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ABSTRACT. A two-sided indefinite interpolation problem in the class of gen-
eralized Nevanlinna pairs is considered. In the case where the Pick matrix is
nondegenerate a solvability criterion for the problem is given. All solutions of
the problem are described as a fractional linear transformations of a parame-
ter from a subclass of the Nevanlinna class. The nondegenerate interpolation
problem in the generalized Stieltjes class has the same solution matrix and
the parameter ranges over a subclass of the Stieltjes class. Sufficient condi-
tions for the problems to have no excluded parameters are given in terms of
the reproducing kernel matrices.
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0. INTRODUCTION

The generalized Nevanlinna class N, (C™) consists of n X n-matrix valued functions
F()\) meromorphic on C such that the kernel (F(z)—F(¢))/(z—() has x negative
squares on C;. In 1981, A.A. Nudelman ([30]) has considered the following prob-
lem: there are given points z; € Cy (j = 1,...,m) and n x l-matrices V},, Wj,
G=1...,m;p=0,...,7; —1; n,m,r; € N). Find an n x n-matrix function
F(z) which belongs to the generalized Nevanlinna class N, (C™) and satisfies the
equalities

ri—1 ri—1

(0.1) DoV =) FO) = Y Wi = 2)" + O((A = 2)")
k=0 k=0
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A=, j=1,...,m.

For the problem to be solvable it is necessary and sufficient that the num-
ber sq_(P) of negative eigenvalues of the Pick matrix P calculated by the data
V,W of the problem does not exceed k. In [31] a description of all solutions
of the problem (0.1) was obtained under the assumptions that the matrix P is
nondegenerate and sq_ (P) = k. In the definite case (k = 0) tangential and bitan-
gential interpolation problems (0.1) have been studied in [18], [30], [5], [16], [4],
[3]. The Nevanlinna—Pick problem for generalized Schur and Nevanlinna functions
has been investigated in [1], [20], [19], [6], [14]. The solutions of this problem are
parametrized via a fractional linear transformation over a subset of the extended
class No(C™) of Nevanlinna pairs {¢,1} (see Definition 1.1). A Nevanlinna pair
which can not serve as a parameter of this transformation is said to be an ex-
cluded parameter. The cases where the Nevanlinna—Pick problem has no excluded
parameters or has a unique excluded parameter were characterized in [14].

In the present paper the two-sided interpolation problem (0.1) in the class of
generalized N,-pairs is considered. The operator approach we apply to the problem
is similar to the one used in [3] for the case k = 0. A symmetric operator acting
in some Pontryagin reproducing kernel space is associated with the data of the
problem. A description of all the solutions of the problem is shown to be reduced
to the problem of description of generalized resolvents of this model operator. An
application of the technique of boundary operators (see [21], [29], [13], [9]) enables
us to prove some new results in extension theory of Pontryagin space symmetric
operators (Propositions 1.9 and 2.11) to find a new formula (2.24) for the resolvent
matrix and to simplify proofs of some statements from [3] (Theorem 2.4). A
description of all the solutions of the problem (0.1) is given under the assumptions
that the Pick matrix P is nondegenerate and sq_(P) < k. The cases where the
interpolation problem (0.1) has no excluded parameters are characterized in terms
of the reproducing kernel.

The Nevanlinna—Pick problem for Stieltjes functions has been considered
in [26], [17] and its tangential and bitangential generalizations have been studied
in [32], [4], [7]. The indefinite Nevanlinna-Pick problem for Stieltjes matrix valued
functions was investigated in [2]. The set of excluded parameters for this prob-
lem was characterized in terms of two Pick matrices P and P_. In Section 5 the
interpolation problem (0.1) in the classes of generalized Stieltjes pairs is consid-
ered. A solvability criterion is formulated in terms of the Pick matrices under the
assumptions that P and P_ are nondegenerate. All solutions of the problem are
described as a fractional linear transformations of a parameter which ranges over
a subclass of the Stieltjes class. Sufficient conditions for the problem (0.1) to have
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no excluded parameters are given in terms of two reproducing kernels K (¢, \) and
K_(t,A).

1. PRELIMINARIES

GENERALIZED NEVANLINNA PAIRS. Let H be a Hilbert space over the field C.
A linear subspace A in H? = H x H is said to be a linear relation in H. Let us

denote by C(H) the set of closed linear relations in H. Let D(A) and R(A) be
the domain and the range of a relation A € C~(H); ker A, mul A := ker A~! be the
kernel and the multivalued part of A respectively. Let B(H1,Hz2) (C(H1,Hz)) be
the set of bounded (closed) linear operators from H; into Ha, B(H) := B(H, H).
The resolvent set p(A) of a relation A € C(H) consists of the points A € C such
that (A — )~ € B(H). Let o(A) = C\ p(A) be the spectrum and o,(A4) be the
set of eigenvalues of the relation A.

If p(A) # 0, then the relation A admits a representation A = {{ph,¥h} |
h € H} where ¢, € B(H). A family of linear relations 7()\) € C(C™) is said to be
holomorphic on a domain O if there exist two holomorphic n x n matrix functions

©(A),¥(A) such that

(L.1) T(A) = {e(); (N} == {{e(Mh, ¢ (M)A} | h e C}.

A kernel N (A, 1) with values in B(C™) is said to have x negative squares on
Oif N(Ap) = N(p,A\)* and for all n € Zy, \j € O, h; € C" (j = 1,...,n)
the matrix ((NV(Ai, Aj)hi, hy)';—; has at most x negative eigenvalues and exactly
K negative eigenvalues for at least one collection of A;, h;. To each pair of matrix
valued functions {p, ¥} it is associated the kernel

o) (A =Y (p)*e(N)
- .

(1.2) NW#()‘MLL) =

I

DEFINITION 1.1. A pair of n X n-matrix functions {¢()), ¥ (A)} holomorphic
on a domain @ = O C C\R is said to be a generalized Nevanlinna pair (or N,-pair,
K € Zy) if:

(i) the kernel Ny (A, 1) has k negative squares on O;
(i) YV p(N) — e (V)" H(N) = 0, YA € O;
(iii) rank {p(A\)* : p(A\)*} =n, VA € O.

Each N-pair {p, %} admits a holomorphic continuation on C\ R (see Theo-
rem 2.4 below). Let us save the same notation for the extended pair and denote by
p(p, 1) the set where p, 1) are holomorphic and satisfy the assumptions (ii), (iii)
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of Definition 1.1. Two pairs {p,¥} and {p1,1¢1} are said to be equivalent if
e1(A) = (M H(N), ¥1(A) = (AN H(N) for some holomorphic and invertible ma-
trix function H(\) on O. The set of classes of equivalent N-pairs is denoted by
N,.(C™). If 7(A) = {o(N), (N} € N.(C") and o()) is invertible, we shall write
Y(N)e(A)~! € N, (C™). Let us consider N,,(C™) as a subset of N, (C") identifying
a matrix H(\) with the linear relation {I, H(\)}.

REMARK 1.2. The assumptions (ii), (iii) of Definition 1.1 for a family of

linear relations 7(A) = {¢(A),¥(N\)} can be rewritten in the form 7(\) = 7(\)* for
all A € O. Indeed, if 7(\) = 7(A\)* then, evidently, the condition (ii) is satisfied.
The assumption rank {¢(A)* @ (A)*} < n yields ker p(A) Nker(A) # {0} and,
therefore, dim7(\) < n for all A € O. Hence dim7(A\)* > n for all A € O which
contradicts the assumption 7(\) = 7(\)*. Conversely, let the assumptions (ii), (iii)
be fulfilled, then evidently 7(A\) C 7(A)* for all A € O. It follows from (iii) that
dim 7(\) = n, hence 7(\) = 7(\)*.

DEFINITION 1.3. An Ny-pair {¢(X), ¥(A)} is said to be a generalized Stieltjes
pair (or NEF-pair) if {o(A), AX1h(A)} € Ni. Moreover, NX*(C™) stands for the

set of equivalence classes of N*-pairs in C™.

Let NX*(C") be the set of matrix functions F(\) such that {I, F()\)} is an
NFk_pair. The classes NX°(C") and Ni*(C™) were introduced in [23] and [13]
respectively. In particular, the class NJ O(C") coincides with the Stieltjes class
S(C™) of matrix valued functions F' € Ny(C™) which admit holomorphic nonneg-

ative continuations on the negative semiaxis ([25]).

BOUNDARY TRIPLES. Let S be a closed symmetric linear relation in a Pontryagin
space (IL,[-,-]), p(S) be the set of regular type points of S and let its defect
subspaces N = ker(S*—)\) (A € p(S)) be finite-dimensional and let the deficiency
indices ny (S) = dimN, (A € Cx N p(S)) coincide, ni(S) = n_(S) = n < .
Denote the Pontryagin index of the space II by «~ (IT).

The operator S is identified with its graph grS = {{f,Sf}: f € D(S)}. An
extension A € C(IT) of the relation S is said to be proper if S € A C S*. Two
proper extensions /L and gg of the relation S are said to be disjoint if ﬁl Q/L =G5.

Let us remind (see [9], [12] and [21], [29] for the case x = 0) the definitions of
the boundary triple and the Weyl function of a symmetric linear relation S which

are used for a description of generalized resolvents of S.
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DEFINITION 1.4. A set {C",T,T'1} where I'y, 'y are linear mappings from
S* into C" is said to be a boundary triple for the relation S* if the mapping
T: f—» {I‘Of, I‘lf} from S* into C™ @ C™ is surjective and for all f ={f, 1}
9=19,9'} € S* the following identity holds

(1.3) [f' 9] = [f,¢'] = (C1f,Tog)en — (Do f, T1g)en-

If {C™, Ty, T'1} is a boundary triple for a linear relation S*, then the mapping
T" establishes a one-to-one correspondence between the set of selfadjoint extensions
A of the relation S and the set of selfadjoint relations 7 in C"

(1.4) A, o1 =-TA, = {{Tof,-T1f} | f € A.}.

Conversely, for each 7 = 7* € C (C™) the corresponding extension A, can be find by
the equality A, = ker(I'; + 7T'y). Naturally associated with each boundary triple
are two selfadjoint extensions of S, namely A; := kerI'; (j =0,1). Let m; be the

projection onto the j-th component of C*@®C™ (5 = 1, 2), ./\A/'u ={{f,uf}|feN.}
(€ P(5))-

PROPOSITION 1.5. ([8]) Let {C™,T'g,I'1} be a boundary triple for the linear
relation S* such that p(Ag) # 0. Then the formula

(1.5) Y(A) = m(TolN) ™Y (A € p(Ao))

correctly defines a holomorphic operator function on p(Ag) with values in B(C™, N})
which satisfies the equality

(1.6) YA =) + A =)A= 2" (w) (A€ p(4o)).
DEFINITION 1.6. A matrix function M (X) defined by the relation
(17) MWTofs =T1fs (A€ p(A), fr € Ny)

is said to be the Weyl function of the operator S corresponding to the boundary
triple {C",T9,T'1 }.

Let us note that the Weyl function M () is correctly defined and holomorphic
on p(ﬁ) and M () is a Q-function of the operator S corresponding to the selfadjoint
extension Ay in the sense of [23]. In the case where S is a simple operator (that is,
cls{Ny : A € p(S)} =1I), the resolvent set p(Ap) coincides with the holomorphy
set of the @-function M () ([25]). One can describe the spectrum of the extension

A, (=71 €C(H)) in terms of 7 and M(\).
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ProposITION 1.7. ([25], [12]) Let S be a simple symmetric operator,

{H,Ty,T1} be a boundary triple for S*, 7 =1 € C(H), X € p(Ap) and let M ()
be the corresponding Weyl function. Then

A€ p(A) = 0€p(MN) +71).

