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1. INTRODUCTION

There is now a well developed non-commutative stochastic calculus which deals
with non-commutative analogues and generalisations of classical stochastic pro-
cesses. Recently attention has turned to the example provided by the full Fock
space, F , over L2(R+). The basic processes are provided by the annihilation, cre-
ation and gauge operators l(h), l∗(f), p(T ) for h, f ∈ L2(R+), T ∈ B(L2(R+)) (the
bounded operators on L2(R+)). One of the features of this situation, in contrast
to [1], [2], is the absence (thus far) of a (formal) conditional expectation acting on
the processes with which one can define the (formal) notion of martingale and as-
sociated processes. Without this one cannot introduce the projections associated
with random times and exploit their relationship with stochastic integration ([3]).
Since we shall have some more to say on this and other matters in this context
([4]), we demonstrate here that it is possible to construct a family of conditional
expectations in a straightforward manner. The construction proceeds as one might
expect; for example it is clear that l(χth) should be the time t conditional expec-
tation of l(h). From these easy beginings the expectation is extended to the whole
of B(F). Many of the proofs are obvious, we omit these. Others demand a fuller
explanation, we include some details.
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2. PRELIMINARIES AND NOTATION

We define the full Fock space F over L2(R+) as follows:

(a) F ≡ C⊕
( ∞⊕

n=1

L2(R+)
⊗n

)
;

here C denotes the complex numbers and F has the usual scalar product. Note
that all scalar products are linear in the left argument. Ω will denote the vector
(1, 0, 0, . . .). We define the annihilation operator l(f) and creation operator l∗(f)
for f ∈ L2(R+), as follows

l(f)f1 ⊗ · · · ⊗ fn = 〈f1, f〉f2 ⊗ · · · ⊗ fn(b)
l∗(f)f1 ⊗ · · · ⊗ fn = f ⊗ f1 ⊗ · · · ⊗ fn(c)

l(f)Ω = 0(d)
l∗(f)Ω = f(e)

for n > 1 and f1, . . . , fn in L2(R+). The operators l(f) and l∗(f) are bounded
and mutually adjoint. Furthermore,

‖l(f)‖ = ‖l∗(f)‖ = ‖f‖2.

Given any T ∈ B(L2(R+)) we define the operator p(T ) by:

p(T )f1 ⊗ · · · ⊗ fn = T f1 ⊗ · · · ⊗ fn, p(T )Ω = 0

for fi ∈ L2(R+), 1 6 i 6 n. The operator p(T ) is bounded and ‖p(T )‖ = ‖T ‖,
and p(T )∗ = p(T ∗). For g ∈ L∞(R+), g will be considered to be the element of
B[L2(R+)] obtained by letting g act by multiplication on L2(R+). This makes the
meaning of p(g) clear. Moreover the following identities hold:

l(g) · l∗(f) = 〈f · g〉I(f)
p(T1) · p(T2) = p(T1 · T2)(g)

p(T )l∗(f) = l∗(T f)(h)
l(g)p(T ) = l(T ∗g).(i)

Let D0 ⊆ F be the set consisting of λΩ with λ ∈ C and |λ| 6 1 and vectors of
the form u1 ⊗ · · · ⊗ uk with k ∈ N, the natural numbers, uj ∈ L2(R+) ∩ L∞(R+),
‖uj‖2 6 1, ‖uj‖∞ 6 1 for 1 6 j 6 k. For k = 0, u1 ⊗ · · · ⊗ uk = Ω. D will denote
the linear span of D0. We denote the bounded operators on F by B(F) and by τs

the strong operator topology on B(F). We collect together some elementary facts
and definitions needed for the sequel.

2.1. D is dense in F .

2.2. F is separable.

2.3. We note a useful lemma about the strong topology τs on bounded sets
of B(F).

Lemma. The strong operator topology on S [the unit ball of B(F)] is metris-
able. This metric is given by a norm on B(F).
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For x ∈ B(F) the norm is given by

‖x‖s =
{ ∞∑

n=1

1
2n
‖xςn‖2

} 1
2

where (ςn)∞n=1 is a countable base for F .

