widetilde{\rho}_k$ to \mathcal{F}_n a *product state* of \mathcal{F}_n . Now suppose $(e_k)_{k=1}^{\infty}$ is a sequence of unit vectors in \mathcal{E} . For each k, let ρ_k denote the vector state of $\mathcal{K}(\mathcal{E})$ corresponding to e_k , and let ρ denote the corresponding product state of \mathcal{F}_n . It is evident that ρ is pure and determined by

$$(3.1) \qquad \rho(v_{i_1}\cdots v_{i_m}v_{j_m}^*\cdots v_{j_1}^*) = \langle v_{i_1}, e_1 \rangle \cdots \langle v_{i_m}, e_m \rangle \langle e_m, v_{j_m} \rangle \cdots \langle e_1, v_{j_1} \rangle$$

The remainder of this paper is devoted to classifying all extensions to \mathcal{TO}_n of such a state.

One can always extend ρ by precomposing with Φ ; the resulting extension $\rho \circ \Phi$ is called the *gauge-invariant* extension. The most extreme situation is when this extension is pure, in which case it is the unique state extending ρ . By [14], Theorem 4.3, this occurs precisely when the sequence (e_k) is *aperiodic* in the sense that the series

(3.2)
$$\sum_{i=1}^{\infty} (1 - |\langle e_i, e_{i+p} \rangle|)$$

diverges for each positive integer p. In all other cases we say that (e_k) is *periodic*, and call the smallest positive integer p for which the series in (3.2) converges the *period* of (e_k) .

Suppose then that (e_k) has finite period p. Notice from (3.1) that if we multiply each of the vectors e_k by a complex number of modulus one, we obtain a sequence which gives rise to the same product state ρ . Consequently, we are free to rephase so that $\langle e_i, e_{i+p} \rangle$ is always real and nonnegative.

THEOREM 3.1. Suppose $\{v_1, \ldots, v_n\}$ are the distinguished generating isometries of the Toeplitz-Cuntz algebra \mathcal{TO}_n ; we include the case $n = \infty$ by writing \mathcal{TO}_∞ for the Cuntz algebra \mathcal{O}_∞ . Let $\mathcal{E} \subseteq \mathcal{TO}_n$ be the closed linear span of $\{v_1, \ldots, v_n\}$, and suppose (e_k) is a sequence of unit vectors in \mathcal{E} which is periodic with finite period $p \ge 1$, and for which $\langle e_i, e_{i+p} \rangle$ is always nonnegative. Let ρ be the corresponding pure product state of \mathcal{F}_n determined by (3.1). There is an affine isomorphism $\sigma \mapsto \rho_\sigma$ from $P(\mathbb{T})$, the space of Borel probability measures on the circle \mathbb{T} , to the space of all states of \mathcal{TO}_n which extend ρ , given by

$$(3.3) \qquad \rho_{\sigma}(v_{i_1}\cdots v_{i_k}v_{j_l}^*\cdots v_{j_1}^*) = \lambda_{k,l}\langle v_{i_1}, e_1\rangle\cdots\langle v_{i_k}, e_k\rangle\langle e_l, v_{j_l}\rangle\cdots\langle e_1, v_{j_1}\rangle,$$

where

(3.4)
$$\lambda_{k,l} = \begin{cases} \widehat{\sigma}\left(\frac{k-l}{p}\right) \prod_{i=1}^{\infty} \langle e_{l+i}, e_{k+i} \rangle & \text{if } k-l \in p\mathbb{Z} \\ 0 & \text{otherwise,} \end{cases}$$

and $\hat{\sigma}$ is the Fourier transform of σ .

