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Abstract. A two-sided indefinite interpolation problem in the class of gen-
eralized Nevanlinna pairs is considered. In the case where the Pick matrix is
nondegenerate a solvability criterion for the problem is given. All solutions of
the problem are described as a fractional linear transformations of a parame-
ter from a subclass of the Nevanlinna class. The nondegenerate interpolation
problem in the generalized Stieltjes class has the same solution matrix and
the parameter ranges over a subclass of the Stieltjes class. Sufficient condi-
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0. INTRODUCTION

The generalized Nevanlinna class Nκ(Cn) consists of n×n-matrix valued functions
F (λ) meromorphic on C+ such that the kernel (F (z)−F (ζ))/(z−ζ) has κ negative
squares on C+. In 1981, A.A. Nudelman ([30]) has considered the following prob-
lem: there are given points zj ∈ C+ (j = 1, . . . ,m) and n × 1-matrices Vjp,Wjp

(j = 1, . . . ,m; p = 0, . . . , rj − 1; n,m, rj ∈ N). Find an n × n-matrix function
F (z) which belongs to the generalized Nevanlinna class Nκ(Cn) and satisfies the
equalities

(0.1)
rj−1∑
k=0

V ∗jk(λ− zj)kF (λ) =
rj−1∑
k=0

W ∗
jk(λ− zj)k + O((λ− zj)rj )
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λ→ ζj , j = 1, . . . ,m.
For the problem to be solvable it is necessary and sufficient that the num-

ber sq−(P) of negative eigenvalues of the Pick matrix P calculated by the data
V,W of the problem does not exceed κ. In [31] a description of all solutions
of the problem (0.1) was obtained under the assumptions that the matrix P is
nondegenerate and sq−(P) = κ. In the definite case (κ = 0) tangential and bitan-
gential interpolation problems (0.1) have been studied in [18], [30], [5], [16], [4],
[3]. The Nevanlinna–Pick problem for generalized Schur and Nevanlinna functions
has been investigated in [1], [20], [19], [6], [14]. The solutions of this problem are
parametrized via a fractional linear transformation over a subset of the extended
class Ñ0(Cn) of Nevanlinna pairs {ϕ,ψ} (see Definition 1.1). A Nevanlinna pair
which can not serve as a parameter of this transformation is said to be an ex-
cluded parameter. The cases where the Nevanlinna–Pick problem has no excluded
parameters or has a unique excluded parameter were characterized in [14].

In the present paper the two-sided interpolation problem (0.1) in the class of
generalizedNκ-pairs is considered. The operator approach we apply to the problem
is similar to the one used in [3] for the case κ = 0. A symmetric operator acting
in some Pontryagin reproducing kernel space is associated with the data of the
problem. A description of all the solutions of the problem is shown to be reduced
to the problem of description of generalized resolvents of this model operator. An
application of the technique of boundary operators (see [21], [29], [13], [9]) enables
us to prove some new results in extension theory of Pontryagin space symmetric
operators (Propositions 1.9 and 2.11) to find a new formula (2.24) for the resolvent
matrix and to simplify proofs of some statements from [3] (Theorem 2.4). A
description of all the solutions of the problem (0.1) is given under the assumptions
that the Pick matrix P is nondegenerate and sq−(P) 6 κ. The cases where the
interpolation problem (0.1) has no excluded parameters are characterized in terms
of the reproducing kernel.

The Nevanlinna–Pick problem for Stieltjes functions has been considered
in [26], [17] and its tangential and bitangential generalizations have been studied
in [32], [4], [7]. The indefinite Nevanlinna–Pick problem for Stieltjes matrix valued
functions was investigated in [2]. The set of excluded parameters for this prob-
lem was characterized in terms of two Pick matrices P and P−. In Section 5 the
interpolation problem (0.1) in the classes of generalized Stieltjes pairs is consid-
ered. A solvability criterion is formulated in terms of the Pick matrices under the
assumptions that P and P− are nondegenerate. All solutions of the problem are
described as a fractional linear transformations of a parameter which ranges over
a subclass of the Stieltjes class. Sufficient conditions for the problem (0.1) to have
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no excluded parameters are given in terms of two reproducing kernels K(t, λ) and
K−(t, λ).

1. PRELIMINARIES

Generalized Nevanlinna pairs. Let H be a Hilbert space over the field C.
A linear subspace A in H2 = H × H is said to be a linear relation in H. Let us
denote by C̃(H) the set of closed linear relations in H. Let D(A) and R(A) be
the domain and the range of a relation A ∈ C̃(H); kerA,mulA := kerA−1 be the
kernel and the multivalued part of A respectively. Let B(H1,H2) (C(H1,H2)) be
the set of bounded (closed) linear operators from H1 into H2, B(H) := B(H,H).
The resolvent set ρ(A) of a relation A ∈ C̃(H) consists of the points λ ∈ C such
that (A− λ)−1 ∈ B(H). Let σ(A) = C \ ρ(A) be the spectrum and σp(A) be the
set of eigenvalues of the relation A.

If ρ(A) 6= ∅, then the relation A admits a representation A = {{ϕh, ψh} |
h ∈ H} where ϕ,ψ ∈ B(H). A family of linear relations τ(λ) ∈ C̃(Cn) is said to be
holomorphic on a domain O if there exist two holomorphic n×n matrix functions
ϕ(λ), ψ(λ) such that

(1.1) τ(λ) = {ϕ(λ), ψ(λ)} := {{ϕ(λ)h, ψ(λ)h} | h ∈ Cn}.

A kernel N (λ, µ) with values in B(Cn) is said to have κ negative squares on
O if N (λ, µ) = N (µ, λ)∗ and for all n ∈ Z+, λj ∈ O, hj ∈ Cn (j = 1, . . . , n)
the matrix ((N (λi, λj)hi, hj)ni,j=1 has at most κ negative eigenvalues and exactly
κ negative eigenvalues for at least one collection of λj , hj . To each pair of matrix
valued functions {ϕ,ψ} it is associated the kernel

(1.2) Nϕψ(λ, µ) =
ϕ(µ)∗ψ(λ)− ψ(µ)∗ϕ(λ)

λ− µ
.

Definition 1.1. A pair of n×n-matrix functions {ϕ(λ), ψ(λ)} holomorphic
on a domain O = O ⊂ C\R is said to be a generalized Nevanlinna pair (or Nκ-pair,
κ ∈ Z+) if:

(i) the kernel Nϕψ(λ, µ) has κ negative squares on O;
(ii) ψ(λ)∗ϕ(λ)− ϕ(λ)∗ψ(λ) = 0, ∀λ ∈ O;
(iii) rank {ϕ(λ)∗ : ψ(λ)∗} = n, ∀λ ∈ O.

Each Nκ-pair {ϕ,ψ} admits a holomorphic continuation on C \R (see Theo-
rem 2.4 below). Let us save the same notation for the extended pair and denote by
ρ(ϕ,ψ) the set where ϕ,ψ are holomorphic and satisfy the assumptions (ii), (iii)
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of Definition 1.1. Two pairs {ϕ,ψ} and {ϕ1, ψ1} are said to be equivalent if

ϕ1(λ) = ϕ(λ)H(λ), ψ1(λ) = ψ(λ)H(λ) for some holomorphic and invertible ma-

trix function H(λ) on O. The set of classes of equivalent Nκ-pairs is denoted by

Ñκ(Cn). If τ(λ) = {ϕ(λ), ψ(λ)} ∈ Ñκ(Cn) and ϕ(λ) is invertible, we shall write

ψ(λ)ϕ(λ)−1 ∈ Nκ(Cn). Let us consider Nκ(Cn) as a subset of Ñκ(Cn) identifying

a matrix H(λ) with the linear relation {I,H(λ)}.

Remark 1.2. The assumptions (ii), (iii) of Definition 1.1 for a family of

linear relations τ(λ) = {ϕ(λ), ψ(λ)} can be rewritten in the form τ(λ) = τ(λ)∗ for

all λ ∈ O. Indeed, if τ(λ) = τ(λ)∗ then, evidently, the condition (ii) is satisfied.

The assumption rank {ϕ(λ)∗ : ψ(λ)∗} < n yields kerϕ(λ) ∩ kerψ(λ) 6= {0} and,

therefore, dim τ(λ) < n for all λ ∈ O. Hence dim τ(λ)∗ > n for all λ ∈ O which

contradicts the assumption τ(λ) = τ(λ)∗. Conversely, let the assumptions (ii), (iii)

be fulfilled, then evidently τ(λ) ⊂ τ(λ)∗ for all λ ∈ O. It follows from (iii) that

dim τ(λ) = n, hence τ(λ) = τ(λ)∗.

Definition 1.3. AnNκ-pair {ϕ(λ), ψ(λ)} is said to be a generalized Stieltjes

pair (or N±k
κ -pair) if {ϕ(λ), λ±1ψ(λ)} ∈ Ñk. Moreover, Ñ±k

κ (Cn) stands for the

set of equivalence classes of N±k
κ -pairs in Cn.

Let N±k
κ (Cn) be the set of matrix functions F (λ) such that {I, F (λ)} is an

N±k
κ -pair. The classes N±0

κ (Cn) and N±k
0 (Cn) were introduced in [23] and [13]

respectively. In particular, the class N+0
0 (Cn) coincides with the Stieltjes class

S(Cn) of matrix valued functions F ∈ N0(Cn) which admit holomorphic nonneg-

ative continuations on the negative semiaxis ([25]).

Boundary triples. Let S be a closed symmetric linear relation in a Pontryagin

space (Π, [ · , · ]), ρ̂(S) be the set of regular type points of S and let its defect

subspaces Nλ = ker(S∗−λ) (λ ∈ ρ̂(S)) be finite–dimensional and let the deficiency

indices n±(S) = dimNλ (λ ∈ C± ∩ ρ̂(S)) coincide, n+(S) = n−(S) = n < ∞.

Denote the Pontryagin index of the space Π by κ−(Π).

The operator S is identified with its graph grS = {{f, Sf} : f ∈ D(S)}. An

extension Ã ∈ C̃(Π) of the relation S is said to be proper if S ⊂ Ã ⊂ S∗. Two

proper extensions Ã1 and Ã2 of the relation S are said to be disjoint if Ã1∩Ã2 = S.

Let us remind (see [9], [12] and [21], [29] for the case κ = 0) the definitions of

the boundary triple and the Weyl function of a symmetric linear relation S which

are used for a description of generalized resolvents of S.
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Definition 1.4. A set {Cn,Γ0,Γ1} where Γ0,Γ1 are linear mappings from
S∗ into Cn is said to be a boundary triple for the relation S∗ if the mapping
Γ : f̂ → {Γ0f̂ ,Γ1f̂} from S∗ into Cn ⊕ Cn is surjective and for all f̂ = {f, f ′},
ĝ = {g, g′} ∈ S∗ the following identity holds

(1.3) [f ′, g]− [f, g′] = (Γ1f̂ ,Γ0ĝ)Cn − (Γ0f̂ ,Γ1ĝ)Cn .

If {Cn,Γ0,Γ1} is a boundary triple for a linear relation S∗, then the mapping
Γ establishes a one-to-one correspondence between the set of selfadjoint extensions
Ã of the relation S and the set of selfadjoint relations τ in Cn

(1.4) Ãτ ↔ τ = −ΓÃτ = {{Γ0f̂ ,−Γ1f̂} | f̂ ∈ Ãτ}.

Conversely, for each τ = τ∗ ∈ C̃(Cn) the corresponding extension Ãτ can be find by
the equality Ãτ = ker(Γ1 + τΓ0). Naturally associated with each boundary triple
are two selfadjoint extensions of S, namely Aj := ker Γj (j = 0, 1). Let πj be the
projection onto the j-th component of Cn⊕Cn (j = 1, 2), N̂µ =

{
{f, µf} | f ∈ Nµ

}
(µ ∈ ρ̂(S)).

Proposition 1.5. ([8]) Let {Cn,Γ0,Γ1} be a boundary triple for the linear
relation S∗ such that ρ(A0) 6= ∅. Then the formula

(1.5) γ(λ) = π1(Γ0|N̂λ)−1, (λ ∈ ρ(A0))

correctly defines a holomorphic operator function on ρ(A0) with values in B(Cn,Nλ)
which satisfies the equality

(1.6) γ(λ) = γ(µ) + (λ− µ)(Ã− λ)−1γ(µ) (λ, µ ∈ ρ(A0)).

Definition 1.6. A matrix function M(λ) defined by the relation

(1.7) M(λ)Γ0f̂λ = Γ1f̂λ (λ ∈ ρ(Ã), f̂λ ∈ N̂λ)

is said to be the Weyl function of the operator S corresponding to the boundary
triple {Cn,Γ0,Γ1}.

Let us note that the Weyl functionM(λ) is correctly defined and holomorphic
on ρ(Ã) andM(λ) is aQ-function of the operator S corresponding to the selfadjoint
extension A0 in the sense of [23]. In the case where S is a simple operator (that is,
c.l.s.{Nλ : λ ∈ ρ̂(S)} = Π), the resolvent set ρ(A0) coincides with the holomorphy
set of the Q-function M(λ) ([25]). One can describe the spectrum of the extension
Ãτ (τ = τ∗ ∈ C̃(H)) in terms of τ and M(λ).
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Proposition 1.7. ([25], [12]) Let S be a simple symmetric operator,
{H,Γ0,Γ1} be a boundary triple for S∗, τ = τ∗ ∈ C̃(H), λ ∈ ρ(A0) and let M(λ)
be the corresponding Weyl function. Then

λ ∈ ρ(Ãτ ) ⇔ 0 ∈ ρ(M(λ) + τ).

Moreover, ρ(Ãτ ) coincides with the holomorphy set of the matrix function
(M(λ) + τ)−1.

Let Sn be a set of selfadjoint n× n-matrices.

Lemma 1.8. Let F (λ) be a polynomial n × n-matrix function and let Z be
the set of matrices B = B∗ such that the matrix function (F (λ) +B)−1 has no
holomorphic continuations at ∞. Then the set Sn \ Z is nonempty, open, and Z
is nowhere dense in Sn.

Proof. One can assume that detF (λ) 6≡ 0 without loss of generality. Let
F (λ) = (fij(λ))ni,j=1 and let Fij be the cofactors of the entries fij of the matrix
function F (λ). Assume that

deg detF (λ) < max
i,j

degFij(λ) = degFi0j0(λ).