Moreover, p(A;) coincides with the holomorphy set of the matriz function
(M) +7)7L.

Let S, be a set of selfadjoint n x n-matrices.

LEMMA 1.8. Let F(\) be a polynomial n x n-matriz function and let Z be
the set of matrices B = B* such that the matriz function (F(A\)+ B)™" has no
holomorphic continuations at co. Then the set S,, \ Z is nonempty, open, and Z

18 nowhere dense in S,,.

Proof. One can assume that det F'(\) # 0 without loss of generality. Let
F(A) = (fij(N)i'j=1 and let F; be the cofactors of the entries f;; of the matrix
function F'(A). Assume that

degdet FI(\) < maxdeg F;;(\) = deg Fj, (A).

2]

Setting By = {Zéiioéjjo + Eéijoéjio}ﬁjzl, 1’7()\7 B) = F()\) + B, we have

(1.8) det F(A, Bo) = det F(X) + (~1)* (2Fy 5, (A) + ZFyyi (N)) — [s[2F250 ()
where Ff(;’j(;’()\) is a minor of the order n — 2 obtained by deleting the iy-th and
Jjo-th rows and columns of the matrix F'(A\). By (1.8), there exists z € C such that
degdet F'(A\, Bg) > degdet F'(\). Iterating this procedure one obtains a matrix
B = By + By + -+ + B, such that the matrix function F(A, B) satisfies the
inequality

(1.9) degdet FI(A\, B) > maxdeg F;;(\, B)
6

and, therefore, the matrix function F(X, B)~! has a holomorphic continuation
at oo.

Let E be a small perturbation of the matrix B. The invertibility of the
matrix F(A) + B + E and the holomorphy of the inverse matrix at co are implied
by the equality

FA)+B+E=(F\)+B)(I+ (F(\)+ B)'E).
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Let us consider the expansions of the polynomials det F/(A, B) and F;;(\, B)

P q
det F(\, B) =Y Fp(B)A\*, F;(\,B)=)Y_ FE(B)N,
k=0 k=0
where Fy(B), FZ’j(B) are polynomials depending on B € S,,. For every i, j, there
is an open set O;; C S,, such that d = degdet F(\, B) > d;; = deg F;;(\, B) for
all B € O;.
Therefore, for all B € O;; the following equalities hold

(1.10) Fe(B)=0 (k>d), F5(B)=0 (k>d).

Since Fi(B) = 0, F[(B) are polynomials in n? real variables (entries of B) the
equalities (1.10) are identities for all B € S,,. Therefore, the set Z is contained in
the algebraic manifold of zeros B € S,, of the equality F,;(B) = 0. The dimension
of this manifold does not exceed n? —1 and, therefore, Z is nowhere dense in S,,. 1

PrOPOSITION 1.9. Let S be a simple symmetric operator in a Pontryagin
space II. Then for every collection of points z; € Cy (j = 1,...,m) there is a

selfadjoint extension A of the operator S such that z; € p(A) (7 =1,...,m).

Proof. Let {H,Ty,T'1} be a boundary triple for S* and let M(X) be the
corresponding Weyl function. To prove the statement it sufficies (see Proposi-
tion 1.7) to construct an operator B = B* € B(H) such that the matrix function
(M(z) + B)~! has a holomorphic continuation at the points z; (j = 1,...,m).
Assume that the matrix function M(z) has a pole of order k; at z; that is

k
(111) M(2) =Y Mij(z— 2) " + Mj(2)(z — 2;), (Mi; € B(H), j=1...,m),
=0

k )
where M;(z) is holomorphic at the point z;. Let Fj(\, B) = Y M;;\' + B and let

=0
Z; C 8, be the set of matrices B € S,, such that the matrix function F;(\, B)~!
has no holomorphic continuation at oo (j = 1,...,m). By virtue of Lemma 1.8,

the set Z = (JZ; is nowhere dense in S,,. Let B € S, \ Z. Then, from the
J
equalities
M(2) + B = Fj(Xi(2), B) (I + F;(A;(2), B) " M;(2)(z — 2;))

(Nj(2) =1/(2 — 2;), 5 = 1...,m) it follows that the matrix function (M (z)+B)~*

is holomorphic at z;. It follows now from Proposition 1.7 that z; € p(Ag) for all
j=1....m. 1
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2. GENERALIZED RESOLVENTS

GENERALIZED RESOLVENTS OF SYMMETRIC OPERATORS. Let A be a selfadjoint
extension of the relation S in a bigger Pontryagin space II, P be the orthogonal
projection from IT onto II, and k = k™~ (II). The operator function

(2.1) Ry = Pa(A— NI (A€ p(A)

is said to be a generalized resolvent of the relation S. An extension A = A* of the
relation S is said to be minimal if

(2.2) cls{Il+ (A—XN)"'I: X e p(A)} =1L

DEFINITION 2.1. A generalized resolvent R, is said to be from the class
0,.(9) if it admits a representation (2.1) in which A is a minimal extension of S

and k() = & (% € Z4).

REMARK 2.2. If a generalized resolvent R is holomorphic at the point
Xo € p(S) and the extension A generating R is minimal, then \g is a regular
point of A. An explicit construction of such an extension for a densely defined
symmetric operator S was given in [23]. This construction can be carried over to
the case of a linear relation S.

THEOREM 2.3. ([8], [15]) Let S be a simple symmetric operator in II,
k =k~ (II) and {C™,Ty,T'1} be a boundary triple of the relation S*, and let M ()
be the corresponding Weyl function, Ao € p(Ag) NC4.. Then:

(i) the formula

(2:3) Ry = (A=) =7 (VM) (N +MN)eN)) ()" (A € p(Ao)Np(A))

establishes a one-to-one correspondence between the set of generalized resolvents
R € Q~(S) holomorphic at the point Ao and the set of classes of equivalent N~_ -
pairs {p, ¥} holomorphic at Ay such that

(2.4) det (1¥(Xo) + M(Ao)p(Ao)) # 0.

(i) the formula (2.3) establishes also a one-to-one correspondence between
the set of all generalized resolvents Ry € Q~(S) and the set N~ (C") of classes
of equivalent N~_ -pairs {¢,v} such that

(2.5) det ((A) + M(N)p(N)) £ 0.
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Proof. (i) In fact, the first statement was proved in [11] (see also [15] for the
case of a standard operator), where the set of generalized resolvents was described
by the Krein’s formula

(2.6) Ra = (Ao = A" =y NV + M) ()" (r(V) € Ny_,).

It remains to note only that the condition 0 € p(7(N\g) + M (Xg)) for 7 = {p, ¥} is
equivalent to the condition 0 € p(¥(Xg) + M(Xg)¢(No)) and in this case (7(\) +
M)~ = oM)W (N) + M(A\)p(N)

(ii) The second statement is implied by the first one in view of the equivalence
given above. Thus, if Ry € Q~(S5) then the set p(A) N p(Ag) is nonempty and the
corresponding N~ -pair {¢,} satisfies the condition (2.5). Conversely, if an
N~ -pair {¢,9} satisfies (2.5) then the operator function R defined by (2.3) is
a generalized resolvent of the relation S and p(A) # 0. 1

It is interesting to note that Theorem 2.3 contains a description of generalized
Nevanlinna pairs. In the case k = 0 such description was obtained in another way
in [3].

THEOREM 2.4. Let a generalized N, -pair {¢,¥} be holomorphic on O and
satisfy the condition Y(X\) + Ap(A) = I (A € O). Then it admits a representation

(2.7) {e(V), vV} ={-Rx, I+ R} (A€0),

where Ry = G*(g -\aG, Aisa selfadjoint relation in a Pontryagin space ﬁ,
G € B(C", 1), G*G = I. The relation A can be chosen G-minimal, i.e. such that

(2.8) I=cls{Gf+(A—X)"'Gh:Xe p(A); f,h € C"}.
In this case k= (IT) = k.

Proof. Let us consider a trivial linear relation S = {0} in C™ and a boundary
triple {C", Ty, T} of the relation S* = C" @ C", setting Tof = f, [1f = f
(f = {f, '} € S*). Then the extension Ay = ker 'y coincides with the multivalued
part of the relation S* (4p = mulS* = {0,C"}), and the corresponding Weyl
function takes the form M(A) = AI. In accordance with Theorem (2.3), there
exist a Pontryagin space II and a selfadjoint extension A > S in II such that the
minimal condition (2.8) is satisfied and the following equality holds

(2:9) Ry =Pon(A=N)7C" = —p(N)(®(N) + Ae(\) ' = () (A€ 0).
It follows from (2.9) that
e(A)=—-Ry, Y(A)=I-Xp(\) =1+ R\ (A€O)

which coincides with (2.7). Here @ is the embedding operator C* C II. 1
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It follows from Theorem 2.4 that each Nj-pair {¢, 1} admits a meromor-
phic continuation at C; U C_ provided that A,, # 0 and the determinant
Ay (X)) =det((X) + Ap(X)) has at most & zeros in C

REMARK 2.5. There exist N,-pairs {¢, 1} such that A, ,(X) = 0. For exam-
ple, 7 = {1, =A} is an Ni-pair and Ay _»3(A) = 0. The spectrum of the selfadjoint
extension

A = {{col (a,0),col (b,0)} : a,b € C}
corresponding to this pair {1, —A} fills out the whole plane C.

LEMMA 2.6. Let {p,1¥} be an Ny-pair which satisfies the assumptions of
Definition 1.1 on a domain O and z; € O (j = 1,...,m). Then there is a non-
negative invertible matriz X such that

(2.10) det (1(z) + 2 X () 20 (G =1,...,m).
Proof. In view of the condition (iii) of Definition 1.1, the ranks of the matrices
{¥(z))* 1 Zjp(2;)*} (j =1,...,m) are equal to n. Let us choose a nondegenerate
minor M of this matrix of the order n and denote by 1,149, ...,% the indices of
the columns of the matrix ¢(z;)* which are contained in M. Setting x; = ¢ for
l =1i1,1a,...,1, and 2; = 0 otherwise, we obtain the matrix X; = diag {z1,..., 2}
such that
(2.11) Aji=det (¥(z)" +7Z0(2) X;) #0 (G =1,...,m)

for ¢ large enough.

Let us consider the functions A;(X) on the set of real diagonal matrices
X = diag{x1,...,z,}. Since the function A;(X) does not vanish identically on
R™, its set X of zeros is at most an (n — 1)-dimensional real variety in R™. On the
other hand, the set of positive diagonal n X n-matrices is an n-dimensional variety.
Therefore, there exists a positive diagonal matrix X such that (2.10) holds for all
j(=1,...,m). 1

SYMMETRIC OPERATORS WITH N*-PROPERTY

DEFINITION 2.7. A closed linear Pontryagin space symmetric operator S is
said to have N*-property (k € Z,) if the form [A -, -] has k negative squares and

A(S) # 0.