Proof. For each $k \ge 0$ let $\mathbf{e}_k := e_1 \cdots e_k \in \mathcal{TO}_n$, where of course $\mathbf{e}_0 := 1$. Note that $\mathbf{e}_k \in \mathcal{E}_k = \overline{\operatorname{span}}\{v_\mu \mid \mu \in \mathcal{W}_k\}$. Equation (3.1) can now be written more tersely as

$$\rho(v_{\mu}v_{\nu}^{*}) = \langle v_{\mu}, \mathbf{e}_{|\mu|} \rangle \langle \mathbf{e}_{|\nu|}, v_{\nu} \rangle, \quad \mu, \nu \in \mathcal{W}, \ |\mu| = |\nu|,$$

which in turn extends by linearity and continuity to

$$\rho(xy^*) = \langle x, \mathbf{e}_k \rangle \langle \mathbf{e}_k, y \rangle, \quad x, y \in \mathcal{E}_k.$$

Similarly, (3.3) can be written as

(3.5)
$$\rho_{\sigma}(xy^*) = \lambda_{k,l} \langle x, \mathbf{e}_k \rangle \langle \mathbf{e}_l, y \rangle, \quad x \in \mathcal{E}_k, y \in \mathcal{E}_l.$$

Suppose now that $\tilde{\rho}$ is a state of \mathcal{TO}_n which extends ρ . By Schwarz inequality,

(3.6)
$$|\widetilde{\rho}(xy^*)| \leq \rho(xx^*)^{\frac{1}{2}} \rho(yy^*)^{\frac{1}{2}} = |\langle x, \mathbf{e}_k \rangle \langle y, \mathbf{e}_l \rangle|, \quad x \in \mathcal{E}_k, \ y \in \mathcal{E}_l.$$

Let $x_1 := \langle x, \mathbf{e}_k \rangle \mathbf{e}_k, x_2 := x - x_1, y_1 := \langle y, \mathbf{e}_l \rangle \mathbf{e}_l$ and $y_2 := y - y_1$. Then

$$\widetilde{\rho}(xy^*) = \widetilde{\rho}(x_1y_1^*) + \widetilde{\rho}(x_1y_2^*) + \widetilde{\rho}(x_2y_1^*) + \widetilde{\rho}(x_2y_2^*) = \widetilde{\rho}(x_1y_1^*);$$

that is,

(3.7)
$$\widetilde{\rho}(xy^*) = \widetilde{\rho}(\mathbf{e}_k \mathbf{e}_l^*) \langle x, \mathbf{e}_k \rangle \langle \mathbf{e}_l, y \rangle, \quad x \in \mathcal{E}_k, y \in \mathcal{E}_l.$$

For each $k, l \ge 0$ define

$$\lambda_{k,l} := \widetilde{\rho}(\mathbf{e}_k \mathbf{e}_l^*).$$

Comparing (3.5) and (3.7), it is apparent that we must exhibit a Borel probability measure σ such that (3.4) is satisfied.

For each positive integer \boldsymbol{k}

$$\sum_{\mu \in \mathcal{W}_k} \widetilde{\rho}(v_\mu v_\mu^*) = \sum_{\mu \in \mathcal{W}_k} |\langle v_\mu, \mathbf{e}_k \rangle|^2 = \|\mathbf{e}_k\|^2 = 1,$$

so by [13], Corollary 2.9, $\tilde{\rho}$ is essential. By Proposition 2.1 (1f), this implies that $\tilde{\rho} = \beta^* \tilde{\rho}$. In particular, for each $k, l \ge 0$

$$\lambda_{k,l} = \widetilde{\rho}(\mathbf{e}_{k}\mathbf{e}_{l}^{*}) = \beta^{*}\widetilde{\rho}(\mathbf{e}_{k}\mathbf{e}_{l}^{*}) = \sum_{i=1}^{n}\widetilde{\rho}(\mathbf{e}_{k}v_{i}v_{i}^{*}\mathbf{e}_{l}^{*})$$
$$= \sum_{i=1}^{n}\widetilde{\rho}(\mathbf{e}_{k+1}\mathbf{e}_{l+1}^{*})\langle \mathbf{e}_{k}v_{i}, \mathbf{e}_{k+1}\rangle\langle \mathbf{e}_{l+1}, \mathbf{e}_{l}v_{i}\rangle \qquad (by (3.7))$$
$$= \sum_{i=1}^{n}\lambda_{k+1,l+1}\langle v_{i}, e_{k+1}\rangle\langle e_{l+1}, v_{i}\rangle = \lambda_{k+1,l+1}\langle e_{l+1}, e_{k+1}\rangle,$$