2.4. Definition. We define A to be the ∗-algebra generated by the an-
nihilation and gauge operators l(f), p(g) respectively and I, where f ∈ L2(R+),
g ∈ L∞(R+). We shall denote by V the Von Neumann algebra Aτs in B(F).

2.5. Definition. At is defined to be the ∗-algebra of A which is generated
by I and the operators l(f), p(g) with g ∈ L∞([0, t]) and f ∈ L2([0, t]), for any
t ∈ R+. By Vt mean the strong-operator closure of At. By (f), (g), (h) and (i) we
note that any element of A can be written as a sum of basic elements of the form
λI or

l∗(f1) · · · l∗(fr)p(g)l(h1) · · · l(hs)

or

l∗(f1) · · · l∗(fr)l(h1) · · · l(hs)

with the convention that r = 0 (respectively s = 0) denotes an element with
no creation (respectively no annihilation) operators. Here r, s ∈ N ∪ {0} and
fi, hj ∈ L2(R+) and g ∈ L∞(R+), 0 6 i 6 r, 0 6 j 6 s. Furthermore if fi, hj , and
g have support in [0, t] then we get basic elements for At.

2.6. Definition. We define a process F (t) to be a function

F : R+ → {operators with domain containing D}.

A V adapted process is a process such that F (t) ∈ Vt and similarly for A adapted
processes. We shall call a process simple if it can be written in the form

n∑
j=1

F (tj)χ[tj ,tj+1)

with 0 = t1 6 · · · tj 6 tj+1 6 · · · 6 tn+1 = ∞, 1 6 j 6 n, F (tj) ∈ Atj
.

2.7. For a subset K of F we will use the term “τs-on K” to refer to pointwise
convergence on K.
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3. CONSTRUCTION OF THE EXPECTATION

For each t ∈ R+ we will construct an expectation Et : V → Vt, t > 0 with all the
standard properties. We show further that Et is strong-operator continuous on
bounded sets.

In order to construct Et we need to define a map Ẽt : A → At with the
appropriate properties, and we shall then extend Ẽt in the following stages:

(a) For a sequence (an)n>1 in A, for which (an(ξ)) is Cauchy in F for each
ξ ∈ D0 we shall demonstrate that (Ẽtan(ξ))n>1 is also Cauchy in F for each
ξ ∈ D0. Furthermore, if (an)n>1 is a sequence in A such that an → 0, τs-on D0,
then we shall show that (Ẽtan)n>1 is a sequence in At with Ẽtan → 0, τs-on D0.

(b) Here we will show that for any element a ∈ A, ‖Ẽta‖ 6 ‖a‖. In the
process of proving this result we shall obtain most of the properties related to
conditional expectations.

(c) We will use the previously obtained results to extend Ẽt : A → At to
Et : V → Vt and we shall show that Et satisfies the properties of a conditional
expectation between two von Neumann algebras.

3.1. Notes on notation. We shall use the letters f and h to denote
elements of L2(R+) which will be arguments of l∗(·) and l(·) respectively, we will
use g to denote arguments of p(·), g ∈ L∞(R+).

Furthermore, the letter a will denote elements of the algebrasA and the letter
x will denote elements of V. In addition, for any basic elements of A the letter r
will represent the numbers of creation operators and s the number of annihilation
operators. Finally, χt will denote the indicator function of [0, t].

4. THE MAP Ẽt

We shall start this section with an important property of elements a ∈ A, which
will enable us to define the map Ẽt : A → At.

An element of A is a sum of basic elements. Recall that basic elements have
the form

(a) λI;
(b) l∗(f1) · · · l∗(fr)p(g)l(h1) · · · l(hs);
(c) l∗(f1) · · · l∗(fr)l(h1) · · · l(hs).

