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ABSTRACT. Given an ergodic measured discrete equivalence relation R and
an ergodic subrelation S C R of finite index, C. Sutherland showed that
they are represented by the cross products PX,G and PX,H of an ergodic
subrelation P C S by a finite group outer action ae and a subgroup action
ap. This result is strengthened in the sense that the subgroup H may be
chosen so that it does not contain any non-trivial normal subgroup of G and
that the collection {P, H C G, ac} is invariant for the orbit equivalence of
the pair of R and S. In amenable case of type II;, a complete invariant for
the orbit equivalence of pairs of an ergodic measured discrete equivalence
relation and an ergodic subrelation of finite index is obtained.
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1. INTRODUCTION

Let (X,9B,m) be a Lebesgue space and R C X x X be a measured discrete
equivalence relation. So, each orbit R(z) = {y € X | (y,x) € R} is a countable
set a.e. x. It is known that every measured discrete equivalence relation R can be
characterized to be a subset

R={(97,z)|geG,vec X}

where G is a countable group of non-singular (invertible) transformations on
(X,8B,m) (Feldman and Moore [2]). By m;, we denote the measure on R de-
fined by dmy(y,z) = dm(x), (y,z) € R. A measurable subset S of the Lebesgue
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space (R,my) is called a subrelation if it is an equivalence relation set. We say
that pairs {R,S} and {R’,S’} of a measured discrete equivalence relation and
a subrelation are orbit equivalence if there exists a measure isomorphism (i.e. a
measurable, non-singular and invertible map) ¢ satisfying

o(R(z)) =R (px) and (S(z)) =S8 (pz) ae. .

We will show that given an ergodic measured discrete equivalence relation
R and an ergodic subrelation S of finite index, there is a system of a subrelation
P C S, a finite group G and a subgroup H C G and an action g € G — a4 € N[P]
such that

(i) H does not contain any normal subgroup # {e} of G,
(ii) ag is outer,
(iii) R = PxoG and S = PxH;

where N[P] denotes the normalizer group of P (see Section 2). Moreover, the
subrelation P, the conjugacy class of the action ag over P and the conjugacy class
of the pair {G, H} of a group and a subgroup satisfying the conditions (i)—(iii) are
uniquely determined up to orbit equivalence of the pair {R, S} (Theorem 4.1). So,
we call this system the canonical system of the inclusion R O S. We note that the
existence of {P, H C G, ag} satisfying the conditions (ii) and (iii) was shown by
Sutherland ([10]).

The uniqueness of the canonical system will lead us to classifying the pairs
of an amenable ergodic measured discrete equivalence relation and an ergodic
subrelation of finite index. As a matter of fact, a generalization of Dye’s theorem
is obtained (Theorem 4.2). Namely, the conjugacy class of the pair {G, H} of
a finite group and a subgroup appearing in the canonical system is a complete
invariant for the orbit equivalence in case of amenable relations of type II;. About
type III case, the classification will be discussed elsewhere ([7]).

An idea to prove the main theorem (Theorem 4.1) is to develop a discrete
decomposition theorem for an index cocycle. Namely, as shown in [3], the pair
{R, S} provides an index cocycle. It is known that if a cocycle is a Radon-Nikodym
derivative then a type III relation is decomposed into a type I1, relation and a Z-
action satisfying a scaling-down property through a cross product. So, the problem
is what an analogue of the discrete decomposition of the pair R O S for an index
cocycle is.

For this, we will introduce the index ratio set (Definition 2.4). This is the
pair of a finite group and a subgroup, whose conjugacy class is invariant for the
orbit equivalence. Then, roughly speaking, the subrelation P and the action ag
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will be obtained in such a way that the type Il relation and a Z-action are
obtained in the discrete decomposition of a type III relation using the Krieger’s
ratio set. The computation of an index ratio set will be described in the example
of a measured discrete equivalence relation and an ergodic subrelation arising from

a labeled graph (Section 5).

2. INDEX RATIO SET

Let R O S be an ergodic measured discrete equivalence relation and an ergodic
subrelation on (X, B, m) (see [2]). We let

[R] = {¢ | ¥ a mesurable, invertible, non-singular transformation such that
Yx € R(x) ae. x},

[R]« = {¢ | ¥ an invertible, non-singular map from a measurable subset
Dom(%)) onto a measurable subset Im(¢) such that
pa € R(x) a.e. © € Domw}, and

N[R| = {9 | ¥ a measurable, invertible, non-singular transformation such

that Y(R(z)) = R(¢(z)) a.e. z}.

We note that both [R] and N[R] are groups.

It is known from [3] that the function © € X — #{S(y) | (y,z) € R} is
measurable and is a constant < oo a.e. z. By [R : S|, we denote this constant and
call it the index of S. The Jones index ([8]) of the Krieger factor and the subfactor
constructed from the pair R and § is equal to [R : S].

If N =[R:S8] < oo then one can get the set of transformations ¢; in [R],

N-1
i=0,1,...,N—1, such that ¢y = id, and R(z) = |J S(¢iz). These ¢; are called
i=0

choice functions ([3]). If (x,y) € R and 0 < i < N —1, then an integer j is uniquely
determined by (p;y,¢jz) € S. Thus, we have the permutation o(z,y) € En
defined by o(x,y)(i) = j. Here the ¥ n means the set of all permutations on the
N objects. Obviously, o : (z,y) € R — o(x,y) € Xy is a homomorphism and
is called the index cocycle of the pair R and S ([3]). We let [R : ] = N < o0
and set

ro(S) = {0 € X | there exists for any measurable subset E of positive
measure a partial transformation ¢ € [S], such that

Dom(y), Im(y) C E, and o(pz,z) =0, Vo € Dom(p)}.

Thus ro(S) is a subgroup of Xy. By Ker(o), we denote the subrelation
{(z,y) eR|o(z,y) =€} CS.
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LEMMA 2.1. #{Ker(c)-ergodic components} < N!.

Proof. Consider the subrelation Q of S defined by
Q={(z,y) € Slo(z,y) €ro(S)}.

Let us choose any finite partition {Ay | A € A} of X consisting of Q-invariant
measurable subsets of positive measure. If (z,y),(z,2) € Sandif x € A,,y €
Ax,z € A, and if A # p, then since Ay and A, are disjoint Q-invariant sets,
o(z,y) # e. Hence o(y,x) # o(z,2z). This implies #(A) < #(Zn) = NI. We
will show that both of the partitions of X by the Q-ergodic components and by
the Ker(o)-ergodic components respectively coincide with each other. For this let
{A\ | A € A} be the finite partition consisting of all Q-ergodic components.

Since Ker(c) C Q, every Q-invariant set is Ker(o)-invariant. We want to
show that each Ay is a Ker(o)-ergodic component. For this we let A € A and F
and F' be measurable subsets of Ay of positive measure. Since the restriction Q| 4,
of Q to the set Ay is ergodic, we obtain a ¢ € [Q]., and a 0 € ro(S) satisfying

Dom(p) C E, Im(p) CF and o(pz,z) =60, Vz € Dom(yp).
By definition of ro(S), there exists a ¢ € [S], satisfying
Dom(%), Im(¢)) C Im(p) and o(z,z) =0"", Va € Dom(p).

Then,

o - px,x) =0 pr, pr)o(pr,z) =010 =e, Vazep '(Dom(y)).

Hence v - ¢ € [Ker(o)]«, Dom(¢) - ¢) C E, and Im(¢) - ¢) C F. On the other
hand, since Ker(c) C Q, the set Ay is a Ker(o)-invariant. Therefore Ay is a
Ker(c)-ergodic component. 1

Throughout the rest of this section, we let {Ax | A € A} be the partition of
X consisting of all Ker(o)-ergodic components. Let A € A and set

ry(R) = {0 € ¥ | there exists for any measurable subset A C Ay of positive
measure a p € [R], such that Dom(y), Im(¢) C A and
o(px,z) =0, Vx € Dom(p)},

r(S) = {6 € Xy | there exists for any measurable subset A C A, of positive
measure a ¢ € [S], such that Dom(y), Imyp C A, and
o(pz,z) =0,Vx € Dom(p)}.

