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Abstract. In this paper we show that an operator T of class C0 over a mul-
tiply connected region is reflexive if and only if its Jordan model is reflexive.
Besides, the reflexivity of T depends only on the reflexivity of a single Jordan
block that can be easily calculated from the model of T .
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1. INTRODUCTION AND NOTATION

Consider a bounded region Ω in the complex plane C whose boundary Γ consists of
a finite number of disjoint, closed, analytic Jordan curves. A holomorphic function
f on Ω is in Hp(Ω) for 1 6 p < ∞, if the subharmonic function |f |p has a harmonic
majorant on Ω. For every fixed z0 ∈ Ω, it is possible to define a norm on Hp(Ω) by

‖f‖ = inf{u(z0)1/p : u is a harmonic majorant of |f |p}.

Denoting the harmonic measure on Γ for the point z0 by ω, it is well-known that
each f ∈ Hp(Ω) has nontangential boundary values f∗ almost everywhere dω, and
f∗ is in Lp(Γ, ω). Moreover the mapping f → f∗ is an isometry from Hp(Ω) onto a
closed subspace of Lp(Γ, ω). We will employ the same symbol f to stand both for
the function and for its boundary values. A function f defined on Ω is in H∞(Ω) if
it is holomorphic and bounded. The space H∞(Ω) is a closed subspace of L∞(Γ, ω)
and it is a Banach algebra when endowed with the supremum norm. Finally, the



410 V. Pata and A. Zucchi

mapping f → f∗ is an isometry of H∞(Ω) onto a weak∗-closed subalgebra of
L∞(Γ, ω). The theory of Hardy spaces over multiply connected regions has been
first studied by Rudin ([8], see also [6]).

We recall from [7] that a function θ ∈ H∞(Ω) is said to be inner if |θ| is
essentially constant on each component of Γ. If θ and θ′ are two inner functions,
we say that θ′ divides θ (and we write θ′|θ) if θ can be written as θ = θ′ϕ for some
ϕ in H∞(Ω). We will denote somewhat informally such ϕ by θ/θ′. Moreover,
if θ′|θ and θ|θ′ we say that θ and θ′ are equivalent and we write θ ≡ θ′. We
denote by θ ∧ θ′ the greatest common inner divisor of θ and θ′, i.e., the unique
(up to equivalence) inner function which divides θ and θ′ and is divisible by any
other inner function dividing θ and θ′ (cf. [12], Proposition 2.3.4). Clearly, this
definition can be extended to a family of functions. Let R(Ω) be the space of
rational functions with poles off Ω. A closed linear subspace M of Hp(Ω) (weak∗-
closed if p = ∞) is said to be fully invariant if rf ∈ M for all f ∈ M and for
all r ∈ R(Ω). It is well-known that any fully invariant subspace of Hp(Ω) has the
form θHp(Ω) for some inner function θ. Two inner functions θ1 and θ2 generate
the same subspace if and only if θ1 ≡ θ2.

Let H be a Hilbert space. Given a subset M ⊂ H we denote by [M]−

the norm-closure of M. Given a family {Mi}i∈I ⊂ H, we denote by
∨
i∈I

Mi the

closed linear span generated by
⋃
i∈I

Mi. Let L(H) be the algebra of bounded linear

operators on H, and L(H,H ′) the algebra of bounded linear operators on H with
values in a Hilbert space H ′. An operator X ∈ L(H,H ′) is a quasiaffinity if it
is one-to-one with dense range. An operator T ∈ L(H) is called a quasiaffine
transform of an operator T ′ ∈ L(H ′) (T ≺ T ′) if there exists a quasiaffinity
X ∈ L(H,H ′) such that T ′X = XT . The operators T and T ′ are quasisimilar
(T ∼ T ′) if T ≺ T ′ and T ′ ≺ T . We denote by F(T ′, T ) the set of all operators in
L(H,H ′) intertwining T ′ and T , i.e., F(T ′, T ) = {X ∈ L(H,H ′) : T ′X = XT}.

If K ⊂ C is compact, T ∈ L(H) and σ(T ) ⊂ K, we say that K is a spectral
set for the operator T if ‖r(T )‖ 6 max{|r(z)| : z ∈ K}, whenever r is a rational
function with poles off K.

Definition 1.1. An operator T ∈ L(H) with Ω as spectral set and with no
normal summand with spectrum in Γ is said to satisfy hypothesis (h).

The above is the extension to more general regions of the notion of completely
nonunitary operator. For each operator satisfying (h) it is possible to define a
unique continuous functional calculus representation Φ : H∞(Ω) → L(H), which
is also continuous when both H∞(Ω) and L(H) are given the weak∗-topology (cf.
[12], Theorem 3.1.4).
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Definition 1.2. An operator T satisfying (h) is said to be of class C0 (or,
equivalently, a C0-operator) if the associated functional calculus has a non trivial
kernel.