and by induction

(3.8)
$$\lambda_{k,l} = \lambda_{k+j,l+j} \prod_{i=1}^{j} \langle e_{l+i}, e_{k+i} \rangle \quad \forall j$$

Suppose now that p divides |k - l|. Since we have phased the sequence (e_i) so that $\langle e_i, e_{i+p} \rangle$ is always nonnegative, the assumption that (e_i) has period p means that $\sum |1 - \langle e_i, e_{i+p} \rangle| < \infty$. By [12], Proposition 1.2, it follows that $\sum |1 - \langle e_i, e_{i+m} \rangle| < \infty$ whenever p divides m. In particular we have

$$\sum_{i=1}^{\infty} |1 - \langle e_{l+i}, e_{k+i} \rangle| < \infty,$$

which implies that there is a positive integer i_0 such that

$$\lim_{j \to \infty} \prod_{i=i_0}^{i_0+j} \langle e_{l+i}, e_{k+i} \rangle$$

exists and is nonzero. Together with (3.8), this shows that $\lim_{m\to\infty} \lambda_{k+m,l+m}$ exists; indeed

$$\lim_{m \to \infty} \lambda_{k+m,l+m} = \lambda_{k+i_0-1,l+i_0-1} \Big(\prod_{i=i_0}^{\infty} \langle e_{l+i}, e_{k+i} \rangle \Big)^{-1}.$$

Since this limit depends only on the quantity k - l, we can define a function $\tau : \mathbb{Z} \to \mathbb{C}$ by $\tau_{a-b} := \lim_{m \to \infty} \lambda_{ap+m,bp+m}$ for $a, b \ge 0$. We claim that τ is positive definite; that is, we claim that for any finite m

We claim that τ is positive definite; that is, we claim that for any finite collection z_0, \ldots, z_m of complex numbers, the sum $\sum_{a,b=0}^m z_a \overline{z}_b \tau_{a-b}$ is real and non-negative. To see this, define a sequence (w_i) in \mathcal{TO}_n by $w_i := \sum_{a=0}^m z_a \mathbf{e}_{(a+i)p}$. Then

$$\begin{split} \sum_{a,b=0}^{m} z_a \overline{z}_b \tau_{a-b} &= \lim_{i \to \infty} \sum_{a,b=0}^{m} \lambda_{(a+i)p,(b+i)p} z_a \overline{z}_b \\ &= \lim_{i \to \infty} \sum_{a,b=0}^{m} \widetilde{\rho}(\mathbf{e}_{(a+i)p} \mathbf{e}^*_{(b+i)p}) z_a \overline{z}_b = \lim_{i \to \infty} \widetilde{\rho}(w_i w_i^*) \ge 0, \end{split}$$

as claimed.

By Herglotz's Theorem there is Borel probability measure σ on \mathbb{T} such that $\tau = \hat{\sigma}$. We claim that (3.4) is satisfied. The case $k - l \in p\mathbb{Z}$ follows immediately from (3.8) by letting $j \to \infty$. If p does not divide k-l, then by [12], Proposition 1.2,

140

the series $\sum_{i=1}^{\infty} (1 - |\langle e_{l+i}, e_{k+i} \rangle|)$ diverges, so that the infinite product $\prod_{i=1}^{\infty} |\langle e_{l+i}, e_{k+i} \rangle|$ diverges as well; in particular,

$$\lim_{j \to \infty} \prod_{i=1}^{j} \langle e_{l+i}, e_{k+i} \rangle = 0.$$

Since by (3.6) we have $|\lambda_{k+j,l+j}| \leq 1$ for each j, it follows from (3.8) that $\lambda_{k,l} = 0$. This completes the proof that every extension of ρ is of the form ρ_{σ} .