In particular, a linear relation S with the N%-property is nonnegative in II.
Denote by Extf(—o00,0) (k < 75) the set of selfadjoint extensions A of S which
have Nz—property.
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Let J be a fundamental symmetry in IT and let H = JS be a Hilbert space
symmetric operator in (II,[J-,-]) with N¥-property. There are two extremal
extensions Hy and Hg of the operator H in the class Ext¥ (—co,0) defined by:

Hp :=sR- lim H,, Hg :=sR- lin%J H,,
where H, = H+N,(H), No(H) = {{fs,2fs} | fo € No(H)}. The extensions
Sf := JHp, Sk := JHg are said to be the Friedrichs and the Krein—von Neumann

extensions of S. One can characterize them in terms of the Weyl function M (X).

PROPOSITION 2.8. ([9], [12]) Let S be a closed linear Pontryagin space sym-
metric operator with N*-property, {C",T'g,I'1} be a boundary triple for the rela-
tion S* such that p(Ag) # 0, 0 & 0,(S), M(X) be the corresponding Weyl function.
Then the following equivalences hold:

(i) Ag = Sr & gclliinoo M(z) = oo;

(i) Ap = Sk < 111%% M(z) = oo;

(i) AgNSp =85 & M(—x0) = wli)moc M(x) € [C"]; in this case Sp =
ker(T'y — M(—o0)T);

(iv) AgN Sk =S < M(0) := ili% M(zx) € [C"]; in this case Sk = ker(['y —
M(0)Ty).

DEFINITION 2.9. A generalized resolvent Ry € Q~(S) is said to be from

the class Q(S) if it admits a representation (2.1) with a minimal extension A €
K

Ext 5 (00, 0).

A description of the class Q%(S) was given in [12] (see also [10] for the case
closD(S) =10).

THEOREM 2.10. Let S be a simple symmetric operator with N*-property in
a Pontryagin space I1, k := x~(II), 7_ = {C", Ty, T'1} be a boundary triple for S*
such that Ag = Sr and A; = Sk, p(Ao) # 0, and let M(\) be the corresponding
Weyl function. Then the formula (2.3) establislies a one-to-one correspondence

between the set of generalized resolvents Ry € Qé(S) holomorphic at the point A
and the set of pairs {p, 1} € NZ__(k_k) such that det (P (X) + M (N)p(N)) # 0.

PROPOSITION 2.11. Under the assumptions of Theorem 2.10 the formula
(2.3) establishes a one-to-one correspondence between the set of all regular exten-
sions A, of S with N¥-property and the set of all nonpositive selfadjoint linear

relations 7 = {@, ¢} € C(C™) such that det (v + M (X)) # 0. For every collection
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of points zj, (j = 1,...,m), there is a reqular selfadjoint extension A of S with
N*_property such that z; € p(g) (j=1,...,m).

Proof. The first statement is immediate from Theorem 2.10. Let the Weyl
function M () of the operator S corresponding to the boundary triple 7_ have
the expansions (1.11) and let Z; be the sets defined in Proposition 1.9. As follows
from Lemma 1.8, the set Z = |J Z; is nowhere dense in S,, and, therefore, there is

J
a nonpositive matrix B € S,, \ Z. In view of Theorem 2.10 the corresponding ex-
tension Ap = ker(I'; +BI'g) has N*-property. The reasoning from Proposition 2.9
shows that z; € p(Ap) forall j=1,....,m. 1

REPRESENTATION THEORY OF SYMMETRIC OPERATORS. Let £ be a nondegene-
rate subspace of II and P, be the Pontryagin space orthogonal projection from II
onto £. A compressed resolvent Pz(A — A)~!|£ of the extension A = A*(D S) is
said to be an L-resolvent of the operator S. Let us remind some facts from the
representation theory of M.G. Krein (see [22], [28], [13], [9]) which are necessary for
the description of L-resolvents. A point A € p(S) is said to be an L-regular point of
the operator S and is written as A € p(S, £) if the following direct decomposition
holds

(2.12) II=7R(A-N+L.

Similarly oo € p(S, £) if D(S) is closed in II and II = D(S)+L. Let us define
two operator valued functions P(A) and Q(A) holomorphic on p(S, £). Let P(X)
(P(c0)) be a skew projection from IT onto £ parallel to R(S — A) (D(S)) and let
Q()) (9Q(c0)) be defined by the equality

(2.13) Q) = P(S = NI =P(),  Qoo) = PcS(I —P(c0)).
Let for all I € L (see [9])

2.14) PO L= {POVLIPO Y, OO =[O\, NQ(\)L + 1}
Then P(A\)*l, Q()\)*l € S*. Analogously, setting

(2.15) P(00)"1:={0,P(00)*1}, Q(00)"l:={1,Q(c0)*1} (I € L)
we obtain P(c0)*l, O(c0)*l € S*. Indeed, P(c0)*l L D(S) since

(2.16) [P(c0)*l,h] = [, P(c0)h] =0 (Vh € D(S)).
Further, for all h € D(S) we obtain in view of (2.13)
(2.17) [Q(00)*l,h] — [I,Sh] = [I, Q(c0)h] — [I,Sh] = 0.

Hence {I, Q(00)*1} € S*. If X € p(S, L) then Ny = P(N\)*L (see [9]). Analogously,
if oo € p(S, L), then mul S* = P(c0)*L. Let us set ps(S, L) = p(S, L) N p(S, L).
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THEOREM 2.12. Let L be a nondegenerate subspace of I1 and X € ps(S, L).
Then the following direct decomposition holds

(2.18) S* = SEPN)* LEON) L.
Proof. In the case A\ # oo the statement was proved in [9]. For all vectors
{f,f'} €S* weset fo=(I—P(x))f, 1 =P(cx)f. Then
{117} = {fo. Sfo} = {1, Q(00)"1} ={0, f" = Sfo — Q(00)"I} € 5.

Therefore, there exists k € £ such that f' — S fy — Q(c0)*l = P(00)*k. Thus we
have

~

{£ '} = {fo. Sfo} + {1, Q(00)*1} + {0, P(00) "k} € S + P(00) "L + Q(00) "L

The inverse inclusion is evident. 1

Using (2.18) we determine a family of boundary triples for the relation S* in
the case when the set ps(S, £) is not empty.

PROPOSITION 2.13. Let L be a positive subspace of II and oo € ps(S, L).
Then the boundary triple {L,To,T1} of the relation S* can be defined by the for-
mulas

(2.19) Dof =lo=P(oo)f, T1if=U =Pcf —Q(c0)f,
where

F=151}=1{fo.Sfo} +P(c0)*ls + Q(00)"lo (fo € D(S),lo, 11 € L).

Proof. Let § = {go,Sgo} + P(00)*ky + Q(c0)*ko (g0 € D(S); ko k1 € L).
Making use of (2.16), (2.17), (2.18) we obtain

[f's9] = [f9'] = [Sfo + P(o0) "l + Q(00)"lo, go + ko]
= [fo +lo, Sgo0 + P(00) k1 + Q(00) ko]
= [Sfo, ko] — [lo, Sgo] + (I1, ko) — (lo, k1)
+ [Q(00) "o, go] — [fo, Q(00)" ko]
= (I1, ko) — (lo, k1).

REMARK 2.14. If a =@ € ps(S, L) then one can define a boundary triple of
S* by the formulas (see [13], [9])

(2.20) Tof =lo=Pcf - Q@)(f —af), Tif =l="P@)f —af),
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where f = fo + P(a)*lo + Q(a)*ly (fo € S; lo, 11 € £) (see [13], [9]).

RESOLVENT MATRIX. Setting in the resolvent formula (2.3)

aji(X) = M(N), ai2(A) =v(\)*|L,

(2.21)
az(A) = Pey(N),  azz2(N) = P(4o — )7L,

and taking into account that the operators ai2(X), as1(\) are invertible for A €
p(S, L) (see [9]) one obtains from (2.3) for A € p(S, L) N p(Ag) N p(A)

Pe(A=N7L
= a2 (A) — a210(N)(¥(A) + a11(N)p(A) "t ar2(N)
= ag(A) — az1 (V) p(A)(a12(A) "'(A) + ar2(V) " tarn (V) 7
= (w11 (WY (A) + wi2(N)p(A)) (war (N (A) + w2z (A)p(X) 7,

(2.22)

where the matrices w;; € B(L) (i,j = 1,2) are defined by

w11(A) = az2(Na12(A) 7', wi2(A) = aza(Nar2(A) " tann(A) — asi (N),

2.23
( ) ’(1)21()\) = CL12(>\)71, U}QQ()\) = alg()\)flall()\).

The matrix W(A) = (w;; ()‘))?,jzl is said to be the resolvent matrix of the operator
S corresponding to the scale space £ and the boundary triple 7. A simple formula
for the calculation of the resolvent matrix W (\) was given in [9] (see [13] for the
Hilbert space case).

PROPOSITION 2.15. Let L be a subspace of I such that ps(S, L)
{£,T9,T1} be a boundary triple for S*, G(A) := col( — Q(A), P(N)),
(- @()\)*,73()\)*) Then the resolvent matriz W () is

. . ~ToQ(N)*
(221) W)= (rG0))" = (r GIoNS

@,T

7
GO

P
P
and satisfies the equality

Jon = WA JanW ()" = (A =GN G ()"

(2.25) 0o I
J2n:<_I g>7 )\aMGP(SwC)

REMARK 2.16. It follows from (2.25) that the kernels

(2.26)

Jgn — W()\)Jan(,UJ)* Jg w ,u)*Jan()\)
I

_ = W
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have k negative squares. Let {¢, 1} be an Ng-pair and the pair {g, zZ} be defined

by _
1/J(/\)> (
g =W, PN =

(L)) =W, e

Then it follows from (2.26) that the kernel

o)

Nz 2O 1) = Np (X ) + @)W (A, 1) @(A)

also has a finite number k' (< k + k) of negative squares.

The following description of L-resolvents of the operator S is implied by
Theorem 2.3 and by the formulas (2.22), (2.24) (see [9]).

THEOREM 2.17. Let S be a simple Pontryagin space symmetric operator,
L be a positive subspace of I1 such that ps(S,L) # 0, {L£,To,T1} be a boundary
triple of the relation S*, and let W () be the corresponding resolvent matriz, Ao €
p(Ao) N p(S, L), k = k= (II). Then the formula (2.22) establishes a one-to-one
correspondence between the set of L-resolvents PcRA|L (R € Q~(5)) holomorphic
at the point Ao and the set of classes of equivalent N~ _-pairs {e, ¥} holomorphic
at \g such that

(2.27) det (w21 (Ao)¥(Ao) + waz(Ao)p(Ao)) # 0.

To prove this it remains to note that the matrix function wa (A) is invertible
for all A € p(S, L) N p(Ap) and the corresponding Weyl function M (\) takes the
form M (X) = wa1(A) " twaa(A). Therefore, the inequalities (2.4) and (2.27) are
equivalent.

A description of L-resolvents with N*-property is implied by Theorem 2.10.

THEOREM 2.18. Let S be a simple Pontryagin space symmetric operator with
NF¥_property, L be a positive subspace of I1 such that ps(S, L) # 0, T = {L£,To,T1}
be a boundary triple for the relation S* such that Ag = Sp, A1 = Sk, and let
W(A) = (w;(N)F =1 be the corresponding resolvent matriz, p(Ag) N p(S, L) # 0,
k =k~ (I). Then the formula

(2:28) P(A=X) "L = (wi(Ne(N) +wip (W) (we A (A) +wam(N)e(A) !

establishes a one-to-one correspondence between the set of all L-resolvents PrRy|L
(Ry € Q%(S)) holomorphic at the point Ao and the set of pairs {p, 1} € Ni_(i_k)
such that the nondegeneracy condition (2.27) holds.

