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Abstract. Let G be a second countable locally compact group, A a separa-
ble continuous trace C∗-algebra and δ a pointwise unitary coaction of G on
A. It is shown that the crossed product A ×δ G of (A, G, δ) has continuous

trace and that the restriction map Res : (A×δ G)∧ → bA is a proper G-bundle
via the dual action of G on (A×δ G)∧. Further, A×δ G is isomorphic to the
pull-back Res∗A.

We obtain a characterization of continuous trace crossed products A×α,r

G by an action α of G on A: when α acts freely on bA, the crossed product

has continuous trace if and only if the action of G on bA is proper.
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INTRODUCTION

Let G be a second countable locally compact group, A a separable continuous trace
C∗-algebra and δ a coaction of G on A. The coaction δ is called pointwise unitary
if, for every π ∈ Â, there is a non-degenerate representation µ of C0(G) such that
(π, µ) is a covariant representation. If G is abelian, then there is a natural one-
to-one correspondence between the coactions of G and the strongly continuous
actions of the dual group Ĝ, and the pointwise unitary coactions correspond to
the pointwise unitary actions of Ĝ (see [12]).

In [15], Olesen and Raeburn obtained a couple of quite remarkable results on
pointwise unitary actions α : G→ Aut(A) of an abelian group G on a continuous
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trace algebra A: They showed that the crossed product A ×α G has Hausdorff
spectrum and (A ×α G)∧ is a proper Ĝ-bundle over Â with respect to the dual
action α̂. Moreover, they were also able to identify A ×α G with the pull back
Res∗A of A, where Res : (A×α G)∧ → Â denotes the restriction map.

The main purpose of this paper is to provide complete non-abelian analogous
of these results for pointwise unitary coactions: We show that the crossed product
A ×δ G has continuous trace such that (A ×δ G)∧ is a proper G-bundle over Â
with respect to the dual action δ̂ of G on A ×δ G (Theorem 3.6), and A ×δ G is
isomorphic to the pull-back Res∗A (Theorem 3.7).

As an application of their results, Olesen and Raeburn obtained a charac-
terization of certain crossed products with continuous trace: If α : G → Aut(A)
is an action of the abelian group G on the continuous trace algebra A such that
the corresponding action of G on Â is free, then A ×α G has continuous trace if
and only if the action of G on Â is proper. The “if” direction has been known
to be true for actions of arbitrary groups ([25]), but so far the converse direction
has been an open problem. Similar to the ideas used by Olesen and Raeburn in
the abelian case we use our results to close this gap (Theorem 4.7), where the
assumption that G is abelian may be omitted in the above statement.

We would like to stress that the methods for the proofs of our key results,
namely that A×δG has continuous trace and (A×δG)∧ is a proper G-bundle over
Â, differ quite substantially from the methods used in [15] for the abelian case.
In order to explain these differences, recall first that an action α : G→ Aut(A) is
called unitary if there exists a strictly continuous homomorphism u : G→ UM(A)
such that αs = Adus for all s ∈ G. Unitary actions are precisely those actions
which are exterior equivalent to trivial actions. Further, α is called locally unitary
if each π ∈ Â has an open neighborhood U such that α restricts to a unitary action
on the corresponding ideal AU of A. Similar definitions can be made for coactions
(see Definition 2.3). Locally unitary actions (respectively coactions) are always
pointwise unitary. If A has continuous trace, then a result of Rosenberg shows
that every pointwise unitary action of a compactly generated abelian group on A
is automatically locally unitary ([28]). Since every locally compact group has an
open compactly generated subgroup, Olesen and Raeburn were able to divide the
problem into a compactly generated step to which they were able to apply the
existing results for locally unitary actions (see [23]), and a discrete step exploiting
the fact that the dual group of a discrete group is compact.

Although similar results have been obtained for locally unitary coactions
by Landstad et al. in [12], there did not exist an analogue of Rosenberg’s result
so far (in fact, we derive such an analogue as another application of our main



Pointwise unitary coactions on C∗-algebras 297

results in Theorem 4.4 below). This problem made it necessary to look for an

alternative approach. Such an approach was provided by Echterhoff in [3] when

he investigated pointwise unitary actions of subgroup bundles on continuous trace

C∗-algebras. He showed that such an action is “unitary on closures of subsequences

of convergent sequences”; a localization property which turned out to be sufficient

for proving analogues of the results of Olesen and Raeburn for coactions. Thus,

we use some of Echterhoff’s ideas to show that every pointwise unitary coaction

has a similar property.

A further result concerns the exterior equivalence of coactions. Again, Olesen

and Raeburn showed in [15] that, if G is abelian and A has continuous trace, then

two pointwise unitary actions α and β of G on A are exterior equivalent if and only

if the Ĝ-bundles (A ×α G)∧ → Â and (A ×β G)∧ → Â are isomorphic. This uses

the fact that the crossed product of a pointwise unitary action is isomorphic to

the pull back Res∗A (see above). A similar result was obtained in [12] for locally

unitary coactions. In the case of pointwise unitary coactions, we have that the

exterior equivalence of two coactions implies that the corresponding G-bundles

are isomorphic (this follows from [21], Proposition 2.8). The converse is true at

least when G is a Lie group (Corollary 4.5). This is an immediate consequence of

Theorem 4.4 and [12]. We believe that the converse is also true for arbitrary G.

This paper is organized as follows. In the first section, we give the basic

definitions. In Section 2, we introduce invariant ideals. Further, we recall the def-

initions of unitary, locally unitary and pointwise unitary coactions, and we show

some basic properties of such coactions. In the third section we prove Propo-

sition 3.4 which says that pointwise unitary coactions on C∗-algebras with con-

tinuous trace are “unitary on closures of subsequences of convergent sequences”

(see the proposition for the correct meaning of this). We use this result in the

proofs of Theorem 3.6 and Theorem 3.7. The fourth section gives applications of

Theorem 3.6 and Theorem 3.7 as stated above. We prove our results for reduced

coactions. However, in the appendix we show by using results of Quigg ([19]) that

all our results also hold for full pointwise unitary coactions.



298 Klaus Deicke

1. PRELIMINARIES

In this paper, G is always a locally compact group, λG : G → L(L2(G)) denotes
the left regular representation of G, and C∗r (G) is the reduced group C∗-algebra
of G which is the norm closure of λG(L1(G)) in L(L2(G)). Further, C0(G) is
the C∗-algebra of continuous functions on G vanishing at infinity. Since λG is
a bounded strictly continuous M(C∗r (G))-valued function, we may regard it as a
(unitary) element of M(C0(G)⊗C∗r (G)). We write WG for λG whenever we have
this interpretation in mind.

Let V ,W be two subspaces in a common C∗-algebra. Then we define VW :=
sp{vw : v ∈ V, w ∈ W}. Now a ∗-homomorphism φ : A → M(B) (A and B

are C∗-algebras) is called non-degenerate if φ(A)B = B. In this case, φ extends
uniquely to a strictly continuous homomorphism on the multiplier algebra M(A)
(see [12], Lemma 1.1) which is also denoted by φ. Note that a representation
π of a C∗-algebra A is non-degenerate (in the usual sense) if and only if π is
non-degenerate as a homomorphism into M(K(Hπ)).

For s ∈ G and f ∈ C0(G), τs(f) and σs(f) are the left and right translations
of f , respectively. That is, τs(f)(t) = f(s−1t) and σs(f)(t) = f(ts) for all t ∈ G.
We have τs ⊗ id(WG) = (1⊗ λG(s−1)) ·WG and σs ⊗ id(WG) = WG · (1⊗ λG(s)).

The integrated form of the group homomorphism

s 7→ λG(s)⊗ λG(s), G→M(C∗r (G)⊗ C∗r (G))

induces a non-degenerate homomorphism δG : C∗r (G) → M(C∗r (G) ⊗ C∗r (G)) (cf.
[12], Chapter 2). This endows C∗r (G) with a comultiplication, that is (δG ⊗ id) ◦
δG = (id ⊗ δG) ◦ δG. Here and in the sequel, all tensor products are the minimal
ones.

Recall from [12] that a reduced coaction of G on a C∗-algebra A is a non-
degenerate injective ∗-homomorphism δ : A→M(A⊗ C∗r (G)) such that

(1.1) δ(A)(1⊗ C∗r (G)) ⊂ A⊗ C∗r (G),

and

(1.2) (δ ⊗ id) ◦ δ = (id⊗ δG) ◦ δ as maps of A into M(A⊗ C∗r (G)⊗ C∗r (G)).

We call (A,G, δ) a cosystem, and condition (1.2) is called the coaction identity. If
equality holds in (1.1) (that is sp{δ(a)(1⊗ z) : a ∈ A, z ∈ C∗r (G)} = A⊗ C∗r (G)),
then we say that δ is a non-degenerate coaction.
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Before we introduce covariant representations and the crossed product of a
cosystem (A,G, δ) let us recall the notion of slice maps. Let A and B be C∗-
algebras, and let f ∈ B∗ (B∗ is the dual space of B). The linear map

Sf : A�B → A,
n∑

i=1

ai ⊗ bi 7→
n∑

i=1

aif(bi)

extends to a bounded linear map of M(A ⊗ B) into M(A) with ‖Sf‖ = ‖f‖ (see
[12], before Lemma 1.5). These maps are called slice maps. We have the following

Lemma 1.1. Let f ∈ B∗, m ∈M(A⊗B) and a ∈ A. Then
(i) Sf : M(A⊗B) →M(A) is strictly continuous;
(ii) if m ∈M(A⊗B) is such that m(1⊗ b), (1⊗ b)m ∈ A⊗B for all b ∈ B,

then Sf (m) ∈ A;
(iii) we can factor f = g1 · b1 = b2 · g2 with bi ∈ B, gi ∈ B∗, and we have

Sf (m) · a = Sg1(m(a⊗ b1)) and a · Sf (m) = Sg2((a⊗ b2)m)

for all a ∈ A and m ∈ M(A ⊗ B). Here g1 · b1 means g1 · b1(a) = g1(ab1) and
b2 · g2(a) = g2(b2a) for a ∈ A.

Proof. See [12], Lemma 1.5.

Now consider the special case where B = C∗r (G). Let Br(G) be the algebra
of continuous coefficient functions for the representations of C∗r (G). Then Br(G)
may be identified with C∗r (G)∗. Further, the Fourier algebra A(G) ⊂ Br(G) is
dense in C0(G), and A(G) is the predual of the von Neumann algebra C∗r (G)′′

(the bicommutant of C∗r (G) in L(L2(G)), see [4]). Let Σ : C∗r (G) ⊗ C∗r (G) →
C∗r (G)⊗C∗r (G) be the flip map. For a unitaryW ∈M(A⊗C∗r (G)), letW12 = W⊗1
and W13 = (id⊗ Σ)(W ⊗ 1).