Conversely, suppose σ is a Borel probability measure on \mathbb{T} . Define coefficients $\lambda_{k,l}$ as in (3.4), and, resuming the notation and terminology of Section 1, define a locally normal linear functional ω on \mathfrak{B} by

(3.9)
$$\omega(B) := \sum_{k,l=0}^{m} \lambda_{k,l} \langle B \mathbf{e}_l, \mathbf{e}_k \rangle, \quad B \in \mathfrak{B}_m$$

We claim that ω is positive and decreasing, and that the functional $\Delta \omega \circ l$ of Proposition 1.5 is the desired state ρ_{σ} satisfying (3.5).

For $c = 0, 1, \ldots, p - 1$, let \mathcal{H}_c be the Hilbert space inductive limit of the isometric inclusions $\mathcal{E}_m \hookrightarrow \mathcal{E}_{m+1}$ determined by

$$x_1 \cdots x_m \mapsto x_1 \cdots x_m e_{m+c+1}, \quad x_i \in \mathcal{E}$$

Modulo the isomorphisms $x_1 \cdots x_m \in \mathcal{E}_m \mapsto x_1 \otimes \cdots \otimes x_m \in \mathcal{E}^{\otimes m}$, \mathcal{H}_c is just the infinite tensor product $\mathcal{E}^{\otimes \infty}$ with canonical unit vector $e_{c+1} \otimes e_{c+2} \otimes e_{c+3} \otimes \cdots$ introduced in [16]. Consequently [12], Proposition 1.1 applies: if (f_i) is a sequence of unit vectors in \mathcal{E} such that $\sum_{i=1}^{\infty} |1 - \langle e_{c+i}, f_i \rangle| < \infty$, then $f_1 f_2 f_3 \cdots$ is a unit vector in \mathcal{H}_c . In particular, for each $a \ge 0$ we can define a vector $f_{c,a} \in \mathcal{H}_c$ by

$$f_{c,a} := e_{ap+c+1}e_{ap+c+2}e_{ap+c+3}\cdots$$

By (3.4), $\lambda_{ap+c,bp+c} = \widehat{\sigma}(a-b) \langle f_{c,b}, f_{c,a} \rangle$.

Suppose now that B is an operator of bounded support on $F_{\mathcal{E}}$. Choose M

so that $B \in \mathfrak{B}_{Mp+p-1}$. Then

$$\begin{split} \omega(B^*B) &= \sum_{k,l=0}^{Mp+p-1} \lambda_{k,l} \langle B\mathbf{e}_l, B\mathbf{e}_k \rangle = \sum_{c=0}^{p-1} \sum_{a,b=0}^{M} \lambda_{ap+c,bp+c} \langle B\mathbf{e}_{bp+c}, B\mathbf{e}_{ap+c} \rangle \\ &= \sum_{c=0}^{p-1} \sum_{a,b=0}^{M} \widehat{\sigma}(a-b) \langle f_{c,b}, f_{c,a} \rangle \langle B\mathbf{e}_{bp+c}, B\mathbf{e}_{ap+c} \rangle \\ &= \sum_{c=0}^{p-1} \int_{\mathbb{T}} \sum_{a,b=0}^{M} \gamma^{b-a} \langle f_{c,b} \otimes B\mathbf{e}_{bp+c}, f_{c,a} \otimes B\mathbf{e}_{ap+c} \rangle \, \mathrm{d}\sigma(\gamma) \\ &= \sum_{c=0}^{p-1} \int_{\mathbb{T}} \left\langle \sum_{b=0}^{M} \gamma^b f_{c,b} \otimes B\mathbf{e}_{bp+c}, \sum_{a=0}^{M} \gamma^a f_{c,a} \otimes B\mathbf{e}_{ap+c} \right\rangle \mathrm{d}\sigma(\gamma) \\ &= \sum_{c=0}^{p-1} \int_{\mathbb{T}} \left\| \sum_{a=0}^{M} \gamma^a f_{c,a} \otimes B\mathbf{e}_{ap+c} \right\|^2 \mathrm{d}\sigma(\gamma) \ge 0, \end{split}$$