Setting B0 = {zδii0δjj0 + zδij0δji0}ni,j=1, F (λ,B) := F (λ) +B, we have

(1.8) detF (λ,B0) = detF (λ) + (−1)i0+j0 (zFi0j0(λ) + zFj0i0(λ))− |z|2F i0j0i0j0
(λ)

where F i0j0i0j0
(λ) is a minor of the order n − 2 obtained by deleting the i0-th and

j0-th rows and columns of the matrix F (λ). By (1.8), there exists z ∈ C such that
deg detF (λ,B0) > deg detF (λ). Iterating this procedure one obtains a matrix
B = B0 + B1 + · · · + Bs such that the matrix function F (λ,B) satisfies the
inequality

(1.9) deg detF (λ,B) > max
i,j

degFij(λ,B)

and, therefore, the matrix function F (λ,B)−1 has a holomorphic continuation
at ∞.

Let E be a small perturbation of the matrix B. The invertibility of the
matrix F (λ) +B +E and the holomorphy of the inverse matrix at ∞ are implied
by the equality

F (λ) +B + E = (F (λ) +B)(I + (F (λ) +B)−1E).
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Let us consider the expansions of the polynomials detF (λ,B) and Fij(λ,B)

detF (λ,B) =
p∑
k=0

Fk(B)λk, Fij(λ,B) =
q∑

k=0

F kij(B)λk,

where Fk(B), F kij(B) are polynomials depending on B ∈ Sn. For every i, j, there
is an open set Oij ⊂ Sn such that d ≡ deg detF (λ,B) > dij ≡ degFij(λ,B) for
all B ∈ Oij .

Therefore, for all B ∈ Oij the following equalities hold

(1.10) Fk(B) = 0 (k > d), F kij(B) = 0 (k > dij).

Since Fk(B) = 0, F kij(B) are polynomials in n2 real variables (entries of B) the
equalities (1.10) are identities for all B ∈ Sn. Therefore, the set Z is contained in
the algebraic manifold of zeros B ∈ Sn of the equality Fd(B) = 0. The dimension
of this manifold does not exceed n2−1 and, therefore, Z is nowhere dense in Sn.

Proposition 1.9. Let S be a simple symmetric operator in a Pontryagin
space Π. Then for every collection of points zj ∈ C+ (j = 1, . . . ,m) there is a
selfadjoint extension Ã of the operator S such that zj ∈ ρ(Ã) (j = 1, . . . ,m).

Proof. Let {H,Γ0,Γ1} be a boundary triple for S∗ and let M(λ) be the
corresponding Weyl function. To prove the statement it sufficies (see Proposi-
tion 1.7) to construct an operator B = B∗ ∈ B(H) such that the matrix function
(M(z) + B)−1 has a holomorphic continuation at the points zj (j = 1, . . . ,m).
Assume that the matrix function M(z) has a pole of order kj at zj that is

(1.11) M(z) =
k∑
i=0

Mij(z − zj)−i +Mj(z)(z − zj), (Mij ∈ B(H), j = 1 . . . ,m),

where Mj(z) is holomorphic at the point zj . Let Fj(λ,B) =
k∑
i=0

Mijλ
i +B and let

Zj ⊂ Sn be the set of matrices B ∈ Sn such that the matrix function Fj(λ,B)−1

has no holomorphic continuation at ∞ (j = 1, . . . ,m). By virtue of Lemma 1.8,
the set Z =

⋃
j

Zj is nowhere dense in Sn. Let B ∈ Sn \ Z. Then, from the

equalities

M(z) +B = Fj(λj(z), B)
(
I + Fj(λj(z), B)−1Mj(z)(z − zj)

)
(λj(z) = 1/(z − zj), j = 1 . . . ,m) it follows that the matrix function (M(z)+B)−1

is holomorphic at zj . It follows now from Proposition 1.7 that zj ∈ ρ(ÃB) for all
j = 1, . . . ,m.
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2. GENERALIZED RESOLVENTS

Generalized resolvents of symmetric operators. Let Ã be a selfadjoint
extension of the relation S in a bigger Pontryagin space Π̃, PΠ be the orthogonal
projection from Π̃ onto Π, and κ = κ−(Π). The operator function

(2.1) Rλ = PΠ(Ã− λ)−1|Π (λ ∈ ρ(Ã))

is said to be a generalized resolvent of the relation S. An extension Ã = Ã∗ of the
relation S is said to be minimal if

(2.2) c.l.s.{Π + (Ã− λ)−1Π : λ ∈ ρ(Ã)} = Π̃.

Definition 2.1. A generalized resolvent Rλ is said to be from the class
Ωκ(S) if it admits a representation (2.1) in which Ã is a minimal extension of S
and κ−(Π̃) = κ̃ (κ̃ ∈ Z+).

Remark 2.2. If a generalized resolvent Rλ is holomorphic at the point
λ0 ∈ ρ̂(S) and the extension Ã generating Rλ is minimal, then λ0 is a regular
point of Ã. An explicit construction of such an extension for a densely defined
symmetric operator S was given in [23]. This construction can be carried over to
the case of a linear relation S.

Theorem 2.3. ([8], [15]) Let S be a simple symmetric operator in Π,
κ = κ−(Π) and {Cn,Γ0,Γ1} be a boundary triple of the relation S∗, and let M(λ)
be the corresponding Weyl function, λ0 ∈ ρ(A0) ∩ C+. Then:

(i) the formula

(2.3) Rλ = (A0−λ)−1−γ(λ)ϕ(λ)(ψ(λ)+M(λ)ϕ(λ))−1γ(λ)∗ (λ ∈ ρ(A0)∩ρ(Ã))

establishes a one-to-one correspondence between the set of generalized resolvents
Rλ ∈ Ω

κ̃
(S) holomorphic at the point λ0 and the set of classes of equivalent N

κ̃−κ-
pairs {ϕ,ψ} holomorphic at λ0 such that

(2.4) det (ψ(λ0) +M(λ0)ϕ(λ0)) 6= 0.

(ii) the formula (2.3) establishes also a one-to-one correspondence between
the set of all generalized resolvents Rλ ∈ Ω

κ̃
(S) and the set Ñ

κ̃−κ(C
n) of classes

of equivalent N
κ̃−κ-pairs {ϕ,ψ} such that

(2.5) det (ψ(λ) +M(λ)ϕ(λ)) 6≡ 0.
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Proof. (i) In fact, the first statement was proved in [11] (see also [15] for the
case of a standard operator), where the set of generalized resolvents was described
by the Krĕın’s formula

(2.6) Rλ = (A0 − λ)−1 − γ(λ)(τ(λ) +M(λ))−1γ(λ)∗ (τ(λ) ∈ Ñ
κ̃−κ).

It remains to note only that the condition 0 ∈ ρ(τ(λ0) +M(λ0)) for τ = {ϕ,ψ} is
equivalent to the condition 0 ∈ ρ(ψ(λ0) + M(λ0)ϕ(λ0)) and in this case (τ(λ) +
M(λ))−1 = ϕ(λ)(ψ(λ) +M(λ)ϕ(λ))−1.

(ii) The second statement is implied by the first one in view of the equivalence
given above. Thus, if Rλ ∈ Ω

κ̃
(S) then the set ρ(Ã)∩ ρ(A0) is nonempty and the

corresponding N
κ̃−κ-pair {ϕ,ψ} satisfies the condition (2.5). Conversely, if an

N
κ̃−κ-pair {ϕ,ψ} satisfies (2.5) then the operator function Rλ defined by (2.3) is

a generalized resolvent of the relation S and ρ(Ã) 6= ∅.

It is interesting to note that Theorem 2.3 contains a description of generalized
Nevanlinna pairs. In the case κ = 0 such description was obtained in another way
in [3].

Theorem 2.4. Let a generalized Nκ-pair {ϕ,ψ} be holomorphic on O and
satisfy the condition ψ(λ) + λϕ(λ) ≡ I (λ ∈ O). Then it admits a representation

(2.7) {ϕ(λ), ψ(λ)} = {−Rλ, I + λRλ} (λ ∈ O),

where Rλ = G∗(Ã − λ)−1G, Ã is a selfadjoint relation in a Pontryagin space Π̃,
G ∈ B(Cn, Π̃), G∗G = I. The relation Ã can be chosen G-minimal, i.e. such that

(2.8) Π̃ = c.l.s.{Gf + (Ã− λ)−1Gh : λ ∈ ρ(Ã); f, h ∈ Cn}.

In this case κ−(Π̃) = κ.

Proof. Let us consider a trivial linear relation S = {0} in Cn and a boundary
triple {Cn,Γ0,Γ1} of the relation S∗ = Cn ⊕ Cn, setting Γ0f̂ = f , Γ1f̂ = f ′

(f̂ = {f, f ′} ∈ S∗). Then the extension A0 = ker Γ0 coincides with the multivalued
part of the relation S∗ (A0 = mulS∗ = {0,Cn}), and the corresponding Weyl
function takes the form M(λ) = λI. In accordance with Theorem (2.3), there
exist a Pontryagin space Π̃ and a selfadjoint extension Ã ⊃ S in Π̃ such that the
minimal condition (2.8) is satisfied and the following equality holds

(2.9) Rλ = PCn(Ã− λ)−1|Cn = −ϕ(λ)(ψ(λ) + λϕ(λ))−1 = −ϕ(λ) (λ ∈ O).

It follows from (2.9) that

ϕ(λ) = −Rλ, ψ(λ) = I − λϕ(λ) = I + λRλ (λ ∈ O)

which coincides with (2.7). Here G is the embedding operator Cn ⊂ Π̃.
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It follows from Theorem 2.4 that each Nκ-pair {ϕ,ψ} admits a meromor-
phic continuation at C+ ∪ C− provided that ∆ϕ,ψ 6≡ 0 and the determinant
∆ϕ,ψ(λ) =det(ψ(λ) + λϕ(λ)) has at most κ zeros in C+

Remark 2.5. There exist Nκ-pairs {ϕ,ψ} such that ∆ϕ,ψ(λ) ≡ 0. For exam-
ple, τ = {1,−λ} is an N1-pair and ∆{1,−λ}(λ) ≡ 0. The spectrum of the selfadjoint
extension

Ã = {{col (a, 0), col (b, 0)} : a, b ∈ C}

corresponding to this pair {1,−λ} fills out the whole plane C.

Lemma 2.6. Let {ϕ,ψ} be an Nκ-pair which satisfies the assumptions of
Definition 1.1 on a domain O and zj ∈ O (j = 1, . . . ,m). Then there is a non-
negative invertible matrix X such that

(2.10) det (ψ(zj) + zjXϕ(zj)) 6= 0 (j = 1, . . . ,m).

Proof. In view of the condition (iii) of Definition 1.1, the ranks of the matrices
{ψ(zj)∗ : zjϕ(zj)∗} (j = 1, . . . ,m) are equal to n. Let us choose a nondegenerate
minor M of this matrix of the order n and denote by i1, i2, . . . , ik the indices of
the columns of the matrix ϕ(zj)∗ which are contained in M. Setting xl = t for
l = i1, i2, . . . , ik and xl = 0 otherwise, we obtain the matrixXj = diag {x1, . . . , xn}
such that

(2.11) ∆j := det (ψ(zj)∗ + zjϕ(zj)∗Xj) 6= 0 (j = 1, . . . ,m)

for t large enough.
Let us consider the functions ∆j(X) on the set of real diagonal matrices

X = diag{x1, . . . , xn}. Since the function ∆j(X) does not vanish identically on
Rn, its set Xj of zeros is at most an (n−1)-dimensional real variety in Rn. On the
other hand, the set of positive diagonal n×n-matrices is an n-dimensional variety.
Therefore, there exists a positive diagonal matrix X such that (2.10) holds for all
j(= 1, . . . ,m).

Symmetric operators with Nk-property

Definition 2.7. A closed linear Pontryagin space symmetric operator S is
said to have Nk-property (k ∈ Z+) if the form [A · , · ] has k negative squares and
ρ̂(S) 6= ∅.

In particular, a linear relation S with the N0-property is nonnegative in Π.
Denote by Extk̃S(−∞, 0) (k 6 k̃) the set of selfadjoint extensions Ã of S which
have N k̃-property.
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Let J be a fundamental symmetry in Π and let H = JS be a Hilbert space
symmetric operator in (Π, [J · , · ]) with Nk-property. There are two extremal
extensions HF and HK of the operator H in the class ExtkH(−∞, 0) defined by:

HF := s-R- lim
x→−∞

Hx, HK := s-R- lim
x→0

Hx,

where Hx = H+̇N̂x(H), N̂x(H) = {{fx, xfx} | fx ∈ Nx(H)}. The extensions
SF := JHF, SK := JHK are said to be the Friedrichs and the Krĕın–von Neumann
extensions of S. One can characterize them in terms of the Weyl function M(λ).

Proposition 2.8. ([9], [12]) Let S be a closed linear Pontryagin space sym-
metric operator with Nk-property, {Cn,Γ0,Γ1} be a boundary triple for the rela-
tion S∗ such that ρ(A0) 6= ∅, 0 6∈ σp(S), M(λ) be the corresponding Weyl function.
Then the following equivalences hold:

(i) A0 = SF ⇔ lim
x↓−∞

M(x) = ∞;

(ii) A0 = SK ⇔ lim
x↑0

M(x) = ∞;

(iii) A0 ∩ SF = S ⇔ M(−∞) := lim
x→−∞

M(x) ∈ [Cn]; in this case SF =

ker(Γ1 −M(−∞)Γ0);
(iv) A0 ∩ SK = S ⇔ M(0) := lim

x→0
M(x) ∈ [Cn]; in this case SK = ker(Γ1 −

M(0)Γ0).

Definition 2.9. A generalized resolvent Rλ ∈ Ω
κ̃
(S) is said to be from

the class Ωk̃
κ̃
(S) if it admits a representation (2.1) with a minimal extension Ã ∈

Ext k̃S(−∞, 0).

A description of the class Ωk̃
κ̃
(S) was given in [12] (see also [10] for the case

closD(S) = Π).