Then both ry(R) and ry(S) are the subgroups of Xy.
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LEMMA 2.2. Let A € A. Then
(i) o(y,z) € rA(S), a.e. (y,x) €S with x,y € Ay, and
(ii) o(y,z) € ra(R), a.e. (y,x) € R with z,y € Ax.

Proof. (i) Let ¢ € [S]« be such that Dom(p), Im(p) C Ay and o(pz,z) =
a constant = 6, Vo € Dom(p). We show that § € r)(S). Since the restriction
Ker(o)|a, is ergodic, there exist for every set E C A) of positive measure, partial
transformations ¢; € [P]., ¢ = 1,2 satisfying that Dom(t)1) C E, Im; C Dom(yp)
and Dom(v2) C Im(¢ - 91), Im(zp2) C E. So, we see that Dom(12 - ¢ - 1), Im(1)2 -
@ -11) C E and that

(e -, x) =0(P2 - @ - Yrx, @ - Prx)o( - iz, vr1x)o(Yre, )
=e-0-e=40,

V2 € Dom(t)s - p-11) C E. Since 12 - ¢ - 1)1 € [S]., we have 8 € ry(S). The proof
of (ii) is similarly done. So, we omit it. &

LEMMA 2.3. There exist permutations 0, € Xn, A, u € A satisfying the
following conditions:
(i) For a.e. (y,x) € R withy € A, and x € Ay, (y,z) € S if and only if
o(y,x) €rpy(S) - 0ux;
(ii) QA,N . G,W = 9)\’7, 0)\’)\ =e€;
(ifi) Oy - T4(S) - GX,L =1x(S), Onp-1Tu(R)- QX,L =1A\(R).

Proof. We choose and fix a A\g in A. Let A € A, then since S is ergodic there
exists a partial transformation ¢ € [S]. such that Dom(p) C A,,, Im(p) C A,
o(px,x) = a constant, Vx € Dom(y), and such that gz = x, Vo € Dom(yp),
if A = Ao. By ¢ and 6, ), we denote such a partial transformation ¢ and the
corresponding constant in X . If ¢’ is another choice of a partial transformation
in [S]. having the corresponding constant 6', then since Ker(o)|a,, is ergodic,
we obtain a partial transformation ¢ € [Ker(o)], such that Dom(y) C Dom(¢y),
Im(¢)) C Dom(¢’). Then,

@ P o3 on Dom(w)) € [Slay)s

and
o(¢ - -pylmx)=0-055,, Yaepr(Dom(y)).

So, by Lemma 2.2, we see 6’ - 9;’1)\0 € ry(S). Thus, o(y,z) € rA(S) - 6x,», for a.e.
(y,x) € S with y € Ay and = € Ay,. Similarly, we see that o(y,z) € ry,(S) - 9;{\0
for a.e. (y,x) € S with y € Ay, and = € Aj.
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Next if h € r)(S) then we choose a partial transformation ¢ € [S]. such that
Dom(p),Im(p) C Im(py), o(pz,z)=h, Yz € Dom(p).

So,
@Xl 2 ¢A|@;1(Dom(d})) € [S|Ak0]*’

and
o(pyt-p-pam,x) =055 h-Ohy,, Ve ey (Dom(p)).

By Lemma 2.2, 9;,1%}‘9)\)\0 €ry,(S). Thus, 0;,}\0 TA(S)-0x 5, C 1 (S). Similarly
we see that if h € ry(R), then H;AOhHA,)\O €r),(R) and that 9;}\0 ‘TA(R)-0Ox, C
T'xo (R)

Replacing Ag by A in the above argument, we see 0 x, T, (S)- 9;&0 Cra(S)
and 9)\7)\0 . I‘)\O(R) '9;;\0 - I')\(R).

We define

Oron = 03500 Ori = Oaxo Oroes A HEA.
Then,

Org - Tu(S) - 055, =1A(S), Orp-Tu(R)- 05, =1A(R),
o(y,x) €ry(S) -0, ae (y,z)eSwithye A,z e A,

Finally, we will show that for a.e. (y,2) € R with y € 4, and x € Ay, (y,z) is in
Sifo(y,x) € ry(S) -0, To see this, let \,u € A, ¢ € [R], and h € r,(S) be
such that

Dom(p) C Ax, Im(p) C A, o(pz,x)="h0,, Vae&Dom(yp).
Since Ker(0)|a, is ergodic, we get a partial transformation ¢ € [S]. such that
Dom(¢)) C Im(p), Im(y)) C Im(yp,), o(¥z,z)=h"", VzecDom(y).

Similarly, we have a partial transformation ¢’ € [Ker(c)|a,,]. such that

*

Dom(y') € Im(p, (Im(y)), Im(y') C Dom(py).

Then, by setting ¢ = @x -9 - ;" - - ¢ € [R]., we have o(¢"x,z) = e, YV €
Dom(v") C Ay, so that ¢ € [Ker(o) |a,],. Thus, p ==L, Loty t e
[S]«. 1
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By Lemma 2.3, the conjugacy class of the group ry(R) and the subgroup

r)(S) does not depend on a choice of A € A. So, we have

DEFINITION 2.4. We call the conjugacy class of the pair of the finite group
ry(R) and the subgroup ry(S) the index ratio set and denote it by {r(R), r(S)}.

LEMMA 2.5. The pair of the indez ratio sets r(R) and r(S) does not depend
on a choice of the set of choice functions {@;}oci<n—1 and in fact depends only

on the orbit equivalence class of R and S.

Proof. If ¢’ is the index cocycle determined by another set of choice func-
tions ¢} of S C R, then o and ¢’ are cohomologous ([3]), that is, there exists a

measurable function x € X +— v(z) € X such that
o'(z,y) = v(@)o(z,y)o(y) ™", (z,y) € R.

Let Ao € A and let {B; | i € I} be the finite partition of X consisting of
all Ker(o’)-ergodic components. Let ¢ € I be such that m(A,, N B;) > 0, then
we have a v in ¥ such that m({z € X | v(z) = v} N Ay, N B;) > 0. Applying
Lemma 2.2, we see that except on a null set, the range of o and o’ of the restriction
of S to this intersection coincide with ry,(S) and r;(S) respectively. So, we have

ri(S) =71y (S) -y !. Similarly we have r;(R) =~ -1y, (R) -7~ 1. 1

We let R be the measured discrete equivalence relation on (X x R, m x e*du)

defined by
((z,u), (y,0)) €R

if (z,y) € R and v = u — logd(y, ), where (z,u),(y,v) € X x R. Here §(x,y)
means the Radon-Nikodym derivative. Then R is of type Ilo.. By X we denote
the quotient space of X x R by the measurable partition consisting of all ergodic
components of R. We let 7% be the natural surjection from X x R to X®. By
{T; | t € R}, we denote the flow Ty(z,u) = (x,u+t) for (z,u) € X xR, ¢t € R.
By {FF | t € R}, we denote the factor flow of {T; | t € R} to the quotient
space X~ through the factor map 7%, that is, 7*T; = F*n®, ¥t € R. The flow
{F[R | t € R} is called the associated flow of R ([4]) and simply denoted by F*.

It is known that R is ergodic and of type II if and only if F® is the translation
ueR—u+teR, teR ([4]).
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LEMMA 2.6. (i) R is of type 111 if and ouly if S is of type 11;.
(il) R is of type I if and ouly if S is of type 1o

Proof. For almost all g’—ergodic component there exists a uniquely deter-
mined R-ergodic component containing it. By 71'752, we denote this map. Then,

o FS = FRn3, VteR.