so ω is positive.

To see that ω is decreasing, suppose $B \in \mathfrak{B}_m$. Then $\beta(B) \in \mathfrak{B}_{m+1}$, so

$$\begin{split} \omega \circ \beta(B) &= \sum_{k,l=0}^{m+1} \lambda_{k,l} \langle \beta(B) \mathbf{e}_l, \mathbf{e}_k \rangle = \sum_{k,l=0}^{m+1} \lambda_{k,l} \sum_{i=1}^n \langle r(v_i) B r(v_i)^* \mathbf{e}_l, \mathbf{e}_k \rangle \\ &= \sum_{k,l=1}^{m+1} \lambda_{k,l} \sum_{i=1}^n \langle e_l, v_i \rangle \langle v_i, e_k \rangle \langle B \mathbf{e}_{l-1}, \mathbf{e}_{k-1} \rangle \\ &= \sum_{k,l=1}^{m+1} \lambda_{k,l} \langle e_l, e_k \rangle \langle B \mathbf{e}_{l-1}, \mathbf{e}_{k-1} \rangle \\ &= \sum_{k,l=0}^m \lambda_{k+1,l+1} \langle e_{l+1}, e_{k+1} \rangle \langle B \mathbf{e}_l, \mathbf{e}_k \rangle = \omega(B) \end{split}$$

since from (3.4) it is evident that $\lambda_{k,l} = \lambda_{k+1,l+1} \langle e_{l+1}, e_{k+1} \rangle$ for every k, l. Let $\rho_{\sigma} = \Delta \omega \circ l$. If $x \in \mathcal{E}_k$ and $y \in \mathcal{E}_l$, then

$$\rho_{\sigma}(xy^{*}) = \omega(x \otimes \overline{y}) = \lambda_{k,l} \langle (x \otimes \overline{y}) \mathbf{e}_{l}, \mathbf{e}_{k} \rangle = \lambda_{k,l} \langle x, \mathbf{e}_{k} \rangle \langle \mathbf{e}_{l}, y \rangle,$$

so ρ_{σ} satisfies (3.5) as claimed.

Since the Fourier transform is linear, it is evident from the defining formulas (3.3) and (3.4) that the map $\sigma \mapsto \rho_{\sigma}$ is affine. It remains only to show that $\sigma \mapsto \rho_{\sigma}$ is injective. For this, suppose $a \in \mathbb{Z}$. Since we have phased the sequence (e_i) so that $\langle e_i, e_{i+p} \rangle$ is always nonnegative, by [12], Proposition 1.2, the assumption

that the series $\sum |1 - \langle e_i, e_{i+p} \rangle|$ converges implies that $\sum |1 - \langle e_i, e_{i+ap} \rangle|$ also converges. Consequently, the infinite product $\prod \langle e_i, e_{i+ap} \rangle$ converges; that is, there is a positive integer i_a such that $\prod_{i=i_a}^{\infty} \langle e_i, e_{i+ap} \rangle$ exists and is nonzero. Since

$$\rho_{\sigma}(\mathbf{e}_{i_{a}+ap-1}\mathbf{e}_{i_{a}-1}^{*}) = \widehat{\sigma}(a)\prod_{i=i_{a}}^{\infty} \langle e_{i}, e_{i+ap} \rangle$$

and the Fourier transform is injective, this shows that $\sigma \mapsto \rho_{\sigma}$ is injective.