Theorem 2.10. Let S be a simple symmetric operator with Nk-property in
a Pontryagin space Π, κ := κ−(Π), T− = {Cn,Γ0,Γ1} be a boundary triple for S∗

such that A0 = SF and A1 = SK, ρ(A0) 6= ∅, and let M(λ) be the corresponding
Weyl function. Then the formula (2.3) establishes a one-to-one correspondence
between the set of generalized resolvents Rλ ∈ Ωk̃

κ̃
(S) holomorphic at the point λ

and the set of pairs {ϕ,ψ} ∈ Ñ−(̃k−k)
κ̃−κ

such that det (ψ(λ) +M(λ)ϕ(λ)) 6= 0.

Proposition 2.11. Under the assumptions of Theorem 2.10 the formula
(2.3) establishes a one-to-one correspondence between the set of all regular exten-
sions Ãτ of S with Nk-property and the set of all nonpositive selfadjoint linear
relations τ = {ϕ,ψ} ∈ C̃(Cn) such that det (ψ+M(λ)ϕ) 6≡ 0. For every collection
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of points zj, (j = 1, . . . ,m), there is a regular selfadjoint extension Ã of S with
Nk-property such that zj ∈ ρ(Ã) (j = 1, . . . ,m).

Proof. The first statement is immediate from Theorem 2.10. Let the Weyl
function M(λ) of the operator S corresponding to the boundary triple T− have
the expansions (1.11) and let Zj be the sets defined in Proposition 1.9. As follows
from Lemma 1.8, the set Z =

⋃
j

Zj is nowhere dense in Sn and, therefore, there is

a nonpositive matrix B ∈ Sn \ Z. In view of Theorem 2.10 the corresponding ex-
tension ÃB = ker(Γ1+BΓ0) has Nk-property. The reasoning from Proposition 2.9
shows that zj ∈ ρ(ÃB) for all j = 1, . . . ,m.

Representation theory of symmetric operators. Let L be a nondegene-
rate subspace of Π and PL be the Pontryagin space orthogonal projection from Π
onto L. A compressed resolvent PL(Ã − λ)−1|L of the extension Ã = Ã∗(⊃ S) is
said to be an L-resolvent of the operator S. Let us remind some facts from the
representation theory of M.G. Krĕın (see [22], [28], [13], [9]) which are necessary for
the description of L-resolvents. A point λ ∈ ρ̂(S) is said to be an L-regular point of
the operator S and is written as λ ∈ ρ(S,L) if the following direct decomposition
holds

(2.12) Π = R(A− λ)+̇L.

Similarly ∞ ∈ ρ(S,L) if D(S) is closed in Π and Π = D(S)+̇L. Let us define
two operator valued functions P(λ) and Q(λ) holomorphic on ρ(S,L). Let P(λ)
(P(∞)) be a skew projection from Π onto L parallel to R(S − λ) (D(S)) and let
Q(λ) (Q(∞)) be defined by the equality

(2.13) Q(λ) = PL(S − λ)−1(I − P(λ)), Q(∞) = PLS(I − P(∞)).

Let for all l ∈ L (see [9])

(2.14) P̂(λ)∗l := {P(λ)∗l, λP(λ)∗l}, Q̂(λ)∗l := {Q(λ)∗l, λQ(λ)∗l + l}.

Then P̂(λ)∗l, Q̂(λ)∗l ∈ S∗. Analogously, setting

(2.15) P̂(∞)∗l := {0,P(∞)∗l}, Q̂(∞)∗l := {l,Q(∞)∗l} (l ∈ L)

we obtain P̂(∞)∗l, Q̂(∞)∗l ∈ S∗. Indeed, P(∞)∗l ⊥ D(S) since

(2.16) [P(∞)∗l, h] = [l,P(∞)h] = 0 (∀h ∈ D(S)).

Further, for all h ∈ D(S) we obtain in view of (2.13)

(2.17) [Q(∞)∗l, h]− [l, Sh] = [l,Q(∞)h]− [l, Sh] = 0.

Hence {l,Q(∞)∗l} ∈ S∗. If λ ∈ ρ(S,L) then Nλ = P(λ)∗L (see [9]). Analogously,
if ∞ ∈ ρ(S,L), then mulS∗ = P(∞)∗L. Let us set ρs(S,L) = ρ(S,L) ∩ ρ(S,L).
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Theorem 2.12. Let L be a nondegenerate subspace of Π and λ ∈ ρs(S,L).
Then the following direct decomposition holds

(2.18) S∗ = S+̇P̂(λ)∗L+̇Q̂(λ)∗L.

Proof. In the case λ 6= ∞ the statement was proved in [9]. For all vectors
{f, f ′} ∈ S∗ we set f0 = (I − P(∞))f, l = P(∞)f. Then

{f, f ′} − {f0, Sf0} − {l,Q(∞)∗l} = {0, f ′ − Sf0 −Q(∞)∗l} ∈ S∗.

Therefore, there exists k ∈ L such that f ′ − Sf0 − Q(∞)∗l = P(∞)∗k. Thus we
have

{f, f ′} = {f0, Sf0}+ {l,Q(∞)∗l}+ {0,P(∞)∗k} ∈ S + P̂(∞)∗L+ Q̂(∞)∗L.

The inverse inclusion is evident.

Using (2.18) we determine a family of boundary triples for the relation S∗ in
the case when the set ρs(S,L) is not empty.

Proposition 2.13. Let L be a positive subspace of Π and ∞ ∈ ρs(S,L).
Then the boundary triple {L,Γ0,Γ1} of the relation S∗ can be defined by the for-
mulas

(2.19) Γ0f̂ = l0 = P(∞)f, Γ1f̂ = l1 = PLf
′ −Q(∞)f,

where

f̂ = {f, f ′} = {f0, Sf0}+ P̂(∞)∗l1 + Q̂(∞)∗l0 (f0 ∈ D(S), l0, l1 ∈ L).

Proof. Let ĝ = {g0, Sg0} + P̂(∞)∗k1 + Q̂(∞)∗k0 (g0 ∈ D(S); k0, k1 ∈ L).
Making use of (2.16), (2.17), (2.18) we obtain

[f ′, g]− [f, g′] = [Sf0 + P(∞)∗l1 +Q(∞)∗l0, g0 + k0]

− [f0 + l0, Sg0 + P(∞)∗k1 +Q(∞)∗k0]

= [Sf0, k0]− [l0, Sg0] + (l1, k0)− (l0, k1)

+ [Q(∞)∗l0, g0]− [f0,Q(∞)∗k0]

= (l1, k0)− (l0, k1).

Remark 2.14. If a = a ∈ ρs(S,L) then one can define a boundary triple of
S∗ by the formulas (see [13], [9])

(2.20) Γ0f̂ = l0 = PLf −Q(a)(f ′ − af), Γ1f̂ = l1 = P(a)(f ′ − af),
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where f̂ = f̂0 + P̂(a)∗l0 + Q̂(a)∗l1 (f̂0 ∈ S; l0, l1 ∈ L) (see [13], [9]).

Resolvent matrix. Setting in the resolvent formula (2.3)

(2.21)
a11(λ) = M(λ), a12(λ) = γ(λ)∗|L,
a21(λ) = PLγ(λ), a22(λ) = PL(A0 − λ)−1|L,

and taking into account that the operators a12(λ), a21(λ) are invertible for λ ∈
ρ(S,L) (see [9]) one obtains from (2.3) for λ ∈ ρ(S,L) ∩ ρ(A0) ∩ ρ(Ã)

(2.22)

PL(Ã− λ)−1|L
= a22(λ)− a21ϕ(λ)(ψ(λ) + a11(λ)ϕ(λ))−1a12(λ)

= a22(λ)− a21(λ)ϕ(λ)(a12(λ)−1ψ(λ) + a12(λ)−1a11(λ)ϕ(λ))−1

= (w11(λ)ψ(λ) + w12(λ)ϕ(λ))(w21(λ)ψ(λ) + w22(λ)ϕ(λ))−1,

where the matrices wij ∈ B(L) (i, j = 1, 2) are defined by

(2.23)
w11(λ) = a22(λ)a12(λ)−1, w12(λ) = a22(λ)a12(λ)−1a11(λ)− a21(λ),

w21(λ) = a12(λ)−1, w22(λ) = a12(λ)−1a11(λ).

The matrix W (λ) = (wij(λ))2i,j=1 is said to be the resolvent matrix of the operator
S corresponding to the scale space L and the boundary triple T . A simple formula
for the calculation of the resolvent matrix W (λ) was given in [9] (see [13] for the
Hilbert space case).

Proposition 2.15. Let L be a subspace of Π such that ρs(S,L) 6= ∅, T =
{L,Γ0,Γ1} be a boundary triple for S∗, G(λ) := col

(
− Q(λ),P(λ)

)
, Ĝ(λ)∗ :=(

− Q̂(λ)∗, P̂(λ)∗
)
. Then the resolvent matrix W (λ) is

(2.24) W (λ) =
(
ΓĜ(λ)∗

)∗ =

(
−Γ0Q̂(λ)∗ Γ0P̂(λ)∗

−Γ1Q̂(λ)∗ Γ1P̂(λ)∗

)∗
(λ ∈ ρ(S,L))

and satisfies the equality

(2.25)
J2n −W (λ)J2nW (µ)∗ = (λ− µ)G(λ)G(µ)∗;

J2n =
(

0 In

−In 0

)
, λ, µ ∈ ρ(S,L).

Remark 2.16. It follows from (2.25) that the kernels

(2.26)
J2n −W (λ)J2nW (µ)∗

λ− µ
, W (λ, µ) =

J2n −W (µ)∗J2nW (λ)
λ− µ



Interpolation in generalized Nevanlinna and Stieltjes classes 159

have κ negative squares. Let {ϕ,ψ} be an Nk-pair and the pair {ϕ̃, ψ̃} be defined
by (

ψ̃(λ)
ϕ̃(λ)

)
= W (λ)Φ(λ), Φ(λ) =

(
ψ(λ)
ϕ(λ)

)
.

Then it follows from (2.26) that the kernel

N
ϕ̃,ψ̃

(λ, µ) = Nϕ,ψ(λ, µ) + Φ(µ)∗W (λ, µ)Φ(λ)

also has a finite number κ′ (6 κ+ k) of negative squares.

The following description of L-resolvents of the operator S is implied by
Theorem 2.3 and by the formulas (2.22), (2.24) (see [9]).

Theorem 2.17. Let S be a simple Pontryagin space symmetric operator,
L be a positive subspace of Π such that ρs(S,L) 6= ∅, {L,Γ0,Γ1} be a boundary
triple of the relation S∗, and let W (λ) be the corresponding resolvent matrix, λ0 ∈
ρ(A0) ∩ ρ(S,L), κ = κ−(Π). Then the formula (2.22) establishes a one-to-one
correspondence between the set of L-resolvents PLRλ|L (Rλ ∈ Ω

κ̃
(S)) holomorphic

at the point λ0 and the set of classes of equivalent N
κ̃−κ-pairs {ϕ,ψ} holomorphic

at λ0 such that

(2.27) det (w21(λ0)ψ(λ0) + w22(λ0)ϕ(λ0)) 6= 0.

To prove this it remains to note that the matrix function w21(λ) is invertible
for all λ ∈ ρ(S,L) ∩ ρ(A0) and the corresponding Weyl function M(λ) takes the
form M(λ) = w21(λ)−1w22(λ). Therefore, the inequalities (2.4) and (2.27) are
equivalent.

A description of L-resolvents with N k̃-property is implied by Theorem 2.10.

Theorem 2.18. Let S be a simple Pontryagin space symmetric operator with
Nk-property, L be a positive subspace of Π such that ρs(S,L) 6= ∅, T− = {L,Γ0,Γ1}
be a boundary triple for the relation S∗ such that A0 = SF, A1 = SK, and let
W (λ) = (w−ij(λ))2i,j=1 be the corresponding resolvent matrix, ρ(A0) ∩ ρ(S,L) 6= ∅,
κ = κ−(Π). Then the formula

(2.28) PL(Ã−λ)−1|L = (w−11(λ)ψ(λ)+w−12(λ)ϕ(λ))(w−21(λ)ψ(λ)+w−22(λ)ϕ(λ))−1

establishes a one-to-one correspondence between the set of all L-resolvents PLRλ|L
(Rλ ∈ Ωk̃

κ̃
(S)) holomorphic at the point λ0 and the set of pairs {ϕ,ψ} ∈ Ñ−(̃k−k)

κ̃−κ
such that the nondegeneracy condition (2.27) holds.

Remark 2.19. Let T = {H,Γ0,Γ1} be an arbitrary boundary triple for the
relation S∗ related to the boundary triple T− by the equality Γ = UΓ−. It follows
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from (2.24) that the resolvent matrix W (λ) associated with the scale space L and
the boundary triple T is related to the matrix W−(λ) by the equality

(2.29) W (λ) = W−(λ)U∗.

Under the assumptions of Theorem 2.18, the formula (2.22) establishes a one-to-
one correspondence between the set of all L-resolvents PLRλ|L (Rλ ∈ Ωk̃

κ̃
(S))

holomorphic at the point λ0 and the set of pairs {ϕ,ψ} represented in the form

{ψ,ϕ} = U{ψ̃, ϕ̃} where {ϕ̃, ψ̃} ∈ Ñ
−(̃k−k)
κ̃−κ

and such that the nondegeneracy
condition (2.27) holds.

3. INTERPOLATION IN THE GENERALIZED NEVANLINNA CLASS

Problem (IPκ). Given are n,m ∈ N; κ, rj ∈ Z+, zj ∈ C \ R (j = 1, . . . ,m)
and n × 1-matrices Vjp,Wjp (j = 1, . . . ,m; p = 0, 1, . . . , rj), find an Nκ-pair
{A(λ), B(λ)} holomorphic at the points zj such that the following equalities hold

(3.1)
rj∑
k=0

V ∗jk(λ− zj)kB(λ) =
rj∑
k=0

W ∗
jk(λ− zj)kA(λ) + O

(
(λ− zj)rj+1

)
(λ→ zj ; j = 1, . . . ,m).

Let r =
m∑
j=1

(rj + 1). The n× r-matrices

(3.2) V = (V1, . . . , Vm), W = (W1, . . . ,Wm),

where Vj = (Vj0, . . . , Vjrj ), Wj = (Wj0, . . . ,Wjrj ) are called the data of the Prob-
lem (IPκ). Let Z be the r× r-matrix which is the direct sum of (rj +1)× (rj +1)-
Jordan boxes

(3.3) Zj =


zj 1 0

. . . . . .
. . . 1

0 zj

 (j = 1, . . . ,m).