The number of g—ergodic components contained in the ﬁ—ergodic component con-
taining a point (z,u) is at most N a.e. (x,u). Since 7% is a finite to 1 factor map,
the flow F® is the translation if and only if so is F'°, that is, R is of type II if
and only if so is S. In this case let p be an invariant measure for S. Then the
uniqueness of invariant measure (up to constant) implies that p is R-invariant,

too. 1

From now on in this section, we denote by G and H C G the finite group
r),(R) and the subgroup ry,(S). By {4\ | A € A}, we denote the finite partition
of X consisting of all Ker(c)-ergodic components.

LEMMA 2.7. There exists an action g € G — o4 € [RINN[Ker(o)] satisfying
the following conditions:
(i) ag is outer over Ker(o), that is, if ay € [Ker(o)] then g = e;
(ii) ap, € [S], Yh € H;
(111) (quw l‘) =0, )\099,\0 A Ve A)\, Ve A
( )Oég(A)\) A)\,VQEA)\,V)\EA.

Proof. It is enough to construct such an action o on each Ker(o)-ergodic

component. Let us first assume that R is of type II;, and let A € A.

We choose a subset E)\ C Ay with m(E)) = ”;(é;)). The ergodicity of

Ker(o)|a, allows us to get partial transformations 7, € [R|a,]., g € G, such that
ne =id|g,, Dom(ny) = Ex, oc(nyz,x) =0x1,90x,,%, ae. z€ Ej.

By (i) of Lemma 2.3, if g € H then 1, € [S]a,].-

We choose a finite partition {K, | g € G} of Ay with m(K,) = %, geq.
Since Im(n,) and K, are Ker(o)-Hopf equivalent, there exists a v, in [Ker(o)|a,],
such that Dom(vg) = K, Im(vg) = Im(n,).

We define the transformation ay, f € G, on each Ay by

ozfx—qu Nfg - ng vz, € K4 9€G.

Then, obviously ay € [R] and (iv) is satisfied.
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To see (ii) and (iii),

olafr,x) = o(arz,nsg - ng_l ~vgx)o(Ngg - ng_l . vgx,ng_l - Vgx)
. 0(77;10gx, vgx)o(ve, )

—1 —1 —1
=e- O f905, g 03, € =00, r € K.

In particular, if f € H, then o(ayx,x) € ra(S), and hence by Lemma 2.3,
ay € [S].

Finally, let us check that ag is an outer action of Ker(o). If (z,y) € Ker(o)
and if (z,y) € Ay then for all g € G

o(agz, agy) = o(ayz, ) (2,)0 (Y, agy) = Ox 2090001 - € Orx0g "Oror = €

Thus, oy € N[Ker(o)]. Let g € G be such that for some set F of positive measure,
(agz, ) € Ker(o), Vo € E, then since o(agz,z) = 03 2,90x,.7, VT € E, we see
that g = e.

In the case that R is of type I, if m(A4)) = co then we replace the require-
ment m(Ey) = "#(AG*)) in the above sequel by m(E)) = oo and m(K,) = ";E((‘L‘C;))

by m(Ky) = oo, Vg € G respectively. Then the proof is done by the similar

argument. In the case that R is of type III, so is Ker(o) by Lemma 2.6. In this

case we do not need the requirement m(K,) = % anymore. |1

DEFINITION 2.8. For a measured discrete equivalence relation 7 and an

action v € ' — 3, € N[T] of a countable group I, the relation U defined by

(z,y)eUU if ye U T (Byx)
yel’

is called the cross product of T by fr, and denote it by 7 xgI.

We notice that the action ag in Lemma 2.7 is free, that is, if ¢ € G is not
e then oy # x a.e. x. So, it allows us to get a Rholin set for the action ag.

Namely, there exists for each A € A a measurable set F\ C A, such that

Ay = U ag(Fy) (disjoint union).
AEA

In the sequel of this section we will fix the subsets F\ € A, A\ € A.
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LEMMA 2.9. Let A € A. Then,

Ker(o)|a, oG = R|a, and Ker(o)|a, xoH = S|a,
Proof. T A € A, (z,y) € R and z,y € Ay, then

Lemma 2.7(iii)
0<aa(y,m)xay) = J(aa(y,m)xvl')a(xay) = a(y,x)o(x,y) =e€.

Hence,

y € Ker(0) (o (y,2)%) = Qo (y,z)(Ker(o)(x)).

Thus, y € (Ker(o)|a, XaG)(2), if (z,y) € R with z,y € Ay and y € (Ker(o)|a, Xa
H)(z), if (z,y) € S with z,y € Ax. 1

We took the partial transformations ¢y, A € A in the proof of Lemma 2.3.
Since Ker(o)|a,, is ergodic, we may and do assume that these have the same

domain. So, we define the partial transformations ¢, » in [S]. by

Uaxe = P
Vror = @)
Yau = VarePro,us A E A

DEFINITION 2.10. We define the subrelation P of S as follows: Let z € A,
y € Ay, where A, n € A. Then (z,y) € P if either u = A and (z,y) € Ker(o), or,
p# X and (u,y), (z, ¥y u) € Ker(o) for some u € Ay.

THEOREM 2.11. The equivalence relation P is ergodic, and the system {P,
H C G, ag} in Lemma 2.7 satisfies the following properties:
(i) G is a finite group and H is a subgroup which does not include any
normal subgroup # {e} of G;
(ii) The action ag C N[P] is outer;
(iil) R =PxoG, S = Px.H.

We notice that the collection {P,H C G, aq} satistying the conditions (ii)
and (iii) was obtained by C. Sutherland ([10]). It will be made clear in the next

section that the condition (i) in this theorem is a key for proving the uniqueness
of {'P,H C G, Ozg}.
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Proof. Each restriction P|a, = Ker(o)|a,, is ergodic. For each A and € A
the partial transformation v, » in [P}, hits the set A, from its domain in Ay. So,
P is ergodic.

We will show (ii). In order to see g C N[P], we let p, A € A and g € G.
Since both of the restrictions of Ker(o) to the sets Ay and A, are ergodic, one
can get for a.e. (z,y) € P with x € A\ and y € A, points u and z € Dom(v, »)
satisfying

(z,u) € Ker(o), (Yuu,y) € Ker(o) and (agu,z) € Ker(o).
Then,
o(Yurz, agy) =0 (Yunz, 2)o (2, agu)o(agu, u)o(u, Yuu)o (Puu, y)o(y, agy)
=Opn € 090000 Onpu v € Oungg™ Or, 0 = €.
Hence, (Y12, a4y) € Ker(o). On the other hand, (o4, aqu) € Ker(o). Thus
(g, aqy) € P. To see that ag is outer, we let E C X be of positive measure
and g € G be such that ayz € P(z), x € E. Since z and a4z sit on the same

Ker(o)-ergodic component, and since the restriction of P to this set is just the
same as the restriction of Ker(o), we see that ayz € Ker(o)(x),x € E. Hence,

Ox 2099700 = 0(agz,x) = €.

Thus, g = e.

Next we will show (iii). We get for a.e. (x,y) € S (respectively (x,y) € R)
with z € Ay and y € A, a point v in Dom(%,, ») such that (u,z) € Ker(o). Since
(y, Ypuu) € S (respectively (y,1,  u) € R), it follows from Lemma 2.9 that

(Ker(o)|a, o H)(Wuru
(respective (Ker(o)|a, XaG) (Y u

) C (PxoH)(u) = (Px,H)(x)
) C (PxaG)(u) = (PXaG)(x)).
Thus, y € (PxoH)(x) (respectively y € (PxoG)(z)).

Finally, we will show (i). Let K be a normal subgroup of G such that K C H.
Let G/K be the quotient group of G by the subgroup K and denote each coset
gK (= Kg) by [g], for g € G. We choose and fix representatives g; € G, j € J, so
that G/K = {lg,] | j € J}.