COROLLARY 3.2. Suppose ρ is a pure essential product state of \mathcal{F}_n with finite period p. Then the gauge group acts p-to-1 transitively on the extensions of ρ to pure states of \mathcal{TO}_n . In particular, ρ has precisely a circle of extensions to pure states of \mathcal{TO}_n .

Proof. Suppose $\tilde{\rho}$ is an extension of ρ to a pure state of \mathcal{TO}_n . Then there is a Borel probability measure σ on \mathbb{T} such that $\tilde{\rho}$ is the extension ρ_{σ} of Theorem 3.1. Moreover, since $\tilde{\rho}$ is pure, there is a $z \in \mathbb{T}$ such that σ is the point measure at z. If $\lambda \in \mathbb{T}$, then the pure state $\tilde{\rho} \circ \gamma_{\lambda}$ is equal to ρ_{φ} , where φ is the point measure at $\lambda^p z$. Thus the gauge group acts p-to-1 transitively on the extensions of ρ to pure states of \mathcal{TO}_n .

REMARK 3.3. We conjecture that Corollary 3.2 holds more generally for non-product states.

REFERENCES

- 1. H. ARAKI, A.L. CAREY, D.E. EVANS, On O_{n+1} , J. Operator Theory **12**(1984), 247–264.
- W. ARVESON, Continuous analogues of Fock space, Mem. Amer. Math. Soc. 80(1989), pp. 409.
- 3. W. ARVESON, Continuous analogues of Fock space. II: the spectral C*-algebra, J. Funct. Anal. **90**(1990), 138–205.
- W. ARVESON, Continuous analogues of Fock space. III: singular states, J. Operator Theory 22(1989), 165–205.
- W. ARVESON, Continuous analogues of Fock space. IV: essential states, Acta Math. 164(1990), 265–300.
- O. BRATTELI, P.E.T. JORGENSEN, Endomorphisms of B(H). II: Finitely correlated states on O_n, J. Funct. Anal. 145(1997), 323–373.
- O. BRATTELI, P.E.T. JORGENSEN, G.L. PRICE, Endomorphisms of B(H), in Quantization, Nonlinear Partial Differential Equations, and Operator Algebra (Cambridge, MA, 1994), Proc. Sympos. Pure Math., vol. 59, Amer. Math. Soc., Providence, RI 1996, pp. 93–138.

- 8. J. CUNTZ, Simple C*-algebras generated by isometries, Comm. Math. Phys. 57(1977), 173–185.
- 9. D.E. EVANS, On O_n, Publ. Res. Inst. Math. Sci. 16(1980), 915–927.
- N. FOWLER, I. RAEBURN, Discrete product systems and twisted crossed products by semigroups, J. Funct. Anal. 155(1998), 171–204.
- J. GLIMM, On a certain class of operator algebras, *Trans. Amer. Math. Soc.* 95(1960), 318–340.
- A. GUICHARDET, Produits tensoriels infinis et représentations des relations d'anticommutation, Ann. Sci. École Norm. Sup. 83(1966), 1–52.
- 13. M. LACA, Endomorphisms of $\mathcal{B}(\mathcal{H})$ and Cuntz algebras, J. Operator Theory **30**(1993), 85–108.
- 14. M. LACA, Gauge invariant states of \mathcal{O}_{∞} , J. Operator Theory **30**(1993), 381–396.
- R.T. POWERS, Representations of uniformly hyperfinite algebras and their associated von Neumann rings, Ann. of Math. 86(1967), 138–171.
- 16. J. VON NEUMANN, On infinite direct products, Compositio Math. 6 (1938), 1–77.

NEAL J. FOWLER Department of Mathematics University of Newcastle Callaghan, NSW 2308 AUSTRALIA

E-mail: neal@frey.newcastle.edu.au

Received September 1, 1997.