Lemma 1.2. There is a bijection between the set of unitary elements W of
M(A⊗ C∗r (G)) which satisfy the corepresentation identity

(1.3) W12W13 = (id⊗ δG)(W )

and the set of non-degenerate homomorphisms φ : C0(G) →M(A). This bijection
is determined by

W = (φ⊗ id)(WG),

φ(f) = Sf (W ) for all f ∈ A(G).

Especially, Sf (WG) = f for all f ∈ A(G).

Proof. See [21], Lemma 1.2.
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Let (A,G, δ) be a cosystem, and let B be a C∗-algebra. A pair (π, µ) of
non-degenerate homomorphisms π : A→M(B) and µ : C0(G) →M(B) such that

(π ⊗ id)(δ(a)) = (µ⊗ id)(WG)(π(a)⊗ 1)(µ⊗ id)(W ∗
G),

as elements of M(B ⊗ C∗r (G)), is called a covariant representation of (A,G, δ)
in M(B). By Lemma 1.2, our definition of a covariant representation coincides
with the definition given in [12], Chapter 3. Let C∗(π, µ) := sp {π(a)µ(f) : a ∈
A, f ∈ C0(G)}. It follows from [24], Lemma 2.10, that C∗(π, µ) is a C∗-algebra.

Let (π, µ) be a covariant representation of a cosystem (A,G, δ). We say that
(C∗(π, µ), π, µ) is a crossed product of (A,G, δ) if every representation (ρ, ν) of
(A,G, δ) factors through (π, µ), i.e., if there is a non-degenerate homomorphism
θ : C∗(π, µ) → C∗(ρ, ν) such that θ ◦ π = ρ and θ ◦ µ = ν. Let M be the
representation of C0(G) as multiplication operators on L2(G). It follows from
[12], Theorem 3.7, that (C∗(δ, 1⊗M), δ, 1⊗M) is a crossed product for (A,G, δ).
So there always exists a crossed product. Further, the crossed product is unique in
the following sense: If (C∗(π, µ), π, µ) and (C∗(ρ, ν), ρ, ν) are crossed products for
(A,G, δ), then there is an isomorphism θ : C∗(π, µ) → C∗(ρ, ν) such that θ ◦π = ρ

and θ ◦ µ = ν. We shall therefore refer to the crossed product and denote it by
(A×δ G, jA, jC0(G)) or shortly A×δ G. By [12], Chapter 2, we may regard A×δ G

as a subalgebra of M(A ⊗ K(L2(G))). For any covariant representation (π, µ) of
(A,G, δ) we let π×µ denote the unique non-degenerate homomorphism of A×δ G

such that (π×µ) ◦ jA = π and (π×µ) ◦ jC0(G) = µ. Note that, since δ and 1⊗M
are injective and (δ, 1 ⊗M) is a covariant representation of (A,G, δ), it follows
that jA and jC0(G) are injective.

For every cosystem (A,G, δ), we can define an action of G on its crossed
product in the following way: Let (A ×δ G, jA, jC0(G)) be the crossed product of
(A,G, δ). Then, by [12], p. 768, there exists an action δ̂ : G→ Aut(A×δ G) such
that

δ̂s(jA(a)jC0(G)(f)) = jA(a)jC0(G)(σs(f))

for all a ∈ A, f ∈ C0(G) and s ∈ G, where σs denotes the right translation by
s ∈ G. The action δ̂ is called the dual action of δ.

The dual action δ̂ induces an action of G on (A ×δ G)∧ by s · (π × µ) :=
(π × µ) ◦ δ̂s−1 . On the generators, we have

(π × µ)(δ̂s−1(jA(a)jC0(G)(f))) = (π × µ)(jA(a)jC0(G)(σs−1(f)))

= (π × (µ ◦ σs−1))(jA(a)jC0(G)(f)).

Thus, s · (π × µ) = π × (µ ◦ σs−1).
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2. INVARIANT IDEALS AND POINTWISE UNITARY COACTIONS

In this section, we start with the definition of invariant ideals of a cosystem
(A,G, δ). We do this similarly to the definition given for full coactions in [14].
We then define unitary, locally unitary and pointwise unitary coactions. Invariant
ideals for reduced coactions do not behave as well as invariant ideals for full coac-
tions (see Remark 2.2 (iii)). However, in the third and fourth chapters, we only
deal with pointwise unitary coactions with A having continuous trace, and in this
case everything works well (see Remark 2.4 (ii)).

Definition 2.1. Let (A,G, δ) be a non-degenerate cosystem. A closed ideal
I of A is called δ-invariant if

(2.1) δ(I)(1⊗ C∗r (G)) = I ⊗ C∗r (G).

Remark 2.2. (i) Let (A,G, δ) be a non-degenerate cosystem, and I be a
δ-invariant ideal of A. Let θI : A→M(I) be the map defined by θI(a)b = ab and
bθI(a) = ba for a ∈ A and b ∈ I. We have δ(I)(A ⊗ C∗r (G)) ⊂ I ⊗ C∗r (G). By
taking adjoints we see that also (A ⊗ C∗r (G))δ(I) ⊂ I ⊗ C∗r (G). Thus, it follows
from [12], Lemma 1.4, that (θI ⊗ id) : M(A ⊗ C∗r (G)) → M(I ⊗ C∗r (G)) restricts
to an isomorphism of δ(I) into M(I ⊗ C∗r (G)). In particular, the map

((θI ⊗ id) ◦ δ)|I : I →M(I ⊗ C∗r (G))

is injective. In fact, ((θI ⊗ id) ◦ δ)|I is a coaction on I. To see this, observe that
(as in the proof of [14], Proposition 2.1) (2.1) implies that ((θI ⊗ id) ◦ δ)|I is non-
degenerate as a homomorphism into M(I ⊗ C∗r (G)). Then it follows from [12],
Remark 4.2 (2), that ((θI ⊗ id) ◦ δ)|I is a non-degenerate coaction on I. In the
sequel, we shall write δI for ((θI ⊗ id) ◦ δ)|I.

(ii) The above remark says that an ideal I of A which is δ-invariant in the
sense of Definition 2.1 is also δ-invariant in the sense of [12], Chapter 4. The
converse is also true: Assume that I is δ-invariant in the sense of [12], Chapter 4.
Then δ(I)(1 ⊗ C∗r (G)) ⊂ I ⊗ C∗r (G), and δI is a coaction on I. Since δ is a
non-degenerate coaction, it follows from [12], Remark 4.2 (1), that δI is also a
non-degenerate coaction. Thus,

(θI ⊗ id)(δ(I)(1⊗ C∗r (G))) = (δI(I)(1⊗ C∗r (G)) = I ⊗ C∗r (G).

Since δ(I)(1⊗C∗r (G)) ⊂ I⊗C∗r (G) and since θI⊗ id leaves I⊗C∗r (G) ⊂ A⊗C∗r (G)
fixed, we see that I is δ-invariant.
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(iii) Let I be a δ-invariant ideal and q : A→ A/I the quotient map. Define

δI : A/I →M(A/I ⊗ C∗r (G)), q(a) 7→ (q ⊗ id)(δ(a)).

By [12], Lemma 4.6, δI is a non-degenerate homomorphism which satisfies (1.1)
and the coaction identity (1.2). So δI satisfies all the requirements for a coaction,
except possibly injectivity. If G is amenable, then δI is injective, and it is a non-
degenerate coaction on A/I. This uses the fact that 1 ∈ Br(G) for amenable
G. For a non-degenerate full cosystem (A,G, δ), May Nilsen showed that if I is
δ-invariant in the sense of [14], then δI is a non-degenerate coaction of G on A/I
for arbitrary G (see [14], Proposition 2.2).

(iv) Let I ⊂ J be δ-invariant ideals of A such that δI and δJ are coactions on
A/I and A/J , respectively. Then J/I ⊂ A/I is δI -invariant, and (δI)J/I = δJ . To
see this, let qI : A → A/I, qJ : A → A/J and qJ/I : A/I → A/J be the quotient
maps. Let a ∈ J and z ∈ C∗r (G). Then

qI(a)⊗ z = qI ⊗ id(a⊗ z) ≈ qI ⊗ id
( ∑

δ(ai)(1⊗ zi)
)

=
∑

δI(qI(ai))(1⊗ zi) ∈ δI(J/I)(1⊗ C∗r (G)),

ai ∈ J, zi ∈ C∗r (G), and

δI(qI(a))(1⊗ z) = qI ⊗ id(δ(a)(1⊗ z))

≈ qI ⊗ id
( ∑

bi ⊗ wi

)
,

=
∑

qI(bi)⊗ wi ∈ (J/I)⊗ C∗r (G)

(bi ∈ J, wi ∈ C∗r (G)). It follows that δI(J/I)(1 ⊗ C∗r (G)) = (J/I) ⊗ C∗r (G), and
J/I is δI -invariant. For the second statement, let a ∈ J . Then

(δI)J/I(qJ/I(qI(a))) = (qJ/I ⊗ id)(δI(qI(a))) = ((qJ/I ◦ qI)⊗ id)(δ(a))

= (qJ ⊗ id)(δ(a)) = δJ(qJ(a)).

Thus, (δI)J/I = δJ .

Let A be a C∗-algebra, and let φ : C0(G) → M(A) be a non-degenerate
homomorphism. The arguments used in the proof of [19], Lemma 1.13 (which is
stated for full coactions) show that the map δ : A→M(A⊗ C∗r (G)) given by

δ(a) := (φ⊗ id)(WG)(a⊗ 1)(φ⊗ id)(W ∗
G)

for a ∈ A is a non-degenerate coaction of G on A. Such a coaction is called a
unitary coaction, and we say that φ implements δ.

If (A,G, δ) is an arbitrary cosystem, then any covariant representation (π, µ)
in M(π(A)) induces a unitary coaction δπ on π(A) defined by

δπ(π(a)) := (π ⊗ id)(δ(a))

for all a ∈ A. The coaction δπ is implemented by µ.
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Definition 2.3. Let A be a liminal C∗-algebra with Hausdorff spectrum,
and let δ be a coaction of G on A. Then

(i) δ is called locally unitary if each π ∈ Â has an open neighborhood N of
π such that the corresponding ideal I with Î = N is δ-invariant and such that δI
is a unitary coaction on I;

(ii) δ is called pointwise unitary if, for every π ∈ Â, there is a non-degenerate
representation µ of C0(G) such that (π, µ) is a covariant representation of (A,G, δ).

Remark 2.4. Let A be as in the preceding definition.
(i) Every unitary coaction on A is locally unitary. Also, every locally unitary

coaction on A is pointwise unitary. Indeed, let π ∈ Â and I an ideal of A such that
π ∈ Î and δI is a unitary coaction on I which is implemented by φ : C0(G) →M(I).
Then (π, π ◦ φ) is a covariant representation of (A,G, δ).

(ii) If (A,G, δ) is a pointwise unitary cosystem, then, by [12], Theorem 5.3 (2),
every closed ideal I of A is δ-invariant, and δI is a non-degenerate coaction.