Consider the coset space G/H of G by the subgroup H, thatis, g and ¢’ € G
are equivalent if g¢’ ! € H and we denote for g € G its equivalence class by [g]#.
Then there exist a subset I C J such that

#(I) = #(G/H)
G/H ={lgilm |i eI}
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In order to see this, we notice that if an element g in G satisfies [g] = [h] for some
h € H then g € H. So, we may set

Hi ={[g)e G/K | g€ H}.

Obviously, Hg is a subgroup of G/K. So, consider the coset space of G/K by Hg
defined by that if [g] and [f] € G/K then [g] is equivalent with [f] if [g][f]~' €
Hyg. Then we see that the above equivalence relation is just the same as the
equivalence [g]g = [f]u. Hence, we get a subset I C J with #(I) = #(G/H) so
that [g;]m,¢ € I, are all equivalence classes of G/H.

We see that {cy, | i € I} is the set of choice functions of S C R. In fact,
{ay, | i € I} satisfies

US(agi:E) = U U Planog,z) = P( U agx> =R(x) ae. z

i€l i€l heH geG

By &, we denote the index cocycle corresponding to these choice functions. We
will show that if 4, 7,4, 5’ € J and [gjg; '] = [g;79; '], then

2.1) T (thg, @, Qug, @) =0 (Qprg, T, Qurg, )
' = a constant a.e. z, and k,[,k',l' € K.

Let z,2' € X, k,[Lk',l' € K, m € I, and let

gn = E(akgr% Alg; :L‘)(gm)

Gt = E(ak/gi,x', al/gj,:c’)(gm).

This means (g, 19,2, g, kg, %) € S and hence [gmlg;]n = [gnkgi]z. On the other
hand, [gmlg;] = [gmg;] and [gnkgi] = [gngi]. Therefore, [gmg;ln = [gngiln and

[9m/gj’ |5 = [gngir]m. By the assumption that [gjgi_l] = [gj/gi_,l], there is an
element ¢ in K such that
I Hgn N 95 Hgur ke 7 0.

Choose elements h and k' € H so that g,,'hg, = g,,'h'gnk, then hg, = h'g, k =
h'k'g, for some k' € K. Thus, g, = ¢g,». Hence we may write

7 (g, T, cug,x) = a constant = 0([g;g; ']) ae. z,k,l € K.
We will show that for each A in A

(2.2) o(y,x) =e if (y,z) € Ker(o) withy,z € Aj.
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Let (y,x) € Ker(o) and y,x € Ay, and let g, = 5(y, z)(gm ), where n and m € I.
This means (ag,, 2, a4,y) € S. Using S|a, = Ker(o)|a, XoH, we have g,y €
Ker(o) (o (e, x)) for some h € H. Since oy, € N[Ker(o)], (o, x,aq4,y) €
Ker(o). Hence, (agny, ancy,, y) € Ker(o). Since the action ag is outer, g, = hgm,
and hence ¢, = gm.

Finally, by (i) and (ii), we see that
{o(y,2) | (y,z) € R and y,x € Az} C O(G/K).

By Lemma 2.2, the set in the left hand side is r(R) = G. Obviously, #(0(G/K)) <
#(G/K). Thus,

#(G) < #(G/K).
This implies K = {e}. 1

REMARK 2.12. The collection {P, H C G, aq} satisfying the conditions (ii)
and (iii) was obtained by C. Sutherland ([11]). It will be made clear in the next
section that the condition (i) in this theorem is a key for proving the uniqueness
of {P,H C G,ag}.

3. THE CONJUGACY CLASS OF HCG

Throughout this section, we let R and & C R be an ergodic measured discrete
equivalence relation and an ergodic subrelation admitting an ergodic subrelation
P C S together with a finite group G and a subgroup H C G and an action
g € G — a4 € N[P] satisfying the following conditions:

(i) H does not contain any normal subgroup # {e} of G;
(ii) aq is outer;
(i) R = PxG, and S = Px,H.

In the previous section we showed that every ergodic measured discrete equiv-
alence relation and an ergodic subrelation with finite index admits the system
{P,H C G,aq} satisfying the above conditions (i)—(iii). In this section we will
show that the conjugacy class of the pair of the group G and the subgroup H is
uniquely determined by the inclusion data S C R.
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THOEREM 3.1. The conjugacy class of the pair of the finite group G and the
subgroup H depends only on the orbit equivalence class of the pair of R and S.

In fact, we will prove that the pair H and G is conjugate with the pair of
r(S) and r(R). Then in view of Lemma 2.5, the latter pair depends only on the
orbit equivalence class of the pair of R and S. After preparing several lemmas and
a proposition, we will prove this.
Throughout this section, we choose and fix a Rohlin set F' for the free action
ag, that is,
U agF = X (disjoint union).
geqG
We let G/H be the coset space of the group G by the subgroup H, and choose
and fix representatives g; € G, i € I, so that G = {[g;]g | © € I}, where g9 = ¢
and [g]g = Hg for g € G. We define the transformations ¢; € [R], i € I by

0it = apgp1x, forwe U Qng; (F), heH.
jel

We set for each h € H,
Fh = U Ohg, (F)
iel
We note that ¢;(ang, (F)) = ang,q; (F).
LEMMA 3.2. {g; | i € I} is the set of choice functions of S C R.

Proof. We will show that if (¢;z,prx) € S, then i = k for a.e. 2. Let
u € F,j el andlet h € H be such that x = apg,u. Then (p;z,prr) =
(Qthgig; Us Angyg;u) € S. So, by (iii) there is an element A’ in H such that
(Qh/Qhg, g, U, pg,g,u) € P. By (ii), h'hgig; = hgrg;. Hence g; = gy.

Next, let g € G and x = apg;u, where v € Fyh € H. Then, agz = agpg,u =
Qpr g g,u, Where [ € I,h/ € H with gh = h/g,. Hence,

Qg = Qprp—1 * g, g, U = aprp-101(x) € S(p1()).
By the condition (iii), R(xz) = |J S(piz) a.e. x. 1
leT

By o, we denote the index cocycle corresponding to the choice functions (;,

1€ 1.
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LEMMA 3.3. o(apy,apx) =o(y,z) a.e. (z,y) € R, h,h' € H.

Proof. Let (y,2) € R, k€T and hand b’ € H. Set I = o(y, z)(k). It is easy
to see

prag =oagp; Vg€ H and ViIel.

Therefore by the condition (iii), (¢r(anz),vr(x)) = (aper(x), prr) € S and
(o), oi(x)) = (anrpi(z), 1) € S. Hence

(prr,p1y) €S if and only if  (pranz, prany) € S.

Thus, | = o(apy, apx))(k). 1
LEMMA 3.4. For each h € H,

Plrn) = Ker(o)|pn)-
Proof. To see the inclusion P|p@) C Ker(o)|pny, we let @ = apg,u and
Y = apg;v, where h € H, u,v € F, and suppose (z,y) € P. Since apg,;,—1 € N[P],
we have (012, 01y) = (Qng,g,U, Ang,g;v) € P, VI € 1. Thus, I = o(y,x)(1),VI € I.
We will show the converse inclusion. We let h € H, u € F, set x = oygq,u,
Y = apg;v and suppose o(z,y) = e. By Lemma 3.3,

e=0(z,y) = o(ang,u, ang,v) = o(agu,ay,v).

This implies (@(g,u), pi(ag,v)) € S, VI € I and hence, (ag,g,u, ag4,v) € S,
Vi€ I. So, there exist elements hy in H, [ € I such that (oy,g,u, anag4,v) € P.
In particular, (o, u, ay;v) € S, so we have an element h in H such that

(agu,o5,u) €S and (ag, u,aq,v) €P.