Two m×n-matrix functions K(λ), L(λ) with rows Kj(λ), Lj(λ) defined and
locally holomorphic on C \ R are said to interpolate the data V,W of the Prob-
lem (IPκ) if (see [3])

(3.4)
1
p!
K(p)
j (zj) = V ∗jq,

1
p!
L(p)
j (zj) = W ∗

jp,
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(j = 1, . . . ,m; p = 0, . . . , rj). Associated to each pair K(λ),L(λ) is the r×r-matrix
RKL =

(
(RKL)pqij

)
defined by

(3.5) (RKL)pqij = Dp
lD

q

λ

Li(l)Kj(λ)∗ −Ki(l)Lj(λ)∗

l − λ

∣∣∣∣
l=zi, λ=zj

(
Dp
l =

1
p!

dp

dlp
)
.

Let us remind the following statement from [3].

Proposition 3.1. Suppose that the matrices K(λ), L(λ) interpolate the data
of Problem (IPκ). Then the matrix P = RKL is a solution of the Lyapunov equa-
tion

(3.6) PZ − Z∗P = V ∗W −W ∗V

if and only if for all indices i, j such that zi = zj the following consistency condi-
tions hold

(3.7) Dp
λ

(
Li(λ)Kj(λ)∗ −Ki(λ)Lj(λ)∗

)∣∣
λ=zi

= 0 (0 6 p 6 min{ri, rj}).

One can rewrite the equalities (3.1) in the form

(3.8) Dp
λ (Ki(λ)B(λ)− Li(λ)A(λ))

∣∣
λ=zi

= 0 (i = 1, . . . ,m; 0 6 p 6 ri),

where L(λ),K(λ) is any pair of matrices which interpolate the data V,W .
Let the pair {A(λ), B(λ)} be a solution of Problem (IPκ) such that

(3.9) det (B(zj) + zjA(zj)) 6= 0 (j = 1, . . . ,m).

Associated to the pair {A(λ), B(λ)} is an equivalent pair {Â(λ), B̂(λ)}

(3.10) Â(λ) = A(λ)
(
B(λ) + λA(λ)

)−1
, B̂(λ) = B(λ)

(
B(λ) + λA(λ)

)−1
.

Corollary 3.2. Let the pair {A(λ), B(λ)} be a solution of Problem (IPκ)
which satisfies (3.9) and the pair K̃(λ), L̃(λ) be defined by

(3.11) K̃(λ) = (λK(λ) + L(λ))Â(λ), L̃(λ) = (λK(λ) + L(λ))B̂(λ),

where K(λ),L(λ) is any pair which interpolates the data V,W . Then the r × r-
matrix

(
(RK̃,L̃)pqij

)
is a solution of the Lyapunov equation (3.6).

Proof. The matrices K̃(λ), L̃(λ) interpolate the data V,W . Indeed

(3.12)

(
K(λ)− K̃ (λ)

)(p)∣∣∣
λ=zi

=
(
(Ki(λ)B(λ)− Li(λ)A(λ))(λA(λ) +B(λ))−1

)(p)∣∣∣
λ=zi

= 0;
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(3.13)

(
L(λ)− L̃ (λ)

)(p)∣∣∣
λ=zi

=
(
(Li(λ)A(λ)−Ki(λ)B(λ))λ(λA(λ) +B(λ))−1

)(p)∣∣∣
λ=zi

= 0

for all i = 1, . . . ,m; p = 0, 1, . . . , ri and satisfy the equation

L̃(λ)K̃(λ)− K̃(λ)L̃(λ)∗ = 0

is a neighborhood of the set {zj}mj=1. It follows from Proposition 3.1 that the
matrix PAB satisfies the Lyapunov equation (3.6).

The matrix PAB =
(
(RK̃,L̃)pqij

)
is said to be the Pick matrix corresponding

to the pair {A,B} and Problem (IPκ).

Remark 3.3. It follows from the symmetry condition (iii) of Definition 1.1
that Â(λ) = Â(λ)∗, B̂(λ) = B̂(λ)∗. Making use of these equalities one can rewrite
the matrix PAB in the form

(3.14) (PAB)pqij = Dp
lD

q

λ

[
Φi(l)

B(l)∗A(λ)−A(l)∗B(λ)
l − λ

Φj(λ)∗
]∣∣∣∣
l=zi, λ=zj

,

where

(3.15) Φi(l) = (lKi(l) + Li(l))(B(l)∗ + lA(l)∗)−1.

Proposition 3.4. Let an Nκ-pair {A(λ), B(λ)} be a solution of Prob-
lem (IPκ), X be a positive matrix and let the conditions (3.9) be satisfied both
for {A(λ), B(λ)} and {X1/2A(λ), X−1/2B(λ)}. Then PAB = PX1/2A,X−1/2B.

Proof. The matrix P̃ = PX1/2A,X−1/2B associated with the pair {X1/2A(λ),
X−1/2B(λ)} and Problem (ĨPκ) can be written in the form

(3.16) P̃pq
ij = Dp

lD
q

λ

[
Φ̃i(l)

B(l)∗A(λ)−A(l)∗B(λ)
l − λ

Φ̃j(λ)∗
]∣∣∣∣
l=zi, λ=zj

,

where

(3.17) Φ̃i(l) = (lKi(l)X + Li(l))(B(l)∗ + lA(l)∗X)−1.

To prove the equality PAB = P̃ it is sufficient to show that

(3.18) Dp
l Φi(l)|l=zi

= Dp
l Φ̃i(l)

∣∣∣
l=zi

(i = 1, . . . ,m; p = 0, 1, . . . , ri).
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Indeed, it follows from (3.13) that

(3.19) Dp
l

[
(lKi(l) + Li(l))B̂(l)Ψ(l)

]∣∣∣
l=zi

= Dp
l

[
Li(l))Ψ(l)

]∣∣
l=zi

for each matrix function Ψ(l) holomorphic at l = zi. From (3.19) and the identity

(B(l)∗ + lA(l)∗)−1 =
[
X + B̂(l)(I −X)

]
(B(l)∗ + lA(l)∗X)−1

it follows that

Dp
lΦi(l)

∣∣∣
l=zi

= Dp
l

{
(lKi(l) + Li(l))X(B(l)∗ + lA(l)∗X)−1

+ (lKi(l) + Li(l))B̂(l)(I −X)(B(l)∗ + lA(l)∗X)−1
}∣∣∣
l=zi

= Dp
l

{
(lKi(l)X + Li(l)X + Li(l)(I−X))(B(l)∗ + lA(l)∗X)−1

}∣∣
l=zi

= Dp
l

{
(lKi(l)X + Li(l))(B(l)∗ + lA(l)∗X)−1

}∣∣
l=zi

= Dp
l Φ̃i(l)

∣∣∣
l=zi

.

Definition 3.5. Let {A(λ), B(λ)} be a solution of Problem (IPκ), which

not necessarily satisfies (3.9) and let X be a positive n × n-matrix such that the

pair {X1/2A,X−1/2B} satisfies (3.9). Then the matrix PAB := P defined by the

formulas (3.16) is said to be the Pick matrix corresponding to the pair {A,B} and

Problem (IPκ). In turn, the pair {A(λ), B(λ)} is said to be associated with the

Pick matrix P.

The definition is correct by Proposition 3.4. The cases where some columns

Vj0 or Wj0 of the data matrices V,W vanish are not excluded if κ 6= 0 (see

Example 4.11 below). If, for example, V10 = 0 (or W10 = 0) then it follows

from (3.6) that P 00
11 (z1 − z1) = 0 and, therefore, P 00

11 = 0. This is impossible if P

is a positive nondegenerate matrix. It is natural to assume, however, that at least

one of the columns Vj0 or Wj0 is not trivial. Moreover, we assume that the data

matrices V,W,Z satisfy the assumption

(3.20)
∞⋂
j=0

ker(W + V Z)Zj = {0}.

Now we are in a position to formulate Problem IPκ(V,W,Z,P).
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Problem IPκ(V,W,Z,P). Given are:
(i) points z1, . . . , zm ∈ C \ R; integers n,m ∈ N, r1, . . . , rm, κ ∈ Z+, r =

m∑
j=1

(rj + 1);

(ii) n × r-matrices V,W of the form (3.2) such that the assumption (3.20)
is fulfilled;

(iii) m × n-matrix functions K(λ),L(λ) defined and locally holomorphic on
C \ R which interpolate the data V,W ;

(iv) A Hermitian solution P of the Lyapunov equation (3.6).
Find: Nκ-pair {A(λ), B(λ)} holomorphic at the points zj (j = 1, . . . ,m) such

that the equations (3.8) hold and PAB = P.
We shall consider the case where the Pick matrix P is nondegenerate. The

indefinite degenerate Nevanlinna-Pick problem was investigated in [33].

The model operator. The operator approach to Problem IP0 (V,W,Z,P)
was elaborated in [3]. We apply the model operator from [3] to the case κ 6= 0.
Let B be the linear space of formal sums

(3.21) f(t) = f2 + E(t)f1 (f1 ∈ Cr, f2 ∈ Cn, E(t) = (W + tV )(Z − t)−1),

equipped with the inner product

(3.22) [f, g] = (Pf1, g1)r + (f2, g2)n (g = g2 + E(t)g1).

If the Pick matrix P is nondegenerate then the space B is a Pontryagin space of
the negative index sq−(P).

Lemma 3.6. The mapping I : {f1, f2} 7→ f(t) = f2 + E(t)f1 from Cn ⊕ Cr

into B is an isomorphism iff the assumption (3.20) holds.

Proof. It follows from the equality

(3.23)

f(t) = f2 + (W + V t)(Z − t)−1f1 = (f2 − V f1) + (W + V Z)(Z − t)−1f1

= (f2 − V f1)− (W + V Z)
∞∑
j=0

Zjt−(j+1)f1

that f(t) ≡ 0 if and only if f2 − V f1 = 0 and f1 ∈ ker(W + V Z)Zj for all j > 0.
Assume that the hypothesis (3.20) holds and f(t) ≡ 0. Then it follows

from (3.23) that f1 = f2 = 0. Conversely, assume that f1 ∈
∞⋂
j=0

ker(W + V Z)Zj ,

(f1 6= 0) and let f(t) = V f1 + (W + tV )(Z − t)−1f1. Then

f(t) = −(W + V Z)
∞∑
j=0

Zjt−(j+1)f1 ≡ 0,

while f1 6= 0. Therefore, the mapping I has a nontrivial kernel.
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Due to Lemma 3.6 one can consider the model space B as a space of rational
functions. Let us consider the multiplication S in B which corresponds to the
linear manifold

(3.24)
S = {{f(t), tf(t)} | f(t), tf(t) ∈ H}

= {{V f + E(t)f,−Wf + E(t)Zf} | f ∈ Cr}.

Proposition 3.7. S is a symmetric operator and the point spectrum of S
is empty.

Proof. The first statement is implied by the Lyapunov equation (3.6). As-
sume that λ ∈ σp(S). Then it follows from the relation

S − λ = {{V f + E(t)f,−(W + λV )f + E(t)(Z − λ)f} | f ∈ Cr}

that there is f 6= 0 such that (Z − λ)f = 0, (W + λV )f = 0. This implies

f ∈
∞⋂
j=0

ker(W + V Z)Zj , which contradicts the assumption (3.20).

Moreover, as is shown below (see Proposition 4.1) S is a simple symmetric
operator in B with deficiency indices n±(S) = n. Let G be the embedding mapping
G : Cn ⊂ B. Then G∗ is the projection from B onto Cn and G∗G = ICn . Let ejp
be a standart basis in Cr, (j = 1, . . . ,m; p = 0, . . . , rj).

Proposition 3.8. Let Ã be a selfadjoint extension of the relation S with
the exit in a bigger Pontryagin space Π̃ ⊃ B such that zi ∈ ρ(Ã) (i = 1, . . . ,m).
Then Ã is a minimal extension of S iff Ã is G-minimal.

Proof. In order to prove G-minimality of the extension Ã it is sufficient to
prove the inclusion

(3.25) B ⊂ Π(G, Ã) := c.l.s.{Gh+ (Ã− λ)−1Gf | f, h ∈ Cn, λ ∈ ρ(Ã)}.

Indeed, Cn ⊂ Π(G, Ã). For all i = 1, . . . ,m, we have

−E(t)ei,0 =
{
(S − zi)−1(W + ziV ) + V

}
ei,0 ∈ Π(G, Ã).

Analogously, for all i = 1, . . . ,m, p = 0, . . . , ri, we obtain

(3.26) −E(t)ei,p =
p∑
k=0

(Ã− zi)−k
{
(Ã− zi)−1(W + ziV ) + V

}
ei,p−k ∈ Π(G, Ã).

This proves the inclusion (3.25). The inverse statement is evident.
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As shown in [30], Problem IP0(V,W,Z,P) is solvable if and only if the matrix
P is nonnegative. In the next theorem the condition sq−(P) 6 κ is proved to be
necessary and sufficient for Problem IPκ(V,W,Z,P) to be solvable in the class Ñκ.

Theorem 3.9. Let P be nondegenerate.
(i) If sq−(P) 6 κ then for each minimal selfadjoint extension Ã of the

relation S with the exit in a bigger Pontryagin space Π̃ ⊃ B such that κ−(Π̃) = κ

and zj ∈ ρ(Ã) (j = 1, . . . ,m), the Nκ-pair defined by the equality

(3.27) {A(λ), B(λ)} = {−G∗(Ã− λ)−1G, I + λG∗(Ã− λ)−1G} (λ ∈ ρ(Ã))

is a solution of Problem IPκ(V,W,Z,P).
(ii) Conversely, let the Nκ-pair {A(λ), B(λ)} be a solution of Problem

IPκ(V,W,Z,P). Then sq−(P) 6 κ. If, additionally, B(λ) + λA(λ) ≡ I then the
pair {A(λ), B(λ)} has a representation (3.27), where Ã is a minimal selfadjoint
extension of the relation S such that zj ∈ ρ(Ã) (j = 1, . . . ,m).