We shall write an element a of A in a particular way that reflects how the
basic elements which comprise a act on F . So if a =

∑
i

ai, we shall denote by aδ,q

the sum of those basic elements ai, for which the difference between the number
of creation operators and the number of annihilation operators is δ; and the sum
of the number of annihilation and gauge operators is q. Then we can write

(4.1) a =
∑

δ

∑
q

aδ,q.
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For example if

a = l∗(f1) + l∗(f2)p(g1) + l∗(f3)l∗(f4)l(h1) + l∗(f5)l∗(f6)p(g2)l(h2)

then
a = a1,0 + a1,1 + a1,2

where
a1,0 = l∗(f1)

a1,1 = l∗(f2)p(g1) + l∗(f3)l∗(f4)l(h1)

a1,2 = l∗(f5)l∗(f6)p(g2)l(h2).

4.1. Definition. Given a =
n∑

i=1

ai in A, with ai basic elements of A we

define:

at =
n∑

i=1

at
i with (λI)t = λI

{l∗(f1) · · · l∗(fr)p(g)l(h1) · · · l(hs)}t = l∗(χtf1) · · · l∗(χtfr)p(χtg)l(χth1) · · · l(χths)

{l∗(f1) · · · l∗(fr)l(h1) · · · l(hs)}t = l∗(χtf1) · · · l∗(χtfr)l(χth1) · · · l(χths).

Note that all at
i lie in At.

4.2. Note. at =
∑
δ

∑
q

at
δ,q just by regrouping the basic elements of ai.

Given a vector u1 ⊗ · · · ⊗ uk in D0 and 0 6 j 6 k, define,

vj = χtu1 ⊗ · · · ⊗ χtuj .

Again we shall use the convention: v0 = Ω and for k = 0, u1 ⊗ · · · ⊗ uk ≡ Ω. We
can write

a =
∆∑

δ=−∆

Q(δ)∑
q=max(0,−δ)

aδ,q, at =
∆∑

δ=−∆

Q(δ)∑
q=max(0,−δ)

at
δ,q

with ∆ the maximum |δ| of those in appearing in equation (4.1) and with aδ,q = 0
for all (δ, q) not appearing in equation (4.1). For each δ, Q(δ) will denote the
maximum q appearing in aδ,q of equation. Since the number of creation operators
has to be non-negative, we need q > −δ and when q = −δ the basic elements cannot
contain any gauge operators. The following result underpins our construction.

4.3. Theorem. For a in A with a =
∆∑

δ=−∆

Q(δ)∑
q=0

aδ,q and u1 ⊗ · · · ⊗ uk in D0

we have that:

‖atu1 ⊗ · · · ⊗ uk‖2 6 (4k + 2)
k∑

q=0

‖avq‖2

for k ∈ N ∪ {0}.
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Proof. Fix k ∈ N ∪ {0}. We first observe that:

at
δ,qu1 ⊗ · · · ⊗ uk ∈ L2(R+)

⊗(k+δ)
for k > q,

= 0 for k < q;
Q(δ)∑
q=0

at
δ,qu1 ⊗ · · · ⊗ uk ∈ L2(R+)

⊗(k+δ)
for k > q,

= 0 for k < q.

Note that k > q ⇒ k− q > 0 ⇒ k + δ > 0, and L2(R+)⊗0 will represent C. So for
δ < δ′ the vectors, at

δ,qu1 ⊗ · · · ⊗ uk, at
δ′,qu1 ⊗ · · · ⊗ uk are orthogonal. Hence:

‖atu1 ⊗ · · · ⊗ uk‖2 =
∥∥∥∥ ∆∑

δ=−∆

Q(δ)∑
q=max(0,−δ)

at
δ,qu1 ⊗ · · · ⊗ uk

∥∥∥∥2

=
∆∑

δ=−∆

∥∥∥∥ Q(δ)∑
q=max(0,−δ)

at
δ,qu1 ⊗ · · · ⊗ uk

∥∥∥∥2

by orthogonality of the vectors, established above, and

(4.2) ‖atu1 ⊗ · · · ⊗ uk‖2 6
∆∑

δ=−∆

{ Q(δ)∑
q=max(0,−δ)

‖at
δ,qu1 ⊗ · · · ⊗ uk‖

}2

by the triangle inequality.
Before going further with our proof, let us make the following remarks.