(iii) Landstad et al. gave in [12] a definition of locally unitary coactions which
worked with closed neighbourhoods, so that the coactions on the corresponding
quotients are unitary. We find it more suitable to work with open neighbourhoods.
Our definition of locally unitary coactions is equivalent to the definition given in
[12]. To see this we realize A as the section algebra Γ0(E) of a C∗-bundle E over Â.
Suppose that δ is locally unitary in our sense. Let π ∈ Â and N ⊂ Â be an open
neighbourhood of π such that δ restricts to a unitary coaction on I := Γ0(E|N).
Let K ⊂ N be a compact neighbourhood of π and J =

⋂
{ker ρ : ρ ∈ K}. Since Â

is Hausdorff, K is closed. Thus, A/J = Γ0(E|K) and we obtain a homomorphism
from C0(G) into A/J which implements the coaction δJ on A/J . The converse
works in a similar way.

In [12], Landstad et al. required in their definition of pointwise unitary coac-
tions that the coaction has to be non-degenerate. The next proposition shows that
this is not necessary. For a cosystem (A,G, δ) and g ∈ A(G), we define δg : A→ A

by δg(a) := Sg(δ(a)) (that δg maps A into A follows from (1.1) and Lemma 1.1).
The closure of the set δA(G)(A) := {δg(a) : a ∈ A, g ∈ A(G)} is a C∗-subalgebra
of A ([10], Lemma 2). By [10], Theorem 5, a cosystem (A,G, δ) is non-degenerate
if and only if δA(G)(A) = A.

Proposition 2.5. Let A be a liminal C∗-algebra with Hausdorff spectrum.
Then every pointwise unitary (hence also every locally unitary) coaction is auto-
matically non-degenerate.

Proof. Since δ is pointwise unitary, there exists, for every π ∈ Â, a non-
degenerate representation µ of C0(G) such that (π, µ) is a covariant representation.
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Then µ implements a unitary coaction δπ on π(A). Since unitary coactions are
non-degenerate, this implies that

(2.2) π(δA(G)(A)) = δπ
A(G)(π(A)) = π(A)

for all π ∈ Â. Let f ∈ C0(Â). By [12], Theorem 5.3 (1), δ(f) = f ⊗ 1, where we
identify f with its image under the Dauns-Hofmann isomorphism. Thus, f ·δg(a) =
δg(fa) for all f ∈ C0(Â), g ∈ A(G) and a ∈ A. That is, δA(G)(A) is closed
under multiplication by elements of C0(Â). Now it follows from (2.2) and [2],
Lemma 10.5.3 that δA(G)(A) = A, and δ is non-degenerate.

For the next proposition, recall that σ denotes the right translation on C0(G).

Proposition 2.6. Let δ be a unitary coaction of G on A implemented by
the homomorphism φ : C0(G) → M(A). Let W := (φ ⊗ id)(WG). Then, if we
regard A ×δ G, A ⊗ C0(G) and A ⊗ C∗r (G) as subalgebras of M(A ⊗ K(L2(G))),
the map AdW ∗ : A ×δ G → A ⊗ C0(G) is an isomorphism. Especially, A ×δ G

has continuous trace if and only if A has continuous trace. Furthermore, AdW ∗

induces a G-homeomorphism between Â×G = (A⊗C0(G))∧ and (A×δG)∧, which
is given by (π, s) 7→ π × (π ◦ φ ◦ σs−1).

Proof. That AdW ∗ : A ×δ G → A ⊗ C0(G) is an isomorphism follows from
[12], Corollary 2.10. By [30], Theorem 2 (a), this implies thatA×δG has continuous
trace if and only if A has continuous trace.

It follows from the first part of the proof of [12], Theorem 5.9, that AdW ∗

induces the G-homeomorphism

Â×G→ (A×δ G)∧, (π, s) 7→ (π × (π ◦ φ)) ◦ δ̂s−1 .

Now (π × (π ◦ φ)) ◦ δ̂s−1 = π × (π ◦ φ ◦ σs−1), and the result follows.

Except for the openness the next proposition was shown in [12], Theorem 5.5.
Our proof works with C∗-bundles and uses a result of Nilsen ([14], Theorem 4.3).

Proposition 2.7. Let A be a liminal C∗-algebra with Hausdorff spectrum,
and let δ be a pointwise unitary coaction on A. Then the map

Res : (A×δ G)∧ → Â, π × µ 7→ π

is well defined, and it is a continuous, open surjection.

Proof. By Lemma A.5, we may identify A ×δ G with Γ0(E′), where E′ is a
C∗-bundle over Â with fibers Aρ×δρ G such that Aρ is an elementary algebra and
δρ is a unitary coaction of G on Aρ.
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Let π×µ be an irreducible representation of A×δG. By [2], Theorem 10.4.3,
there is a ρ ∈ Â such that π×µ ∈ (Aρ×δρ

G)∧. Let φ : C0(G) →M(Aρ) be a non-
degenerate homomorphism which implements δρ. By Proposition 2.6 and since Aρ

is an elementary algebra, there is an s ∈ G such that π×µ ∼= ρ×(ρ◦φ◦σs). Thus,
π ∼= ρ and π is irreducible. It then follows from Lee’s Theorem ([13], Theorem 4)
that

Res : (A×δ G)∧ → Â, π × µ 7→ π

is open and continuous.

Suppose that (A,G, δ) is a cosystem. Let K(H) be the algebra of compact
operators on a Hilbert space H, and let Σ : C∗r (G)⊗K(H) → K(H)⊗C∗r (G) denote
the flip map. Then δs = (idA⊗Σ) ◦ (δ⊗ idK) is a coaction of G on A⊗K(H). We
call the cosystem (A⊗K(H), G, δs) the stabilization of (A,G, δ).

Lemma 2.8. Let (A,G, δ) be a cosystem, and let (A ⊗ K(H), G, δs) be its
stabilization. Then:

(i) A closed ideal I of A is δ-invariant if and only if I⊗K(H) is δs-invariant.
Furthermore, δI is a coaction if and only if (δs)I⊗K is coaction. In this case we
have (δI)s = (δs)I⊗K.

(ii) δ is a unitary coaction if and only if δs is a unitary coaction.
(iii) Suppose that A is a liminal C∗-algebra with Hausdorff spectrum. Then

δ is pointwise (locally) unitary if and only if δs is pointwise (locally) unitary.

Proof. (i) Let I be a δ-invariant ideal. Then

δs(I ⊗K(H))(1⊗ 1⊗ C∗r (G)) = (id⊗ Σ)((δ(I)⊗K(H))(1⊗ C∗r (G)⊗ 1))

= (id⊗ Σ)(I ⊗ C∗r (G)⊗K(H))

= I ⊗K(H)⊗ C∗r (G),

and I ⊗ K is δs-invariant. The same equation shows that the converse is also
true. Now we show that (δs)I⊗K = (δI)s for all δ-invariant ideals of A. Let I be
δ-invariant, and let q : A→ A/I be the quotient map. Then

(δs)I⊗K((q ⊗ id)(a⊗ k)) = (q ⊗ id⊗ id)(δs(a⊗ k))

= (q ⊗ id⊗ id)((id⊗ Σ)(δ(a)⊗ k))

= (id⊗ Σ)((q ⊗ id)(δ(a)⊗ k))

= (id⊗ Σ)(δI(q(a))⊗ k) = (δI)s(q(a)⊗ k).

Thus, (δI)s = (δs)I⊗K, and δI is a coaction if and only if (δs)I⊗K is coaction.
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(ii) Let δ be a unitary coaction implemented by φ : C0(G) → M(A). Then
δs is implemented by φ ⊗ 1 : C0(G) → M(A ⊗ K(H)). So this direction is clear.
For the converse direction, suppose that A acts faithfully and non-degenerately
on a Hilbert space H1, so that we can regard A ⊗ K(H) and M(A ⊗ K(H)) as
subalgebras of L(H1 ⊗H). Let φ : C0(G) → M(A ⊗ K(H)) be a homomorphism
which implements δs, that is

(2.3) δs(a⊗ k) = φ⊗ id(WG)(a⊗ k ⊗ 1)φ⊗ id(W ∗
G).

Since δ is non-degenerate as a homomorphism, this implies that

1H1 ⊗ k ⊗ 1 = φ⊗ id(WG)(1H1 ⊗ k ⊗ 1)φ⊗ id(W ∗
G),

which is equivalent to

(1H1 ⊗ k ⊗ 1)φ⊗ id(WG) = φ⊗ id(WG)(1H1 ⊗ k ⊗ 1).

Slicing yields (see Lemma 1.2)

(1H1 ⊗ k)φ(f) = φ(f)(1H1 ⊗ k)

for all f ∈ C0(G) and k ∈ K(H). It follows that φ maps into (C ⊗ L(H))′,
the commutant of the von Neumann tensor product C ⊗ L(H) ⊂ L(H1 ⊗ H).
But (C ⊗ L(H))′ = L(H1) ⊗ C by [29], Proposition IV 1.9. Thus, φ maps into
M(A⊗K(H))∩L(H1)⊗C, that is, for every f ∈ C0(G), φ(f) has the form b⊗1 for
some b ∈ M(A). Thus, φ = ψ ⊗ 1, where ψ : C0(G) → M(A) is a non-degenerate
homomorphism. That ψ implements δ, follows from (2.3).

(iii) This follows from (i), (ii) and Remark 2.4 (iii).

3. POINTWISE UNITARY COACTIONS ON C∗-ALGEBRAS WITH CONTINUOUS TRACE

A cosystem (A,G, δ) is called separable if A is separable and G is second countable.
Note that the crossed product of a separable cosystem is separable. Let (A,G, δ)
be a separable pointwise unitary cosystem such that A has continuous trace. In
this section, we show that the crossed product A ×δ G has continuous trace, and
the dual action of G on (A ×δ G)∧ is free and proper (Theorem 3.6). Further,
A ×δ G is isomorphic to the pull-back Res∗A, where Res∗ : (A ×δ G)∧ → Â is
the restriction map (Theorem 3.7). The key result used for the proofs of these
two theorems is Proposition 3.4 which says that, if (A,G, δ) is as above, then δ

is “unitary on subsequences of convergent sequences” (see Proposition 3.4 for the
correct statement of this). Before we prove Proposition 3.4, we have to prove some
lemmas.
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Lemma 3.1. Let H be a separable Hilbert space, and let (un)n∈N ⊂ U(H)
be a sequence of unitary operators on H such that unTu

∗
n → T in norm for all

T ∈ K(H). Then there is a sequence (λn)n∈N ⊂ T such that λnun → 1H strongly.

Proof. We equip U(H) with the strong operator topology and Aut(K(H))
with the topology of pointwise convergence. The map U(H) → Aut(K(H)), u 7→
Adu factors through an isomorphism between PU(H) = U(H)/T and Aut(K(H)).
Since T is a compact Lie group, it follows from [16], Corollary 3, that the quotient
map U(H) → PU(H) has local sections. Thus, there is an open neighbourhood
V of idK(H) in Aut(K(H)) and a continuous function γ : V → U(H) such that
Ad ◦ γ = idV and γ(idK(H)) = 1H.