Therefore, o po and o, g, map the P-orbit P(ag, u) = P(ag,v) onto the P-orbit
P(ag,g,u) = P(an,g,9;v). By the condition (ii), we see hyg; = glﬁi1 €eH Vel
Namely, glﬁ_lgl_l, VIl € I. Then, by the condition (i), we see h = e. Thus,

(ag,u, g, v) € P. Hence, (z,y) = (Qng,u, ang,v) € P. 1

LEmMA 3.5. Ker(o) is ergodic.

Proof.
Ker(o)|rn) = Plrm), Vh € H (use Lemma 3.4),
o(apz,z) = e, a.e. z, Vh € H (use Lemma 3.3).

Hence, Ker(o) is ergodic. 1
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LEMMA 3.6. The measurable function v € F +— o(agu,u) € L#(I) is
constant a.e., Vj € I.

Proof. Let u,v € F and suppose (u,v) € P. Then, since oy, € NI[P],

)
(ag,u, g, v) € P. Applying Lemma 3.4, o(u,v) = o(agy,v, ag,u) = e. On the other
hand, o(ay,v,v) = o(ay,;v, agu)o(ag,u,u)o(u,v). So, o(ag,v,v) = o(ayu,u). In
other words, the function u € F' + o(agy,u,u) is P|p-invariant. The ergodicity of
P|r implies that

o(ag,u,u) = constant a.e. uc F. 1
By 0,,, we denote the constant o(ay,u,u), u € F.

PROPOSITION 3.7. Let h and h' € H. Then, o(u,v) = a constant a.e.
(u,v) € P with u € F(h) and v € F(h'). Moreover, this constant depends only on
h~'h'. Denoting this constant by 0p—1p,, then the map h € H +— ), € Y1) gives

a group into isomorphism.

Proof. Let h,h' € H, u,u; € F(h) and v,v; € F(h') and suppose that
(u,v), (v,v1) and (v1,u1) € P. Then, by lemma 3.5, we see o(vy,v) = e and
o(u,u1) = e. So, o(u,v) = o(u,ur)o(ur,v1)o(vi,v) = o(ug,v1). Since both of
Plr) and P|py are ergodic, o(u,v) = constant a.e. (u,v) € P with u € F(h)
and v € F(h'). By 0O, we denote this constant o(u,v), where u € F(h), v €

F(R'). Since o is a cocycle, 6 satisfies the cocycle property
(3.1) Onnr - On prr = Op prr, Ry h € H.

Let us choose u, z € F(e), v € F(h') and w € F(h) so that (u,v), (v,w) and
(w,z) € P. Then,

e=o0(z,u) =o0(z,w)o(w,v)o(v,u) = ¢ n0nn O .

Therefore, 0y nr = 0pc0c . Here, set 01 = 0 ¢, then, 0. = 05, and hence
0, = 01 and O,y = 0}, 'O
We will show the left invariance of 0}, 5~ in the sense that

(3.2) One =055 hohel

)

Choose (u,v) € P with u € F(e) and v € F(h). Then, (azu,azv) € P and hence,

- (Lemma 3.3)

O, 5 = ooz, azu) = o(azv,v)o (v, u)o(u, hu) On.c.
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This makes # an homomorphism. In fact, if h, h € H, then

(3.2) cocycle property (iii)
OO = Onsc Or 2000, O & O, =0,

v—1,h~ h e h "h—le

Finally, we will show that the map h € H — 05 € Sy is injective. Let
h € H and suupose 8, = e. Choose a point (u,v) € P such that u € F(e) and
v € P(h). Then,

o(a; v u) = o(ay v, v)o(v,u) =e- 0,1 =e.

Since u and aj, ‘v € F(e), it follows from Lemma 3.4 that (u,a; 'v) € P. Hence,
(o 'v,v) € P. Since the action ag is outer over P, we see h =e. I

By 65, we denote the constant o(u,v), u € F(e), v € F(h), h € H.

LEMMA 3.8. 0, # e if g; # e.

Proof. Let j € I be such that 0, = e. If u € F then since ay,u € F(e), it
follows from Lemma 3.4 that (u, ag,u) € P. Hence, g; = e, because ag is outer. I

LEMMA 3.9. Let h,h € H and let i,k € I. If g;h = hgy then 04,0, = 05 0y, -

Proof. Let h,h € H and let i,k € I. Suppose g;h = hg. Using the ergodicity
of P, we have for a.e. w € F(h), a point u € F such that (u,w) € P. Then,
(ag,u, g, ,-1w) € P. Hence,

—1. 3y _ _ —_
o(agu, o w) = o(agu, o5, 1w)o(og, 1w, agp-1w)o(agp-1w, ap-1w)
= 967E'€ -Hgk = Gﬁ ng.
On the other hand,

o(agu, a;lw) = J(agiu,u)a(u,w)a(w,aglw) =04 Oep-e=0g0, 1

LEmMMA 3.10. Leti,j,k €I and h € H. If g;g; = hgy then 04,0, = 0,0, .

Proof. Suppose g;g; = hgr. Using the ergodicity of P, we have for a.e.
u € F a point w € F such that (ag,u,w) € P. Then, since ay, € N[P], we
see (Qng, U, ag,w) = (ag,aq,u, g,w) € P. Since apg,u = ay,(ag,u) € F(h) and
ag,w € F(e),
U(O‘hgku’ O‘gi(“'}) =0Op,e = Op—1.

The cocycle equation of o implies

On - ng = U(agiwv ahgku)a(ahgkuv agku)a(agku> u) = U(O‘giwv u)
= o(agw,w)o(w,agu)o(agu,u) = 04,0, 1

This lemma allows us to define the map g € G — 0, € Y4 () as follows.



20 TOSHIHIRO HAMACHI

DEFINITION 3.11. For h,h € H and i,j € I, we define
Org, = 010y, and 0, 7 = 0,0

We note that 094 = 0;1. Because, gi_1 is of the form hgj for some h € H
and k € I. grg; = h™" implies 0y, 0,, = 6,' = 6, and hence 0, ! = 0,0, =
Ong, = 0g;1.

LEMMA 3.12. (i) o(u,v) € 0g a.e. (u,v) € R;

(ii) o(u,v) € g a.e. (u,v) €S.

Proof. (i) Since R = Px,G, it is enough to see that if h,h € H and i,j € I
and if u € F and (v,aﬁgihgju) € P then o (v, ag,u) € 0g. In fact,

o(v, agu) = o(v, Xy, (ag,u))o(ag(og,g,u), ag,g,u)o(0g,q,u, org, u)
€ 0g - o(ag,q,u,ag,u)
and, since g;9; = hgy for some h € H,
o (g, g;u, ag,u) =0 (ap(ag,u), ag,u) =0o(ag,u, ag,u)=0o(ag,u,u)o(u, ag,u) € Og.
(ii) In the proof of (i), consider the case where ¢ = 0, that is g; = e. Then g = g;
and o(v,apg,u) =0,, 17 € 0. 1
LEMMA 3.13. The map 0 : g 04 € Yu(p) is an into group isomorphism.
Proof. Let h,h' € H and i,i' € I, and set g = hg;,g' = h'g;. By the
definition of f¢,
Ogg = 0,70g.9, (Where gih = hgr, h € H)
= Op070,,04, (use Proposition 3.7 and Lemma 3.10)
= O 04,010, (use Lemma 3.9)
=040,
In order to see that the map 6 is injective, let h € H and 7 € I and suppose
Ohg, = e. Since P is ergodic, we obtain for a.e. u € F a point v € ap(F) with
(u,v) € P. Then,
o(a; v, Qg u) = o(a;, v,v)o (v, u)o(u, Qg u) = 9;19;3_1.