Proof. (i) Let the Nκ-pair {A(λ), B(λ)} admit a representation (3.27) in
which Ã is a minimal selfadjoint extension of S in a Pontryagin space Π̃ ⊃ B and
zj ∈ ρ(Ã) (j = 1, . . . ,m). Then the following equality holds

(3.28)

Dp
λ { Ki(λ) + (λKi(λ) + Li(λ))G∗Rλ } |λ=zi

=
1

2πi

∮
γ

Ki(λ) + (λKi(λ) + Li(λ))G∗Rλ
(λ− zi)p+1

dλ

=
1

2πi

∮
γ

p−1∑
k=0

Ki(λ)G∗ + (ziKi(λ) + Li(λ))G∗Rzi

(λ− zi)p−k+1
Rkzi

+
1

2πi

∮
γ

Ki(λ)G∗ + (λKi(λ) + Li(λ))G∗Rλ
λ− zi

Rpzi
dλ

=
p∑
k=0

{
V ∗i,p−kG

∗ + (ziV ∗i,p−k +W ∗
i,p−k)G

∗Rzi

}
Rkzi

.

Here Rλ = (Ã−λ)−1 and γ = ∂B(zi, ε) where B(zi, ε) = {λ : |λ−zi| 6 ε} ⊂ ρ(Ã).
Setting ϕip = −E(t)eip (i = 1, . . . ,m; p = 0, . . . , ri − 1) we obtain from (3.26)
and (3.28)

(3.29)

Dp
λ { Ki(λ)B(λ)− Li(λ)A(λ) }|λ=zi

= Dp
λ {Ki(λ)− (λKi(λ) + Li(λ))A(λ)} |λ=zi

=

(
G∗

p∑
k=0

Rkzi
{Rzi

G(W + ziV ) +GV }ei,p−k

)∗
= (G∗ϕip)∗ = 0.
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Therefore, the pair {A(λ), B(λ)} satisfies the equations (3.8).
Using (3.29) one can rewrite the equality (3.28) in the form

(3.30)
Dp
λ {Ki(λ) + (λKi(λ) + Li(λ))G∗Rλ}

∣∣
λ=zi

= Dp
λ {(λKi(λ) + Li(λ))G∗R(λ)(I −G)}

∣∣
λ=zi

.

It follows from (3.26), (3.28) and (3.30) that

(3.31)

P pqij = [E(t)ej,q, E(t)ei,p]

= Dp
λD

q
µ {(λKi(λ)+Li(λ))G∗Rλ(I−GG∗)Rµ(µKj(µ)+Lj(µ))∗}

∣∣∣ λ=zi
µ=zj

= Dp
λD

q
µ

{
(λKi(λ) + Li(λ))

B(λ)A(µ)∗ −A(λ)B(µ)∗

λ− µ
·

· (µKj(µ) + Lj(µ))∗
}∣∣∣∣ λ=zi

µ=zj

= (PAB)pqij .

Thus the pair {A(λ), B(λ)} is a solution of Problem IPκ(V,W,Z,P).
(ii) Conversely, let the Nκ-pair {A(λ), B(λ)} be a solution of Problem IPκ(V,

W,Z,P) such that B(λ)+λA(λ) ≡ I in a domain O. Then in view of Theorem 2.4
there exists a G̃-minimal selfadjoint relation Ã in Π̃ = Cn⊕Πκ (where G̃ : Cn ⊂ Π̃
is an embedding operator) such that the following representation holds

(3.32) {A(λ), B(λ)} = {−G̃∗(Ã− λ)−1G̃, I + λG̃∗(Ã− λ)−1G̃}

and O ⊂ ρ(Ã). Let us define a linear operator U from B into Π̃ by

(3.33)

Uϕip =
p∑
k=0

(Ã− zi)−k((Ã− zi)−1G̃(W + ziV ) + G̃V )eip−k

(i = 1, . . . ,m; p = 0, . . . , ri);

UGf = G̃f ∀ f ∈ Cn.

It follows from (3.32), (3.29) and (3.31) that

[Uϕip, Uϕjq] = P pqij = [ϕip, ϕjq] (i, j = 1, . . . ,m; p = 0, . . . , ri; q = 0, . . . , rj),

[Uϕip, G̃f ] = 0 = [ϕip, Gf ], [G̃f, G̃f ] = [Gf,Gf ] (∀ f ∈ Cn).

Hence, the operator U is isometric from B into Π̃. The inclusion A = USU−1(⊂ Ã)
is implied by the relations (3.26), (3.33). One can identify now S with the operator
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A and, therefore, Ã is a minimal extension of S. The inequality sq−(P) 6 κ follows
from the representation (3.31).

Suppose now that {A(λ), B(λ)} is a solution of Problem IPκ(V,W,Z,P)
and the matrix B(λ) + λA(λ) is degenerate for some zj (j = 1, . . . ,m). Then
by Lemma 2.6 there is a nonnegative invertible matrix X such that det (B(zj) +
zjXA(zj)) 6= 0 for all j = 1, . . . ,m. The pair {X1/2A(λ), X−1/2B(λ)} is a solution
of Problem IPκ(Ṽ , W̃ , Z,P) with the data matrix {Ṽ , W̃} = {X1/2V,X−1/2W}.
Therefore, sq−(P) 6 κ.

Corollary 3.10. If P is nondegenerate and κ := sq−(P) 6 κ̃ then Problem
IP
κ̃
(V,W,Z,P) has a solution.

Proof. In the case where κ̃ = κ it follows from Proposition 1.9 that there is
a selfadjoint extension A0 of the operator S such that zj ∈ ρ(A0) (j = 1, . . . ,m).
The solvability of Problem IPκ(V,W,Z,P) is implied by Theorem 3.9.

In the case where κ̃ > κ we consider a boundary triple T = {H,Γ0,Γ1} for S∗

such that A0 = ker Γ0. Let M(λ) be the corresponding Weyl function and let τ(λ)
be any function from the class N

κ̃−κ holomorphic at the points zj and such that
det τ(zj) 6= 0 (j = 1, . . . ,m). Then the polynomials ∆j(ε) = det (ετ(zj) +M(zj))
have a finite number of zeros. Let us choose ε > 0 such that ∆j(ε) 6= 0 for all
j = 1, . . . ,m. It follows from Theorem 3.2. that there is a minimal selfadjoint
extension Ã ⊃ S in a Pontryagin space Π̃ such that κ−(Π̃) = κ̃ and zj ∈ ρ(Ã) for
all j = 1, . . . ,m. Now the statement is implied by Theorem 3.9

Proposition 3.11. Suppose that for some choice of κ numbers λj ∈ C+

(λj 6= zk, j = 1, . . . , κ; k = 1, . . . ,m) the following condition holds

(3.34) rank (V ∗ : (Z∗ − λ1)−1V ∗ : · · · : (Z∗ − λκ)−1V ∗) = (κ+ 1)n.

Then all solutions of Problem IPκ(V,W,Z,P) are functions.

Proof. Suppose that there exists a solution {A(λ), B(λ)} of Problem
IPκ(V,W,Z,P) such that for some points λj ∈ C+ and vectors (0 6=)fj ∈ Cn

(j = 1, . . . , κ+ 1) the following relations are fulfilled

(3.35) A(λj)fj = 0, B(λj)fj 6= 0 (j = 1, . . . , κ+ 1).

As usual, we may take B(λ) + λA(λ) = I. Then, in view of Theorem 3.9, there
exist a Pontryagin space Π̃ ⊃ B, a selfadjoint extension Ã of S and an embedding
operator G : Cn ⊂ Π̃ such that the equality (3.27) holds. Let us set hj = (Ã −
λj)−1Gfj (j = 1, . . . , κ+ 1). Then

(3.36) {hj , Gfj + λjhj} ∈ Ã, G∗hj = 0 (∀ j = 1, . . . , κ+ 1).
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Since 0 = [Gfj+λjhj , hk]−[hj , Gfk+λkhk] = (λj−λk)[hj , hk] (j, k = 1, . . . , κ+1)
the linear space l.s.{hj | j = 1, . . . , κ + 1} is neutral and, therefore, the vectors

hj are linearly depending. Let (for definiteness) hk+1 =
κ∑
j=1

αjhj . Setting f0 =

fκ+1 −
κ∑
j=1

αjfj , f
′
j = (λκ+1 − λj)αjfj we obtain from (3.36)

{
0, Gf0 +

κ∑
j=1

(Ã −

λj)−1Gf ′j

}
∈ Ã. Making use of the relation

(3.37) E(t)− E(λ) = (S − λ)(V + E(t))(Z − λ)−1,

we obtain

0 = (f0, V x)n +
κ∑
j=1

[(Ã− λj)−1Gf ′j , E(t)x]

= (f0, V x)n +
κ∑
j=1

[f ′j , (Ã− λj)−1(E(t)x− E(λj)x)]

= (f0, V x)n +
κ∑
j=1

[f ′j , V (Z − λj)−1x+ E(t)(Z − λj)−1x]

= (V ∗f0, x)r +
κ∑
j=1

((Z∗ − λj)−1V ∗f ′j , x)r

for all V x+ E(t)x ∈ D(S) (x ∈ Cr). Thus we have the equality V ∗f0 +
κ∑
j=1

(Z∗ −

λj)−1V ∗f ′j = 0. In view of (3.34) this implies f0 = f ′1 = · · · = f ′κ = 0. Hence
we obtain the equalities αjfj = 0 (j = 1, . . . , κ), fκ+1 = 0 which contradict the
assumption fκ+1 6= 0.

4. SOLUTION MATRIX

In what follows we suppose that the Pick matrix P of Problem IP
κ̃
(V,W,Z,P) is

nondegenerate and κ := sq−(P) 6 κ̃. In this case S is a symmetric operator in B
with deficiency indices (n, n) and one can find explicit formulas for all the objects
of the representation theory which are connected with the operator S.

Proposition 4.1. Let P be a nondegenerate symmetric matrix. Then:
(i) the space B is a reproducing kernel space with the reproducing kernel

(4.1) K(t, λ) = I + E(t)P−1E(λ)∗ (λ ∈ C \ {z1, . . . , zm});
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(ii) the defect subspace Nλ of the operator S takes a form Nλ = {K(t, λ)h :
h ∈ Cn};

(iii) S is a simple symmetric operator.

Proof. (i) The first statement is implied by the following equality

(4.2)
[f(t),K(t, λ)h] = (f2, h)n + (Pf1,P−1E(λ)∗h)r

= h∗(f2 + E(λ)f1) = h∗f(λ)

where h ∈ Cn and f(t) is a vector function of the form (3.21).
(ii) It follows from (4.1) that K(t, λ)h ∈ Nλ for all h ∈ Cn since

[(t− λ)f(t),K(t, λ)h] = h∗(λ− λ)f(λ) = 0

for all f(t) ∈ D(S). Therefore, {K(t, λ) | h ∈ Cn} ⊂ Nλ for all λ ∈ C \
{z1, . . . , zm}. As follows from Lemma 3.6, the subspace {K(t, λ)h : h ∈ Cn}
is n-dimensional. It coincides with Nλ since dimNλ = n.

(iii) Assume that f ∈ B and f is orthogonal to K(t, λ)h for all λ ∈ C \
{z1, . . . , zn} and h ∈ Cm. Then it follows from (4.2) that h∗f(λ) ≡ 0. Hence
f(λ) ≡ 0.

Proposition 4.2. Let a subspace L = GCn ⊂ B be a scale subspace of the
operator S. Then:

(i) ρ(S,L) = C \ {z1, . . . , zm} and the operator functions P(λ) and Q(λ)
take the form

(4.3) P(λ)f = f(λ), Q(λ)f = V (Z − λ)−1f1 (∀λ ∈ ρ(S,L); f ∈ B),

(4.4) P(∞)f = f2 − V f1 = f(∞), Q(∞)f = −Wf1,

where f is a vector function of the form (3.21);
(ii) the adjoint operators P(λ)∗ and Q(λ)∗ are calculated by

(4.5) P(λ)∗h = K(t, λ)h, Q(λ)∗h = E(t)P−1(Z∗ − λ)−1V ∗h,

(4.6) P(∞)∗h = K(t,∞)h = I − E(t)P−1V ∗, Q(∞)∗h = −E(t)P−1W ∗h;

(iii) the adjoint linear relation S∗ has the representation
(4.7)
S∗ =

{
f̂ = {f, f ′} = {f0, Sf0}+ P̂(∞)∗l1 + Q̂(∞)∗l0 : l0, l1 ∈ Cn, f0 ∈ D(S)

}
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and a boundary triple for S∗ can be defined by

(4.8) Γ0f̂ = l0 = f(∞), Γ1f̂ = l1 = PLf
′ −Q(∞)f ;

(iv) The resolvent matrix W∞(λ) of the operator S corresponding to the
boundary triple (4.8) takes the form

(4.9)

W∞(λ)

=

(
V (Z − λ)−1P−1V ∗ −I − V (Z − λ)−1P−1W ∗

I − (W + λV )(Z − λ)−1P−1V ∗ λ+ (W + λV )(Z − λ)−1P−1W ∗

)
.

Proof. (i) It follows from the identity (3.37) that for all λ ∈ C \ {z1, . . . , zm}
the vector function f(t) = f2 + E(t)f1 can be decomposed as

f(t)− f(λ) = E(t)f1 − E(λ)f1 = (S − λ)(V + E(t))(Z − λ)−1f1 ∈ R(S − λ).

This yields the equalities (4.3). Similarly, it follows from the relation f(t) =
(V f1 + E(t)f1) + (f2 − V f1) that ∞ ∈ ρ(S,L) and the equalities (4.4) hold.

(ii) It follows from (4.2) and (4.3) that

[P(λ)∗h, f ] = (h, f(λ))n = [K(t, λ)h, f(t)];

[Q(λ)∗h, f ] = (h, V (Z − λ)−1f1)n = ((Z∗ − λ)−1V ∗h, f1)r

= [E(t)P−1(Z∗ − λ)−1V ∗h, f1].

This proves the equalities (4.5). Analogously, the equalities (4.6) are implied by
(4.2) and (4.4).

(iii) Since ∞ ∈ ρ(S,L), the representation (4.7) and the formulas (4.8) are
direct corollaries of Theorem 2.12 and Proposition 2.13.