4.4. Note. aδ,qu1 ⊗ · · · ⊗ uk = 0, at
δ,qu1 ⊗ · · · ⊗ uk = 0 for q > k since the

first k annihilation acting on u1⊗· · ·⊗uk give the vector Ω and the next operator
(gauge or annihilation) acting on Ω gives 0. Hence, without loss of generality, we
can take Q(δ) 6 k. The general term for at

δ,q is

at
δ,q =

n∑
i=1

l∗(χtf
i
1) · · · l∗(χtf

i
δ+q−1)p(χtg

i)l(χth
i
1) · · · l(χth

i
q−1)

+
m∑

j=1

l∗(χtf̃
j
1 ) · · · l∗(χtf̃

j
δ+q) · l(χth̃

j
1) · · · l(χth̃

j
q)

with m,n ∈ N ∪ {0} and when m or n is 0, there is no basic element of that
corresponding form. In the particular case δ = 0, q = 0, we have a0,0 = at

0,0 = λI
with λ ∈ C. So

‖at
δ,qu1 ⊗ · · · ⊗ uk‖2

=
∥∥∥∥p(χt)

{ n∑
i=1

l∗(f i
1)l

∗(χtf
i
2) · · · l∗(χtf

i
δ+q−1)p(χtg

i)l(χth
i
1 · · · l(χth

i
q−1)

+
m∑

j=1

l∗(f̃ j
1 )l∗(χtf̃

j
2 ) · · · l∗(χtf̃

j
δ+q)l(χth̃

j
1) · · · l(χth̃

j
q)

}
u1 ⊗ · · · ⊗ uk

∥∥∥∥2

.
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Since we need to refer back to this last equation let us write it as

(4.3)
∥∥at

δ,qu1 ⊗ · · · ⊗ uk‖2 = ‖p(χt)bt
δ,qu1 ⊗ · · · ⊗ uk‖2

where bt
δ,q is the term between braces above. Observe that the last creation oper-

ator to act in each of the terms of bt
δ,q does not involve χt.

Before starting a lemma we introduce some notation. We write

L∗(f i) = l∗(f i
1)l

∗(f i
2) · · · l∗(f i

δ+q−1)

and
L(hi) = l(hi

1) · · · l(hi
q−1).

We also write u = u1⊗· · ·⊗uk and uq+1 = uq+1⊗· · ·⊗uk. For a permutation π of
the indicies 1, 2, . . . , δ + q− 1, we write π(f i) for the vector f i

π(1)⊗· · ·⊗ f i
π(δ+q−1).

4.5. Lemma. Let π be a permutation of the indicies 1, 2, . . . , δ + q− 1, then

〈L∗(f i)p(gi)L(hi)u , L∗(f i′)p(gi′)L(hi′)u〉

= 〈L∗(π(f i))p(gi)L(hi)u, L∗(π(f i′))p(gi′)L(hi′)u〉.

Similarly

〈L∗(f i)p(gi)L(hi)u , L∗(f̃ j)L(h̃j)u〉 = 〈L∗(π(f i))p(gi)L(hi)u, L∗(π(f̃ j))L(h̃j)u〉

and

〈L∗(f̃ j)L(h̃j)u , L∗(f̃ j′)L(h̃j′)u〉 = 〈L∗(π(f̃ j))L(h̃j)u, L∗(π(f̃ ′
j
))L(h̃j′)u〉.

Proof. We look at one case only; the others are similar.

L∗(f i)p(gi)L(hi)u =
( q−1∏

r=1

〈χthi
q−r, ur〉

) δ+q−1⊗
s=1

f i
s ⊗ gi ⊗ uq+1.