The subspace {u ∈ H∞(Ω) : u(T ) = 0} is a fully invariant subspaces of
H∞(Ω); hence it has the form θH∞(Ω) for some inner function θ. If T is of class
C0, the inner function θ such that θH∞(Ω) = {u ∈ H∞(Ω) : u(T ) = 0}, is called
the minimal function of T and is denoted by mT (notice that the minimal function
is defined to be an equivalence class of functions). If T ∈ L(H) and T ′ ∈ L(H ′) are
two quasisimilar operators satisfying (h), then one is a C0-operator if and only if
so is the other, and their minimal functions coincide. The minimal function plays
a role analogous in many respects to the well-known role of minimal polynomials
of finite matrices in linear algebra. It is convenient to allow the operator T = 0
on the trivial space {0} to belong to the class C0; its minimal function is the
function identically equal to one. The operators C0-operators with spectrum in
the unit disk were introduced by Sz.-Nagy and Foiaş ([9]) in their work on canonical
models for contractions. The class C0 is quite possibly the best understood class
of non-normal operators. For a detailed presentation, the reader should refer to
the monograph [3]. The operators C0-operators over a multiply connected region
have been introduced and studied in [12].

The simplest case of an operator of class C0 is the Jordan block S(θ) defined
as follows. Let S denote the operator of multiplication by z in L(H2(Ω)), and let
θ ∈ H∞(Ω) be an inner function. We set H(θ) = H2(Ω)	 θH2(Ω) and denote by
S(θ) the compression of S to H(θ), i.e., S(θ) = PH(θ)S|H(θ), where PH(θ) denotes
the orthogonal projection onto H(θ).

Using the Jordan blocks we can define more general C0-operators. Assume
that for each ordinal number α we are given an inner function θα ∈ H∞(Ω), such
that θα|θβ whenever card(β) 6 card(α) and θα ≡ 1 for some α (and hence θβ ≡ 1
for β > α). The operator

S(Θ) =
⊕
α<γ

S(θα), γ = min{β : θβ ≡ 1}

is called the Jordan operator determined by the model function Θ = {θα : α < γ}.
The operator S(Θ) is of class C0, and mS(Θ) ≡ θ0. We will denote by H(Θ) the
direct sum Hilbert space on which S(Θ) acts. Separably acting Jordan operators

are of the form
∞⊕

j=0

S(θj), where {θj : j > 0} is a sequence of inner functions such

that θj+1|θj .
The following theorem (cf. [12], Theorem 4.3.21) shows why Jordan operators

are important in the study of the class C0.
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Theorem 1.3. Every C0-operator T is quasisimilar to a unique Jordan op-

erator, called the Jordan model of T .

Operators of class C0 exhibit remarkable properties, which make them easier

to study than general functional model operators. Here we are concerned with

those properties that a C0-operator may have in common with its Jordan model.

Before going any further, we introduce some other notions about C0-opera-

tors. We only state the most important results we are going to deal with. The

interested reader may refer to [12]. LetM be a closed subspace of H and T ∈ L(H)

with σ(T ) ⊂ Ω; M is said to be R(Ω)-invariant for T if it is invariant for r(T )

for all r ∈ R(Ω). Since R(Ω) is sequentially weak∗-dense in H∞(Ω), if M is an

R(Ω)-invariant subspace, then u(T )M ⊂ M for all u ∈ H∞(Ω). Notice that if

H = Hp(Ω), then R(Ω)-invariant subspaces for the operators of multiplication by

z are fully invariant subspaces. Any invariant subspace of a Jordan block S(θ) is

also R(Ω)-invariant (cf. [12], Theorem 4.1.18).

An operator T satisfying (h) is said to be locally of class C0 if for every

x ∈ H there exists ux ∈ H∞(Ω) − {0} such that ux(T )x = 0. If T is locally of

class C0 and x ∈ H, we denote by mx the inner function defined by mxH∞(Ω) =

{u ∈ H∞(Ω) : u(T )x = 0}. A vector x ∈ H is said to be T -maximal if for every

y ∈ H we have my|mx, and the set of T -maximal vectors is a dense Gδ in H. In

particular, T is of class C0 and mT ≡ mx for every T -maximal vector x.

Let T ∈ L(H) be an operator with spectrum in Ω. A subsetM⊂ H with the

property that
∨

r∈R(Ω), m∈M
r(T )m = H is called an R(Ω)-generating set for T . The

multiplicity µT of T is the smallest cardinality of an R(Ω)-generating set for T ,

and it is a quasisimilarity invariant. The operator T is said to be multiplicity-free

if µT = 1. A multiplicity-free operator T is quasisimilar to S(mT ). If µT = 1, any

vector x ∈ H such that
∨

r∈R(Ω)

r(T )x = H is said to be R(Ω)-cyclic for T . A vector

x ∈ H is R(Ω)-cyclic for T if and only if x is T -maximal. Finally, we recall that if