Now let (un) ⊂ U(H) be a sequence such that Adun → idK(H) in Aut(K(H)).
We may suppose that Adun ∈ V for all n ∈ N. Then we have

Ad(γ(Adun)) = Adun ∀n ∈ N

and γ(Adun) → 1H strongly. Let vn = γ(Adun). Since Ad vn = Adun, there is a
λn ∈ T such that vn = λnun, which completes the proof.

For a C∗-algebra A and a Hilbert space H, we define Rep(A,H) to be the
set of all non-degenerate representations of A in H. Rep(A,H) is equipped with
the topology of strong pointwise convergence. In [2], Chapter 3.5, Dixmier defined
Rep(A,H) to be the set of all (possibly degenerate) representations of A in H.
However, for technical reasons (see, for example, the proof of Lemma 3.2), we
shall admit only non-degenerate representations. Further, we let Irr(A,H) :=
{π ∈ Rep(A,H) : π is irreducible}, equipped with the topoloy induced by the
topology of Rep(A,H). By [2], 3.5.8, the canonical map

Irr(A,H) → Â, π 7→ [π]

is continuous and open onto its image.

Lemma 3.2. Let A be a separable C∗-algebra and H a separable Hilbert space.
For π ∈ Rep(A,H), let π̃ be the unique extension of π to M(A). Then the map

π 7→ π̃, Rep(A,H) → Rep(M(A),H)

is continuous.

Proof. Let (πn)n∈N ⊂ Rep(A,H) be a sequence with πn → π ∈ Rep(A,H)
and let b ∈M(A), a ∈ A and η ∈ H. Then we have

‖π̃n(b)π(a)η − π̃(b)π(a)η‖
6 ‖π̃n(b)π(a)η − π̃n(b)πn(a)η‖+ ‖π̃n(b)πn(a)η − π̃(b)π(a)η‖
6 ‖b‖ ‖π(a)η − πn(a)η‖+ ‖πn(ba)η − π(ba)η‖ → 0.

Since π is non-degenerate, the lemma is proved.
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The next lemma is essential for the proof of Proposition 3.4. Some of the
ideas used for the proof are taken from the proof of [3], Propositon 5.2.5.

Lemma 3.3. Let (A,G, δ) be a separable pointwise unitary cosystem such
that A = C0(X,K(H)) for some separable locally compact Hausdorff space X and
some separable Hilbert space H. For x ∈ X, let ρx ∈ Irr(A,H) be the evaluation
map at x. Then the following holds: If ([πn])n∈N ⊂ Â is a sequence which converges
to [π] ∈ Â, and if we choose y ∈ X and µ ∈ Rep(C0(G),H) such that [ρy] = [π]
and (ρy, µ) is a covariant representation, then there are a subsequence ([πnm ])m∈N

of ([πn])n∈N and sequences (ym)m∈N ⊂ X and (µm)m∈N ⊂ Rep(C0(G),H) such
that [ρym ] = [πnm ], µm → µ in Rep(C0(G),H), and (ρym , µm) are covariant rep-
resentations for all m ∈ N.

Proof. First we show that the canonical map

Irr(A×δ G,H) → (A×δ G)∧

is surjective. Let [ρ× ν] ∈ (A×δ G)∧. By Proposition 2.7, ρ is irreducible. Since
the map X → Â, y 7→ [ρy] is a homeomorphism, we may suppose that ρ acts on
H. But then ρ × ν acts on H, and the canonical map is surjective. By [2], 3.5.8,
this map is also open. Furthermore, the map

[ρ× µ] 7→ [ρ], (A×δ G)∧ → Â

is open and surjective by Proposition 2.7. It follows that the map

θ : Irr(A×δ G,H) → Â, ρ× µ 7→ [ρ]

is open and surjective, too.
Now let ([πn])n∈N ⊂ Â and [π] such that [πn] → [π]. Let y ∈ X such that

[ρy] = [π]. Since δ is pointwise unitary, we can choose µ ∈ Rep(C0(G),H) such
that (ρy, µ) is a covariant representation. Since θ is open and surjective, we obtain
a subsequence ([πnm ])m∈N of ([πn])n∈N and sequences (ρm)m∈N ⊂ Irr(A,H) and
(νm)m∈N ⊂ Rep(C0(G),H) such that ρm × νm → ρy × µ in Irr(A ×δ G,H) and
[ρm] = [πnm

] for all m ∈ N.
Since X → Â, x 7→ [ρx] is a homeomorphism, there is a sequence (ym)m∈N ⊂

X such that ym → y and [ρym
] = [ρm] = [πnm

] for all m ∈ N. This yields a
sequence (um)m∈N of unitaries on H such that Adum ◦ ρym

= ρm for all m ∈
N. Let µm := Adu∗m ◦ νm. Then (ρym

, µm) is a covariant representation and
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ρm × νm = Adum ◦ (ρym
× µm). It remains to show that µm → µ. We have

Adum ◦ (ρym
× µm) → ρy × µ in Irr(A×δ G,H). By Lemma 3.2,

(Adum ◦ (ρym
× µm))∼ → (ρy × µ)∼

in Rep(M(A ×δ G),H). Let jA : A → M(A ×δ G) be the canonical map. Then,
for all a ∈ A, we have

Adum(ρym
(a)) = (Adum ◦ (ρym

× µm))∼(jA(a))

→ (ρy × µ)∼(jA(a)) = ρy(a),

where the limit is taken with respect to the strong operator topology. Hence,
Adum ◦ ρym → ρy in Irr(A,H) and similarly Adum ◦ µm → µ in Rep(C0(G),H).

Now let k ∈ K(H) and f ∈ C0(X) such that f(ym) = f(y) = 1 for all m ∈ N.
Then

umku
∗
m = umf(ym)ku∗m = umρym(f ⊗ k)u∗m → ρy(f ⊗ k) = k

strongly. Since this is true for all k ∈ K(H), we conclude from [3], Lemma 5.2.8,
that umku

∗
m → k in norm for all k ∈ K(H). Lemma 3.1 tells us that there

is a sequence (λm)m∈N ⊂ T such that λmum, λmu
∗
m → 1H strongly. But then

Adum ◦ µm → µ implies that µm → µ in Rep(C0(G),H).

We now come to the key proposition of this chapter (compare [3], Proposi-
tion 5.2.5).

Proposition 3.4. Let (A,G, δ) be a separable pointwise unitary coaction
such that A has continuous trace. Then, for any convergent sequence ([πn])n∈N ⊂
Â, there is a subsequence ([πnm ])m∈N such that I :=

⋂
{ker[πnm ] : m ∈ N} is

δ-invariant and the coaction δI on A/I is unitary.

Proof. First, let us suppose that A is stable. Let ([πn])n∈N ⊂ Â be a se-
quence such that [πn] → [π] ∈ Â. If ([πn])n∈N has a constant subsequence, that
is [πn] = [π] for infinitely many n ∈ N, set I = kerπ. Then δI is implemented by
a representation µ : C0(G) → M(K(Hπ)) = M(A/I) of C0(G) such that (π, µ) is
covariant.

If there is no constant subsequence, we may suppose that [πn] 6= [πm] for
n 6= m and [πn] 6= [π] for n ∈ N. Since A is stable and has continuous trace,
it follows from [22], Proposition 1.12, that there is a (compact) neighbourhood
U of [π] such that, for J :=

⋂
{ker ρ : ρ ∈ U}, we have A/J ∼= C0(X,K(H))

for some separable locally compact space X and some separable Hilbert space H.
Thus, by Remark 2.2 (iv), we may suppose that A = C0(X,K(H)). (Note that,
by [12], Theorem 5.3 (2), every ideal of A is δ-invariant.) Choose x ∈ X and
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µ ∈ Rep(C0(G),H) such that [ρx] = [π] and (ρx, µ) is covariant. Since [πn] → [π],

Lemma 3.3 gives us a subsequence ([πnm ])m∈N and sequences (xm)m∈N ⊂ X and

(µm)m∈N ⊂ Rep(C0(G),H) such that [ρxm
] = [πnm

], (ρxm
, µm) is covariant for all

m ∈ N, and µm → µ in Rep(C0(G),H).

Let V = {xm : m ∈ N} and I =
⋂
{kerπnm

: m ∈ N}. We are now able

to define the desired homomorphism φ : C0(G) →M(A/I) which implements the

coaction δI . For f ∈ C0(G), define a map ϕ(f) : V → L(H) by ϕ(f)(xm) := µm(f)

and ϕ(f)(x) := µ(f). Since all the xm and x are mutually distinct, ϕ(f) is well

defined. We show that ϕ(f) ∈M(C(V,K(H))) = Cb
s (V,M(K(H))). First, ϕ(f) is

bounded by ‖f‖∞. So it remains to show that ϕ(f) : V → M(K(H)) is strictly

continuous. Since x is the only cluster point of V and since every sequence in V

which converges to x and whose members are pairwise distinct is a subsequence

of (xm)m∈N, it suffices to concentrate on this sequence. But by construction,

ϕ(f)(xm) = µm(f) → µ(f) = ϕ(f)(x)

∗-strongly. Since the ∗-strong operator topology and the strict topology in

M(K(H)) coincide on bounded sets, it follows that ϕ(f) is strictly continuous.

We obtain a map ϕ : C0(G) → M(C(V,K(H))) which is a homomorphism since

the µm and µ are homomorphisms. Now consider the isomorphism

ψ : A/I → C(V,K(H)), ψ(a+ I)(v) = a(v).

Then φ := ψ−1 ◦ϕ : C0(G) →M(A/I) is the desired homomorphism. We have to

show that

(i) φ is non-degenerate;

(ii) φ implements δI .

(i) In order to show that φ is non-degenerate, it suffices to show that ϕ is. We

show that ϕ(C0(G))C(V,K(H)) = C(V,K(H)). Let a ∈ C(V,K(H)) and ε > 0.

We shall find an h ∈ C0(G) such that ‖ϕ(h)a− a‖ 6 ε. Since K(H) is the closed

linear span of projections of rank one, we may suppose that a = f ⊗ Pξ with

f ∈ C(V ) and ξ ∈ H such that ‖f‖∞ = ‖ξ‖ = 1 and Pξ is the projection onto C ξ.
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Let M = {µm : m ∈ N} ∪ {µ} and h ∈ C0(G). Then

‖ϕ(h)a− a‖ = sup
x∈V

‖ϕ(h)(x)a(x)− a(x)‖

= sup
x∈V

‖f(x)(ϕ(h)(x)Pξ − Pξ)‖

6 sup
x∈V

‖ϕ(h)(x)Pξ − Pξ‖ (since ‖f‖∞ = 1)

= sup
ν∈M

‖ν(h)Pξ − Pξ‖ (by definition of ϕ)

= sup
ν∈M

sup
η∈H, ‖η‖=1

‖ν(h)Pξη − Pξη‖

6 sup
ν∈M

‖ν(h)ξ − ξ‖ (since ‖ξ‖ = 1).