REMARK 2.19. Let 7 = {H, 9,1} be an arbitrary boundary triple for the
relation S* related to the boundary triple 7_ by the equality I' = UT'_. It follows
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from (2.24) that the resolvent matrix W (\) associated with the scale space £ and
the boundary triple 7 is related to the matrix W_(\) by the equality

(2.29) W) = W_(\U*.

Under the assumptions of Theorem 2.18, the formula (2.22) establishes a one-to-
one correspondence between the set of all L-resolvents P Ry|L (Ry € QE(S))
holomorphic at the point Ag and the set of pairs {p, ¥} represented in theﬁform
{Y, 0} = U{’(Z, ¢} where {@, 12} € Z\Nfii(kfk) and such that the nondegeneracy
condition (2.27) holds. o

3. INTERPOLATION IN THE GENERALIZED NEVANLINNA CLASS

PROBLEM (IP,). Givenaren,m € N; k,r; € Z;, 2z, € C\R (j=1,...,m)
and n x l-matrices Vjp, W), (j = 1,...,m; p = 0,1,...,7;), find an N,-pair
{A(N), B(A\)} holomorphic at the points z; such that the following equalities hold

(1) VA=) BO) = Y Wi~ 2)FARN) + 0 (A - z)" )
k=0 k=0

A—=z;;5=1,...,m).

Let r = > (r; +1). The n x r-matrices
Jj=1

(3.2) V=WV,...,Vp), W=Wy,...,Wpn),
where V; = (Vjo, ..., Vjr,), W; = (Wjo, ..., Wj,,) are called the data of the Prob-

lem (IP,). Let Z be the r x r-matrix which is the direct sum of (r; +1) x (r; +1)-
Jordan boxes

Zj 1 0

(3.3) Z; = G=1,...,m).

Two m x n-matrix functions (), £(A) with rows K;(A), £;(A) defined and
locally holomorphic on C\ R are said to interpolate the data V, W of the Prob-
lem (IP,) if (see [3])

(3.4) p,j(zj)— j j(zj)— i

Jq’ pl p?
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(j=1,...,m;p=0,...,r;). Associated to each pair (X), L(\) is the 7 x r-matrix
Ricre = ((R}Cﬁ)qu) defined by
Li(DK; (N = Ki(DL; (V)

(35) (Ricc)!? = DIDL —

(07 =255

l:zi N A:Zj

Let us remind the following statement from [3].

PROPOSITION 3.1. Suppose that the matrices IC(X), L(A) interpolate the data
of Problem (IP). Then the matrix P = Ry is a solution of the Lyapunov equa-
tion

(3.6) PZ - Z'P=V*W - W*V

if and only if for all indices i,j such that z; = Z; the following consistency condi-
tions hold

(37 DY (LK) = Ki(ML;(N))

Aez = 0 (0<p<min{r,r;}).
One can rewrite the equalities (3.1) in the form
(38)  DLGMNBO) ~ LNAN)|,_, =0 (=1....m:0<p<r),

where L£(\), (A) is any pair of matrices which interpolate the data V, W.
Let the pair {A(X), B(A)} be a solution of Problem (IP,) such that

(3.9 det (B(z;) + zjA(z;)) #0 (j=1,...,m).
Associated to the pair {A()\), B(\)} is an equivalent pair {A()), B(\)}
1

(3.10) A\ = AN (BO) +2A(N) Y, B = BO(BO) +AA(N)

COROLLARY 3.2. Let the pair {A(X\), B(A\)} be a solution of Problem (IP,)
which satisfies (3.9) and the pair K(X), L(N) be defined by

(3.11) K() = (AVCQ) + LADAR),  L(V) = (M) + L) B,

where KK(X), L(N\) is any pair which interpolates the data V,W. Then the r x r-
matric ((R;E Z)qu) is a solution of the Lyapunov equation (3.6).

Proof. The matrices K()), £()) interpolate the data V,W. Indeed

(3.12)
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)\:Zi

= (LA = KNBAAMAN) +BA) )| =0

(3.13)

foralli=1,...,m; p=0,1,...,r; and satisfy the equation

LIVKD) = KMNLN)* =0

is a neighborhood of the set {2;}72,. It follows from Proposition 3.1 that the
matrix P 4p satisfies the Lyapunov equation (3.6). &

The matrix Pap = ((Rg Z)f;’) is said to be the Pick matrix corresponding
to the pair {A, B} and Problem (IP,).

REMARK 3.3. It follows from the symmetry condition (iii) of Definition 1.1

that ﬁ()\) = ﬁ(X)ﬂ E(A) = E(A)* Making use of these equalities one can rewrite
the matrix P4p in the form

(3.14) wMW=Dm§@@BW%Q_fwm”%mﬂh_k,
where
(3.15) D, (1) = (IK;(1) + Ei(l))(B(Z)* + lA(Z)*)_l.

PROPOSITION 3.4. Let an Ny-pair {A(X),B(A)} be a solution of Prob-
lem (IP:), X be a positive matriz and let the conditions (3.9) be satisfied both
for {A(N), BN} and {XY2A(N), X Y2B(\)}. Then Pap =Pxi/24 x-1/25-

Proof. The matrix P = Py1/24 x-1/2p associated with the pair {X/2A(N),
X~12B()\)} and Problem (ﬁsﬁ) can be written in the form

(3.16) PP = DYDL | &,(1) BUTAQ) = AW BRY @(A)*} ,
! A =X A=
l—Zi, )\—Zj
where
(3.17) &%(l) = (IK;(DX + L;())(BO)* +1A1)* X)L
To prove the equality Pap = P it is sufficient to show that
(3.18) DY ®;(1)],_,. = D} ®;(l) (i=1,....m;p=0,1,....,1).
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Indeed, it follows from (3.13) that

(319) D [0 + L)BOWO]|  =Dp L)),

l:Zi

for each matrix function ¥(l) holomorphic at I = z;. From (3.19) and the identity
(BO)* +IAD)") ' =[x + B(I)(I — X)|(BO)* +1AQ)*X)~
it follows that

Dre:(1)| = Dp{ () + L)X (BA) + 140 X) !

l=z;
+ (IK(1) + L (1) B()(I - X)(BG)*HA@)*X)’IHZ .

=Dy {(l’Ci(l)X+£i(Z)X+£-(l)(I—X))(B() FLAQ X)L
PG X + L) (BA)* +1AD X) Y|,
=DP &;(1) o

DEFINITION 3.5. Let {A(X), B(A)} be a solution of Problem (IP,), which
not necessarily satisfies (3.9) and let X be a positive n x n-matrix such that the
pair {X1/2A, X~1/2B} satisfies (3.9). Then the matrix P45 := P defined by the
formulas (3.16) is said to be the Pick matriz corresponding to the pair {A, B} and
Problem (IP,). In turn, the pair {A(X), B(\)} is said to be associated with the
Pick matriz P.

The definition is correct by Proposition 3.4. The cases where some columns
Vjo or Wjo of the data matrices V,TW vanish are not excluded if K # 0 (see
Example 4.11 below). If, for example, Vig = 0 (or Wip = 0) then it follows
from (3.6) that PX(z1 — 21) = 0 and, therefore, P = 0. This is impossible if P
is a positive nondegenerate matrix. It is natural to assume, however, that at least
one of the columns Vjg or Wj is not trivial. Moreover, we assume that the data

matrices V, W, Z satisfy the assumption

(3.20) ﬁ ker(W + V' Z)Z7 = {0}.
j=0

Now we are in a position to formulate Problem IP,(V, W, Z, P).
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PrROBLEM IP,(V,W, Z,P). Given are:
(i) points z1,...,zm € C\R; integers n,m € N, r1,...,7pm,k € Zy, 7 =
(rj +1);
(ii) n x r-matrices V, W of the form (3.2) such that the assumption (3.20)
is fulfilled;
(iii) m x n-matrix functions I(\), £L(\) defined and locally holomorphic on
C\ R which interpolate the data V, W;
(iv) A Hermitian solution P of the Lyapunov equation (3.6).
Find: N,-pair {A(\), B(\)} holomorphic at the points z; (j = 1,...,m) such
that the equations (3.8) hold and P45 = P.
We shall consider the case where the Pick matrix P is nondegenerate. The

NgE

j=1

indefinite degenerate Nevanlinna-Pick problem was investigated in [33].

THE MODEL OPERATOR. The operator approach to Problem IP, (V, W, Z, P)
was elaborated in [3]. We apply the model operator from [3] to the case k # 0.
Let B be the linear space of formal sums

321)  f(t)=fo+EM)H (L eC, fLeC El)= (W +tV)(Z—-1t)),
equipped with the inner product
(3.22) [fs9l = (Pfi,91)r + (f2,92)n (9= g2+ E(t)g1)-

If the Pick matrix P is nondegenerate then the space B is a Pontryagin space of

the negative index sq_ (P).

LEMMA 3.6. The mapping T : {f1, fo} — f(t) = fo + E(t)f1 from C* ® C"
into B is an isomorphism iff the assumption (3.20) holds.

Proof. Tt follows from the equality
fO)=faot WHVY(Z-t) " fr=(fo=VI)+W+VZ)(Z-t)"' Ny

BB) g vh) -V Y ey,

j=0
that f(t) =0 if and only if fo — Vfi =0 and f; € ker(W +V Z)Z7 for all j > 0.
Assume that the hypothesis (3.20) holds and f(t) = 0. Then it follows

from (3.23) that f; = fo = 0. Conversely, assume that f; € ﬁ ker(W +V Z)Z7,
j=0
(fi #0) and let f(t) =V fi+ (W +tV)(Z —t)~ ' f1. Then
fy=-W+Vv2)Y zit70tf =0,

Jj=0

while f; # 0. Therefore, the mapping Z has a nontrivial kernel. 1
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Due to Lemma 3.6 one can consider the model space B as a space of rational
functions. Let us consider the multiplication S in B which corresponds to the
linear manifold

S={r@).tfO} | F(t),tf(t) € H}

(3.24)
={Vf+EWf,-Wf+E@t)Zf}|feC}

PROPOSITION 3.7. S is a symmetric operator and the point spectrum of S

s empty.
Proof. The first statement is implied by the Lyapunov equation (3.6). As-
sume that A € 0,(5). Then it follows from the relation

S=A={Vi+EW,-(W+AV)f+EB)(Z-Nf}[feC}

that there is f # 0 such that (Z — \)f = 0, (W + AV)f = 0. This implies

f€ N ker(W +VZ)Z7, which contradicts the assumption (3.20). &
=0

Moreover, as is shown below (see Proposition 4.1) S is a simple symmetric
operator in B with deficiency indices n4 (S) = n. Let G be the embedding mapping
G : C" C B. Then G* is the projection from B onto C" and G*G = Ic~. Let ey,
be a standart basis in C", (j =1,...,m; p=0,...,7j).

PROPOSITION 3.8. Let A be a selfadjoint extension of the relation S with
the exit in a bigger Pontryagin space I1 D B such that z; € p(4) (i =1,...,m).
Then A is a minimal extension of S iff A is G-minimal.