T is an operator satisfying (h), then FT denotes the set of all operators X ∈ L(H)

such that X = v(T )−1u(T ) for some v ∈ K∞T (Ω) and u ∈ H∞(Ω), where K∞T (Ω)

is defined to be the set of v ∈ H∞(Ω) such that v(T ) is a quasiaffinity.
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2. PRELIMINARY RESULTS

For an arbitrary operator T ∈ L(H) with σ(T ) ⊂ Ω we denote by AT (respective,
byWT ) the weak∗-closed (respective, weakly closed) subalgebra of L(H) generated
by all operators of the form r(T ) with r ∈ R(Ω). Note that r(T ) is well defined as
the quotient of polynomials. It is well-known that this definition of r(T ) concides
with the definition given by the Riesz-Dunford functional calculus. If the operator
T satisfies (h), then the rational functional calculus r → r(T ) has a unique con-
tinuous extension to H∞(Ω). Since the commutant {T}′ is always a weakly closed
algebra, we clearly have AT ⊂ WT ⊂ {T}′. To every operator T we associate
other algebras as follows. If A is an arbitrary subalgebra of L(H), then Lat(A)
denotes the collection of all closed invariant subspaces for A, i.e. M ∈ Lat(A)
if XM ⊂ M for every X ∈ A. If B is a collection of closed subspaces of H we
denote by Alg(B) the set of those X ∈ L(H) such that X(M) ⊂ M, for every
M ∈ B. The subalgebra Alg(B) is always a weakly closed subalgebra of L(H),
hence A ⊂ Alg Lat(A).

Definition 2.1. An algebra A ∈ L(H) is said to be reflexive if A =
Alg Lat(A). An operator T with σ(T ) ⊂ Ω is said to be reflexive (respective,
hyperreflexive) if WT (respective, {T}′) is reflexive.

If Ω is simply connected, then clearly Lat(T ) = Lat(WT ) = Lat(AT ) so that
T is reflexive if and only if Alg Lat(T ) = WT . In the general case of multiply
connected regions we only have Lat(T ) ⊃ Lat(WT ). Note also that Lat(WT )
consists of all R(Ω)-invariant subspaces, and thus for Jordan blocks S(θ) we have
Lat(WS(θ)) = Lat(S(θ)).

The main result of this paper is the following.

Theorem 2.2. Let T be a C0-operator and S(Θ), Θ = {θα}, its Jordan
model. Then

(i) T is reflexive if and only if S(θ0/θ1) is reflexive;

(ii) T is hyperreflexive if and only if S(mT ) is reflexive.

Thus the reflexivity and the hyperreflexivity of T depends only on the re-
flexivity of single Jordan blocks, which can be easily calculated from the Jordan
model of T . This result is known for the case in which the region Ω is the unit
disk, and it is due to Bercovici, Foiaş and Sz.-Nagy ([4]; see also [2] and [10] for
the case of finite defect indices).
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Theorem 2.3. For every C0-operator T we have

{T}′′ = {T}′ ∩Alg Lat(WT ) = AT = WT = FT .

Proof. It is enough to verify the following six inclusions:

WT ⊂ {T}′′ ⊂ {T}′ ∩Alg Lat(WT ) ⊂ FT ⊂ {T}′′ ⊂ AT ⊂ WT .

The first and the last of these inclusions and the inclusion {T}′′ ⊂ {T}′ are
true for arbitrary operators. Let now X ∈ {T}′′ and M ∈ Lat(WT ). Then by
Proposition 4.3.24 in [12], M = ker(Y ) for some Y ∈ {T}′. Hence X(M) ⊂
M because X and Y commute. We conclude that {T}′′ ⊂ Alg Lat(WT ) and
the second inclusion is proved. To prove the third inclusion we use the splitting
principle (cf. [12], Theorem 4.3.1). Assume now that X ∈ {T}′ ∩ Alg Lat(WT ),
x ∈ H and K =

∨
r∈R(Ω)

r(T )x. Then X(K) ⊂ K and X|K ∈ {T|K}′. Since T|K is

multiplicity-free and mT|K ≡ mx, it follows from Theorem 4.3.2 in [12] that there
exist functions ux, vx ∈ H∞(Ω) such that ux∧vx ≡ 1 and vx(T|K)(X|K) = ux(T|K);
in particular

(2.1) vx(T )Xx = ux(T )x.

Let h be a T -maximal vector, and K0 =
∨

r∈R(Ω)

r(T )h. By the splitting principle

there exists M0 ∈ Lat(WT ) such that K0 ∩M0 = {0} and K0 ∨M0 = H. We
claim that for every g ∈ M0, the vector h + g is also T -maximal. Indeed, the
relation u(T )(h + g) = 0 implies that

u(T )h = −u(T )g ∈ K0 ∩M0,

and therefore u(T )h = 0. Thus mT |u because h is T -maximal, and therefore h+ g

is T -maximal. Hence we have

vh ∧mT ≡ vh+g ∧mT ≡ 1

for every g ∈ M0. Next, we want to show that vh(T )X = uh(T ) so that X =
(uh/vh)(T ). Applying (2.1) we get

(vh+g(T )X − uh+g(T ))h = −(vh+g(T )X − uh+g(T ))g ∈ K0 ∩M0 = {0},

which yields
vh+g(T )Xh = uh+g(T )h.
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A further application of (2.1) gives

vh(T )uh+g(T )h− vh+g(T )uh(T )h = vh(T )vh+g(T )Xh− vh+g(T )vh(T )Xh = 0,

so that mT ≡ mh|(vhuh+g − vh+guh). Therefore

vh(T )uh+g(T ) = vh+g(T )uh(T ),

which entails

vh+g(T )vh(T )X(h + g) = vh(T )uh+g(T )(h + g) = vh+g(T )uh(T )(h + g).