So
〈L∗(f i)p(gi)L(hi)u, L∗(f i′)p(gi′)L(hi′)u〉

is equal to( q−1∏
r=1

〈χthi
q−r, ur〉

)( q−1∏
r=1

〈χth
i′

q−r, ur〉
)〈 δ+q−1⊗

s=1

f i
s⊗gi⊗uq+1,

δ+q−1⊗
s=1

f
′i
s ⊗gi′⊗uq+1

〉
;

this in turn is equal to( q−1∏
r=1

〈χthi
q−r, ur〉

)( q−1∏
r=1

〈χth
i′

q−r , ur〉
)( δ+q−1∏

r=1

〈f i
s, f

i′

s 〉〈gi gi′〉〈uq+1, uq+1〉
)

which is( q−1∏
r=1

〈χthi
q−r, ur〉

)( q−1∏
r=1

〈χth
i′

q−r, ur〉
)( δ+q−1∏

r=1

〈f i
π(s), f

π(i′)
s 〉〈gi gi′〉〈uq+1, uq+1〉

)
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which is equal to

〈L∗(π(f i))p(gi)L(hi)u , L∗(π(f i′))p(gi′)L(hi′)u〉.

4.6. Corollary. Let v be a vector in F which is a finite sum of tensor
product vectors e1, e2, . . . , er each of which being a k-fold tensor product of elements
of L2(R+). For a vector of the form u = u1 ⊗ · · · ⊗ uk and a permutation ρ of the
first k integers, write ρ(u) = uρ(1) ⊗ · · · ⊗ uρ(k) and ρ(v) for

∑
i

ρ(ei). Then

‖v‖ = ‖ρ(v)‖.

Moreover, if w = w1 ⊗ w2 ⊗ · · · ⊗ wn and

v ⊗ w =
∑

i

ei ⊗ w

then

‖v ⊗ w‖ = ‖v‖ · ‖w‖.

Here ei ⊗ w means the tensor product of the elements of ei and w taken in the
order indicated.

Proof. The proof of the lemma is easily adapted to this case.

Proof of Theorem 4.3 continued. Return now to the equation (4.3); since
p(χt) is an operator of norm less than one, we have

‖at
δ,qu1 ⊗ · · · ⊗ uk‖2 6 ‖bt

δ,qu1 ⊗ · · · ⊗ uk‖2.

Now we can express ‖bt
δ,qu1 ⊗ · · · ⊗ uk‖2 as a sum of (products of) inner products

of the form encountered in Lemma 4.5. We can apply the permutation which
interchanges the first two terms in each inner product involving f ’s, that is f i

1

with f i
2, f i′

1 with f i
2 with similar interchanges for the f j and f j′ . This amounts

interchanging l∗(f i
1) and l∗(χtf

i
2) and the corresponding creations involving the

other f terms in the expression for bt
δ,q. This done it leaves us with an operator

which we can write as p(χt)ct
δ,q and we have

‖bt
δ,qu1 ⊗ · · · ⊗ uk‖2 = ‖p(χt)ct

δ,qu1 ⊗ · · · ⊗ uk‖2 6 ‖ct
δ,qu1 ⊗ · · · ⊗ uk‖2.

Obviously we can iterate this procedure enough times to remove the χt’s from the
first δ + q − 1 creation operators in every term of at

δ,q. At the same time observe
that

〈χth
i, u〉 = 〈hi, χtu〉, 〈χtgu, χtf〉 = 〈gχtu, f〉.
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Note also that in u1⊗· · ·⊗uk the vectors uq+1, uq+2, . . . , uk are unaffected by the
action of the elements of at

δ,q. Putting all of this together we arrive at∥∥at
δ,qu1 ⊗ · · · ⊗ uk

∥∥2

6

∥∥∥∥{ n∑
i=1

l∗(f i
1) · · · l∗(f i

δ+q−1)p(gi)l(hi
1) · · · l(hi

q−1)