Proof. In order to prove G-minimality of the extension A it is sufficient to
prove the inclusion

(3.25) BCI(G,A) :=cls{Gh+ (A—XN)"'Gf | f,h € C", X € p(A)}.
Indeed, C™ C H(G,Z). Foralli=1,...,m, we have
—E(t)eio = {(S —z) HW +Z,V) + V}eio € II(G, A).

Analogously, for all i =1,...,m, p=0,...,r;, we obtain

(3.26) —E(t)e;, = zp:(ﬁ —Z) (A —7) "YW +ZV) + Ve ok € II(G, A).
=0

This proves the inclusion (3.25). The inverse statement is evident. 1
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As shown in [30], Problem IPo(V, W, Z, P) is solvable if and only if the matrix
P is nonnegative. In the next theorem the condition sq_(P) < « is proved to be
necessary and sufficient for Problem IP,(V, W, Z, P) to be solvable in the class Nj.

THEOREM 3.9. Let P be nondegenerate.

(i) If sq_(P) < K then for each minimal selfadjoint extension A of the
relation S with the exit in a bigger Pontryagin space II > B such that f-f(ﬁ) =K
and zj € p(ﬁ) (j =1,...,m), the Ny-pair defined by the equality

(327)  {AN), B} ={-G* (A= NG, I+ AG*(A-)N)"'G} (\ep(A)

is a solution of Problem 1P .(V,W, Z,P).

(ii) Conversely, let the Ny-pair {A(N), B(A)} be a solution of Problem
IP.(V,W,Z,P). Then sq_(P) < k. If, additionally, B(A) + NA(\) = I then the
pair {A(N), BO\)} has a representation (3.27), where A is a minimal selfadjoint
extension of the relation S such that z; € p(A) (j=1,...,m).

Proof. (i) Let the Ny-pair {A(N\), B(\)} admit a representation (3.27) in
which A is a minimal selfadjoint extension of S in a Pontryagin space IT D B and
zj € p(A) (j =1,...,m). Then the following equality holds

DY{ Ki(A) + (MCi(A) + Li(N) G R } |,
L % Ki(A) + (A (N) + L;(N)G* Ry, d\
i

271 (A = z;)ptt
Y
L J5° GG + (K0 + LG Ry,
(3.28) R = sy
L]{’Cz O+ LONG B gy
2 A=z ’
Y
p
Y (G (Vi Wiy G R R,
k=0

Here Ry = (A—X)"! and v = OB(z;,¢) where B(z;,€) = {\: |[A—z]| < e} C p(A).
Setting @;p = —E(t)esp (i = 1,...,m; p = 0,...,7; — 1) we obtain from (3.26)
and (3.28)

DY { Ki(N)B(A) = Li(A)AN) Hy—s,

Gag) - DAUGO) = KGO+ LONANY s,

p *
= <G* Z RE{R:GW +7,V) + GV}ei,pk> = (G*pi)* = 0.

k=0
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Therefore, the pair {A(\), B(\)} satisfies the equations (3.8).
Using (3.29) one can rewrite the equality (3.28) in the form

DY {K(A) + (AKi(A) + Li(A)G R} [,

(3.30) = DY {(MG(A) + Li(N)G RN = G}y _, -
It follows from (3.26), (3.28) and (3.30) that

P = [E(t)ejq, E(t)ei]
= DADZL {(ACi(A) +Li(N)G* Ry (1= GG™) Ry (K (1) + L (1)) }| ==,

(3.31) = D’;Dz{(mi(A) i Li(A))B(A)A(u); :f(A)B(u)*
0+ £560)°

= (Pag)i}.

Thus the pair {A(\), B(A\)} is a solution of Problem IP.(V, W, Z, P).

(i) Conversely, let the N,-pair { A(A), B(A)} be a solution of Problem IP(V,
W, Z,P) such that B(A)+AA(\) = I in a domain O. Then in view of Theorem 2.4
there exists a G-minimal selfadjoint relation A in I = C" @11, (where G : C™ C II
is an embedding operator) such that the following representation holds

(3.32) {AN), BN} = {—~G*(A =N "1G, I + \G*(A—)\)"'G}

and O C p(g) Let us define a linear operator U from B into II by

p
Uﬁpip = Z(A - Ei)_k((A - Ei)_lG(W + El‘/) + GV)eip,k
(3.33) k=0
(i=1,...,m;p=0,...,15);
UGf=Gf YfecCm

It follows from (3.32), (3.29) and (3.31) that
[U(pilﬂU@jq] = PZI;Q = [@ip#qu] (Zv.] = 17' -,y p = 0,...,7’1'; q= 07"'7Tj)5

[Upip,Gf] = 0= [0ip,Gf], [Gf.Gf]=[Gf,Gf] (VfeCm).

Hence, the operator U is isometric from B into II. The inclusion A = USU~! (C g)
is implied by the relations (3.26), (3.33). One can identify now S with the operator
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A and, therefore, A is a minimal extension of S. The inequality sq_ (P) < & follows
from the representation (3.31).

Suppose now that {A(\), B(A\)} is a solution of Problem IP,(V,W,Z, P)
and the matrix B(X) + AA(X) is degenerate for some z; (j = 1,...,m). Then
by Lemma 2.6 there is a nonnegative invertible matrix X such that det (B(z;) +
2; X A(z;)) # 0 forall j = 1,...,m. The pair {X/2A(\), X~1/2B(\)} is a solution
of Problem IP,(V, W, Z,P) with the data matrix {V, W} = {X¥/2V, X ~1/2W}.
Therefore, sq_(P) < k. 1

COROLLARY 3.10. IfP is nondegenerate and k := sq_(P) < K then Problem
IP~(V, W, Z,P) has a solution.

Proof. In the case where k = k it follows from Proposition 1.9 that there is
a selfadjoint extension Ay of the operator S such that z; € p(4o) (j =1,...,m).
The solvability of Problem IP,(V, W, Z,P) is implied by Theorem 3.9.

In the case where kK > k we consider a boundary triple 7 = {H, o, I';} for S*
such that Ag = ker T'y. Let M (A) be the corresponding Weyl function and let 7(\)
be any function from the class N~ holomorphic at the points z; and such that
det7(zj) #0 (j =1,...,m). Then the polynomials A;(e) = det (e7(2;) + M(z;))
have a finite number of zeros. Let us choose € > 0 such that Aj(e) # 0 for all
j=1,...,m. It follows from Theorem 3.2. that there is a minimal selfadjoint
extension A D S in a Pontryagin space II such that = (II) = % and zj € p(A) for
all j =1,...,m. Now the statement is implied by Theorem 3.9 1

PRroproOSITION 3.11. Suppose that for some choice of k numbers A\; € Cy
(NjF#z,j=1,...,5 k=1,...,m) the following condition holds
(3.34) rank (V*: (Z* = A\) "'V o0 (25 = \) V) = (ki + D).

Then all solutions of Problem 1P (V, W, Z ,P) are functions.

Proof. Suppose that there exists a solution {A(X), B(A\)} of Problem
IP,.(V,W, Z,P) such that for some points A; € C; and vectors (0 #)f; € C"
(j =1,...,641) the following relations are fulfilled

(335) A()\J)fj =0, B()\j)fj #0 (]:17,I€+1)

As usual, we may take B(A) + MA(A\) = I. Then, in view of Theorem 3.9, there
exist a Pontryagin space > B, a selfadjoint extension A of S and an embedding
operator G : C C II such that the equality (3.27) holds. Let us set hj = (A —
M)7TIGf (G=1,...,6+1). Then

(3.36) {h;,Gf; +A\jh;} € A, G*h;=0 (Vj=1,....k+1).
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Since 0 = [ij+)\jhj7 hk] - [hj, Gfk+)\khk] = ()\j —Tk)[hj, hk] (j, k=1,..., Kj-l-l)
the linear space Ls.{h; | j = 1,...,k + 1} is neutral and, therefore, the vectors
h; are linearly depending. Let (for definiteness) hyt1 = > ojh,. Setting fo =
j=1
K

for1 = 20 ajfj, fi = (Mat1 — Aj)ay fj we obtain from (3.36) {O,Gfo + 2 (A —

K
j=1 j=1

)\j)*lej'-} € A. Making use of the relation
(3.37) E(t)—E\N) =(S— NV +E@)(Z -\,

we obtain

0=(fo,Va)n + Z[(Z* X)) TIG S E(t)a]

= (fo. Va)u + Y _f}, (A= X) N (Et)z — E(N;)z)]
j=1
= (fo, Vo) + 3 _f1,V(Z = X)) ra+ E(t)(Z - X;) 'a]
j=1
= (V*fo,)r + > _((Z° = X)) 'V [, ),
j=1

for all Vo + E(t)x € D(S) (z € C"). Thus we have the equality V* fo + > (Z* —

Jj=1
Aj)TIVE S = 0. In view of (3.34) this implies fo = f{ = --- = f. = 0. Hence
we obtain the equalities a;f; =0 (j = 1,...,K), fet1 = 0 which contradict the
assumption foy1 #0. 1

4. SOLUTION MATRIX

In what follows we suppose that the Pick matrix P of Problem IP~(V, W, Z, P) is
nondegenerate and « := sq_(P) < K. In this case S is a symmetric operator in B
with deficiency indices (n,n) and one can find explicit formulas for all the objects

of the representation theory which are connected with the operator S.

PrROPOSITION 4.1. Let P be a nondegenerate symmetric matrixz. Then:

(i) the space B is a reproducing kernel space with the reproducing kernel

(4.1) Kt,\)=I+E®OPTEN* AeC\{Z1,....Zm});
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(ii) the defect subspace Ny of the operator S takes a form Ny = {K(t,\)h
heC"};
(iii) S is a simple symmetric operator.

Proof. (i) The first statement is implied by the following equality

[f(t)v K(t7 )‘)h] = (f27 h)n + (P.flv PilE(/\)*h)r

(4.2)
— 1 (f2+ BV 1) = B* F(N)

where h € C™ and f(t) is a vector function of the form (3.21).
(ii) It follows from (4.1) that K (¢, A\)h € N for all h € C" since

[(t = X)f(t), K (£, Mh] = h* (A= X) f(A) =0

for all f(t) € D(S). Therefore, {K(t,A) | h € C"} C N, for all A € C\
{Z1,...,Zm}. As follows from Lemma 3.6, the subspace {K(t,\)h : h € C"}
is n-dimensional. It coincides with Ny since dim My = n.

(iii) Assume that f € B and f is orthogonal to K(¢,A\)h for all A € C\
{Z1,...,Zn} and h € C™. Then it follows from (4.2) that A*f(A\) = 0. Hence
fA)=0. 1

PRrROPOSITION 4.2. Let a subspace L = GC™ C B be a scale subspace of the
operator S. Then:
(i) p(S, L) = C\ {Z1,...,Zm} and the operator functions P(\) and Q(A)
take the form

(43)  PNS=FN). QNF=V(Z-N"'f (YAep(S.L): f €B).