Since vh+g ∧mT ≡ 1, the operator vh+g(T ) is a quasiaffinity, and the last equality
above implies

vh(T )X(h + g) = uh(T )(h + g),

and in virtue of (2.1) we conclude that vh(T )Xg = uh(T )g. Thus vh(T )X|M0 =
uh(T )|M0 and, since vh(T )X|K0 = uh(T )|K0 by definition of uh and vh, we have

vh(T )X = uh(T )X|K0∨M0 = uh(T ).

Hence X ∈ FT and the third inclusion is proved. The inclusion FT ⊂ {T}′′ is true
for every operator T satisfying (h). Indeed, if X = (u/v)(T ) ∈ FT and Y ∈ {T}′,
we must have

v(T )XY = u(T )Y = Y u(T ) = Y v(T )X = v(T )Y X,

which implies XY = Y X (v(T ) is one-to-one since v ∈ K∞T (Ω)). The proof of
the inclusion {T}′′ ⊂ AT is based on a classical argument, essentially due to von
Neumann. Let X ∈ {T}′′ and denote by T ′ and X ′ the direct sum of infinitely
many copies of T and X, respectively. Then T ′ is an operator of class C0 with
mT ≡ mT ′ and X ′ ∈ {T ′}′′. From the second inclusion, which has already been
proved for all C0 operators, we have X ′ ∈ Alg Lat(WT ′). Let

V =
{

Y :
∞∑

j=0

‖Y hj −Xhj‖2 < ε2

}

be an arbitrary ultrastrong neighborhood of X, and set h =
∞⊕

j=0

hj . The R(Ω)-

cyclic subspace K =
∨

r∈R(Ω)

r(T ′)h is then invariant for X ′ so that there exists

r ∈ R(Ω) satisfying the inequality ‖X ′h − r(T ′)h‖ < ε. But this means that
r(T ) ∈ V and we conclude that X ∈ AT .
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Note that the function vh in the preceding proof can be chosen independently
of X (see the remark after Proposition 4.2.7 in [12]). So we have proved the
following result.

Corollary 2.4. For every C0-operator T there exists a function v∈H∞(Ω)
such that v∧mT ≡ 1, and every operator X ∈ AT can be written as X = (u/v)(T )
for some u ∈ H∞(Ω).

There are some immediate consequences of Theorem 2.3 for the reflexivity
of C0-operators, whose proofs are left to the interested reader.

Corollary 2.5. A C0-operator T is reflexive if and only if Alg Lat(WT ) ⊂
{T}′.

Corollary 2.6. Let T be a C0-operator, and let {Mj : j ∈ J} ⊂ Lat(WT )
be such that

∨
j∈J

Mj = H. If T|Mj
is reflexive for every j ∈ J , then T is reflexive.

Corollary 2.7. Assume that T is a reflexive C0-operator, and let X ∈ WT .
Then T|[rangeX]− is also reflexive.

In order to characterize reflexive operators in terms of their Jordan models,
we need to prove that reflexivity of C0-operators is a quasisimilarity invariant. To
this aim we introduce an auxiliary property.

Definition 2.8. An operator T satisfying (h) is said to have property (∗) if
for any quasiaffinity X ∈ {T}′ there exist a quasiaffinity Y ∈ {T}′ and u ∈ H∞(Ω)
such that XY = Y X = u(T ).

Of course XY is a quasiaffinity so that u ∈ K∞T (Ω). The proof of the following
lemma is the same as in the case of the disk with suitable modifications (cf. [3],
Lemma 4.1.11 and Lemma 4.1.12).

Lemma 2.9. Let T and T ′ be two quasisimilar operators satisfying (h).
Then:

(i) T has property (∗) if and only if T ′ has property (∗);
(ii) if T has property (∗) then we can find u ∈ H∞(Ω) and quasiaffinities

A ∈ F(T ′, T ) and B ∈ F(T, T ′) such that AB = u(T ) and BA = u(T ′);
(iii) if T is of class C0 and has property (∗), then T is reflexive if and only

if T ′ is reflexive.

It is not true that every operator of class C0 has property (∗). We can,
however, produce a large family of operators with property (∗) that will suffice for
our purposes.
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Proposition 2.10. Let θ0 and θ1 be two inner functions such that θ1|θ0.
Then the operator T = S(θ0)⊕ S(θ1) has property (∗).