+
m∑

j=1

l∗(f̃ j
1 ) · · · l∗(f̃ j

δ+q−1)l
∗(χtf̃

j
δ+q)l(h̃

j
1) · · · l(h̃j

q)
}

χtu1 ⊗ · · · ⊗ χtuq

∥∥∥∥2

=
∥∥∥∥ n∑

i=1

f i
1 ⊗ · · · ⊗ f i

δ+q−1 ⊗ χtg
iuq〈hi

1, χtuq−1〉 · · · 〈hi
q−1, χtu1〉

+
m∑

j=1

f̃ j
1 ⊗ · · · ⊗ f̃ j

δ+q−1 ⊗ χtf̃
j
δ+q〈h̃

j
1, χtuq〉 · · · 〈h̃j

q, χtu1〉
∥∥∥∥2

=
∥∥∥∥ n∑

i=1

χtg
iuq ⊗ f i

2 ⊗ · · · ⊗ f i
δ+q−1 ⊗ f i

1〈hi
1, χtuq−1〉 · · · 〈hi

q−1, χtu1〉

+
m∑

j=1

χtf̃
j
δ+q ⊗ f̃ j

2 ⊗ · · · ⊗ f̃ j
δ+q−1 ⊗ f̃ j

1 〈h̃
j
1, χtuq〉 · · · 〈h̃j

q, χtu1〉
∥∥∥∥2

we have interchanged the first and last terms of the tensor products as above∥∥at
δ,qu1 ⊗ · · · ⊗ uk

∥∥2

=
∥∥∥∥p(χt)

{ n∑
i=1

giχtuq ⊗ f i
2 ⊗ · · · ⊗ f i

δ+q−1 ⊗ f i
1〈hi

1, χtuq−1〉 · · · 〈hi
q−1, χtu1〉

+
m∑

j=1

f̃ j
δ+q ⊗ f̃ j

2 ⊗ · · · ⊗ f̃ j
δ+q−1 ⊗ f̃ j

1 〈h̃
j
1, χtuq〉 · · · 〈h̃j

q, χtu1〉
}∥∥∥∥2

6

∥∥∥∥ n∑
i=1

f i
1 ⊗ · · · ⊗ f i

δ+q−1 ⊗ giχtuq〈hi
1, χtuq−1〉 · · · 〈hi

q−1, χtu1〉

+
m∑

j=1

f̃ j
1 ⊗ · · · ⊗ f̃ j

δ+q〈h̃
j
1, χtuq〉 · · · 〈h̃j

q, χtu1〉
∥∥∥∥2

by using ‖p(χt)‖ = 1 and interchanging the first and last terms of the products as
above ∥∥at

δ,qu1 ⊗ · · · ⊗ uk

∥∥2

=
∥∥∥∥{ n∑

i=1

l∗(f i
1) · · · l∗(f i

δ+q−1)p(gi)l(hi
1) · · · l(hi

q−1)

+
m∑

j=1

l∗(f̃ j
1 ) · · · l∗(f̃ j

δ+q)l(h̃
j
1) · · · l(h̃j

q)
}

χtu1 ⊗ · · · ⊗ χtuq

∥∥∥∥2
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or in other words

‖at
δ,qu1 ⊗ · · · ⊗ uk‖ 6 ‖aδ,qχtu1 ⊗ · · · ⊗ χtuq‖.

Recalling the notation of Corollary 4.6,

aδ,qχtu1 ⊗ · · · ⊗ χtuq ⊗ χtuq+1 ⊗ · · · ⊗ χtuq+r

is equal to {
aδ,qχtu1 ⊗ · · · ⊗ χtuq

}
⊗ χtuq+1 ⊗ · · · ⊗ χtuq+r.

When q = 0, this amounts to:

aδ,0χtu1 ⊗ · · · ⊗ χtur = (aδ,0Ω)⊗ χtu1 ⊗ · · · ⊗ χtur.

For convenience, we define

Q(δ)∑
q=max(0,−δ)

aδ,q = aδ.

For 1 6 q′ 6 Q(δ), we can write

aδχtu1 ⊗ · · · ⊗ χtuq′ =
Q(δ)∑

q=max(0,−δ)

aδ,qχtu1 ⊗ · · · ⊗ χtuq′

and the right hand side of the last equation is equal to

q′∑
q=max(0,−δ)

(aδ,qχtu1 ⊗ · · · ⊗ χtuq)⊗ χtuq+1 ⊗ · · · ⊗ χtuq′ ;

also {
aδχtu1 ⊗ · · · ⊗ χtuq′−1

}
⊗ χtuq′

=
q′−1∑

q=max(0,−δ)

(aδ,qχtu1 ⊗ · · · ⊗ χtuq)⊗ χtuq+1 ⊗ · · ·χtuq′−1 ⊗ χtuq′ .