(4.4) P(oo)f = fa= V1= f(o0), Qoo)f =-Wfi,

where f is a vector function of the form (3.21);
(i) the adjoint operators P(A)* and Q(X)* are calculated by

(4.5) P\)*h=K(t,\h, QW\)*h=EHP HZ*-X)"'V*h,

(4.6)  P(o00)*h = K(t,00)h =1 —Et)P'V*  Q(c0)*h = —E(t)P'W*h;

(iil) the adjoint linear relation S* has the representation
(4.7
S ={f=A{f. 1"} ={fo,5f0} +P(c0)"l1 + Q(c0)*ly : lo, 11 € C", fo € D(5)}
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and a boundary triple for S* can be defined by
(48) Tof =lo=f(00), Tif =l =Pef' —Q)f;

(iv) The resolvent matrix Weo(X) of the operator S corresponding to the
boundary triple (4.8) takes the form

Wee (A)
(4.9) V(Z - NPV T-V(Z-))"'Pwr

B (I C (W AVY(Z = N)PTIVE A+ (W AV)(Z — A)1P1W*> '

Proof. (i) It follows from the identity (3.37) that for all A € C\ {Z1,...,Zm}

the vector function f(t) = fo + E(t) fi can be decomposed as

Ft) = fN) = EMfi = EN L = (S =NV + EM)(Z = X" f1 € R(S = N).

This yields the equalities (4.3). Similarly, it follows from the relation f(¢) =
(VA+E®)f1)+ (f2— Vfi) that oo € p(S, L) and the equalities (4.4) hold.
(ii) It follows from (4.2) and (4.3) that

[P, f1 = (h, f(X))n = [K(E, A, f(1)];
[QN)*h, fl = (W V(Z =N i) = (Z" = X)WV D, fi)r
= [BEOPH(Z" =XV h, fi].

This proves the equalities (4.5). Analogously, the equalities (4.6) are implied by
(4.2) and (4.4).

(iii) Since oo € p(S, L), the representation (4.7) and the formulas (4.8) are
direct corollaries of Theorem 2.12 and Proposition 2.13.

(iv) Using the relation P(A\)*h = {K(t, \)h, NK (¢, \)h} and the formulas (4.5),
(4.8), one obtains for A € p(S,L),h € C"

CoP(A\)*h = P(c0)K(t, \)h = K (o0, \)h
=h—VP Y Z* = X\)"H(W* + AV*)h;

(4.10)

L1P(A)*h = Pr(AK(t, \)h) — Q(c0) K (t, A)h

(4.11) _ _ _
=M+ WP Y Z* = X)"H (W™ + AVH)h.

On account on the formulas (4.8), (4.4) and (4.5), the application of the operators
Iy, Ty to the vector function Q(A)*h = {Q(N\)*h, AQ(A\)*h + h} yields

(412) FoO(N)*h = P(oo) QX h = —VP (2 = X)'V*h,

(4.13) T1Q(N)*h = PL(NQ(\)*h+h)— Q(00) Q(\)*h = h+ WP (Z* = X) "'V *P.

Therefore, the formula (4.9) is implied by the relations (4.10)—(4.13) and (2.24). 1
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Let us define a matrix function Q. () by the equality

Qoo (N) = (AI é) Woo(A) = oy + (?//) (Z - A)1P1<?//)*J2m

0 I
J2n—<_[ O)

REMARK 4.3. An arbitrary resolvent matrix W (\) of the operator S is re-
lated to the matrix W (A) by the equality W(X) = W (A)U* where U is a
Jop-unitary matrix (see Remark 2.19). One can find the explicit formula for the
resolvent matrix Wy () (a = @) of the operator S corresponding to the boundary

triple (2.20). The corresponding solution matrix Q,()) takes the form

AT

7 0) Wa(A) = Ian+(A—a) <vg> (Z)\)lPl(Za)*<I‘/I//>*J2n,

2 = (

In the case k = 0, the resolvent matrices W,(\) and W, (\) were found in [3]

using a different method.

LEMMA 4.4. Let the Pick matriz P be nondegenerate, k :=sq_(P) < K and
let W(X) be a resolvent matriz of the operator S such that the matriz way (A) ™! has

the holomorphic continuation at the points z; (j =1,...,m). Then the formula

B(X) AT () -1
4.15 = W(A A
119 (o) = (o) won (5 ) oy
establishes a one-to-one correspondence between the set of those solutions
{A(N), B(\)} of Problem IP~(V, W, Z,P) which satisfy the assumptions

(4.16) BA)+ XA\ =1
and the set of N~ -pairs {o(N\), (N} such that z; € p(p,¢) (j =1,...,m) and

(4.17) P(N) 4+ war (A) " wa(N)p(N) = 1.
Proof. Let the N~-pair {A()\), B()\)} be a solution of Problem IP~(V, W, Z, P)

which satisfies the assumptions (4.16). In view of Theorem 3.9 there exists a self-
adjoint extension A of the operator S such that zj € p(A) (j=1,...,m) and the
following equality holds

wn (R)-( DE) v
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Here G is the embedding operator G : C* C II. Let the Weyl function M) =
wa1 (A)"Lwaa () of S correspond to a selfadjoint extension Ag. It follows from
(2.21) and (2.23) that z; € p(Ay) (j =1,...,m). In view of Theorems 2.3 and 2.17
there exists an N~ -pair {{, 12} holomorphic at the points z; (j = 1,...,m) such
that

(4.19) det (¢(z;) + M(2)@(z)) #0 (j=1,...,m).

and the following equality holds for all A € p(A4) N p(S, L) N p(Ao)

B(\) ~

G(A-N"'@ ~ -1
) o ) (w21 (\)FON) + wan(NFN)

(4.20) ( ;

It follows from (4.18) and (4.20) that

— W) (
(A)

e(A)

(4.21) - ( AT > W) (%EY
(A)

(A)

(4.22)

are holomorphic at the points z; (j = 1,...,m). The condition (4.17) is implied
by (4.22).

Conversely, let {¢,%} be an N~ -pair holomorphic at the points z; (j =
1,...,m) which satisfies the conditions (4.17) and let a pair {A(\), B(\)} be de-
fined by the equality (4.15). It follows from (4.15) that

TR ) 1) B

This implies

B(A) + AA(N) = (w21 (N $(A) + w2z (N (A)) war (A) 7
= w21 (N) (P(A) + MN)p(N) wr (\) " = 1.
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In accordance with Theorem 2.17 there exists a minimal selfadjoint extension A
of the operator S such that z; € p(g) (j =1,...,m) and the following equality
holds

(é*(g_lx)—lé> _ W()\)(w

According to Theorem 3.9, the pair {A()\), B(A\)} defined by the equality (4.15) is
a solution of Problem IP~(V, W, Z,P). &

THEOREM 4.5. Let the matriz P be nondegenerate and r = sq_(P) < K.
Then the formula

B (>\)> <¢(/\)>
4.24 = Q. () ,
424 () == (50
establishes a one-to-one correspondence between the set of all the solutions
{A(N), B(\)} of Problem TP~(V,W, Z,P) and the set of N~_ _-pairs {p(A),¥(\)}
holomorphic at the points z; (j =1,...,m) such that:
: : P(A)
i) the matriz Qoo (A
v ;ZA)("”(A)
ii k Qoo (A =n,(j=1,...,m).
(ii) ran N ((,0()\)) ‘A:zj n, (j m)

Proof. Step 1. Let an Ng-pair {A()\), B(A)} be a solution of Problem
IP~(V, W, Z,P) such that B()\) + AA(A) = I. Then in view of Theorem 3.9 there

is holomorphic at the points z; (j =1,...,m);

exists a selfadjoint extension A of the operator S in a bigger space IT such that

zj € p(A) (j =1,...,m) and the following equality holds

(4.25) (ig;i) - (_AI é) (G*(Z“I”_lﬂ (A € p(A)).

Here G is the embedding operator G : C" C II.

In view of Proposition 1.9 there is a selfadjoint extension Ag of the operator
S in the space II such that z; € p(Ag) (j =1,...,m). Let T = {H,[0,I'1} be a
boundary triple for the relation S* such that ker 'y = Ay and let M (\) and W (A)
be the Weyl function and the resolvent matrix corresponding to the boundary

triple 7 and the scale space £ = C™. Then the matrix functions

war(A) 7 = y(N) L, war(A)waa(X) = M(N)
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are holomorphic at the points z; (j = 1,...,m) and the resolvent matrix W(\)
is related to the matrix W () by the equality W(A) = W (A\)U*, where U is a
Jop-unitary matrix in H & H. In view of Lemma 4.4 there exists an N~_ -pair

(B, G} such that 2, € (G, 5(4) and
(ain) = (G o) oo (G ) e =0 (365

where ~
(P <o (e
e(A) PN wa (M)t
Step 2. Let the pair {A()\), B(A\)}) be an arbitrary solution of Problem
IP~(V, W, Z,P). In view of Lemma 2.6 there is a positive matrix X such that

det (B(zj) + 2; X A(z;)) #0 (j=1,...,m).

Alongside with Problem IP~(V, W, Z, P) let us consider Problem IPZ(XN/, W, Z,P)
with the data {V, W} = {X1/2V, X~1/2I¥'} and let us set

(Gon) =% () (e saxtacn) ™
)~( _ Xfl/z 0 .
( 0 X1/2>

The pair {A()\), B(A)}) is a solution of Problem IP;(V,W,Z,P) and B()\) +
MA(X) = I. As was shown in Step 1, the following equality holds

EO\)) 5 <1Z(>\)>

4.27 -~ == Qoo >\ ~ )

427 () == (500

where {QE(/\),’(Z()\)} is an N~ -pair holomorphic at the points z; (j = 1,...,m)
and Q. ()) is a solution matrix of Problem IP;(‘N/, W, Z, P) related to Q(A) by

(4.26)

(4.28) Qoo (N) = XQuo (M) X1

The equalities (4.26), (4.27) and (4.28) yield the equality (4.24) with

1/’0‘) _ y-1 7/’()‘) —1/2 1/2
(4.29) <W)> _% (w)) (X12B(\) + AX2A(N).

Step 3. Conversely, let the N~_ -pair {¢,%} be holomorphic at the points
zj (j = 1,...,m) and satisfy the assumptions (i), (ii). As follows from Re-
mark 2.16, the pair {A(\), B(\)} defined by the equality (4.24) is also a gen-
eralized Nevanlinna pair. In view of Lemma 2.6 there is a nonnegative invert-
ible matrix X such that the matrices X ~V/2B(z;) + 2;X/2A(z;) are invertible
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for all j = 1,...,m. Let us consider Problem IP;(V,W,ZP) with the data
{V, W} = {XY2V, X~1/2W} and the corresponding resolvent matrix Wa(\) and
the solution matrix Q. (). Using the equalities (4.24), (4.28), we obtain
=~ e (P 0 -1\ ¢ (A
Weoo (M) X = XQo (A

=) = (7 %) T (GG

_ —X2A(N)
- (X—1/2B(>\) - AX1/2A()\))'

(4.30)

Let a pair {$(A),9(A)} be defined by col {Z(A), (M)} = Xcol {o(A),p(\)}. It
follows from (4.30) that the matrix

A = D21 (AP (A) + T2 (NP(N) = X2(B(N) + AXA(N)

has a holomorphic continuation at the points z; and A(z;) are invertible for all
j=1....m.

Let Sx be the model operator corresponding to Problem IP;(‘N/, /W/, Z,P).
In accordance with Theorem 2.17, there exists a G-minimal selfadjoint extension
A x of the operator Sx such that the following equality holds

o (P (3
It follows from (4.24) and (4.31) that
(- )

- )?QOC(A)<

)A(A)l, X p(Ax) N p(Sx. £).