The proof of this proposition is based on the following lemmas.

Lemma 2.11. Let T ∈ L(H) be a C0-operator, K a Banach space and X :
K → H a continuous linear map such that

∨
r∈R(Ω)

r(T )XK = H. Then the set

{k ∈ K : mXk ≡ mT }

is a dense Gδ in K.

Proof. The proof closely imitates that of Theorem 3.3.5 in [12]. We provide
the relevant details. First we recall that to any inner function mx we can associate
a subharmonic function ux by:

ux(z) = −
∑
z∈Ω

µ(ζ)g(z, ζ) +
∫
Γ

∂g

∂n
(ζ, z)dν(ζ),

where mx ≡ BµSν is the factorization provided by Theorem 2.2.11 in [12]. For a
fixed z0 ∈ Ω, denote a = inf

k∈K
{expuXk(z0)}. Then the set

σj = {k ∈ K : expuXk(z0) > a + 1/j} = X−1{h ∈ H : expuh(z0) > a + 1/j}

is closed for j > 1, and it has empty interior. It follows that the set

{k ∈ K : expuXk(z0) = a}

is a dense Gδ in K. Then the set

M =
{

k ∈ K : expuXk(z) = inf
h∈K

{expuXh(z)}, z ∈ Ω
}

is a dense Gδ in K. If k ∈M it follows that mXh|mXk for every h ∈ K, and hence

mXk(T )(XK) = {0}.

The last relation clearly implies

mXk(T )
( ∨

r∈R(Ω)

r(T )XK

)
= {0}

and hence mXk(T ) = 0, from which we deduce mXk ≡ mT .
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If θ is an inner function and f ∈ H2(Ω), we say that θ|f if f = θg for some
g ∈ H2(Ω). Given a family {fj}j∈J of functions in H2(Ω), the greatest common
inner divisor

∧
j∈J

fj is defined to be the unique (up to equivalence) inner function

dividing each fj and multiple of any common inner divisor of the family. Its
existence can be easily proved using the fully invariant subspace of H2(Ω) given
by

∨
j∈J

fjH
∞(Ω).

Lemma 2.12. Let {fj}j>0 be a bounded sequence of functions in H2(Ω) and
let θ be an inner function. The set of {aj} ⊂ `1 satisfying the relation( ∞∑

j=0

ajfj

)
∧ θ ≡

( ∞∧
j=0

fj

)
∧ θ

is a dense Gδ in `1.

Proof. We may assume without loss of generality that
( ∞∧

j=0

fj

)
∧ θ ≡ 1.

Indeed, we may replace θ by θ/ϕ and each fj by fj/ϕ, where ϕ ≡
( ∞∧

j=0

fj

)
∧ θ.

Under this additional assumption, the invariant subspace for S(θ) generated by the
vectors {PH(θ)fj : j > 0} is H(θ). Indeed, if the invariant subspace for S(θ) gener-

ated by the vectors {PH(θ)fj : j > 0} is ϕH2(Ω)	θH2(Ω), then ϕ
∣∣∣ ( ∞∑

j=0

ajfj

)
∧θ,

and thus ϕ ≡ 1. We can therefore apply Lemma 2.11 with H = H(θ), K = `1 and
X : K → H defined by

X({aj}) = PH(θ)

( ∞∑
j=0

ajfj

)
,

with {aj} ∈ `1. Hence the set of sequences a ∈ `1 such that mXa ≡ θ is a dense
Gδ in `1. Finally, the condition mXa ≡ θ is equivalent to Xa ∧ θ ≡ 1, which in

turn is equivalent to
( ∞∑

j=0

ajfj

)
∧ θ ≡ 1.

Proof of Proposition 2.10. Let P0 and P1 denote the projections of H =
H(θ0) ⊕ H(θ1) onto H(θ0) and H(θ1), respectively. If X ∈ {T}′, then P ∗i XPj ∈
F(S(θj), S(θi)) for 0 6 i, j 6 1, and in virtue of Theorem 4.1.2 in [12] we can find
functions aij ∈ H∞(Ω) such that

(2.2) θi|aijθj

and

(2.3) P ∗i XPjh = PH(θi)(aijh)
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for h ∈ H(θj) and 0 6 i, j 6 1. Conversely, if

A =
(

a00 a01

a10 a11

)
is a matrix of functions in H∞(Ω) for which (2.2) holds, then there exists an
operator X ∈ {T}′ satisfying (2.3). Of course, the matrix A is not uniquely
determined by X. We can always change aij into aij + uijθj , where uij are
arbitrary functions in H∞(Ω). Assume for the moment that θ0 ∧ det(A) ≡ 1,
where det(A) ≡ a00a11 − a01a10. Then the matrix

B =
(

a11 −a01

−a10 a00

)
determines an operator Y ∈ {T}′, and the immediate relations AB = BA = uI,
u = det(A), imply that XY = Y X = u(T ). Moreover, since mT ≡ θ0, the fact
that θ0 ∧ u ≡ 1 implies that u ∈ K∞T (Ω), and therefore u(T ) is a quasiaffinity.
The considerations above indicate that, in order to show that T has property (∗),
it suffices to prove that for every quasiaffinity X ∈ {T}′ we can find a matrix A

satisfying (2.2) and (2.3) and such that θ0 ∧det(A) ≡ 1. Assume therefore that X

is a quasiaffinity, and the matrix A satisfies (2.3) and (2.3). We first note that

(2.4) a00 ∧ a01 ∧ θ0 ≡ 1.