Thus, it suffices to find an h ∈ C0(G) with sup
ν∈M

‖ν(h)ξ − ξ‖ 6 ε. Since µ is non-

degenerate, there are g ∈ C0(G) and η ∈ H with ‖η‖ = 1 and ξ = µ(g)η. By
construction, we have µm(g)η → µ(g)η = ξ. So there is an m0 ∈ N such that
‖ξ − µm(g)η‖ 6 ε/3 for all m > m0. Since the representations µm and µ are non-
degenerate, we find (by using an approximate identity in C0(G)) an h ∈ C0(G)
such that ‖h‖∞ 6 1, ‖hg − g‖ 6 ε/3, ‖µ(h)ξ − ξ‖ 6 ε and ‖µm(h)ξ − ξ‖ 6 ε for
all m < m0. Now, if m > m0, then

‖µm(h)ξ − ξ‖
6 ‖µm(h)ξ − µm(h)µm(g)η‖+ ‖µm(h)µm(g)η − µm(g)η‖+ ‖µm(g)η − ξ‖
6 ‖ξ − µm(g)η‖+ ‖hg − g‖+ ‖µm(g)η − ξ‖ 6 ε.

This implies that sup
ν∈M

‖ν(h)ξ−ξ‖ 6 ε, and we have shown that ϕ is non-degenerate.

(ii) Remember that, for a ∈ A = C0(X,K(H)) and z ∈ C∗r (G), we have

δ(a)(1⊗ z) ∈ C0(X,K(H))⊗ C∗r (G) = C0(X,K(H)⊗ C∗r (G)).

So we can approximate δ(a)(1⊗z) by a finite sum
∑
ai⊗zi with ai ∈ C0(X,K(H))

and zi ∈ C∗r (G). Using the fact that (ai ⊗ zi)(v) = ai(v)⊗ zi for all v ∈ X we see
that

(((ψ ◦ q)⊗ id)(δ(a)(1⊗ z)))(v) ≈
∑

(((ψ ◦ q)⊗ id)(ai ⊗ zi))(v)

=
∑

(ψ(q(ai))⊗ zi)(v) =
∑

(ψ(q(ai))(v)⊗ zi

=
∑

ai(v)⊗ zi =
∑

ρv(ai)⊗ zi

= (ρv ⊗ id)
( ∑

ai ⊗ zi

)
≈ (ρv ⊗ id)(δ(a)(1⊗ z))
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for all v ∈ X. Hence, (((ψ ◦ q) ⊗ id)(δ(a)))(v) = (ρv ⊗ id)(δ(a)) for all v ∈ X.
It follows from the definition of ϕ that µm ⊗ id(WG) = ϕ ⊗ id(WG)(xm) for all
m ∈ N. Now we obtain

(ψ ⊗ id)(δI(q(a)))(xm) = ((ψ ◦ q)⊗ id)(δ(a))(xm) = (ρxm
⊗ id)(δ(a))

= (µm ⊗ id)(WG) · (ρxm(a)⊗ 1) · (µm ⊗ id)(W ∗
G)

= (ϕ⊗ id(WG))(xm) · (a⊗ 1)(xm) · (ϕ⊗ id(W ∗
G))(xm)

= [ϕ⊗ id(WG) · (ψ(q(a))⊗ 1) · ϕ⊗ id(W ∗
G)](xm)

and the same is true for x. Hence,

(ψ ⊗ id)(δI(q(a))) = (ϕ⊗ id)(WG) · (ψ(q(a))⊗ 1) · (ϕ⊗ id)(W ∗
G)

in M(C0(V,K(H))⊗C∗r (G)), and, if we apply (ψ ⊗ id)−1 to this equation, we see
that ψ−1 ◦ ϕ implements δI . It follows (ii). So the result is shown provided that
A is stable.

If A is not stable, we may stabilize the cosystem (A,G, δ). By Lemma 2.8, the
stabilized coaction δs is still pointwise unitary. Let ([πn])n∈N ⊂ Â be a sequence
which converges to [π] ∈ Â. Then [πn⊗id] → [π⊗id] in (A⊗K(H))∧. By the above,
there is a subsequence ([πnm

⊗id])m∈N such that for J =
⋂
{ker(πnm

⊗id) : m ∈ N}
the coaction (δs)J is unitary. Now J = I ⊗K(H) where I =

⋂
{kerπnm

: m ∈ N}.
It follows from Lemma 2.8 that (δs)J = (δI)s, and therefore δI is unitary.

We now come to the applications of Proposition 3.4. We begin with some
notations.

Let X and T be locally compact Hausdorff spaces and suppose that G acts
freely on X. We say that a continuous, open and surjective map p : X → T is
a G-bundle if p factors through a homeomorphism X/G → T . Two G-bundles
are said to be isomorphic, if there is a G-homeomorphism h : X → Y such that
q ◦ h = p. A G-bundle p : X → T is called proper if the map

G×X → X ×X, (s, x) → (sx, x)

is proper in the sense that the preimage of a compact set is compact (cf. [16]). In
this case, we also say that the action of G on X is free and proper. If the proper
G-bundle p : X → T has a continuous section S : T → X, then we call p : X → T

a trivial G-bundle. Note that this is equivalent to saying that p : X → T is
isomorphic to the G-bundle q : T ×G→ T , where q is the projection onto T , and
G acts by left translation on the second factor ([27], Proposition 4.3). Finally, a
proper G-bundle p : X → T is called locally trivial if there are local sections,
that is, every x ∈ X has a neighbourhood U of p(x) in T such that there exists a
continuous section SU : U → p−1(U).

The following lemma is a characterization of C∗-algebras with continuous
trace, which is due to Echterhoff ([3], Proposition 5.1.4).
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Lemma 3.5. Let A be a separable C∗-algebra. Then the following statements
are equivalent:

(i) A has continuous trace;
(ii) for any convergent sequence (ρn)n∈N in Â, there exists a subsequence

(ρnm
)m∈N such that A/

⋂
{ker ρnm

: m ∈ N} has continuous trace.

Theorem 3.6. Let (A,G, δ) be a separable pointwise unitary cosystem such
that A has continuous trace. Then the crossed product A ×δ G has continuous
trace, and the restriction map Res : (A×δ G)∧ → Â is a proper G-bundle via the
dual action of G on (A×δ G)∧.

Proof. Let B = A ×δ G. To show that B has continuous trace, we use
Lemma 3.5. Let (πn × µn)n∈N ⊂ B̂ be a sequence with πn × µn → π × µ. We
have to show that there is a subsequence (πnm

× µnm
)m∈N such that for J =⋂

{πnm
×µnm

: m ∈ N} the quotient B/J has continuous trace. By Proposition 2.7,
the map ρ × ν → ρ is continuous, so we have πn → π. By Proposition 3.4, there
is a subsequence (πnm

)m∈N such that, for I =
⋂
{πnm

: m ∈ N}, the coaction δI

of G on A/I is unitary. Proposition 2.6 implies that (A/I)×δI G has continuous
trace. But by [12], Chapter 4, (A/I)×δI G ∼= (A×δ G)/(I ×δI

G), and (I ×δI
G)

is generated by the set {jA(a)jC0(G)(f) : a ∈ I, f ∈ C0(G)}. Thus, J ⊃ I ×δI
G,

and B/J is a quotient of the continuous trace algebra B/(I ×δI
G), which implies

that B/J has continuous trace.
Now let us prove the second part of the theorem. By [12], Theorem 5.5 (2),

G acts freely on (A×δ G)∧. We show that Res : (A×δ G)∧ → Â factors through a
homeomorphism between (A×δG)∧/G and Â. Let q : (A×δG)∧ → (A×δG)∧/G be
the quotient map. We claim that Res(π×µ) = Res(ρ×ν) if and only if q(π×µ) =
q(ρ× ν) for π×µ, ρ× ν ∈ (A×δ G)∧. Since Res is open, continuous and surjective
by Proposition 2.7, we then obtain a homeomorphism h : (A ×δ G)∧/G → Â

satisfying Res = h ◦ q. So suppose that q(π × µ) = q(ρ × ν). There is an s ∈ G

such that s · (π × µ) = ρ× ν. That is, π × (µ ◦ σs−1) = ρ× ν. Thus,

π = (π × (µ ◦ σs−1)) ◦ jA = (ρ× ν) ◦ jA = ρ.

Conversely, suppose that Res(π×µ) = Res(ρ× ν). Then π = ρ. Thus, both (π, µ)
and (π, ν) are covariant pairs. By [12], Theorem 5.5 (2), there is an s ∈ G such
that

((ν ◦ σs−1)⊗ id)(WG) = (ν ⊗ id)(WG)(1⊗ λG(s−1)) = (µ⊗ id)(WG).

Slicing yields µ = ν ◦σs−1 . Thus, π×µ = ρ× (ν ◦σs−1) = s · (ρ× ν) and therefore
q(π × µ) = q(ρ× ν).
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By the above, Res : (A ×δ G)∧ → Â is a G-bundle. We show that it is also
proper. Let (πn)n∈N ⊂ Â be a convergent sequence. By Proposition 3.4, there is
a subsequence (πnm

)m∈N such that for I =
⋂
{kerπnm

: m ∈ N}, the coaction δI

on A/I is unitary. It follows from Proposition 2.6 that

ResδI : ((A/I)×δI G)∧ → (A/I)∧

is a trivial G-bundle. Further, by [12], Theorem 4.8, there is a homeomorphism
h between ((A/I) ×δI G)∧ and the set {π × µ ∈ (A ×δ G)∧ : kerπ ⊃ I} =
Res−1((A/I)∧) which makes the G-bundles ResδI : ((A/I) ×δI G)∧ → (A/I)∧

and Res : Res−1((A/I)∧) → (A/I)∧ isomorphic. Thus, Res : Res−1((A/I)∧) →
(A/I)∧ is a trivial G-bundle. Now it follows from [3], Proposition 5.1.3, that

Res : (A×δ G)∧ → Â

is a proper G-bundle.

For the next theorem, we recall the definition of pull-back C∗-algebras from
[26]. Let A be a C∗-algebra with spectrum X, Y a locally compact Hausdorff
space, and let f : Y → X be a continuous map. Then both C0(Y ) and A are
Cb(X)-Modules in a natural way. The pull-back of A along f is the “balanced”
tensor product

C0(Y )⊗C(X) A

which is the quotient of C0(Y )⊗A by the ideal generated by the set

{gh⊗ a− h⊗ ga : g ∈ Cb(X), h ∈ C0(Y ) a ∈ A}.