Since aj, 'v and agu € F(e), it follows from Lemma 3.4 that (o, 'v,a4,u) €
P. Hence (a;jlaglv,u) € P. On the other hand, since (u,v) € P, we have
(a;jla;lv,v) € P. Since ag is outer, gj_lff1 = e. Therefore, g; = e and h = e.
Thus hg; =e. 1

Proof of Theorem 3.1. In fact, by Lemma 3.11 and Lemma 3.12 we see that
0(G)=r(R) and (H) =r(S). 1
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4. CANONICAL SYSTEM {P,HCG,ac}

Continued to the previous section, we are going to show that the subrelation
P and the action ag depend only on the orbit equivalence class of the pair of R
and S.

THEOREM 4.1. Suppose ergodic measured discrete equivalence relations R
and R’ and ergodic subrelations S C R and 8" C R’ admit the collection {P, ag,
H C G} and {P',ap,, H C G'} respectively satisfying the conditions (i), (ii) and
(iii) 4n Section 3. If the pairs {R,S} and {R',S'} are orbit equivalence then there
exists a measure isomorphism ¢ : X — X' and a group isomoprphism v : G — G’
such that:

(i) ~(H) = H';
(i) o[Ple~" = [P'];

(iii) payp~! = av(g) Vged.

After preparing the Propositions 4.2 and 4.3, we will prove this theorem.
Throughout this section we assume that R and S (respectively R’ and S’)
satisfy the conditions in Theorem 4.1.

PROPOSITION 4.2. Let {P,H C G,ag} satisfy the conditions (i), (ii) and
(iii) for the pair {R,S}. Then there exists an index cocycle o of S C R , an action
g €— By € N[Ker(o)] and a ¢ € [S] satisfying the following conditions:

(i) Ker(o) is ergodic;

(ii) Bg is outer;

(ili) o(Byz, 3:) =g, VgeG, ae z;

(iv)

)

[Pl = [Ker(o)];

(V) pagp lzﬁg,gGG.

Proof. We choose and fix representatives g¢;, 7 € I, from the coset space
G/H, where gy = e and let o be the index cocycle of S C R constructed in the
proof of Theorem 3.1. We choose and fix a Rohlin set F' for the free action ag
and define the sets F'(h), h € H, as in the proof of Theorem 3.1. By Lemma 3.3
and Lemma 3.4,

Plr(ey = Ker(o)|r(e)

and
(apx,z) € Ker(o), ae. xz, he H.
Since ap(F(e)) = F(h) and X = |J F(h), and since P|p() is ergodic, we see

heH
that Ker(o) is ergodic.
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What we are going to do is to define the action g in the theorem. For this,
set
Bg;x =gz, wEF, jEJ

then o(By,z,2) = 0,,, x € F. Using the ergodicity of P, we get for each h € H a
Bn € [P]s such that G (ay, F) = apg, (F),Vj € I. Weset for h € H, and j € I,

/thju = 6hﬂgju7 u e F

then
U(Bhgju’“) = O’(ﬁhng,ﬁng)U(ﬁgju,u) = Onbly, = Ong, -

We define the transformations 8, € [S], g € G, by
Bgx = ngﬁglx, z€agz(F),Vgeq.
It is easy to see that (¢ is an action (i.e. Bygr = 848y ). If © € az(F') then
o(By2,7) = 0Bz (55 ), B ")or (B 1, )

= g5 - U(ﬁgy,y)_l, where y = ﬂglx

-1
=045 02" = 0,551 = 0.

Hence, if (z,y) € Ker(o) then o (B4, Byy) =€, Vg € G, so that fo C Ker(o)N[R].
Here we note that the subrelation Ker(c) is characterized as follows. If h,h € H

and (z,y) € R with z € F(h) and y € F(h) then (x,y) € Ker(o) if and only if
(az),-1,y) € P. In fact,

o(y,x) = o(y, oz, 1v)o(ag), 12, 1) = (Y, a5, 1 T),
(use Lemma 3.3) and hence,
(y,z) € Ker(o) < (y, a5, -.2) € P (use Lemma 3.5).
Finally, we define the transformation ¢ € [S] by

pr =, x € F(e),
papr = Ppr, x € F(e), h € H.

We are going to prove

(4.1) pay = Byp Vg€ G,
(4.2) p[Ker(o)]p~! = [P].
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To see (4.1), ifu € F, h € H,j € I and g = hg;, with i € I and h € H, and if
T = apg;u € F(h) then
AT = Xging;

= O7rg.g, W (Where I’ € H and g;h = I'gy)

= g, U (where b € H and grg; = h"g;).

Hence
PhgT = POxp g U = By o Qg = ﬁﬁh'h”gz“
= Bﬁgiﬁhgju = ﬁg(pahgju = ﬁg‘;px

To see (4.2), if h,h € H, i,j € I and u,v € F and if x = apg,u, y = az, v, then
J

)
(f,y) € KGI'(U) < (aﬂh—lxay) eP
& (ag,u,aq,v) €P
& (pz, 0y) = (Brag,u, Bragv) € P. 1
PROPOSITION 4.3. Let o and o’ be index cocycles of S C R having ergodic
kernels Ker(o) and Ker(c') respectively. Assume that the outer actions g € G —
By € N[Ker(o)] and g € G — B, € N[Ker(o)] satisfy the following conditions:
(i) R = Ker(o) %3G, S =Ker(o)xgH,
R =Ker(o')xpg G, S =Ker(c')xgH;
(i) o(Bgz, ) = a constant = b, Vg €G, ae.
o'(Byz, ) = a constant = 0, Vg eG, ae. x.
Then, there exists an invertible non-singular transformation ¢ and a group
automorphism v in Aut(G) N Aut(H) such that

plKer(o)lp™" = [Ker(o)]
805g80_1 = ﬁ;(g)a g €G.

Here, Aut(G) means the set of all group automorphisms of G. We note that
the transformation ¢ is in [S]. After preparing several lemmas, we will show the
proposition.

As both of the ¢ and ¢’ are index cocycles of S C R, it is known ([3]) that
they are cohomologous, that is, there exists a measurable function z € X — v(x) €
YN satisfying

o'(z,y) = v(x)o(z,y)o(y) ",  ae (z,y) €R.

LEMMA 4.4. There exist an element ( in X, a group automorphism = in
Aut(G)NAut(H), Rohlin sets F and F' of the action Bg and [, respectively with
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their intersection of positive measure and a subset E of FNEF' of positive measure

such that
Ker(o)|g = Ker(d')|g

v(x) =, Ve ek
9;(9)24'69'4_1, ngG

Here N =[R : S].

Proof. Since o(B4x,x) is constant a.e., the cocycle property of o implies that
the map g € G +— 0, € ¥ is a homomorphism, and ¢ C N[Ker(c)]. Moreover,
since 3¢ is outer, the map g € G +— 0, € Xy is a group isomorphism. Since Bg
and [(;,, are free respectively, we can obtain Rohlin sets F' and F’ for each so that
the set F'N F’ is of positive measure. We may choose and fix an element ¢ in Xy
such that

m{zx € FNF' |v(z)=(} >0,
and set E = {x € FNF' | v(z) = ¢}. Applying Lemma 3.12 for the index cocycles
o and ¢’ with ergodic kernels, we see that

I‘a(R) = 9(;, I‘U(R) =0y

' (R) = 6L, 7 (R) = 6.

Here, we use the symbol r?(R) etc, instead of r(R), because we need to show
the dependence of the ratio sets on the choice of index cocycles. We note that
if x,y € E then o/(z,y) = Co(x,y)("! ae. (x,9) € R. So, for such a point
(r,y)in R

o (@,y) = ¢ & ala,y) = e.