Indeed, if q ≡ a00 ∧ a01 ∧ θ0 then we see from (2.3) that PH(θ0)XH ⊂ qH2(Ω) 	
θ0H

2(Ω), and hence q ≡ 1 because X has dense range. Moreover, we have

(2.5) θ1 ∧ det(A) ≡ 1.

Indeed, if p ≡ θ1 ∧ det(A) and we define

h = PH(θ0)(−a01θ1/p)⊕ PH(θ1)(a00θ1/p)

an easy calculation (using (2.2) and the fact that PH(θ)(aPH(θ)f) = PH(θ)(af), if
a ∈ H∞(Ω), f ∈ H2(Ω) and θ is inner) shows that P0Xh = 0 and

P1Xh = PH(θ1)(θ1det(A)/p) = 0.

By the injectivity of X we must have h = 0 and therefore θ0|(−a01θ1/p) and
θ1|(a00θ1/p). We deduce that p|(a01θ1/θ0) and p|a00. Since (a01θ1/θ0)|a01 and
p|θ1 by definition of p, we easily have p|(θ1 ∧ a01 ∧ a00) and thus p ≡ 1 by (2.4).
Now (2.4) and (2.5) imply

(2.6) (θ1a00 ∧ θ1a01 ∧ det(A)) ∧ θ0 ≡ 1.
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Indeed, if r denotes the left-hand-side of (2.6), then r|det(A), and so by (2.5)

r∧θ1 ≡ 1. Then we see that the relation r|θ1a00 (respective, r|θ1a01) implies r|a00

(resp., r|a01) and hence r|a00 ∧ a01 ∧ θ0. Using (2.4), we conclude that r ≡ 1. An

easy application of Lemma 2.11 implies the existence of scalars λ, µ such that

(det(A) + λθ1a00 + µθ1a01) ∧ θ0 ≡ 1.

We now define

A′ =
(

a00 a01

a10 − µθ1 a11 + λθ1

)
and note that, by the remarks above, A′ also determines X. Finally we have

det(A′) ≡ det(A) + λθ1a00 + µθ1a01

and hence θ0 ∧ det(A′) ≡ 1. The proposition is proved.

Proposition 2.10 certainly applies to T = S(θ0) since it is allowed to take θ1 ≡
1. The proposition and Lemma 2.9 already show that reflexivity is a quasisimilarity

invariant for operators of class C0 with multiplicity 6 2. It would be therefore

interesting to know which Jordan operators with multiplicity 6 2 are reflexive.

3. PROOF OF THE MAIN THEOREM

The following lemma is contained in Proposition 4.1.14 in [12]. We recall that any

invariant subspace of a Jordan block S(θ) is also R(Ω)-invariant.

Lemma 3.1. Let θ be a non-invertible inner function.

(i) Every invariant subspace M of S(θ) has the form ϕH2(Ω)	 θH2(Ω) for

some inner divisor ϕ of θ. We have ϕH2(Ω) 	 θH2(Ω) = ker
(
(θ/ϕ)(S(θ))

)
=

range
(
ϕ(S(θ))

)
.

(ii) If M = ϕH2(Ω) 	 θH2(Ω) is an invariant subspace for S(θ), then

there exists an invertible operator Z ∈ L(H(θ/ϕ), ϕH2(Ω) 	 θH2(Ω)) such that

S(θ)|MZ = ZS(θ/ϕ).

The proof of the following result is based on very explicit knowledge of the

invariant subspaces of a Jordan block.
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Proposition 3.2. Let θ0 and θ1 be two inner functions such that θ1|θ0. The
operator T = S(θ0)⊕ S(θ1) is reflexive if and only if the Jordan block S(θ0/θ1) is
reflexive.

Proof. An easy application of Corollary 4.1.16 in [12] shows that

range(θ1(T )) = (θ1H
2(Ω)	 θ0H

2(Ω))⊕ {0}

and thus from Lemma 3.1, T|range(θ1(T )) is similar to S(θ0/θ1). If T is reflexive,
then S(θ0/θ1) is reflexive by Corollary 2.7. Assume that X ∈ Alg Lat(WT ). The
subspaces H(θ0) ⊕ {0} and {0} ⊕ H(θ1) belong to Alg Lat(WT ), hence they are
invariant for X and therefore X can be written as X = X0 ⊕ X1 with Xj ∈
Alg Lat(S(θj)) for j = 0, 1. Let Z : H(θ1) → (θ0/θ1)H2(Ω)	 θ0H

2(Ω) be defined
as in the preceding lemma with θ = θ0 and ϕ = θ0/θ1, and consider the subspaces
M0,M1 ∈ Lat(WT ) described by:

M0 = {(Zh⊕ h) : h ∈ H(θ1)}
M1 = {(ZS(θ1)h⊕ h) : h ∈ H(θ1)}.