This implies that the L-resolvent G*(A — A)~'G is holomorphic at the points
zj (j =1,...,m). In view of Remark 2.2, this implies that z; € p(A). As follows
from Theorem 3.9, the pair {A(\), B())} is a solution of Problem IP~(V, W, Z, P)

and, therefore, the pair {A()), B(A)} is a solution of Problem IP~(V, W, Z,P). 1

REMARK 4.6. If the two-sided interpolation Problem IP~(V,W, Z,P) has
symmetric interpolation points, that is z; = % for some j,k = 1,...,m. this
parametrization is not satisfactory since the behaviour of the parameter {¢, v}
at the points z; is not specified. Namely, the matrix function ws;(A) is not holo-
morphic at the point z; and the assumption z; € p(p,®) is not enough for the
condition (i) of Theorem 4.5 to be satisfied at the point z;.
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ONE-SIDED INTERPOLATION PROBLEM. In the case where the interpolation Prob-
lem IP;(V, W, Z,P) has no symmetric interpolation points one can simplify the
statement of Theorem 4.5. In particular, this happens if Problem IPz(V, W, Z,P)
is a one-sided interpolation problem that is all the points z; are in the upper
halfplane C,.

In this case the Lyapunov equation has a unique solution (see [3]) P = (P}})

LiK; ()" = Ki(AL; (1)

P4 _ P14
(4.32) PP = DYDY 2

A=zi,u=z;

called the Pick matrix of Problem IP,(V,W, Z) := IP,(V, W, Z, P). The solution
matrix Qs (A) of the one-sided interpolation problem is holomorphic at the points
zj ( = 1,...,m) and the hypothesis (i) of Theorem 4.5 becomes superfluous.
Moreover, it follows from (4.25), (4.29) that z; € p(p, ) for all the pairs {¢, 9}
which parametrize the set of solutions of Problem IP, (V, W, Z).

PROPOSITION 4.7. Let Problem IP~(V,W, Z) has no symmetric interpola-
tion points and the Pick matriz P be nondegenerate and x := sq_(P) < R.
Then the formula (4.24) establishes a one-to-one correspondence between the set
of all solutions {A(\), B(A)} of Problem IP~(V, W, Z) and the set of N~_ -pairs
{o\),¥(N)} such that z; € p(o,9) (j=1,...,m) and
w(zj)> =n (=1,...,m).
o(z;)

An N~ -pair {¢()),%(A)} is said to be an ezcluded pair in the parametriza-
tion (4.24) of the solutions of Problem IP . (V, W, Z) if the conditions (4.33) are not
fulfilled. The excluded parameters of the indefinite Nevanlinna—Pick problem were

(4.33) rank Qo (z;) (

investigated in [14], [2]. Subject to a signature of defect subspaces of the model
operator S, the case where Problem IP,(V, W, Z) has no excluded parameters is
possible. This observation from [14] is based on a general fact from the extension
theory of symmetric operators in Pontryagin spaces ([23]) and can be generalized
to the case of Problem IP,(V,W, Z). Let us denote by A, the set of the points
X € p(S) such that the defect subspace N is positive.

THEOREM 4.8. ([23]) Let S be a simple symmetric operator in a Pontryagin
space. A point A € p(S) is not an eigenvalue of a regular selfadjoint extension of
S if and omly if A € AL

Let us rewrite the condition A € Ay for the model operator S of Prob-
lem IP,(V,W, Z) in terms of the reproducing kernel K(\, p). In view of Proposi-
tion 4.1 and the equality

(K (t, Vh, K(t, V)] = K (N Nh - (A € p(S, L), h e C")
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the condition A € p(S, £L)NA is equivalent to the positivity of the matrix K (X, X).
In the case where A = z;, the condition z; € Ay is equivalent to the condition z; €
AL which, in turn, is equivalent to the condition K(z;,2;) >0 (j =1,...,m). An
application of Theorem 4.8 to the model operator S yields the following statement.

PROPOSITION 4.9. Let Problem IP . (V, W, Z) has no symmetric interpolation
points, the Pick matriz P be nondegenerate, k = sq_(P) and let the matrices
K(z;,2;) be positive for all j = 1,...,m. Then Problem IP.(V,W,Z) has no
excluded parameters.

Proof. Let Ag be a selfadjoint extension of the operator S corresponding to
the boundary triple 7. In view of Theorem 4.8, z; € p(Ap) for all j =1,...,m.
It follows also from Theorem 4.8 and Theorem 2.17 that the matrix way (A)p(N) +
waa(A)@(A) is invertible at the points z; (j = 1,...,m) for every No-pair {p, ¢}
and, therefore, the assumptions (ii) of Theorem 4.5 are fulfilled. Moreover, it
follows from the identity B(z;) + 2z; A(zj) = wa1(2;)¥(2;) + waa(zj)¢(z;) that all
solutions of Problem IP, (V, W, Z) satisfy the assumptions det (B(z;) + z;A(z;)) #
0,7j=1,...,m. 1

EXAMPLE 4.10. Let us consider Problem IP; (V, W, Z) with the data matri-

o8 1 0 21 3 i 0
V= Cow= ("), 2= ).
1 0 0 0 0 -2i
—92 i
Then P = ( E)) and the solution matrix Q. (\) takes the form
—i
N+ =3i(A+i) —6A 0
1 0 A1) (A +2i 0 0
Qoo ()\) =N /N A ( + 1)( + 1) 2
A +1)(N+ 2i) 0 0 A +4 0
0 0 S+ 2D) (A1) +2i)

One can check that the parameter {0, I} is excluded at the point i. Let us note
also that the kernel matrix K (A, A) is not positive at the point z = i: K(i,i) =

0 -1/2
-1/2 1)
Let us consider a special case of Problem IP,(V, W, Z) where there are no

multiple points and the matrices V; coincide with the identity matrices I,, (j =
1,...,m).

NEVANLINNA-PICK PROBLEM. Given: n,m € N, z; € C\R, W, € B(C") (j =
L,...,m). Find: n x n-matriz function F(\) € N~(C") such that F(z;) = W;
(j=1,...,m).
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The data of the problem are block-matrices

V=" 1), W=W;... W), Z=diag(zI,)"

Jj=1
The Pick matrix P has the block form P = (P;y)}%_, where

_ W =Wy

zZj — Zk

Py,

Let us write the solution matrix and the inverse to the Pick matrix in the block

form Q(A) = (x(N)3 j=1, P71 = (1) T4y Where Qjp, mjx are n X n-matrices.

COROLLARY 4.11. Let k :=sq_(P) < K. Then the formula

(4.34)  F(A) = (Qu)9) +Q12(0)e(N) Q21 (NP () + Q22 (A)p(A) !

describes all solutions of the Nevanlinna—Pick problem 1P (V, W, Z) when {p, ¢}

ranges over the class .7\7;_}’€ and satisfies the conditions

(4.35) det (Q21(2;)(25) + Q22(z)p(2;)) #0 (G =1,...,m).

It follows from Proposition 3.11 that the conditions (4.33) and (4.35) are
equivalent in this case. The formula like (4.34) was obtained first by D. Arov,
V. Adamyan and M. Krein in [1] where this problem in the scalar generalized Schur
class was reduced to the Schur—Takagi problem. The matrix case was investigated
in [20].

One can simplify the assumptions K (z;, z;) > 0 of Proposition 4.9. Indeed,
in this case the defect subspaces sz and Ng]. have the same signature. Namely,

N, =span{K(t,Z;)h: h € C"},
Nz, = E()PT'H;,

H; =span{ejni1,--- €41}
where e; is nm-vector with the entries dx;, (k,I =1,...,m-n). Let h = (0,...,0, h;,
0,...,0) € H;. Then it follows from the equality

[E(t)P~'h, EQ)P~'h] = h*P~'h = him;;h;

that the positivity of the matrix K (z;, z;) is equivalent to the positivity of the ma-
trix m;; for all j = 1,...,m and, therefore, the following analog of Proposition 4.9
holds.
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COROLLARY 4.12. Let the Pick matrix P of Nevanlinna—Pick Problem
IP.(V,W,Z) be nondegenerate and k = sq_(P). If z; belongs to Ay or, equiva-
lently, mj; > 0 for all j = 1,...,m, then Problem IP.(V,W, Z) has no excluded

parameters.

The statement of Corollary 4.12 was proved in [14]. Moreover, as was shown
n [14], the scalar Nevanlinna—Pick problem has a unique excluded parameter at
the point z; in the case where m;; = 0 and infinitely many excluded parameters if
T < 0.

5. INTERPOLATION IN THE GENERALIZED STIELTJES CLASSES

ProBLEM IPEF(V, W, Z,P). Given arc:
(i) n,m € N, Tj,E,EG Zy z € C\R (j=1,...,m);

(ii) n x r-matrices V, W of the form (3.2) such that the assumptions (3.20)
are fulfilled;

(iii) m x n-matrix functions K(A), £(A) defined and locally holomorphic on
C\ R which interpolate the data V, W;

(iv) A Hermitian solution P of the Lyapunov equation (3.6).

Find: Nfz—pair {A(X), B(A\)} holomorphic at the points z; (j = 1,...,m)
such that the gquations (3.8) hold and P45 = P.

Let r x r-matrix P_ be defined by P_ := PZ —V*W. A solvability criterion
for Problem IP% *(V,W, Z,P) is implied immediately by Theorem 3.9.

_ THEOREM 5.1. Let the matrices P, P_ be nondegenerate. If Problem
IPT{Tk(V7 W, Z,P) is solvable the following inequalities hold

(5.1) k:=sq_(P) <K, k:=sq (P_)<Ek.

If (5.1) s fulfilled then the formula (3.27) establishes a one-to-one correspondence
between the set of solutions of Problem IPik(V, W, Z,P) such that B(A)+MA(\) =
I and the set of L-resolvents G*RAG (R € Q%(S)) of the relation S holomorphic
at the points z; (7 =1,...,m).

Proof. Let the pair {A(\), B(A)} be a solution of the Problem IPik(V, W, Z)
such that B(A)+AA(X) = I. In view of Theorem 3.9, it admits the representation

(5.2) {AN), BN} = {~G*(A=N"'G, T+I\G(A-)N"'GY,
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where A is a G-minimal selfadjoint extension of the model relation S. It follows
from (5.2) that for all A € p(A), f € C", the following equality holds

(53)  Im(BOfAANS) =ImAR\GS,Gf]  (Ry=(A—=N)7").

Using the Hilbert identity one obtains from (5.3) for all A € C4

(5.4) Im (BA) £, AN f) =Im A [(I + AR))Gf, RA\Gf].

In view of the G-minimality of /Nl, the last equality yields the equivalence:

{AA(A), B(A)} is an Ni-pair if and only if the extension A has N*-property. Thus

the statement of Theorem 5.1 is implied by Theorem 3.9 and by the equality (5.4). 1
PROPOSITION 5.2. Let the matrices P and P_ be nondegenerate and let

Too = {C", Ty, I'1} and T_ = {C", Ty, I'[ } be the boundary triples defined by the

equality (4.8) and by

oo () (e )

Then:

(i) the model operator S has N*-property where k = sq_(P_);

(ii) the extensions Sy :=kerI'y and S :=kerI'| coincide with Sy and Sk
respectively;

(i) the resolvent matriz W_(X) of the operator S corresponding to the bound-
ary triple T_ is related to W (X) by the equality W_(\) = (u);j()\))2 =

i,j=1
Weo(MNUE.
Proof. The first statement is implied by the equality

(Sf(), f@) = =WV +®ZSf)=P-f. f)
where f(t) = Vf+ E(t)f, f € C". In view of (4.10), (4.11), the Weyl function
M(X) corresponding to the boundary triple 75, takes the form

M) = [A+WPHZ* = N)' (W +avH)] -

(5.6) —1
I =VPTHZ =N (W AV

Since the matrix P_ = PZ — V*W = Z*P — W*V is invertible, it follows from
the equivalence 0 € p(I, — W*VP™1Z7*) & 0 € p(I, — VP 1Z7*W*) that
M (0) € B(C™), namely
M) =WP ' Z7*W*(I - VP 'Zz7*W*) " = WP_'W*.