Lemma 2.2 says that the index ratio set {r?(R),r?(S)} is the pair of the
image of o(x,y) for a.e. (z,y) € R with =,y € E and the image of o(z,y) for a.e.
(z,y) € S with x,y € E. Therefore,

O = C-06-C", Oy =C-0p- (.
So, we can define y(g) € G', g € G, by
0y = <97(9)<71'

Then, we easily see that v € Aut(G) N Aut(H). 1
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Since Ker(c) and Ker(o’) ergodically act respectively, we can construct finite
partitions {E; | ¢ € A} of F and {E] | i € A} of F' and e;; € [Ker(o)]. and
e; ; € [Ker(a')]«, 4,5 € A, satisfying

E,=E)=E,
E; =Dom(e;;) = Im(e; ;), E;= Dom(e;’i) = Im(e’i’j),
€i,jCj,k = Cik
where F, F/ and F are the sets in Lemma 4.4 and 0 € A is the specified index.
We define the invertible non-singular transformation ¢ by

pr =z, r e F,
pejor = € opu, r€F, jeEA,
@By = B4 ¥, zeF,geq.
Then,
o(E;) = Ej, i€ A,
0By ™" = By(g)» gE€@G,
Py (F) = ﬁ;(g) (), g€G.

Proof of Proposition 4.3. The fact that ¢B,p! = ﬂ;(g), g € G is obvious.
Let g € G, © € Ey and y € (y(F) and assume (z,y) € Ker(c). Set z = 'y
and let ¢ € A be such that z € E;. Set 2/ = ¢z, ¢y = py and u = ¢p ;2 € E and
u’ = pu. Here, E is the set E in Lemma 4.4 and we take the ¢ € ¥ in Lemma 4.4.
Then,
O'/(y/,l‘/) — O-/(y/’ Z/)o_/(zl7 x/) — eg(g)al(zl,u/)o_(u/’x/)
= 9;(g)v(u')a(u',az’)v(x')_l =0, Co(u, z)¢!
and
o(u,z) = o(u,z)o(z,y)o(y,z) = Og-1.
Hence,
o'y, a') = 0,g)005-1C" = Oygragny = ©
that is (y/,2') = (py,px) € Ker(o’). Next consider the case that z € F;, y €
ag(F). Assume (z,y) € Ker(o). Set zg = eg;x, then (x9,y) € Ker(o) and
rg € E. So, (pwo,py) € Ker(c’). By the definition of ¢, px = €] jpro. Hence,
(pz, py) € Ker(o").
In the general case, let © € B,(F), y € B¢(F) and assume (z,y) € Ker(o)
Set s = 6;134 and t = ﬂg’lx € F. Then o(s,t) = o(s,fgs)o(y,x)o(Bgt,t) = e
By the previous argument we see that (¢s,pt) € Ker(o’). Thus, (py, gx) =
(ﬂg(g)ws,ﬁg(g)q}t) € Ker(d’). 1
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Proof of Theorem 4.1. Combining Theorem 3.1, Proposition 4.2 and Propo-
sition 4.3, we immediately have Theorem 4.1. 1

Thus we proved that if an ergodic subrelation & of an ergodic measured
discrete equivalence relation R has a finite index then the pair (R, S) admits the
uniquely determined system {P, H C G, ag} satisfying the conditions (i), (ii) and
(iii) in Theorem 4.1. We call this system the canonical system for S C R.

Next we will show a generalization of Dye’s theorem on orbit equivalence
of finite measure preserving tranformations to orbit equivalence of pairs of an
amenable ergodic measured discrete type II; equivalence relation and an ergodic
subrelation of finite index.

DEFINITION 4.5. (i) A tower { = (P¢,T¢) on a measurable subset £ C X
consists of a finite partition P¢ = {F; | i € A} of E, and a finite family of partial
transformations 7¢ = {e; ; | 4,5 € A} C [R]. satisfying

Dom(ei)j) = Eg Im(em) = El

€ij " €jk = Eik, eii = 1d|g,.

The tower £ is also considered as the finite subrelation {(e; jx,z) | x € Ej, i,j € A}
on E. We simply write { = {e; ; | 1,7 € A}.

(ii) Let &, i = 1,2 be towers on a measurable subset E, and let P¢, = {E, |
ac N} and Tg, = {eap | o, € Aj}. We say that & refines &; if

Ay = Ay xT, (Ta finite set),

Eo = U Ea): (aw € Ay) and,

~el ( ﬁ A )
_ a, 0 e N,y e I).
€(a),(B,y) = €a,8 00 E(g ),

Choose and fix an o € Ay, and define the tower n = (P, 7,) on E, by setting

PT] = {E(a,'y) | v e F}7 ’TT] = {e(a,'y),(a,'y’) | 77’7/ € F}

then we denote & by & X7 and call it a product tower.

THEOREM 4.6. The mapping {(R,S) | R an ergodic measured discrete ame-
nable type 11, equivalence relation and S an ergodic subrelation of finite index}
3 (R,S) — (r(R),x(S)) € {(G,H) | G a finite group and H a subgroup which
does not contain any normal subgroup # {e} of G} is a bijection up to orbit
equivalence and conjugacy of a group and a subgroup.

Proof. First of all we note that Theorem 3.1 shows that the mapping defined
as above is well defined up to orbit equivalence and conjugacy of a group and a
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subgroup. Next we show the mapping is surjective. So, we let GG, H be a finite
group and a subgroup which does not contain any normal subgroup # {e} of G.

Set
o0
v=1]] ¢
n=—o00

where Y is equipped with the infinite product measure of the uniform measure on
each coordinate space G. On Y the left shift mapping is defined in a measure pre-
serving way. We denote it by S. Then we construct the product space X = Y xG
equipped with the product measure whose second coordinate marginal measure
is the uniform measure of G. We then define a skew product measure preserving
transformation 7" on X by setting for y = (y,) € Y and g € G

T(y,9) = (Sy,y0 - 9)-

We also define a G-action ag on X by

ay,g) = (y,g-17Y), 1€aq.

We let R (respective S) be the equivalence relation generated by T and ay’s, [ € G
(respectively T and oy’s, | € H). Since the action ag commutes with 7', R is an
amenable equivalence relation. Since the left shift mapping is ergodic, thus we
have a pair of an ergodic measured discrete amenable type II; equivalence relation
R and an ergodic subrelation S.

If we let P be the equivalence relation generated by 7T, then it is easily seen
that {P, H C G, ag} gives the canonical system for the inclusion R O S and that

(r(R),x(5)) = (G, H).

Finally, we show the injectivity of our mapping up to orbit equivalence and
conjugacy of a group and a subgroup. We are given inclusions R O S on (X, B, m)
and R' D & on (X', B,;m’') which are orbit equivalent. As usual we denote
their canonical systems by {P, H C G, a¢} and {P’, H C G, ai,}. We may
assume that G = G', H = H' and that m (respective m’) is R = Px,G-invariant
(respective R’ = P’ X, G-invariant) probability measure.

Firstly, we take a Px,G-tower {e; ; | i,j € A}of the set X. We put

E]‘ = Dom(ei,j).

Corresponding to this tower, we choose a finite partition {FE! | i € A} of X’ of
equal measure.
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We are going to show that for an arbitrary fixed index iy € A and for any
measure preserving isomorphism ¢ : E;, — Ej , there exists a Px,G-tower {e; ; |
i,j7 € A} of the set X’ and an extended invertible measure preserving map ¢ :
X — X'’ such that

Dom(el,;) = j. Im(el;) = Bl -e0,(@) = chy - 0(@). (w € )

ag-eij-1dla € [Pl & oy - e ;- 1d|ya) € [P

where A C E; and g € G. We note that if o - e; j - Id| 4 € [P], then g is uniquely
determined.

Each e; g, is of the form :
€j,ioT = Qg - YT, (r € Eyy)

where v € [P, with Dom(y) = E;,, and g = g(z,j) € G. As if necessary one can
decompose the set E;, into at most countable number of disjoint sets on which
g(x, j) is constant, we may and do assume that g(z,7) is a function of only j and

write

g(j)zg(x,j)7 (xEEio)‘

Since m/(E;,) = m(E;,), we have a m—m' preserving isomorphism ¢ : Ej, —
E; . We note
m' (o (B, ) = m' ().