The inclusion XM0 ⊂M0 yields

X0Zh = ZX1h,

and the inclusion XM1 ⊂M1 yields

X0ZS(θ1)h = ZS(θ1)X1h

for every h ∈ H(θ1). We combine the second equality above with the first in which
h is replaced by S(θ1)h to obtain

ZS(θ1)X1h = ZX1S(θ1)h

for every h ∈ H(θ1). Since Z is invertible, this last equality shows that X1 ∈
{S(θ1)}′ and hence there exists u ∈ H∞(Ω) such that X1 = u(S(θ1)) by Corol-
lary 4.1.3 in [12]. Thus we deduce the existence of an operator Y0 ∈ Alg Lat(S(θ0))
such that

(3.1) X − u(T ) = Y0 ⊕ 0 ∈ Alg Lat(WT ).

For every inner divisor q of θ0/θ1 we consider the subspace Nq ∈ Lat(WT ) defined
by

Nq = {(Z(h)⊕ PH(θ1)h) : h ∈ H(θ0/q)},
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where Z : H(θ0/q) → qH2(Ω) 	 θ0H
2(Ω) is as in Lemma 3.1 with θ = θ0 and

ϕ = q. The inclusion (Y0 ⊕ 0)Nq ⊂ Nq means that for every h ∈ H(θ0/q) we have

Y0(Z(h)) = Z(h′)

for some h′ ∈ H(θ0/q) such that PH(θ1)h
′ = 0. This last equality implies that

h′ ∈ θ1H
2(Ω) so that h′ ∈ θ1H

2(Ω)∩H(θ0/q) = θ1H
2(Ω)∩(H2(Ω)	(θ0/q)H2(Ω)).

We then have that

(3.2) Y0(qH2(Ω)	 θ0H
2(Ω)) ⊂ qθ1H

2(Ω)	 θ0H
2(Ω),

for all q inner divisor of θ0/θ1. If q = 1 and q = θ0/θ1 we obtain the particular
cases

(3.3) range(Y0) ⊂ θ1H
2(Ω)	 θ0H

2(Ω), ker(Y0) ⊃ (θ0/θ1)H2(Ω)	 θ0H
2(Ω).

Relations (3.3) can be used to find an operator in Alg Lat(S(θ0/θ1)). Let Z :
H(θ0/θ1) → θ1H

2(Ω) 	 θ0H
2(Ω) be defined as in Lemma 3.1 with θ = θ0 and

ϕ = θ1. Then V = Z−1 is an invertible operator such that

V S(θ0)|θ1H2(Ω)	θ0H2(Ω) = S(θ0/θ1)V.

Moreover, by the fact that θ0|θ1, we have S(θ0/θ1)V = PH(θ0/θ1)S(θ0)V , and thus

V S(θ0)|θ1H2(Ω)	θ0H2(Ω) = PH(θ0/θ1)S(θ0)V.

Let us now consider the operator W = V Y0|H(θ0/θ1). We claim that W ∈
Alg Lat(WS(θ0/θ1)). To prove this, let us consider M ∈ Lat(S(θ0/θ1)); by Lem-
ma 3.1, there exists an inner function q such that q|(θ0/θ1) and M = qH2(Ω) 	
(θ0/θ1)H2(Ω). Hence (3.2) implies W (M) ⊂ M. Assume now that S(θ0/θ1) is
reflexive. Then W ∈ {S(θ0/θ1)}′ and hence, using (3.3),

V (Y0S(θ0)− S(θ0)Y0)|H(θ0/θ1)

=
(
V Y0PH(θ0/θ1)S(θ0)− V (S(θ0)|θ1H2(Ω)	θ0H2(Ω))Y0

)
|H(θ0/θ1)

= WS(θ0/θ1)− S(θ0/θ1)W = 0.

Thus Y0S(θ0) = S(θ0)Y0 on H(θ0/θ1), and on the orthogonal complement
(θ0/θ1)H2(Ω) 	 θ0H

2(Ω) of this space, Y0S(θ0) − S(θ0)Y0 = 0 by (3.3), and
therefore Y0 ∈ {S(θ0)}′. Hence, if S(θ0/θ1) is reflexive, (3.1) and the preceding
argument entail that every X ∈ Alg Lat(WT ) commutes with T . The conclusion
follows from Corollary 2.5.
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We are now ready to prove the main result of this paper.