Substracting

aδ,q′χtu1 ⊗ · · · ⊗ χtuq′ = aδχtu1 ⊗ · · · ⊗ χtuq′ −
{
aδχtu1 ⊗ · · · ⊗ χtuq′−1

}
⊗ χtuq′ .

By taking norms and using the triangle inequality:

‖aδ,q′χtu1 ⊗ · · · ⊗ χtuq′‖ 6 ‖aδχtu1 ⊗ · · · ⊗ χtuq′‖+ ‖aδχtu1 ⊗ · · · ⊗ χtuq′−1‖

since ‖χtuq′‖2 6 1 while for q′ = 0 we have ‖aδ,0Ω‖ 6 ‖aδΩ‖. We combine these
inequalities in the following

‖at
δ,q′u1 ⊗ · · · ⊗ uk‖ 6 ‖aδχtu1 ⊗ · · · ⊗ χtuq′‖+ ‖aδχtu1 ⊗ · · · ⊗ χtuq′−1‖;



A conditional expectation for the full Fock space 13

substituting in equation (4.2) we get

‖atu1 ⊗ · · · ⊗ uk‖2

6
∆∑

δ=−∆

{ Q(δ)∑
q=max(1,−δ)

(
‖aδvq‖+ ‖aδvq−1‖

)
+ ‖aδΩ‖

}2

6
∆∑

δ=−∆

(2Q(δ) + 1) ·
{ Q(δ)∑

q=max(1,−δ)

(‖aδvq‖2 + ‖aδvq−1‖2) + ‖aδΩ‖2

}
since there are at most 2Q(δ) + 1 terms in the expression in {·}

‖atu1 ⊗ · · · ⊗ uk‖2

6
∆∑

δ=−∆

(2Q(δ) + 1) ·
{ Q(δ)∑

q=max(0,−(δ+1))

‖aδvq‖2 +
Q(δ)−1∑

q=max(0,−(δ+1))

‖aδvq‖2

}

6 2
∆∑

δ=−∆

(2Q(δ) + 1) ·
Q(δ)∑

q=max(0,−(δ+1))

‖aδvq‖2

6 (4k + 2)
∆∑

δ=−∆

k∑
q=max(0,−(δ+1))

‖aδvq‖2 since Q(δ) 6 k

6 (4k + 2)
∆∑

δ=−∆

k∑
q=0

‖aδvq‖2 = (4k + 2)
k∑

q=0

∆∑
δ=−∆

‖aδvq‖2 = (4k + 2)
k∑

q=0

‖avq‖2

because aδvq are orthogonal for different value of δ, and a =
∆∑

δ=−∆

aδ.

Each a ∈ A can be written as a sum of basic elements in a non unique way.
We shall denote these different representations by π, ρ, σ, . . .. So for a in A with a
representation π:

a =
∑

i

ai ≡ a(π)

and a representation ρ:
a =

∑
j

a′j ≡ a(ρ).

Note that the definition of at depended on a given representation of a and so we
now have:

at
(π) =

∑
i

at
i, at

(ρ) =
∑

j

a′
t
j

for two different representations π, ρ of a. To define Ẽt we need to show that in
fact at

(π) = at
(ρ) for different π and ρ. Given any

a(π) =
n∑

i=1

ai, b(σ) =
m∑

j=1

bj
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define

(4.4) (a− b)(π−σ) =
n∑

i=1

ai −
m∑

j=1

bj

which is a representation of a− b in A. Hence,

(a− b)t
(π−σ) =

n∑
i=1

at
i −

m∑
j=1

bt
j = at

(π) − bt
(σ).

Thus:
at
(π) − at

(ρ) = (a− a)t
(π−ρ)

and

‖(a− a)t
(π−ρ)u1 ⊗ · · · ⊗ uk‖2 6 (4k + 2)

k∑
q=0

‖(a− a)vq‖2 = 0

for all u1⊗· · ·⊗uk ∈ D, hence (a−a)t
(π−ρ) = 0. So at

(π) = at
(ρ). Now we can make

4.7. Definition. We can now define the function Ẽt : A → At by

Ẽt(a) = at
(π)

for any representation π of a.