(iv) Using the relation P̂(λ)∗h = {K(t, λ)h, λK(t, λ)h} and the formulas (4.5),
(4.8), one obtains for λ ∈ ρ(S,L), h ∈ Cn

(4.10)
Γ0P̂(λ)∗h = P(∞)K(t, λ)h = K(∞, λ)h

= h− VP−1(Z∗ − λ)−1(W ∗ + λV ∗)h;

(4.11)
Γ1P̂(λ)∗h = PL(λK(t, λ)h)−Q(∞)K(t, λ)h

= λh+WP−1(Z∗ − λ)−1(W ∗ + λV ∗)h.

On account on the formulas (4.8), (4.4) and (4.5), the application of the operators
Γ0,Γ1 to the vector function Q̂(λ)∗h = {Q(λ)∗h, λQ(λ)∗h+ h} yields

(4.12) Γ0Q̂(λ)∗h = P(∞)Q(λ)∗h = −VP−1(Z∗ − λ)−1V ∗h,

(4.13) Γ1Q̂(λ)∗h = PL(λQ(λ)∗h+h)−Q(∞)Q(λ)∗h = h+WP−1(Z∗−λ)−1V ∗h.

Therefore, the formula (4.9) is implied by the relations (4.10)–(4.13) and (2.24).
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Let us define a matrix function Ω∞(λ) by the equality

(4.14)
Ω∞(λ) =

(
λ I

−I 0

)
W∞(λ) = I2n +

(
W

V

)
(Z − λ)−1P−1

(
W

V

)∗
J2n,

J2n =
(

0 I

−I 0

)
.

Remark 4.3. An arbitrary resolvent matrix W (λ) of the operator S is re-
lated to the matrix W∞(λ) by the equality W (λ) = W∞(λ)U∗ where U is a
J2n-unitary matrix (see Remark 2.19). One can find the explicit formula for the
resolvent matrix Wa(λ) (a = a) of the operator S corresponding to the boundary
triple (2.20). The corresponding solution matrix Ωa(λ) takes the form

Ωa(λ) =
(
λ I

−I 0

)
Wa(λ) = I2n+(λ−a)

(
W

V

)
(Z−λ)−1P−1(Z−a)−∗

(
W

V

)∗
J2n.

In the case κ = 0, the resolvent matrices Wa(λ) and W∞(λ) were found in [3]
using a different method.

Lemma 4.4. Let the Pick matrix P be nondegenerate, κ := sq−(P) 6 κ̃ and
let W (λ) be a resolvent matrix of the operator S such that the matrix w21(λ)−1 has
the holomorphic continuation at the points zj (j = 1, . . . ,m). Then the formula

(4.15)
(
B(λ)
A(λ)

)
=
(
λ I

−I 0

)
W (λ)

(
ψ(λ)
ϕ(λ)

)
w21(λ)−1

establishes a one-to-one correspondence between the set of those solutions
{A(λ), B(λ)} of Problem IP

κ̃
(V,W,Z,P) which satisfy the assumptions

(4.16) B(λ) + λA(λ) = I

and the set of N
κ̃−κ-pairs {ϕ(λ), ψ(λ)} such that zj ∈ ρ(ϕ,ψ) (j = 1, . . . ,m) and

(4.17) ψ(λ) + w21(λ)−1w22(λ)ϕ(λ) = I.

Proof. Let theN
κ̃
-pair {A(λ), B(λ)} be a solution of Problem IP

κ̃
(V,W,Z,P)

which satisfies the assumptions (4.16). In view of Theorem 3.9 there exists a self-
adjoint extension Ã of the operator S such that zj ∈ ρ(Ã) (j = 1, . . . ,m) and the
following equality holds

(4.18)
(
B(λ)
A(λ)

)
=
(
λ I

−I 0

)(
G∗(Ã− λ)−1G

I

)
(λ ∈ ρ(Ã)).
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Here G is the embedding operator G : Cn ⊂ Π̃. Let the Weyl function M(λ) =
w21(λ)−1w22(λ) of S correspond to a selfadjoint extension A0. It follows from
(2.21) and (2.23) that zj ∈ ρ(A0) (j = 1, . . . ,m). In view of Theorems 2.3 and 2.17
there exists an N

κ̃−κ-pair {ϕ̃, ψ̃} holomorphic at the points zj (j = 1, . . . ,m) such
that

(4.19) det
(
ψ̃(zj) +M(zj)ϕ̃(zj)

)
6= 0 (j = 1, . . . ,m).

and the following equality holds for all λ ∈ ρ(Ã) ∩ ρ(S,L) ∩ ρ(A0)

(4.20)
(
G∗(Ã− λ)−1G

I

)
= W (λ)

(
ψ̃(λ)
ϕ̃(λ)

)(
w21(λ)ψ̃(λ) + w22(λ)ϕ̃(λ)

)−1
.

It follows from (4.18) and (4.20) that

(4.21)

(
B(λ)
A(λ)

)
=
(
λ I

−I 0

)
W (λ)

(
ψ̃(λ)
ϕ̃(λ)

)(
w21(λ)ψ̃(λ) + w22(λ)ϕ̃(λ)

)−1

=
(
λ I

−I 0

)
W (λ)

(
ψ̃(λ)
ϕ̃(λ)

)(
ψ̃(λ) +M(λ)ϕ̃(λ)

)−1
w21(λ)−1

=
(
λ I

−I 0

)
W (λ)

(
ψ(λ)
ϕ(λ)

)
w21(λ)−1,

where the matrix functions

(4.22)
ψ(λ) = ψ̃(λ)

(
ψ̃(λ) +M(λ)ϕ̃(λ)

)−1
,

ϕ(λ) = ϕ̃(λ)
(
ψ̃(λ) +M(λ)ϕ̃(λ)

)−1

are holomorphic at the points zj (j = 1, . . . ,m). The condition (4.17) is implied
by (4.22).

Conversely, let {ϕ,ψ} be an N
κ̃−κ-pair holomorphic at the points zj (j =

1, . . . ,m) which satisfies the conditions (4.17) and let a pair {A(λ), B(λ)} be de-
fined by the equality (4.15). It follows from (4.15) that

(4.23)
(

0 −I
I λ

)(
B(λ)
A(λ)

)
= W (λ)

(
ψ(λ)
ϕ(λ)

)
w21(λ)−1.

This implies

B(λ) + λA(λ) = (w21(λ)ψ(λ) + w22(λ)ϕ(λ))w21(λ)−1

= w21(λ) (ψ(λ) +M(λ)ϕ(λ))w21(λ)−1 = I.
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In accordance with Theorem 2.17 there exists a minimal selfadjoint extension Ã

of the operator S such that zj ∈ ρ(Ã) (j = 1, . . . ,m) and the following equality
holds (

G̃∗(Ã− λ)−1G̃

I

)
= W (λ)

(
ψ(λ)
ϕ(λ)

)
(w21(λ)ψ(λ) + w22(λ)ϕ(λ))−1

= W (λ)
(
ψ(λ)
ϕ(λ)

)
w21(λ)−1.

According to Theorem 3.9, the pair {A(λ), B(λ)} defined by the equality (4.15) is
a solution of Problem IP

κ̃
(V,W,Z,P).

Theorem 4.5. Let the matrix P be nondegenerate and κ := sq−(P) 6 κ̃.
Then the formula

(4.24)
(
B(λ)
A(λ)

)
= Ω∞(λ)

(
ψ(λ)
ϕ(λ)

)
,

establishes a one-to-one correspondence between the set of all the solutions
{A(λ), B(λ)} of Problem IP

κ̃
(V,W,Z,P) and the set of N

κ̃−κ-pairs {ϕ(λ), ψ(λ)}
holomorphic at the points zj (j = 1, . . . ,m) such that:

(i) the matrix Ω∞(λ)
(
ψ(λ)
ϕ(λ)

)
is holomorphic at the points zj (j = 1, . . . ,m);

(ii) rank Ω∞(λ)
(
ψ(λ)
ϕ(λ)

) ∣∣∣
λ=zj

= n, (j = 1, . . . ,m).

Proof. Step 1. Let an Nκ-pair {A(λ), B(λ)} be a solution of Problem
IP
κ̃
(V,W,Z,P) such that B(λ) + λA(λ) ≡ I. Then in view of Theorem 3.9 there

exists a selfadjoint extension Ã of the operator S in a bigger space Π̃ such that
zj ∈ ρ(Ã) (j = 1, . . . ,m) and the following equality holds

(4.25)
(
B(λ)
A(λ)

)
=
(
λ I

−I 0

)(
G∗(Ã− λ)−1G

I

)
(λ ∈ ρ(Ã)).

Here G is the embedding operator G : Cn ⊂ Π̃.
In view of Proposition 1.9 there is a selfadjoint extension A0 of the operator

S in the space Π such that zj ∈ ρ(A0) (j = 1, . . . ,m). Let T = {H,Γ0,Γ1} be a
boundary triple for the relation S∗ such that ker Γ0 = A0 and let M(λ) and W (λ)
be the Weyl function and the resolvent matrix corresponding to the boundary
triple T and the scale space L = Cn. Then the matrix functions

w21(λ)−1 = γ(λ)∗|L, w21(λ)−1w22(λ) = M(λ)
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are holomorphic at the points zj (j = 1, . . . ,m) and the resolvent matrix W (λ)
is related to the matrix W∞(λ) by the equality W (λ) = W∞(λ)U∗, where U is a
J2n-unitary matrix in H ⊕ H. In view of Lemma 4.4 there exists an N

κ̃−κ-pair

{ϕ̃(λ), ψ̃(λ)} such that zj ∈ ρ(ϕ̃(λ), ψ̃(λ)) and(
B(λ)
A(λ)

)
=
(
λ I

−I 0

)
W (λ)

(
ψ̃(λ)
ϕ̃(λ)

)
w21(λ)−1 = Ω∞(λ)

(
ψ(λ)
ϕ(λ)

)
,

where (
ψ(λ)
ϕ(λ)

)
= U∗

(
ψ̃(λ)w21(λ)−1

ϕ̃(λ)w21(λ)−1

)
.

Step 2. Let the pair {A(λ), B(λ)}) be an arbitrary solution of Problem
IP
κ̃
(V,W,Z,P). In view of Lemma 2.6 there is a positive matrix X such that

det (B(zj) + zjXA(zj)) 6= 0 (j = 1, . . . ,m).

Alongside with Problem IP
κ̃
(V,W,Z,P) let us consider Problem IP

κ̃
(Ṽ , W̃ , Z,P)

with the data {Ṽ , W̃} = {X1/2V,X−1/2W} and let us set

(4.26)

(
B̃(λ)
Ã(λ)

)
= X̃

(
B(λ)
A(λ)

)(
X−1/2B(λ) + λX1/2A(λ)

)−1

,

X̃ =
(
X−1/2 0

0 X1/2

)
.

The pair {Ã(λ), B̃(λ)}) is a solution of Problem IP
κ̃
(Ṽ , W̃ , Z,P) and B̃(λ) +

λÃ(λ) ≡ I. As was shown in Step 1, the following equality holds

(4.27)
(
B̃(λ)
Ã(λ)

)
= Ω̃∞(λ)

(
ψ̃(λ)
ϕ̃(λ)

)
,

where {ϕ̃(λ), ψ̃(λ)} is an N
κ̃−κ-pair holomorphic at the points zj (j = 1, . . . ,m)

and Ω̃∞(λ) is a solution matrix of Problem IP
κ̃
(Ṽ , W̃ , Z,P) related to Ω∞(λ) by

(4.28) Ω̃∞(λ) = X̃Ω∞(λ)X̃−1.

The equalities (4.26), (4.27) and (4.28) yield the equality (4.24) with

(4.29)
(
ψ(λ)
ϕ(λ)

)
= X̃−1

(
ψ̃(λ)
ϕ̃(λ)

)(
X−1/2B(λ) + λX1/2A(λ)

)
.

Step 3. Conversely, let the N
κ̃−κ-pair {ϕ,ψ} be holomorphic at the points

zj (j = 1, . . . ,m) and satisfy the assumptions (i), (ii). As follows from Re-
mark 2.16, the pair {A(λ), B(λ)} defined by the equality (4.24) is also a gen-
eralized Nevanlinna pair. In view of Lemma 2.6 there is a nonnegative invert-
ible matrix X such that the matrices X−1/2B(zj) + zjX

1/2A(zj) are invertible
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for all j = 1, . . . ,m. Let us consider Problem IP
κ̃
(Ṽ , W̃ , Z,P) with the data

{Ṽ , W̃} = {X1/2V,X−1/2W} and the corresponding resolvent matrix W̃∞(λ) and
the solution matrix Ω̃∞(λ). Using the equalities (4.24), (4.28), we obtain

(4.30)
W̃∞(λ)X̃

(
ψ(λ)
ϕ(λ)

)
=
(

0 −I
I λ

)
X̃Ω∞(λ)

(
ψ(λ)
ϕ(λ)

)
=
(

−X1/2A(λ)
X−1/2B(λ) + λX1/2A(λ)

)
.

Let a pair {ϕ̃(λ), ψ̃(λ)} be defined by col {ϕ̃(λ), ψ̃(λ)} = X̃col {ϕ(λ), ψ(λ)}. It
follows from (4.30) that the matrix

∆(λ) = w̃21(λ)ψ̃(λ) + w̃22(λ)ϕ̃(λ) = X−1/2(B(λ) + λXA(λ))

has a holomorphic continuation at the points zj and ∆(zj) are invertible for all
j = 1, . . . ,m.

Let SX be the model operator corresponding to Problem IP
κ̃
(Ṽ , W̃ , Z,P).

In accordance with Theorem 2.17, there exists a G̃-minimal selfadjoint extension
ÃX of the operator SX such that the following equality holds

(4.31)
(
G̃∗(ÃX − λ)−1G̃

I

)
= W̃∞(λ)

(
ψ̃(λ)
ϕ̃(λ)

)
∆(λ)−1, λ ∈ ρ(ÃX) ∩ ρ(SX ,L).

It follows from (4.24) and (4.31) that(
λ I

−I 0

)(
G̃∗(Ã− λ)−1G̃

I

)
=
(
λ I

−I 0

)
W̃∞(λ)X̃

(
ψ(λ)
ϕ(λ)

)
∆(λ)−1

= X̃Ω∞(λ)
(
ψ(λ)
ϕ(λ)

)
∆(λ)−1 = X̃

(
B(λ)
A(λ)

)
∆(λ)−1.