Proof of Theorem 2.2.(i). Assume that T ∈ L(H) and X ∈ F(S(Θ), T ) is a
quasiaffinity. The operators T|[range(θ1(T ))]− and S(Θ)|range(θ1(S(Θ))) are quasisimi-
lar since X|range(θ1(S(Θ))) is a quasiaffinity intertwining them. Thus T|[range(θ1(T ))]−

is quasisimilar to S(θ0/θ1), being S(Θ)|range(θ1(S(Θ))) similar to S(θ0/θ1) by Lem-
ma 3.1. If T is reflexive, it follows from Corollary 2.7, Lemma 2.9 and Proposi-
tion 2.10 that S(θ0/θ1) is reflexive.

Conversely, assume that S(θ0/θ1) is reflexive and for each ordinal α consider
the subspaces Hα,Kα ∈ Lat(WT ) defined by

Hα =
[{

X
( ⊕

fβ

)
: fβ = 0 for β 6= α

}]−
Kα =

[{
X

( ⊕
fβ

)
: f0 ∈ (θ0/θα)H2(Ω)	 θ0H

2(Ω), fα = 0 for α 6= 0
}]−

.

The restriction T|H0∨H1 is quasisimilar to S(θ0) ⊕ S(θ1), while T|Hα∨Kα
is qua-

sisimilar to S(θα)⊕ S(θα) for α > 0. This is a consequence of Proposition 4.4.22
in [11], since a suitable restriction of X provides the needed intertwining opera-
tors. All these restrictions are then reflexive by Lemma 2.9, Proposition 2.10 and
Proposition 3.2. Finally, we note that

(H0 ∨H1) ∨
( ∨

α>1

Hα ∨Kα

)
=

∨
α>0

Hα = H

and the reflexivity follows from Corollary 2.6.

In order to complete the proof of Theorem 2.2, we need the following result
about quasisimilarity invariance (cf. [3], Proposition 4.1.24).

Proposition 3.3. If the operators T and T ′ are quasisimilar, and one of
them is hyperreflexive, then so is the other.

Proof of Theorem 2.2.(ii). The preceding proposition shows that we can
restrict ourselves to operators T of the form S(Θ), where Θ is a model function.
Assume first that S(Θ) is hyperreflexive and X ∈ Alg Lat(S(θ0)). We claim that
the operator Y =

⊕
α

Yα, where Y0 = X and Yα = 0 for α 6= 0, belongs to

Alg Lat({S(Θ)}′). Indeed, a subspace M ∈ Lat({S(Θ)}′) is of the form M =⊕
α
Mα, with Mα ∈ Lat(S(θα)), and this clearly implies that YM ⊂ M. Thus

Y ∈ {S(Θ)}′ by the assumption that S(Θ) is hyperreflexive, and hence X ∈
{S(θ0)}′. The reflexivity of S(θ0) follows from Corollary 2.5.
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Conversely, assume that S(θ0) is reflexive. By Lemma 3.1 we have that S(θα)
is similar to S(θ0)|range(θ0/θα)(S(θ0)), and therefore, by Lemma 2.9, Proposition 2.10
and Corollary 2.7, S(θα) is reflexive for every ordinal α. For α 6 β, let Zαβ :
H(θβ) → (θα/θβ)H2(Ω) 	 θαH2(Ω) be as in Lemma 3.1, with θ = θα and ϕ =

θα/θβ . Let us define operators Rαβ ∈ {S(Θ)}′ as follows: Rαβ

( ⊕
γ

hγ

)
=

⊕
γ

kγ ,

where

kγ =


0 for γ 6= α,
PH(θα)hβ for γ = α > β,
Zαβhβ for γ = α 6 β.

Clearly Zαα = I, and thus Pα = Rαα coincides with the orthogonal projection of
H(Θ) onto its α-component subspace. For every A in Alg Lat({S(Θ)}′) we have
PαAPβ ∈ Alg Lat({S(Θ)}′) and A =

∑
α,β

PαAPβ unconditionally in the strong

operator topology. To conclude the proof, it will suffice to show that each PαAPβ

commutes with S(Θ). Now, the operators RβαPαAPβ and PαAPβRβα also belong
to Alg Lat({S(Θ)}′) and have the form

⊕
γ

Tγ with Tγ = 0 for γ 6= β and γ 6= α,

respectively. Considering hyperinvariant subspaces of the form ker(θ(S(Θ))) such
that θ|θ0, it is easy to see that Tγ ∈ Alg Lat(S(θγ)) for each γ, so that Tγ commutes
with S(θγ) by the reflexivity of S(θγ). Thus RβαPαAPβ and PαAPβRβα commute
with S(Θ), hence

Rβα(PαAPβS(Θ)− S(Θ)PαAPβ) = (PαAPβS(Θ)− S(Θ)PαAPβ)Rβα = 0.

If the range of Rβα does not contain the range of Pα, it follows that β < α and
therefore Rβα is one-to-one on the range of Pα. In either case the last equality
shows that PαAPβ ∈ {S(Θ)}′, and the theorem is proved.
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