As follows from (5.5), the Weyl function corresponding to the boundary triple
T_is related to M(\) by the equality M_(\) = M(\) —WPZ'W* = M(\)—M(0)
and, therefore, M_(0) = 0. In view of Proposition 2.8 this implies the equality
ker Fl_ = SK.

The third statement is implied by (5.5), and Remark 2.19. 1
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COROLLARY 5.3. Let the matrices P,P_ be nondegenerate and k :=
sq_(P) <&, k:=sq_(P_). Then Problem IP»}Ek(V, W, Z,P) is solvable.

Proof. As was mentioned in Proposition 5.2, the operator S has N*-property.
In view of Proposition 2.11, there is a selfadjoint extension A of S with N*_property
such that z; € p(A) (j = 1,...,m). The solvability of Problem IP=*(V, W, Z, P)
is implied now by Theorem 5.1. 1 "

THEOREM 5.4. Let the matrices P and P_ be nondegenerate and let the
inequalities (5.1) hold. Then the formula

(5.7) (i&;) =Q_(\) @85) (Q-(\) = Qe (NU?)

establishes a one-to-one correspondence between the set of all solutions of Problem
IP;_/k(V,VV,Z,P) and the set of Ni_(ifk)—pairs {©(A),¥(N)} holomorphic at the

points z; (j =1,...,m) and such that the assumptions (i), (ii) of Theorem 4.5 are

fulfilled.

Proof. Let the N~-pair {A(\),B(\)} be a solution of Problem
IP~(V, W, Z,P) which is related to an N~__-pair {¢1()\),%1(A)} by the equality

63 (3w) == (1)

One can rewrite the equality (5.8) in the form (5.7) where the N~  -pair
{©(A),¥(\)} is defined by
(zb(A)) _ - <¢1(/\)>
P(A) ~ \e1(N)

which is also holomorphic at the points z; (j =1,...,m).
In the case where the pair {A()\), B(\)} satisfies the conditions (4.16), it
admits a representation (4.25), where A is a minimal selfadjoint extension of the

operator S such that z; € p(A) for all j =1,...,m (see Theorem 3.9). It follows
from (5.7) and (4.25) that

() )

Let now {A(N),B(\)} € N=F. Then it follows from Theorem 5.1 that the

extension A has N k_property. Using Theorem 2.18 and Proposition 5.2 one obtains
from (5.9) that {o(N), (AN} € N;‘_(’:"”. In the case where the conditions (4.16)



INTERPOLATION IN GENERALIZED NEVANLINNA AND STIELTJES CLASSES 183

do not hold, it is enough to find a positive matrix X satisfying (4.16) and to repeat
the reasonings from the proof of Theorem 4.5 (Step 2).

Conversely, let the NZ 7R _pair {¢©(A),9¥(\)} be holomorphic at the points

—k
zj, ( =1,...,m). Then the operator A from (5.9) has Nz-property and by virtue
of Theorem 5.1 {A(X\), B(A\)} € Ni%. |
Using Theorem 5.4 and the equivalence
{A(V), B} € NJF & {=B(), AN} e N
we obtain the following description of solutions of Problem IP{E(K W, Z,P). Let

us set

I, VP 'v*
P, :=PZ+4+ WV, U+( +

o > 04 () = 2 (VU7
~COROLLARY 5.5. Let the matrices P,P, be nondegenerate. If Problem
IP%’“(V, W, Z,P) is solvable then the following inequalities hold

(5.10) ki=sq_(P) <R, ki=sq_(Py)<k.
The formula

B\ Y(N)
(511 (A(A)) =20 (M)

establishes a one-to-one correspondence between the set of all solutions of Problem
% +(k—k ) ) .

IP%r (V,W, Z,P) and the set of NE—(H )—pazrs {@, ¥} holomorphic at the points z;

(j =1,...,m) and such that the assumptions (i), (ii) of Theorem 4.5 are fulfilled.

Proof. Let the pair {A(N),B(\)} € Ngﬁ be a solution of Problem

IP‘;H“(V,WZ,P). Then the pair {—B()), A(\)} belongs to the class Nik and
by Theorem 5.4 it admits the representation

(o) = Cz=ome () (5 o))
'(—Vf{%v* Ii) (i&;)

where {@(\), ()} € ]\N/'Z__(i_k). Multiplying this equality by J3, from the left one
obtains the following formula

B(A)) (—w(A)) ({/5(/\)>

= Qoo (NUZ =Q.: (M) 2 ,

(ac) = a0 () = e (53

which establishes a one-to-one correspondence between the set of all solutions
of Problem IPX*(V, T, Z,P) and the set of pairs {9} = {1, —¢} € Ng_(’;"“)

holomorphic at the points z; (j = 1,...,m) and such that the assumptions (i),
(ii) of Theorem 4.5 are fulfilled. 1
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ONE-SIDED INTERPOLATION IN GENERALIZED STIELTJES CLASSES. Let all the
interpolation points z; be in C,. Then the description of all the solutions of

Problem IPik(V, W, Z) takes the following form.

PROPOSITION 5.6. Let the matrices P and P_ be nondegenerate and let the
inequalities (5.1) hold. Then the formula (5.7) establishes a one-to-one correspon-
dence between the set of all solutions of Problem IPik(V,VV,Z) and the set of

N:(E_k)-pairs {o\),¥(N)} such that z; € p(e(N),¥(N)) (j=1,...,m) and

pal
¥(z) :
(5.12) rankQ_(zv)< =n (j=1,...,m).
7\e(z)
Alongside with Problem IP;Tk(V, W, Z) let us consider Problem IP%;(‘N/, w, Z)
where V = VZ, W = W. Let P and P, = PZ + W*V and Q. ()) be the Pick
matrices and the solution matrix (respectively) associated with Problem H:%|r K’(17,

W, 7). The straightforward calculations show that
~ ~ I, 0 ~ I, 0
513) P=P_, P, =2"PZ Q_(N) =01\ .
(5.13) CPe=zez (7 Jew=nw (Y]
LEMMA 5.7. The pair {A(X), B(A\)} is a solution of Problem IP%E(V, W, Z)
if and only if the pair {A\A(N), B(A\)} is a solution of Problem IP%E(VZ, W,Z).

Proof. Let us note first that the following equivalence holds
{A(), B} € N=F & {MA(N), BO)} € Ng,

Let the pair {A(M\), B(A\)} be a solution of Problem IP»E’“(V,VV,Z) and a pair
K(X), L(A) interpolate the data V, W. Then the pair MC(A), £(A) interpolates the
data V =V Z, W. Indeed, it follows from (3.4) that

DY (K, = o (UGN 4+ p(K: (1))

p!

)\=Zi

= (ADRK(N) + DY) | = w i+ Vi
where z;V;;, + V;%,_; are the rows of the matrix Z*V*. The equalities (where
i=1,...,m;p=0,1,...,m; Vi _1 =0)
(5.14) DY (MGNB) = LA, =0

implied by (3.8) show that the pair {AA(X),B(\)} is a solution of Problem
IPXN(VZ,W,Z).
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COROLLARY 5.8. Let the matrices P and P be nondegenerate and let the
inequalities (5.10) hold. Then the formula (5.11) establishes a one-to-one corre-
spondence between the set of all solutions of Problem Ing(V, W, Z) and the set of

Ng_(i_k)—pairs {o(N),¥(N)} such that z; € p(p(X),¥(N) (=1,...,m) and

(5.15) rankQJr(zj)(ZEZD =n (j=1,...,m).

Let us state some sufficient conditions for Problem IP%’“(V, W, Z) to have no
excluded parameters in terms of reproducing kernels. Let K (¢, \) be the reproduc-
ing kernel of Problem IP~ ®(V,W, Z) and let K_(t, ) be the reproducing kernel of

Problem IP%E(VZ, W, 2)
K (t,AN=I+E OP'E_(N*, E_(t)=W+tVZ)(Z—-t)~.

PRrROPOSITION 5.9. Let the Pick matrices P,P_ of Problem IP;k(V, W, Z)

be nondegenerate,

and let at least one of the matrices K(z;,z;) or K_(z;,z;) be positive for all
j=1,....,m. Then Problem IP;k(V, W, Z) has no excluded parameters.

Proof. Let K(z;,%;) > 0. Then it follows from Proposition 4.9 that Prob-
lem IP,.(V, W, Z) and, therefore, Problem IP_*(V, W, Z) have no excluded param-
eters at the point z;.

In the case where K_(zj,z;) > 0, one should consider Problem IP}"(V Z,
W, Z), where the reproducing kernel coincides with K _ (¢, ). As was shown above,
this problem has no excluded parameters at the point z; and all its solutions
{AA(X), B(A)} are described by the formula

(5.16) (ﬁf&) ey (Zji 8;) {o+ ), 62 ()} € N,

It follows from (5.16) and (5.13) that Problem IP_*(V, W, Z) also has no excluded

parameters at the point z; and its solutions are described by the formula (5.7)

where {p(A), ¥(\)} = {p+ (V). Moy (V) € Ng©. 1

A similar statement for Problem IP*(V, W, Z) is also true after the replace-
ment of P_ by P and of K_(A,A) by K (A \).
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EEXAMPLE 5.10. Let us consider Problem IP7%(V, W, Z) with the data ma-
trices V = col {1 — 1,0}, W = col{i,0}, Z = —i. Then P = —1, P_ = 1 and the
solution matrix _(\) takes the form

A+1 0 -2 0
1 0 A+i 0 0
A+i -2 0 A+1 0
0 0 0 A+i

—-1/4 4
Here K(i,i) = ( / O) and K_(i,i) = (5/ O) > 0. It follows from

0 1 0 1
Proposition 5.9 that Problem IP;°(V, W, Z) has no excluded parameters. How-

ever, Problem IP;!(V, W, Z) with the same data has infinitely many excluded

A4+1 0
parameters (for example {p, 1} = {2]2, < g A)} € No_l).

REMARK 5.11. The Nevanlinna—Pick interpolation problem in the Stieltjes
class S := N has been considered in [17] by the methods of the J-theory of
V.P. Potapov. The Nevanlinna—Pick problem in the generalized Stieltjes classes
NF* was studied recently in [2] where the set of excluded parameters of this
problem was thoroughly investigated. In particular, there was given a description
of this set in the scalar case. The statement of Proposition 5.9 generalizes to the
case of Problem IP;]C(V7 W, Z) the corresponding statement from [2], where the
assumption for the reproducing kernels to be positive in the interpolation points is
transformed into the assumption for the diagonal blocks of the inverses of the Pick
matrices to be positive (cf. Corollary 4.12). The general tangential and bitangential

interpolation problems for Stieltjes functions has been investigated in [32], [4], [7].
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