This implies that the L-resolvent G̃∗(Ã − λ)−1G̃ is holomorphic at the points
zj (j = 1, . . . ,m). In view of Remark 2.2, this implies that zj ∈ ρ(Ã). As follows
from Theorem 3.9, the pair {A(λ), B(λ)} is a solution of Problem IP

κ̃
(Ṽ , W̃ , Z,P)

and, therefore, the pair {A(λ), B(λ)} is a solution of Problem IP
κ̃
(V,W,Z,P).

Remark 4.6. If the two-sided interpolation Problem IP
κ̃
(V,W,Z,P) has

symmetric interpolation points, that is zj = zk for some j, k = 1, . . . ,m. this
parametrization is not satisfactory since the behaviour of the parameter {ϕ,ψ}
at the points zj is not specified. Namely, the matrix function w21(λ) is not holo-
morphic at the point zj and the assumption zj ∈ ρ(ϕ,ψ) is not enough for the
condition (i) of Theorem 4.5 to be satisfied at the point zj .
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One-sided interpolation problem. In the case where the interpolation Prob-
lem IP

κ̃
(V,W,Z,P) has no symmetric interpolation points one can simplify the

statement of Theorem 4.5. In particular, this happens if Problem IP
κ̃
(V,W,Z,P)

is a one-sided interpolation problem that is all the points zj are in the upper
halfplane C+.

In this case the Lyapunov equation has a unique solution (see [3]) P = (P pqij )

(4.32) P pqij = Dp
λD

q
µ

Li(λ)Kj(µ)∗ −Ki(λ)Lj(µ)∗

λ− µ

∣∣∣∣
λ=zi,µ=zj

called the Pick matrix of Problem IPκ(V,W,Z) := IPκ(V,W,Z,P). The solution
matrix Ω∞(λ) of the one-sided interpolation problem is holomorphic at the points
zj (j = 1, . . . ,m) and the hypothesis (i) of Theorem 4.5 becomes superfluous.
Moreover, it follows from (4.25), (4.29) that zj ∈ ρ(ϕ,ψ) for all the pairs {ϕ,ψ}
which parametrize the set of solutions of Problem IPκ(V,W,Z).

Proposition 4.7. Let Problem IP
κ̃
(V,W,Z) has no symmetric interpola-

tion points and the Pick matrix P be nondegenerate and κ := sq−(P) 6 κ̃.
Then the formula (4.24) establishes a one-to-one correspondence between the set
of all solutions {A(λ), B(λ)} of Problem IP

κ̃
(V,W,Z) and the set of N

κ̃−κ-pairs
{ϕ(λ), ψ(λ)} such that zj ∈ ρ(ϕ,ψ) (j = 1, . . . ,m) and

(4.33) rankΩ∞(zj)
(
ψ(zj)
ϕ(zj)

)
= n (j = 1, . . . ,m).

An N
κ̃−κ-pair {ϕ(λ), ψ(λ)} is said to be an excluded pair in the parametriza-

tion (4.24) of the solutions of Problem IPκ(V,W,Z) if the conditions (4.33) are not
fulfilled. The excluded parameters of the indefinite Nevanlinna–Pick problem were
investigated in [14], [2]. Subject to a signature of defect subspaces of the model
operator S, the case where Problem IPκ(V,W,Z) has no excluded parameters is
possible. This observation from [14] is based on a general fact from the extension
theory of symmetric operators in Pontryagin spaces ([23]) and can be generalized
to the case of Problem IPκ(V,W,Z). Let us denote by ∆+ the set of the points
λ ∈ ρ̂(S) such that the defect subspace Nλ is positive.

Theorem 4.8. ([23]) Let S be a simple symmetric operator in a Pontryagin
space. A point λ ∈ ρ̂(S) is not an eigenvalue of a regular selfadjoint extension of
S if and omly if λ ∈ ∆+.

Let us rewrite the condition λ ∈ ∆+ for the model operator S of Prob-
lem IPκ(V,W,Z) in terms of the reproducing kernel K(λ, µ). In view of Proposi-
tion 4.1 and the equality

[K(t, λ)h,K(t, λ)h)] = h∗K(λ, λ)h (λ ∈ ρ(S,L), h ∈ Cn)
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the condition λ ∈ ρ(S,L)∩∆+ is equivalent to the positivity of the matrix K(λ, λ).
In the case where λ = zj , the condition zj ∈ ∆+ is equivalent to the condition zj ∈
∆+ which, in turn, is equivalent to the condition K(zj , zj) > 0 (j = 1, . . . ,m). An
application of Theorem 4.8 to the model operator S yields the following statement.

Proposition 4.9. Let Problem IPκ(V,W,Z) has no symmetric interpolation
points, the Pick matrix P be nondegenerate, κ = sq−(P) and let the matrices
K(zj , zj) be positive for all j = 1, . . . ,m. Then Problem IPκ(V,W,Z) has no
excluded parameters.

Proof. Let A0 be a selfadjoint extension of the operator S corresponding to
the boundary triple T∞. In view of Theorem 4.8, zj ∈ ρ(A0) for all j = 1, . . . ,m.
It follows also from Theorem 4.8 and Theorem 2.17 that the matrix w21(λ)ψ(λ)+
w22(λ)ϕ(λ) is invertible at the points zj (j = 1, . . . ,m) for every N0-pair {ϕ,ψ}
and, therefore, the assumptions (ii) of Theorem 4.5 are fulfilled. Moreover, it
follows from the identity B(zj) + zjA(zj) = w21(zj)ψ(zj) + w22(zj)ϕ(zj) that all
solutions of Problem IPκ(V,W,Z) satisfy the assumptions det (B(zj)+zjA(zj)) 6=
0, j = 1, . . . ,m.

Example 4.10. Let us consider Problem IP1(V,W,Z) with the data matri-
ces

V =
(

1 0
1 0

)
, W =

(
2i 3
0 0

)
, Z =

(
−i 0
0 −2i

)
.

Then P =
(
−2 i
−i 0

)
and the solution matrix Ω∞(λ) takes the form

Ω∞(λ)=
1

(λ+ i)(λ+ 2i)


λ2 + 1 −3i(λ+ i) −6λ 0

0 (λ+ i)(λ+ 2i) 0 0
0 0 λ2 + 4 0
0 0 −3i(λ+ 2i) (λ+ i)(λ+ 2i)

.
One can check that the parameter {0, I} is excluded at the point i. Let us note
also that the kernel matrix K(λ, λ) is not positive at the point z = i: K(i, i) =(

0 −1/2
−1/2 1

)
.

Let us consider a special case of Problem IPκ(V,W,Z) where there are no
multiple points and the matrices Vj coincide with the identity matrices In (j =
1, . . . ,m).

Nevanlinna-Pick problem. Given: n,m ∈ N, zj ∈ C \ R, Wj ∈ B(Cn) (j =
1, . . . ,m). Find: n × n-matrix function F (λ) ∈ N

κ̃
(Cn) such that F (zj) = Wj

(j = 1, . . . ,m).
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The data of the problem are block-matrices

V = (In, . . . , In) , W = (W ∗
1 , . . . ,W

∗
m) , Z = diag (zjIn)

m
j=1 .

The Pick matrix P has the block form P = (Pjk)mj,k=1 where

Pjk =
Wj −W ∗

k

zj − zk
.

Let us write the solution matrix and the inverse to the Pick matrix in the block
form Ω(λ) = (Ωjk(λ))2j,k=1, P−1 = (πjk)mj,k=1 where Ωjk, πjk are n× n-matrices.

Corollary 4.11. Let κ := sq−(P) 6 κ̃. Then the formula

(4.34) F (λ) = (Ω11(λ)ψ(λ) + Ω12(λ)ϕ(λ))(Ω21(λ)ψ(λ) + Ω22(λ)ϕ(λ))−1

describes all solutions of the Nevanlinna–Pick problem IPκ(V,W,Z) when {ϕ,ψ}
ranges over the class Ñ

κ̃−κ and satisfies the conditions

(4.35) det (Ω21(zj)ψ(zj) + Ω22(zj)ϕ(zj)) 6= 0 (j = 1, . . . ,m).

It follows from Proposition 3.11 that the conditions (4.33) and (4.35) are
equivalent in this case. The formula like (4.34) was obtained first by D. Arov,
V. Adamyan and M. Krĕın in [1] where this problem in the scalar generalized Schur
class was reduced to the Schur–Takagi problem. The matrix case was investigated
in [20].

One can simplify the assumptions K(zj , zj) > 0 of Proposition 4.9. Indeed,
in this case the defect subspaces Nzj

and Nzj
have the same signature. Namely,

Nzj
= span {K(t, zj)h : h ∈ Cn},

Nzj
= E(t)P−1Hj ,

Hj = span {ejn+1, . . . , e(j+1)n},

where ej is nm-vector with the entries δkl, (k, l = 1, . . . ,m·n). Let h = (0, . . . , 0, hj ,
0, . . . , 0) ∈ Hj . Then it follows from the equality

[E(t)P−1h,E(t)P−1h] = h∗P−1h = h∗jπjjhj

that the positivity of the matrix K(zj , zj) is equivalent to the positivity of the ma-
trix πjj for all j = 1, . . . ,m and, therefore, the following analog of Proposition 4.9
holds.
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Corollary 4.12. Let the Pick matrix P of Nevanlinna–Pick Problem
IPκ(V,W,Z) be nondegenerate and κ = sq−(P). If zj belongs to ∆+ or, equiva-
lently, πjj > 0 for all j = 1, . . . ,m, then Problem IPκ(V,W,Z) has no excluded
parameters.

The statement of Corollary 4.12 was proved in [14]. Moreover, as was shown
in [14], the scalar Nevanlinna–Pick problem has a unique excluded parameter at
the point zj in the case where πjj = 0 and infinitely many excluded parameters if
πjj < 0.

5. INTERPOLATION IN THE GENERALIZED STIELTJES CLASSES

Problem IP±k̃
κ̃

(V,W,Z,P). Given are:

(i) n,m ∈ N, rj , κ̃, k̃ ∈ Z+ zj ∈ C \ R (j = 1, . . . ,m);
(ii) n× r-matrices V,W of the form (3.2) such that the assumptions (3.20)

are fulfilled;
(iii) m × n-matrix functions K(λ),L(λ) defined and locally holomorphic on

C \ R which interpolate the data V,W ;
(iv) A Hermitian solution P of the Lyapunov equation (3.6).

Find: N±k̃
κ̃

-pair {A(λ), B(λ)} holomorphic at the points zj (j = 1, . . . ,m)
such that the equations (3.8) hold and PAB = P.

Let r×r-matrix P− be defined by P− := PZ−V ∗W . A solvability criterion

for Problem IP−k̃
κ̃

(V,W,Z,P) is implied immediately by Theorem 3.9.

Theorem 5.1. Let the matrices P, P− be nondegenerate. If Problem

IP−k̃
κ̃

(V,W,Z,P) is solvable the following inequalities hold

(5.1) κ := sq−(P) 6 κ̃, k := sq−(P−) 6 k̃.

If (5.1) is fulfilled then the formula (3.27) establishes a one-to-one correspondence

between the set of solutions of Problem IP−k̃
κ̃

(V,W,Z,P) such that B(λ)+λA(λ) ≡

I and the set of L-resolvents G∗RλG (Rλ ∈ Ωk̃
κ̃
(S)) of the relation S holomorphic

at the points zj (j = 1, . . . ,m).

Proof. Let the pair {A(λ), B(λ)} be a solution of the Problem IP−k̃
κ̃

(V,W,Z)
such that B(λ)+λA(λ) ≡ I. In view of Theorem 3.9, it admits the representation

(5.2) {A(λ), B(λ)} = {−G∗(Ã− λ)−1G, I + λG∗(Ã− λ)−1G},
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where Ã is a G-minimal selfadjoint extension of the model relation S. It follows
from (5.2) that for all λ ∈ ρ(Ã), f ∈ Cn, the following equality holds

(5.3) Im (B(λ)f, λA(λ)f) = Im [λRλGf,Gf ] (Rλ = (Ã− λ)−1).

Using the Hilbert identity one obtains from (5.3) for all λ ∈ C+

(5.4) Im (B(λ)f, λA(λ)f) = Imλ [(I + λRλ)Gf,RλGf ] .

In view of the G-minimality of Ã, the last equality yields the equivalence:
{λA(λ), B(λ)} is an N

k̃
-pair if and only if the extension Ã has N k̃-property. Thus

the statement of Theorem 5.1 is implied by Theorem 3.9 and by the equality (5.4).

Proposition 5.2. Let the matrices P and P− be nondegenerate and let
T∞ = {Cn,Γ0,Γ1} and T− = {Cn,Γ−0 ,Γ

−
1 } be the boundary triples defined by the

equality (4.8) and by

(5.5)
(

Γ−0
Γ−1

)
= U−

(
Γ0

Γ1

)
, U− =

(
In 0

−WP−1
− W ∗ In

)
.

Then:
(i) the model operator S has Nk-property where k = sq−(P−);
(ii) the extensions S−0 := ker Γ−0 and S−1 := ker Γ−1 coincide with SF and SK

respectively;
(iii) the resolvent matrix W−(λ) of the operator S corresponding to the bound-

ary triple T− is related to W∞(λ) by the equality W−(λ) =
(
w−ij(λ)

)2
i,j=1

=
W∞(λ)U∗−.

Proof. The first statement is implied by the equality

(Sf(t), f(t)) = −(Wf, V f) + (PZf, f) = (P−f, f)

where f(t) = V f + E(t)f , f ∈ Cr. In view of (4.10), (4.11), the Weyl function
M(λ) corresponding to the boundary triple T∞ takes the form

(5.6)
M(λ) =

[
λ+WP−1(Z∗ − λ)−1(W ∗ + λV ∗)

]
·

·
[
I − VP−1(Z∗ − λ)−1(W ∗ + λV ∗)

]−1
.

Since the matrix P− = PZ − V ∗W = Z∗P −W ∗V is invertible, it follows from
the equivalence 0 ∈ ρ(Ir − W ∗VP−1Z−∗) ⇔ 0 ∈ ρ(In − VP−1Z−∗W ∗) that
M(0) ∈ B(Cn), namely

M(0) = WP−1Z−∗W ∗(I − VP−1Z−∗W ∗)−1 = WP−1
− W ∗.