So, using Hopf-equivalence by P’, we obtain h} € [P’]. such that

{ Dom(k) = ol ;) (EL,),
/ /
Im(hf) = E%.
These partial transformations h’; give us partial transformations e/, : E{ — E}
by setting
! ! ! ! / /! /
€hioT =Ny gy, (2 € Byy).
Then,

€ io € [P X0 Gl
Dom(e);; ) = Ej
Im(eg,io) = E;

O[g . 6j7i0 . Id‘A = [Pm]* = a; . e;ﬂo . Id‘go(A) c [le’]*7

where A C E;, and g € G. We note that

ejio € [PXaH. & g(j) € H & € ;) € [P X0 Hl..
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Now let us extend ¢ to a m — m’ preserving measure isomorphism X — X’ by

setting for each j

T = e;-,io Cp ey T (z € Ej).

Set
/ ! —1
€05 = €jiio
A
€51 = €jio " Cio,l

¢ ={e,|j,l€A}

Thus we have constructed the desired P’x o G-tower §' = {e} ; | i,j € A} of the
set X'.

We take a P’ %o/ G-tower 1)’ of the set E] such that the product tower &>’
approximates R'-orbits and the measurable subsets of X’ in some fixed precision.
Again take a corresponding partition of the set E;, and copy the tower n’ into
this set in the same way as previous argument. Apply again this procedure and
contiune back and forth in this fashion. In the limit we obtain a m —m’ preserving

measure isomorphism ¢ : X — X’ satisfying that for a.e. z,

{ P(PxaG(z)) = P'xaG(p(2))
O(PxoH(z)) =P 5o H(p(x)). 1

5. COMPUTATION OF INDEX RATIO SETS

Let us take a finite-to-one factor map ¢ from an ergodic finite measure pre-
serving transformation T on a Lebesgue measure space (X,Bx,mx) to an er-
godic finite measure preserving transformation S on a Lebesgue measure space
(Y, By, mx), that is, 7T = S7, 77 1(By) C Bx, mx(r~ ) = my(:). By S,
we denote the ergodic measured discrete equivalence relation {(T"z,z) | n € Z,

x € X}. Let us define an ergodic equivalence relation R by
R =38x V{(z,2) | n(z) = m(z")}.

Here, the right hand side means the equivalence relation generated by both of the
relation § and {(z,2') | 7(x) = w(a’)}. We remark that R is amenable. Under

this setup, we are going to show a computation of the pair of index ratio sets of
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S C R, when the factor map is arising from a sofic system. For this, let us take
the following labeled graph:

Construct the set X of all possible two sided infinite concatenation of edges
and the set Y of all possible two sided infinite concatenation of labels respectively.
Shifts T on X and S on Y are called a topological Markov shift and a sofic
system respectively. A natural map from (2, )nez € X t0 (Yn)nez € Y is induced
by defining that each ¥, is the label of an edge x,. Introducing the maximal
measures m for T and p for S respectively, we obtain a measure preserving factor
map between T and S (i.e. m-T = S - 7). We notice that since the directed graph
is irreducible, both of T" and S are ergodic and that they have the unique maximal
measures, because the directed graph is aperiodic.

Define the permutations ¢, @p, ¢ € X3 acting on the set {0, 1,2} by

0e=(012), ©p,=(102), ©,=(120).

Every path ¢ = (2,)nez € X is identified with (y,i) € Y x {0,1,2}, where
Yy = (Yn)nez and i the initial vertex of the edge x¢ and y,, is the label of z,. So,
we may and do assume X =Y x {0,1,2}. Through this identification, T is of the
form T'(y,i) = (Sy, @y, (1)), (y,7) € X. The maximal measures mx and my are
given by

mx =my xp p(0)=p(l) = p(2) = 5.
my = H P, P(a) = P(b) = P(c) = %

Set
@(nay)ZWyn_f”(Pw *Pyos n>0
©(0,y) =id

eny) =¢, o)l o)t n<o.
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The ¢ is a cocycle of T and satisfies T™(y, i) = (S™y, p(n,y)(i)).

Define the transformation ¢ by ¥(y, i) = (y,i+ 1(mod 3)), (y,i) € X, n € Z.
Then we easily see that {id,,1?} is the set of choice functions of S C R. Here
we notice [R : §] = 3.

By o, we denote the index cocycle corresponding to the above choice func-

tions, that is, if 4,5 € {0,1,2} and ((y, k), (v', k")) € R then
j=o((y" k), (y,k)(@) ifandonly if  ((y/, k" + ), ((y,k +1)) € S.

LEMMA 5.1. The restriction Ker(o)|yx oy of the subrelation Ker(o) to the

set'Y x {0} is ergodic.

Proof. Set X; = X x {0,1,2} =Y x {0,1,2} x {0,1,2}, and define the

measure preserving transformation 77 on X; by

T1(y,1,7) = (SY, yo (1), 04 (4)),  (y,3,5) € X1.

Later, we will show that the number of the ergodic components of T3 is 2. If so,
one of them is the subset Y x {(4,5) | 7 # j} C X1, and hence the induced trans-
formation of T; to the subset Y x {0} x {1} is ergodic, too. Take any measurable
subsets E, F C Y of positive measure. Then, there exist k,l € Z and subsets

Ey C E, Fy C F of positive measure satisfying

T1|I}€’><{O}><{1} (ya Oa 1) = (Sly, Qﬁ(l, y) (0)7 (P(l, y)(l))7 ye EO
SY(Ey) = Fp.

Hence,
a((5'y,0), (y,0))(0) =0, o((S'y,0), (y,0))(1) = L.

That is, ((S'y,0), (y,0)) € Ker(o), y € Ey. Moreover, T'(Ey x {0}) = Fy x {0}
and Ker(o)|y x oy is ergodic.

To see that 77 has only two ergodic components, we consider the following
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labeled graph.

c c a
b b
01 10 c 00 e
b
b
a a a a
b
a 20 21 a 22
b
a ¢ c b ¢
b
12 02
b
c c

In fact, the natural map obtained from this labeled graph which has two
irreducible components, is the factor map 7; from T to S, that is, 71 (y,,7) = y.
So, the ergodic components of T} are these two disjoint path spaces consisting of
infinite concatenation of edges arising from each irreducible component. 1

LEMMA 5.2. The indez ratio set of the {R,S} is

{r(R),x(S)} = {5, ¥a}-

Proof. We saw that Ker(o)|y {0} is ergodic. So, by Lemma 2.3, it is enough
to compute the images {o(z,2) | z,z € Y x {0}, (z,2) € R} and {o(z,2) | z,2 €
Y x {0}, (z,2) € S§}. If ((y,0), (u,0)) € S, then ¢(n,y)(0) = 0, where u = S™y.
In this case, we see from the above figure that p(n,y)(1) € {1,2}, and both of the
cases occur. In other words,

O’((U,O), (y70)) = (O 1 2)

or,

o((u,0),(y,0)) = (021).

Thus, we showed r(S) = 3s. In order to prove r(R) = X3, it is enough to show
that there is a permutation in r(R) which does not belong to ¥5. In fact,

o((5y,0),(y,0)) = (120), ify = a.
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Because, if y € Y satisfies yg = a then

((%,0), (v, 1)) € R, (v, 1), (T(y:1)) = ((y:1),(5y,2)) €S
((y,0),T(y,0)) = (y,0),  (Sy,1)) €S.

Hence, (1,2,0) € r(R). 1

REMARK 5.3. In amenable type II; case, the orbit equivalence classes of
relations-subrelations of index 3 are only two. In fact by Theorem 4.6, all possible
index ratio sets are the pairs {Zs, {e}} and {X3,X5}. The first case appears in the
previous example. About the second case, for instance it is enough to consider the
following labeled graph.

b b
c 0 1
c
a a
2
b c
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