We write f∗A := C0(Y )⊗C(X) A.
Suppose that X is Hausdorff and A is represented as the algebra of sections

Γ0(E) of a C∗-bundle p : E → X. Then the pull-back bundle q : f∗E → Y is the
C∗-bundle over Y consisting of all pairs (y, e) ∈ Y ×E satisfying f(y) = p(e), and q
is the obvious projection onto Y . It turns out that the continuous sections of f∗E
may be identified with the continuous functions φ : Y → E such that p(φ(y)) =
f(y) for all y ∈ Y . By [26], Proposition 1.3, we have f∗(Γ0(E)) ∼= Γ0(f∗E).

In the proof of Theorem 3.7, we define a map Ψ of A ×δ G = Γ0(E) ×δ G

into Γ0(Res∗E) quite in the same way as in [15], Theorem 1.10. However, to show
the continuity of the map Ψ(z) : (A ×δ G)∧ → E we use Proposition 3.4, and we
proceed similarly to the proof of [3], Theorem 5.2.9 (2).
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Theorem 3.7. Let (A,G, δ) be a separable pointwise unitary cosystem with
a continuous trace algebra A. Let Res : (A ×δ G)∧ → Â be the restriction map.
Then A×δ G = Res∗A.

Proof. Let p : E → Â be the C∗-bundle with fibers Aρ = A/ ker ρ such
that A = Γ0(E) and the cross-sections are given by ρ 7→ a(ρ) = a + ker ρ. By
[26], Proposition 1.3, we have Res∗A = Res∗Γ0(E) = Γ0(Res∗E) where Res∗E is
the pull-back bundle over (A ×δ G)∧ with respect to the restriction map Res :
(A×δ G)∧ → Â. We may identify Γ0(Res∗E) with the set of continuous functions
f : (A ×δ G)∧ → E such that the map π × µ → ‖f(π × µ)‖ vanishes at infinity
and p(f(π × µ)) = Res(π × µ) = π for all π × µ ∈ (A×δ G)∧.

For an irreducible representation ρ of A, let ϕρ be the isomorphism

K(Hρ) → A/ ker ρ, ρ(a) → a(ρ) = a+ ker ρ.

Now define

Ψ : A×δ G→ Γ0(Res∗E), Ψ(z)(ρ× µ) = ϕρ((ρ× µ)(z)).

To make sure that Ψ is well defined, we have to verify that the map

ρ× µ→ ϕρ(ρ× µ(z))

is well defined for all z ∈ A ×δ G (that is, ϕρ((ρ × µ)(z)) = ϕρ′((ρ′ × µ′)(z)) if
ρ× µ ∼= ρ′ × µ′) and that Ψ maps A×δ G into Γ0(Res∗E).

Fix z ∈ A×δG. Let ρ×µ and ρ′×µ′ be two equivalent irreducible represen-
tations and u a unitary which intertwines ρ′ × µ′ and ρ × µ. Then u intertwines
ρ′ and ρ. Because A and A ×δ G both have continuous trace (Theorem 3.6) and
therefore are liminal, there are a, b ∈ A with ρ(a) = ρ×µ(z) and ρ′(b) = ρ′×µ′(z).
It follows that

ρ(a)−ρ(b) = ρ×µ(z)−uρ′(b)u∗ = ρ×µ(z)−u(ρ′×µ′)(z)u∗ = ρ×µ(z)−ρ×µ(z) = 0.

Hence, a− b ∈ ker ρ = ker ρ′ (since ρ ∼= ρ′), and this implies

ϕρ((ρ×µ)(z)) = ϕρ((ρ(a)) = a+ker ρ = b+ker ρ′ = ϕρ′((ρ′(b)) = ϕρ′((ρ′×µ′)(z)).

In order to show that Ψ maps z into Γ0(Res∗E), we must check that

(i) p(Ψ(z)(ρ× µ)) = Res(ρ× µ) for all ρ× µ ∈ (A×δ G)∧,
(ii) the map ρ× µ→ ‖Ψ(z)(ρ× µ)‖ vanishes at infinity and
(iii) the map (A×δ G)∧ → E, ρ× µ→ Ψ(z)(ρ× µ) is continuous.
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(i) Is clear since Ψ(z)(ρ×µ) = ϕρ(ρ×µ(z)) ∈ A/ ker ρ = p−1(ρ) and Res(ρ×
µ) = ρ, and (ii) holds since ϕρ is a ∗-isomorphism and the map ρ× µ → ‖ρ× µ‖
vanishes at infinity by [2], 3.3.7.

It remains to verify (iii). Let (ρn × µn)n∈N ⊂ (A×δ G)∧ be a sequence with
ρn×µn → ρ0×µ0 ∈ (A×δG)∧. We show that ϕρn

(ρn×µn(z)) → ϕρ0(ρ0×µ0(z))
in E. Let V ⊂ E be a neighbourhood of ϕρ0(ρ0 × µ0(z)). We may suppose that

V = W (h, U, ε) := {b ∈ E : p(b) ∈ U and ‖b− h(p(b))‖ < ε}

for some h ∈ A = Γ0(E), U ⊂ Â open and ε > 0 (see [5], II 13.18). Because
ϕρ0(ρ0 × µ0(z)) ∈ V , we have ρ0 = p(ϕρ0(ρ0 × µ0(z))) ∈ U and also ‖ϕρ0(ρ0 ×
µ0(z))− h(ρ0)‖ < ε. We have to show that:

(a) ρn ∈ U and
(b) ‖ϕρn(ρn × µn(z))− h(ρn)‖ < ε

for all n greater than some n0 ∈ N. Since {jA(a)jC0(G)(f) : a ∈ A, f ∈ Cc(G)}
spans a dense subset of A×δ G, we may suppose that z = jA(a)jC0(G)(f) for some
a ∈ A and f ∈ Cc(G). The restriction map Res : ρ × µ → ρ is continuous by
Proposition 2.7. Hence, ρn → ρ0, which proves (a). Let I =

⋂
{ker ρn : n ∈ N}.

By Proposition 3.4, we may suppose (by passing to a subsequence if necessary)
that the coaction δI on A/I is unitary and implemented by a homomorphism
φ : C0(G) → M(A/I). Let q : A → A/I be the quotient map. Since ker ρn ⊃ I

for all n ∈ N0 and ker ρ0 ⊃ I, it follows from [12], Theorem 4.8, that there are
πn × µn, π0 × µ0 ∈ ((A/I) ×δI G)∧ such that πn ◦ q = ρn, π0 ◦ q = ρ0 and
πn × µn → π0 × µ0. By Proposition 2.6, there is a sequence (sn)n∈N ⊂ G and
s0 ∈ G such that µn = πn ◦ φ ◦ σsn

, µ0 = π0 ◦ φ ◦ σs0 and sn → s0.
Since ϕρn

is an isomorphism, we have that

‖πn(q(a)φ(σsn(f))− q(h))‖ = ‖ϕρn(πn(q(a)φ(σsn(f))))− ϕρn(πn(q(h)))‖
= ‖ϕρn

(ρn × µn(z))− h(ρn)‖

for all n ∈ N, and similarly

‖π0(q(a)φ(σs0(f))− q(h))‖ = ‖ϕρ0(ρ0 × µ0(z))− h(ρ0)‖.

Especially, ‖π0(q(a)φ(σs0(f)) − q(h))‖ < ε, and there exists a γ > 0 such that
‖π0(q(a)φ(σs0(f))− q(h))‖ < ε− γ. The element q(a)φ0(σs0(f))− q(h) is in A/I.
By [2], 3.3.9 and since πn → π0, there is an n0 ∈ N such that

‖πn(q(a)φ(σs0(f))− q(h))‖ < ε− γ
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for all n > n0. Further, we may choose this n0 such that ‖σsn
(f) − σs0(f)‖ <

γ/‖a‖. It follows

‖ϕρn
((ρn × µn)(z))− h(ρn)‖ = ‖πn(q(a)φ(σsn

(f))− q(h))‖
6 ‖πn(q(a)φ(σsn

(f))− q(a)φ(σs0(f)))‖+ ‖πn(q(a)φ(σs0(f))− q(h))‖
6 ‖a‖ ‖σsn

(f)− σs0(f)‖+ ‖πn(q(a)φ(σs0(f))− q(h))‖
6 γ + ε− γ = ε

for all n > n0. This proves (b), and Ψ is well defined.
We now verify that Ψ is an isomorphism. First, Ψ is isometric, because

‖Ψ(z)‖ = sup{‖Ψ(z)(ρ× µ)‖ : ρ× µ ∈ (A×δ G)∧}
= sup{‖ϕρ((ρ× µ)(z))‖ : ρ× µ ∈ (A×δ G)∧}
= sup{‖(ρ× µ)(z)‖ : ρ× µ ∈ (A×δ G)∧}
= ‖z‖.

For f ∈ C0((A×δ G)∧) and h ∈ Γ0(Res∗E), let f ·h be defined by (f ·h)(ρ×µ) =
f(ρ×µ)h(ρ×µ) for all ρ×µ ∈ (A×δ G)∧. It follows from the definition of Ψ that

{Ψ(z)(ρ× µ) : z ∈ A×δ G} = Aρ

for all ρ× µ ∈ (A×δ G)∧. Thus, by [2], 10.2.5, the set

{f ·Ψ(z) : f ∈ C0((A×δ G)∧), z ∈ A×δ G}

spans a dense subspace in Γ0(Res∗E). But now

f(ρ×µ)Ψ(z)(ρ×µ) = ϕρ(f(ρ×µ) ·(ρ×µ)(z)) = ϕρ((ρ×µ)(zfz)) = Ψ(zfz)(ρ×µ)

for all f ∈ C0((A×δG)∧) and z ∈ A×δG, where zf denotes the image of f under the
Dauns-Hofmann isomorphism. Thus, f ·Ψ(z) = Ψ(zfz) for all f ∈ C0((A×δ G)∧)
and z ∈ A×δ G. It follows from this that Ψ(A×δ G) is dense in Γ0(Res∗E), and
the surjectivity follows since Ψ is isometric.

To each separable continuous trace algebra A we can associate an element
ε(A) of the third Čeck cohomology groupH3(Â,Z), the so-calledDixmier-Douady
Class of A (see [2], Chapter 10). Here we use the letter ε instead of the more
common letter δ to avoid confusion with the image δ(A) of A when δ is a coaction
on A. Any continuous map f : X → Y between two locally compact Hausdorff
spaces X and Y induces a homomorphism f∗ : H3(Y,Z) → H3(X,Z). If A is a
continuous trace algebra with spectrum Y , then, by [26], Proposition 1.4 (1), f∗A
is a continuous trace algebra with spectrumX and ε(f∗A) = f∗(ε(A)) ∈ H3(X,Z).
Now Theorem 3.7 yields the following

Corollary 3.8. Let (A,G, δ) be as in Theorem 3.7, and let ε(A) be the
Dixmier-Douady-Class of A. Then ε(A×δ G) = Res∗(ε(A)).
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4. APPLICATIONS

In this section, we give the applications of Theorem 3.6 and Theorem 3.7 as stated
in the introduction. We start with the definition of exterior equivalence. Let
Σ : C∗r (G)⊗C∗r (G) → C∗r (G)⊗C∗r (G) be the flip map. Recall that, for an element
W ∈M(A⊗ C∗r (G)), we define W12 = W ⊗ 1 and W13 = id⊗ Σ(W ⊗ 1).