As follows from (5.5), the Weyl function corresponding to the boundary triple
T− is related to M(λ) by the equality M−(λ) = M(λ)−WP−1

− W ∗ = M(λ)−M(0)
and, therefore, M−(0) = 0. In view of Proposition 2.8 this implies the equality
ker Γ−1 = SK.

The third statement is implied by (5.5), and Remark 2.19.
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Corollary 5.3. Let the matrices P,P− be nondegenerate and κ :=
sq−(P) 6 κ̃, k := sq−(P−). Then Problem IP−k

κ̃
(V,W,Z,P) is solvable.

Proof. As was mentioned in Proposition 5.2, the operator S hasNk-property.
In view of Proposition 2.11, there is a selfadjoint extension Ã of S withNk-property
such that zj ∈ ρ(Ã) (j = 1, . . . ,m). The solvability of Problem IP−k

κ̃
(V,W,Z,P)

is implied now by Theorem 5.1.

Theorem 5.4. Let the matrices P and P− be nondegenerate and let the
inequalities (5.1) hold. Then the formula

(5.7)
(
B(λ)
A(λ)

)
= Ω−(λ)

(
ψ(λ)
ϕ(λ)

) (
Ω−(λ) = Ω∞(λ)U∗−

)
establishes a one-to-one correspondence between the set of all solutions of Problem

IP−k̃
κ̃

(V,W,Z,P) and the set of N−(̃k−k)
κ̃−κ

-pairs {ϕ(λ), ψ(λ)} holomorphic at the
points zj (j = 1, . . . ,m) and such that the assumptions (i), (ii) of Theorem 4.5 are
fulfilled.

Proof. Let the N
κ̃
-pair {A(λ), B(λ)} be a solution of Problem

IP
κ̃
(V,W,Z,P) which is related to an N

κ̃−κ-pair {ϕ1(λ), ψ1(λ)} by the equality

(5.8)
(
B(λ)
A(λ)

)
= Ω∞(λ)

(
ψ1(λ)
ϕ1(λ)

)
.

One can rewrite the equality (5.8) in the form (5.7) where the N
κ̃−κ-pair

{ϕ(λ), ψ(λ)} is defined by (
ψ(λ)
ϕ(λ)

)
= U−∗−

(
ψ1(λ)
ϕ1(λ)

)
which is also holomorphic at the points zj (j = 1, . . . ,m).

In the case where the pair {A(λ), B(λ)} satisfies the conditions (4.16), it
admits a representation (4.25), where Ã is a minimal selfadjoint extension of the
operator S such that zj ∈ ρ(Ã) for all j = 1, . . . ,m (see Theorem 3.9). It follows
from (5.7) and (4.25) that

(5.9)
(
G∗(Ã− λ)−1G

I

)
= W−(λ)

(
ψ(λ)
ϕ(λ)

)
.

Let now {A(λ), B(λ)} ∈ Ñ−k̃
κ̃

. Then it follows from Theorem 5.1 that the

extension Ã has N k̃-property. Using Theorem 2.18 and Proposition 5.2 one obtains

from (5.9) that {ϕ(λ), ψ(λ)} ∈ Ñ−(̃k−k)
κ̃−κ

. In the case where the conditions (4.16)
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do not hold, it is enough to find a positive matrix X satisfying (4.16) and to repeat
the reasonings from the proof of Theorem 4.5 (Step 2).

Conversely, let the N−(̃k−k)
κ̃−κ

-pair {ϕ(λ), ψ(λ)} be holomorphic at the points

zj , (j = 1, . . . ,m). Then the operator Ã from (5.9) has N k̃-property and by virtue

of Theorem 5.1 {A(λ), B(λ)} ∈ N−k̃
κ̃

.

Using Theorem 5.4 and the equivalence

{A(λ), B(λ)} ∈ Ñ+k
κ ⇔ {−B(λ), A(λ)} ∈ Ñ−k

κ

we obtain the following description of solutions of Problem IP+k̃

κ̃
(V,W,Z,P). Let

us set

P+ := PZ +W ∗V, U+ =
(
In VP−1

+ V ∗

0 In

)
, Ω+(λ) = Ω∞(λ)U∗+.

Corollary 5.5. Let the matrices P,P+ be nondegenerate. If Problem

IP+k̃

κ̃
(V,W,Z,P) is solvable then the following inequalities hold

(5.10) κ := sq−(P) 6 κ̃, k := sq−(P+) 6 k̃.

The formula

(5.11)
(
B(λ)
A(λ)

)
= Ω+(λ)

(
ψ(λ)
ϕ(λ)

)
establishes a one-to-one correspondence between the set of all solutions of Problem

IP+k̃

κ̃
(V,W,Z,P) and the set of N+(̃k−k)

κ̃−κ
-pairs {ϕ,ψ} holomorphic at the points zj

(j = 1, . . . ,m) and such that the assumptions (i), (ii) of Theorem 4.5 are fulfilled.

Proof. Let the pair {A(λ), B(λ)} ∈ Ñ+k̃

κ̃
be a solution of Problem

IP+k̃

κ̃
(V,W,Z,P). Then the pair {−B(λ), A(λ)} belongs to the class Ñ−k̃

κ̃
and

by Theorem 5.4 it admits the representation(
A(λ)
−B(λ)

)
=
[
I +

(
V

−W

)
(Z − λ)−1P−1

(
V

−W

)∗( 0 I

−I 0

)]
·

·
(

In 0
−VP−1

+ V ∗ In

)∗(
ψ(λ)
ϕ(λ)

)
,

where {ϕ(λ), ψ(λ)} ∈ Ñ−(̃k−k)
κ̃−κ

. Multiplying this equality by J∗2n from the left one
obtains the following formula(

B(λ)
A(λ)

)
= Ω∞(λ)U∗+

(
−ϕ(λ)
ψ(λ)

)
= Ω+(λ)

(
ψ̃(λ)
ϕ̃(λ)

)
,

which establishes a one-to-one correspondence between the set of all solutions

of Problem IP+k̃

κ̃
(V,W,Z,P) and the set of pairs {ϕ̃, ψ̃} = {ψ,−ϕ} ∈ Ñ

+(̃k−k)
κ̃−κ

holomorphic at the points zj (j = 1, . . . ,m) and such that the assumptions (i),
(ii) of Theorem 4.5 are fulfilled.
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One-sided interpolation in generalized Stieltjes classes. Let all the
interpolation points zj be in C+. Then the description of all the solutions of

Problem IP−k̃
κ̃

(V,W,Z) takes the following form.

Proposition 5.6. Let the matrices P and P− be nondegenerate and let the
inequalities (5.1) hold. Then the formula (5.7) establishes a one-to-one correspon-

dence between the set of all solutions of Problem IP−k̃
κ̃

(V,W,Z) and the set of

N
−(̃k−k)
κ̃−κ

-pairs {ϕ(λ), ψ(λ)} such that zj ∈ ρ(ϕ(λ), ψ(λ)) (j = 1, . . . ,m) and

(5.12) rankΩ−(zj)
(
ψ(zj)
ϕ(zj)

)
= n (j = 1, . . . ,m).

Alongside with Problem IP−k̃
κ̃

(V,W,Z) let us consider Problem IP+κ̃

k̃
(Ṽ , W̃ , Z)

where Ṽ = V Z, W̃ = W . Let P̃ and P̃+ = P̃Z + W̃ ∗Ṽ and Ω̃+(λ) be the Pick
matrices and the solution matrix (respectively) associated with Problem IP+κ̃

k̃
(Ṽ ,

W̃ , Z). The straightforward calculations show that

(5.13) P̃ = P−, P̃+ = Z∗PZ,
(
In 0
0 λIn

)
Ω−(λ) = Ω̃+(λ)

(
In 0
0 λIn

)
.

Lemma 5.7. The pair {A(λ), B(λ)} is a solution of Problem IP−k̃
κ̃

(V,W,Z)

if and only if the pair {λA(λ), B(λ)} is a solution of Problem IP+κ̃

k̃
(V Z,W,Z).

Proof. Let us note first that the following equivalence holds

{A(λ), B(λ)} ∈ Ñ−k̃
κ̃

⇔ {λA(λ), B(λ)} ∈ Ñ κ̃

k̃
.

Let the pair {A(λ), B(λ)} be a solution of Problem IP−k̃
κ̃

(V,W,Z) and a pair
K(λ),L(λ) interpolate the data V,W . Then the pair λK(λ),L(λ) interpolates the
data Ṽ = V Z,W . Indeed, it follows from (3.4) that

D(p)
λ (λKi(λ))|λ=zi

=
1
p!
(
λ(Ki(λ))(p) + p(Ki(λ))(p−1)

)∣∣∣
λ=zi

=
(
λDp

λKi(λ) + Dp−1
λ Ki(λ)

)∣∣∣
λ=zi

= ziV
∗
ip + V ∗i,p−1

where ziV
∗
ip + V ∗i,p−1 are the rows of the matrix Z∗V ∗. The equalities (where

i = 1, . . . ,m; p = 0, 1, . . . , ri; Vi,−1 = 0)

(5.14) D(p)
λ (λKi(λ)B(λ)− Li(λ)λA(λ))|λ=zi

= 0

implied by (3.8) show that the pair {λA(λ), B(λ)} is a solution of Problem
IP+κ̃

k̃
(V Z,W,Z).
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Corollary 5.8. Let the matrices P and P+ be nondegenerate and let the
inequalities (5.10) hold. Then the formula (5.11) establishes a one-to-one corre-

spondence between the set of all solutions of Problem IP+k̃

κ̃
(V,W,Z) and the set of

N
+(̃k−k)
κ̃−κ

-pairs {ϕ(λ), ψ(λ)} such that zj ∈ ρ(ϕ(λ), ψ(λ)) (j = 1, . . . ,m) and

(5.15) rank Ω+(zj)
(
ψ(zj)
ϕ(zj)

)
= n (j = 1, . . . ,m).

Let us state some sufficient conditions for Problem IP±k̃
κ̃

(V,W,Z) to have no
excluded parameters in terms of reproducing kernels. Let K(t, λ) be the reproduc-

ing kernel of Problem IP−k̃
κ̃

(V,W,Z) and let K−(t, λ) be the reproducing kernel of

Problem IP+κ̃

k̃
(V Z,W,Z)

K−(t, λ) = I + E−(t)P−1
− E−(λ)∗, E−(t) = (W + tV Z)(Z − t)−1.

Proposition 5.9. Let the Pick matrices P,P− of Problem IP−kκ (V,W,Z)
be nondegenerate,

κ = sq−(P), k = sq−(P−)

and let at least one of the matrices K(zj , zj) or K−(zj , zj) be positive for all
j = 1, . . . ,m. Then Problem IP−kκ (V,W,Z) has no excluded parameters.

Proof. Let K(zj , zj) > 0. Then it follows from Proposition 4.9 that Prob-
lem IPκ(V,W,Z) and, therefore, Problem IP−kκ (V,W,Z) have no excluded param-
eters at the point zj .

In the case where K−(zj , zj) > 0, one should consider Problem IP+κ
k (V Z,

W,Z), where the reproducing kernel coincides with K−(t, λ). As was shown above,
this problem has no excluded parameters at the point zj and all its solutions
{λA(λ), B(λ)} are described by the formula

(5.16)
(
B(λ)
λA(λ)

)
= Ω̃+(λ)

(
ψ+(λ)
ϕ+(λ)

)
{ϕ+(λ), ψ+(λ)} ∈ Ñ+0

0 .

It follows from (5.16) and (5.13) that Problem IP−kκ (V,W,Z) also has no excluded
parameters at the point zj and its solutions are described by the formula (5.7)
where {ϕ(λ), ψ(λ)} = {ϕ+(λ), λψ+(λ)} ∈ Ñ−0

0 .

A similar statement for Problem IP+k
κ (V,W,Z) is also true after the replace-

ment of P− by P+ and of K−(λ, λ) by K+(λ, λ).
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Eexample 5.10. Let us consider Problem IP−0
1 (V,W,Z) with the data ma-

trices V = col {1 − i, 0}, W = col {i, 0}, Z = −i. Then P = −1, P− = 1 and the
solution matrix Ω−(λ) takes the form

Ω−(λ) =
1

λ+ i


λ+ 1 0 −λ 0

0 λ+ i 0 0
−2 0 λ+ 1 0
0 0 0 λ+ i

 .

Here K(i, i) =
(
−1/4 0

0 1

)
and K−(i, i) =

(
5/4 0
0 1

)
> 0. It follows from

Proposition 5.9 that Problem IP−0
1 (V,W,Z) has no excluded parameters. How-

ever, Problem IP−1
1 (V,W,Z) with the same data has infinitely many excluded

parameters (for example {ϕ,ψ} =
{

2I2,
(
λ+ 1 0

0 λ

)}
∈ N−1

0 ).

Remark 5.11. The Nevanlinna–Pick interpolation problem in the Stieltjes
class S := N+0

0 has been considered in [17] by the methods of the J-theory of
V.P. Potapov. The Nevanlinna–Pick problem in the generalized Stieltjes classes
N+k
κ was studied recently in [2] where the set of excluded parameters of this

problem was thoroughly investigated. In particular, there was given a description
of this set in the scalar case. The statement of Proposition 5.9 generalizes to the
case of Problem IP−kκ (V,W,Z) the corresponding statement from [2], where the
assumption for the reproducing kernels to be positive in the interpolation points is
transformed into the assumption for the diagonal blocks of the inverses of the Pick
matrices to be positive (cf. Corollary 4.12). The general tangential and bitangential
interpolation problems for Stieltjes functions has been investigated in [32], [4], [7].
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pp. 261–274.

16. H. Dym, J Contractive Matrix Functions, Reproducing Kernel Hilbert Spaces and In-
terpolation, CBMS-NSF Regional Conf. Series in Appl. Math., vol. 71, Amer.
Math. Soc., Providence, RI, 1989.

17. Yu.M. Dukarev, V.E. Katsnelson, Multiplicative and additive Stieltjes classes
and related interpolation problems, Teor. Funktsĭı, Funktsional. Anal. i Prilo-
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