Definition 4.1. Let (A,G, δ) be a cosystem. A unitary U ∈M(A⊗C∗r (G))
is called a δ-cocycle if

(4.1) (id⊗ δG)(U) = U12 · (δ ⊗ id)(U);

(4.2) (AdU ◦ δ)(A)(1⊗ C∗r (G)) ⊂ A⊗ C∗r (G).

If δ and ε are coactions on A, then we say that ε is exterior equivalent to δ
if there is a δ-cocycle U such that ε = AdU ◦ δ.

Remark 4.2. Let (A,G, δ) be a cosystem and U ∈ M(A ⊗ C∗r (G)) a δ-
cocycle. In [12], Chapter 2, Landstad et al. mentioned that AdU ◦ δ is a coaction
on A. Further, exterior equivalence is an equivalence relation, and the unitary
coactions are precisely those which are exterior equivalent to the trivial coaction
(see [21], Chapter 2).

Lemma 4.3. Let (A,G, δ) be a cosystem. Let M be the representation of
C0(G) as multiplication operators on L2(G) and V = (M ⊗ id)(WG). Then the
unitary 1A ⊗ V ∈ M((A ⊗ K(L2(G))) ⊗ C∗r (G)) is a δs-cocycle where δs is the
stabilization of δ.

Proof. For abbreviation, let C = C∗r (G), K = K(L2(G)) and B = A ⊗ K.
Further, let ΣKC : C ⊗ K → K ⊗ C and ΣC

C : C ⊗ C → C ⊗ C denote the flip
maps. Since 1A ⊗ V = ((1A ⊗M) ⊗ id)(WG) and 1A ⊗M is a non-degenerate
homomorphism of C0(G) into M(B) = M(A⊗K), it follows from Lemma 1.2 that
1A ⊗ V ∈M(B ⊗ C). Note that

ΣKC ⊗ idC(1C ⊗ V ) = idK ⊗ ΣC
C(V ⊗ 1C).

Hence,

δs ⊗ idC(1A ⊗ V ) = ((idA ⊗ ΣKC) ◦ (δ ⊗ idK)⊗ idC)(1A ⊗ V )

= (idA ⊗ ΣKC ⊗ idC)(δ ⊗ idK ⊗ idC(1A ⊗ V ))

= (idA ⊗ ΣKC ⊗ idC)(1A ⊗ 1C ⊗ V )

= (idA ⊗ idK ⊗ ΣC
C)(1A ⊗ V ⊗ 1C)

= (1A ⊗ V )13.
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Since (1A ⊗ V ) satisfies

idB ⊗ δG(1A ⊗ V ) = (1A ⊗ V )12(1A ⊗ V )13

by [21], Lemma 1.2, we obtain (4.1). By [10], Theorem 8, Ad(1A ⊗ V ) ◦ δs is a
coaction, so (4.2) is satisfied, too. Thus, 1A ⊗ V is a δs-cocycle.

Let (A,G, α) be a C∗-dynamical system, and A×α,rG be the reduced crossed
product of (A,G, α). Let π be any faithful representation on some Hilbert spaceH.
By [17], Theorem 7.7.5, A×α,rG acts faithfully onH⊗L2(G) via the representation
Indπ = π̃ × (1 ⊗ λG), where π̃ is the representation of A on H ⊗ L2(G) defined
by (π̃(a)ξ)(s) := π(αs−1(a))ξ(s) for a ∈ A, ξ ∈ H ⊗ L2(G) and s ∈ G. Let
V ∈ L(L2(G) ⊗ L2(G)) be as in Lemma 4.3. Define α̂ : A ×α,r G → M((A ×α,r

G)⊗ C∗r (G)) by
α̂(x) := (1H ⊗ V )(x⊗ 1)(1H ⊗ V )

for x ∈ A×α,r G. It follows from the calculations in [11], pp. 255–257, that α̂ is a
non-degenerate coaction of G on A×α,r G. We call α̂ the dual coaction of α.

Theorem 4.4. Let (A,G, δ) be a pointwise unitary separable cosystem such
that A has continuous trace and such that G is a Lie group. Then δ is locally
unitary.

Proof. By Theorem 3.6, the restriction map Res : (A ×δ G)∧ → Â is a
proper G-bundle. Since G is a Lie group, it follows from [16], Section 4.1, that

Res : (A×δ G)∧ → Â is a locally trivial G-bundle. Let δ′ := ̂̂
δ be the double dual

coaction of G on (A×δ G)×δ̂,r G. By [12], Theorem 5.14, δ′ is locally unitary. It
follows from [10], Theorem 8, that there is an isomorphism

ψ : (A×δ G)×δ̂,r G→ A⊗K(L2(G))

which carries δ′ to the coaction (Ad(1⊗V ))◦ δs. Here δs is the stabilized coaction
of δ (see Lemma 2.8), and V = (M ⊗ id)(WG) with M being the representation
of C0(G) as multiplication operators on L2(G). Since 1 ⊗ V is a δs-cocycle by
Lemma 4.3, δs is locally unitary by [12], Remark 5.12. Now Lemma 2.8 implies
that δ is locally unitary, too.

In [28], Corollary 2.2, Rosenberg showed that a pointwise unitary action
of a compactly generated and second countable abelian group G on a separable
continuous trace algebra A is automatically locally unitary. Since every compactly
generated abelian group is the dual group of a Lie group, the preceding theorem
is a generalization of part of Rosenberg’s theorem.

The following corollary is a generalization of [15], Corollary 1.11, in the case
where G is a Lie group.
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Corollary 4.5. Let (A,G, δ) and (A,G, ε) be two separable pointwise uni-
tary cosystems such that A has continuous trace. If δ and ε are exterior equivalent,
then the proper G-bundles Resδ : (A ×δ G)∧ → Â and Resε : (A ×ε G)∧ → Â are
isomorphic. If G is a Lie group, then the converse is also true.

Proof. If δ and ε are exterior equivalent, then, by [21], Proposition 2.8, there
is an isomorphism φ : A×δ G→ A×ε G such that φ intertwines the actions δ̂ and
ε̂ and φ ◦ jδ

A = jε
A. This induces a homeomorphism h : (A ×ε G)∧ → (A ×δ G)∧

which is G-equivariant and which satisfies Resδ ◦ h = Resε. Thus, the G-bundles
are isomorphic.

If G is a Lie group, then δ and ε are locally unitary, and therefore, in this
case, the converse is true by [12], Theorem 5.11.

Remark 4.6. Let (A,G, δ) and (A,G, ε) be as in Corollary 4.5, and suppose
that the corresponding G-bundles are isomorphic via the G-equivariant homeomor-
phism h : (A ×ε G)∧ → (A ×δ G)∧. From h one can construct an isomorphism
φ : A×δ G→ A×ε G such that φ ◦ jδ

A = jε
A, and φ intertwines the actions δ̂ and

ε̂. We may regard A as a subalgebra of M(A×δ G). Let

U := ((φ−1 ◦ jε
G)⊗ id)(WG) · (jδ

G ⊗ id)(WG).

Then U is a unitary element of M((A ×δ G) ⊗ C∗r (G)). If we knew that U ∈
M(A ⊗ C∗r (G)), then straightforward calculations would show that U satisfies
(4.1) and ε = AdU ◦ δ. In the special case when A ⊂ A×δ G and G is amenable
(for example when G is compact) one can show that aSf (U) and Sf (U)a satisfy
Landstad’s coconditions (see [20], Definition 4.1) for all a ∈ A and f ∈ Br(G). So
aSf (U), Sf (U)a ∈ A for all a ∈ A and f ∈ Br(G), by [20], Theorem 4.3. Then it
follows from [1] that U ∈M(A⊗ C∗r (G)). Thus, in this special case, the converse
of Corollary 4.5 is also true.

The arguments in the proof of our final theorem are almost the same as in
the proof of [15], Theorem 3.1 (while the (iii) ⇒ (i) direction was already shown
by Raeburn and Rosenberg ([25])). The difference here is that our group G is not
necessarily abelian. So we have to work with a dual coaction rather than a dual
action. We would like to mention that we have been informed that Igor Fulman,
Paul Muhly and Dana Williams independently found an alternative proof of this
fact without using coactions.

Recall that, for each representation π of A on H, Indπ denotes the induced
representation of A×α,rG on H⊗L2(G) (see the discussion before Theorem 4.4).
Let X be a locally compact Hausdorff space. We say that A is a C0(X)-algebra
if there exists a non-degenerate injection ι of C0(X) into the center of M(A).
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Suppose further that G acts on X. Then A is called a G-C0(X)-algebra if ι is
G-equivariant. If A has Hausdorff spectrum, then A is always G-C0(Â)-algebra
via the Dauns-Hofmann theorem.

Theorem 4.7. Let (A,G, α) be a separable C∗-dynamical system with a con-
tinuous trace algebra A such that G acts freely on Â. Then the following statements
are equivalent:

(i) A×α G has continuous trace;
(ii) A×α,r G has continuous trace;
(iii) G acts properly on Â.
Moreover, if one of these conditions is satisfied, then A×α G = A×α,r G.

Proof. Since the reduced crossed product is the quotient of the full crossed
product, it is clear that (i) implies (ii). So suppose that (ii) holds. First, we
show that the dual coaction of α is pointwise unitary. Let ρ ∈ (A ×α,r G)∧. By
the Gootman-Rosenberg Theorem ([7]), there is a π ∈ Â such that the induced
primitive ideal Ind(kerπ) = ker(Indπ) contains ker ρ. Then [15], Lemma 3.2
implies that Indπ is irreducible ([15], Lemma 3.2 is stated for G abelian, but the
proof remains valid if G is an arbitrary locally compact group). Since (A×α,rG)∧

is Hausdorff, this implies that ρ ∼= Indπ.
As usual, let M be the representation of C0(G) as multiplication operators

on L2(G). By [6], Proposition 2.6, (Indπ, 1 ⊗M) is a covariant representation
of (A ×α,r G,G, α̂). Thus, α̂ is pointwise unitary. Since A ×α,r G has continuous
trace, it follows from Theorem 3.6 that ((A ×α,r G) ×

α̂
G)∧ is Hausdorff, and

G acts properly on ((A ×α,r G) ×
α̂
G)∧ via the double dual action ̂̂α. By the

Imai-Takai duality theorem ([8]), there is an isomorphism of (A×α,rG)×
α̂
G onto

A ⊗ K(L2(G)) which carries the second dual action ̂̂α into α ⊗ AdρG (ρG being
the right regular representation). So G acts properly on (A ⊗ K(L2(G)))∧ via
α⊗AdρG. Since the homeomorphism

Â→ (A⊗K(L2(G)))∧, π → π ⊗ id

intertwines the actions induced by α and α⊗AdρG, the action of G on Â induced
by α must be proper, and (iii) follows.

If G acts properly on Â, then the full crossed product A×αG has continuous
trace by [25], Theorem 1.1. Thus, (iii) implies (i). Since A has continuous trace, it
is a G-C0(Â)-algebra. Therefore, (iii) and [9], Theorem 3.13 imply that A×αG =
A×α,r G.
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APPENDIX A. FULL COACTIONS

In this paper, we prefer to work with reduced coactions. One reason for this is that
Katayama’s duality ([10]), which is used in Theorem 4.4, is only secured for reduced
coactions and may fail for full coactions ([18]). However, in this appendix we show
that the main results in this paper also hold for full coactions. We retrieve these
results by “reducing” our full coactions. This reduction process behaves nicely in
the sense that a coaction and its reduction have the same crossed products, the
same covariant representations and the same invariant ideals (see Theorem A.2
and Lemma A.3). Moreover, the property of being (pointwise, respectively locally)
unitary is not affected by reduction (Lemma A.4). Full coactions are defined in
a similar way as reduced coactions. We replace C∗r (G) by the full group C∗-
algebra C∗(G), and we work with the canonical embedding uG : G → M(C∗(G))
instead of working with the left regular representation. Further, we replace WG ∈
M(C0(G)⊗C∗r (G)) by wG ∈M(C0(G)⊗C∗(G)), which is now given by s 7→ uG(s).
The comultiplication δf

G : C∗(G) → M(C∗(G)⊗ C∗(G)) is the integrated form of
the map s 7→ uG(s) ⊗ uG(s). Note that WG = (id ⊗ λG)(wG) and δG ◦ λG =
(λG ⊗ λG) ◦ δf

G. Now a full coaction δ of G on a C∗-algebra A is defined to be a
non-degenerate injective ∗-homomorphism δ : A→M(A⊗ C∗(G)) satisfying

(A.1) δ(A)(1⊗ C∗(G)) ⊂ A⊗ C∗(G),

and

(A.2) (δ ⊗ id) ◦ δ = (id⊗ δf
G) ◦ δ as maps of A into M(A⊗ C∗(G)⊗ C∗(G)).

As for reduced cosystems, we say that δ is non-degenerate if equality holds in
(A.1). Now, for full coactions, we define covariant representations, crossed prod-
ucts, invariant ideals, (locally, respectively pointwise) unitary coactions and exte-
rior equivalence as in the reduced case by replacing C∗r (G) by C∗(G), WG by wG

and δG by δf
G.

We say that a full cosystem (A,G, δ) is normal if the map jA : A →
M(A×δG) is injective. It may happen that a full cosystem (A,G, δ) is not normal
(consider for example the cosystem (C∗(G), δf

G, G) for non-amenable G as in [18],
Corollary 2.6). However, we have the following:

Proposition A.1. Every pointwise unitary full cosystem (A,G, δ) is nor-
mal.

Proof. Since δ is pointwise unitary, it follows from the fact that the direct
sum of covariant representations is again a covariant representation (see [24], before
Lemma 2.10) that there exists a covariant representation (π, µ) with π faithful.
Thus, δ is normal by [19], Lemma 2.2.
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The following theorem is a summary of some results by John Quigg ([19]).

Theorem A.2. Let A be a C∗-algebra. For any normal non-degenerate full
coaction δ of G on A define δr := (id⊗λG)◦δ. Then (A,G, δr) is a non-degenerate
reduced cosystem called the reduction of (A,G, δ). This reduction process yields a
one-to-one correspondence between the normal non-degenerate full coactions and
the non-degenerate reduced coactions of G on A. Moreover, the cosystems (A,G, δ)
and (A,G, δr) have the same covariant representations and the same crossed prod-
uct.

Lemma A.3. Let (A,G, δ) be a normal non-degenerate full coaction, and let
(A,G, δr) be its reduction. Then an ideal I ⊂ A is δ-invariant if and only if it is
δr-invariant.

Proof. Let I be δ-invariant. Then

δr(I)(1⊗C∗r (G)) = (id⊗λG)(δ(I)(1⊗C∗(G))) = (id⊗λG)(I⊗C∗(G)) = I⊗C∗r (G),

and I is δr-invariant. For the converse, suppose that I is δr-invariant. Then
δr(I)(1 ⊗ C∗r (G)) = I ⊗ C∗r (G), and it follows from [20], Lemma 2.2 (2), that
δrA(G)(I) = I. We have δA(G)(I) = δrA(G)(I), and this implies that δA(G)(I) = I.
By [19], Corollary 1.6, δ(I)(1⊗ C∗(G)) = I ⊗ C∗(G), and I is δ-invariant.

Lemma A.4. Let A be a liminal C∗-algebra with Hausdorff spectrum. Let δ
be a normal full coaction on A, and let δr be its reduction. Then δ is (pointwise,
respectively locally) unitary if and only if δr is (pointwise, respectively locally)
unitary.

Proof. The coaction δ is unitary if and only if there is a non-degenerate
homomorphism φ : C0(G) →M(A) such that (id, φ) is a covariant representation
of (A,G, δ). Thus, by Theorem A.2, the lemma is true for unitary coactions and
also for pointwise unitary coactions. Suppose that δ is locally unitary. Since
locally unitary implies pointwise unitary, it follows from [12], Theorem 5.3 (2) and
Lemma A.3 that every ideal I of A is invariant for δ and δr. We have (δI)r = (δr)I ,
and the first part of the proof implies that δr is locally unitary. The converse
direction is proven in the same way.

The following lemma is used in Proposition 2.7. Let X be a locally compact
Hausdorff space, and let (A,G, δ) be a (full or reduced) cosystem. Recall that A
is called a C0(X)-algebra if there exists a non-degenerate injection ι : C0(X) →
ZM(A). Further, as in [14], Chapter 3, we say that δ is a C0(X)-coaction if
δ(ι(f)) = ι(f)⊗ 1 for all f ∈ C0(X).
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Lemma A.5. Let A be a liminal C∗-algebra with Hausdorff spectrum, and
let δ be a (full or reduced) pointwise unitary coaction on A. Then there is a C∗-
bundle E over Â such that A ×δ G = Γ0(E), and, for each ρ ∈ Â, the fiber Bρ

is a crossed product by a unitary (full, respectively reduced) coaction δρ on the
elementary algebra A/ ker ρ.

Proof. By the foregoing results, we may suppose that δ is a full cosystem.
Let ι : C0(Â) → ZM(A) be the Dauns-Hofmann isomorphism. As δ is pointwise
unitary and Â is Hausdorff, the arguments used in the proof of [12], Proposi-
tion 5.3 (1), show that δ(ι(f)) = ι(f) ⊗ 1 for all f ∈ C0(Â). Thus, δ is a C0(Â)-
coaction on the C0(Â)-algebra A. Now fix ρ ∈ Â. Since δ is pointwise unitary, the
coaction δρ := δker ρ of G on Aρ is unitary. The rest of the proof now follows from
[14], Theorem 4.3.

The results above allow us to transmit the results of Chapter 3 and Chapter 4
to full coactions. First note that Proposition 2.7 also holds for pointwise unitary
full coactions since the covariant representations and the crossed products of a
normal full coaction and its reduction coincide by Theorem A.2.

Let (A,G, δ) be a non-degenerate normal full cosystem, and let (A×δ G, jA,
jC0(G)) be its crossed product. As for reduced coactions, we define a dual action
of G on A×δ G by

δ̂s(jA(a)jC0(G)(f)) = jA(a)jC0(G)(σs(f))

for all a ∈ A, f ∈ C0(G) and s ∈ G, where σs is the right translation by s ∈ G

([24], Corollary 2.14). By Theorem A.2, the dual actions of δ and δr agree. Since δr

is pointwise unitary if and only if δ is, we obtain a result analogous to Theorem 3.6
and Theorem 3.7.

Theorem A.6. Let (A,G, δ) be a separable pointwise unitary full cosystem
such that A has continuous trace. Then the crossed product A ×δ G has contin-
uous trace, and the restriction map Res : (A ×δ G)∧ → Â is a proper G-bundle.
Moreover, A×δ G is isomorphic to the pull back Res∗A.

We are now going to verify that Theorem 4.4 and Theorem 4.5 hold also for
full coactions.

Theorem A.7. Let (A,G, δ) be a separable pointwise unitary full cosystem
such that A has continuous trace and such that G is a Lie group. Then δ is locally
unitary.

Proof. This is an immediate consequence of Lemma A.4 and Theorem 4.4.
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Theorem A.8. Let (A,G, δ) and (A,G, ε) be two separable pointwise unitary

full cosystems such that A has continuous trace. If δ and ε are exterior equivalent,

then the proper G-bundles Resδ : (A ×δ G)∧ → Â and Resε : (A ×ε G)∧ → Â are

isomorphic. If G is a Lie group, then the converse is also true.

Proof. Let U be a δ-cocycle such that ε = AdU ◦ δ. Then

(id⊗ δf
G)(U) = U12 · (δ ⊗ id)(U).

If we apply (id⊗ λG ⊗ λG), we see that

(id⊗ (δG ◦ λG))(U) = ((id⊗ λG)(U))12 · (δr ⊗ id)((id⊗ λG)(U)).

Thus, (id⊗ λG)(U) is a δr-cocycle, and εr = Ad((id⊗ λG)(U)) ◦ δr. Therefore, δr

and εr are exterior equivalent. Since δr and εr are pointwise unitary, Theorem 4.5

yields that the G-bundles Resδ : (A ×δ G)∧ → Â and Resε : (A ×ε G)∧ → Â are

isomorphic.

If G is a Lie group, then δ and ε are locally unitary by Theorem A.7. If we

replace λG by uG and C∗r (G) by C∗(G) in the proof of [12], Theorem 5.11, we see

that [12], Theorem 5.11, also holds for full locally unitary coactions. Thus, δ and

ε are exterior equivalent.

Note added in proof. The result in Theorem 3.6 concerning the fact that the crossed
product has continuous trace is much easier verified (without using Proposition 3.4) as
follows: For a C∗-algebra B, let T+(B) (respectively T+

M (B)) be the cone of all positive
b ∈ B (respectively b ∈ M(B)) such that the map π 7→ trπ(b) is finite and continuous onbB (see [2], 4.5.2). Let (A, G, δ) be a pointwise unitary cosystem with A having continuous

trace. Since the restriction map Res : (A×δ G)∧ → bA is well defined and continuous, the
image of T+(A) under jA is contained in T+

M (A ×δ G). By assumption, the linear span
of T+(A) is a dense ideal in A. Hence, it follows that the linear span of T+(A ×δ G) is
a dense ideal in A×δ G. Thus, A×δ G has continuous trace.

Note that these arguments do not carry over to the second (much more important)
assertion of Theorem 3.6, namely that the dual action is proper, which is the key result
for the applications in Chapter 4.
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