Before we discuss the properties of Ẽt we prove a theorem used in the exten-
sion to V.

4.8. Theorem. (i) If (a(n))∞n=1 is a sequence in A which is Cauchy τs-on
D0 then so is (Ẽta

(n))∞n=1.
(ii) If (a(n))∞n=1 is a sequence in A with a(n) → 0, τs-on D0 then Ẽta

(n) → 0
likewise.

Proof. (i) Let u1 ⊗ · · · ⊗ uk ∈ D for k ∈ N ∪ {0}. With vq = χtu1 ⊗ χtu2 ⊗
χt ⊗ · · · ⊗ χtuq we have that a(n)vq is Cauchy in F for 0 6 q 6 k. Hence ∀ε > 0,
∃N(ε) such that ∀n, m > N(ε)

‖[a(n) − a(m)]vq‖ < ε, 0 6 q 6 k.

By Theorem 4.3

‖Ẽt(a(n) − a(m))u1 ⊗ · · · ⊗ uk‖2 6 (4k + 2)
k∑

q=0

ε2 = (k + 1)(4k + 2)ε2

hence (Ẽta
(n)u1⊗· · ·⊗uk)∞n=1 is Cauchy in F . So (Ẽta

(n))∞n=1 is τs-on D0 Cauchy.
(ii) Suppose now that a(n) → 0, τs-on D0. Let u1 ⊗ · · · ⊗ uk ∈ D; ∀ε > 0,

∃N(ε) such that ∀n > N(ε):

‖a(n)vq‖ < ε, 0 6 q 6 k.

Again by Theorem 4.3

‖Ẽta
(n)u1 ⊗ · · · ⊗ uk‖2 6 (4k + 2)(k + 1)ε2.

Hence Ẽta
(n)u1 ⊗ · · · ⊗ uk → 0 in F , and so Ẽta

(n) → 0, τs-on D0.

4.9. Remark. The above results can be extended to “τs-on D” by linearity.
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5. PROPERTIES OF Ẽt

5.1. Theorem. (i) Ẽt is a surjective linear map onto At with Ẽt(I) = I;
(ii) Ẽ2

t = Ẽt;
(iii) ∀ a ∈ A,

(
Ẽta

)∗ = Ẽt(a∗);
(iv) Ẽt

[
(Ẽta) · b

]
= Ẽta · Ẽtb = Ẽt

[
a · (Ẽtb)

]
.

Proof. It is enough to consider basic elements and then to extend the result
to A. The proofs are straightforward, the details may be found in [7].

We shall now prove the following fundamental property of Ẽt : Ẽt(aa∗) > 0,
∀ a ∈ A (with positivity in the operator sense).

First we introduce the notation we will use in the proof of this property. In
particular:

(i) |a|2 = a∗a, ∀ a ∈ A, and so |a∗|2 = aa∗.
(ii) R(a) = a+a∗

2 , the real part of the operator a.

(iii) For any a ∈ A we write a =
n∑

i=1

ai where ai denotes the sum of those

basic elements which have the same number, s(i), of annihilation operators and
where 0 6 s(1) < s(2) < · · · < s(n), n ∈ N.

(iv) Further, we write ai =
m(i)∑
j=1

ai,j with

ai,j = l∗(fs(i),j
1 ) · · · l∗(fs(i),j

r(i,j) )pνi,j (g
s(i),j)l(hs(i),j

s(i) ) · · · l(hs(i),j
1 )

where r(i, j) is the number of creation operators for the basic element ai,j , νi,j

( = 0 or 1) is the number of gauge operators of ai,j , and p0(gs(i),j) = I; while
p1(gs(i),j) = p(g

s(i),j). Let us make some contractions of notation. So, much as
before, we will write

L∗(fs(i),j
r(i,j) ) = l∗(fs(i),j

1 ) · · · l∗(fs(i),j
r(i,j) )

pνi,j
= pνi,j

(gs(i),j)

L(hs(i),j
s(i) ) = l(hs(i),j

s(i) ) · · · l(hs(i),j
1 ).

Notice that in the notation for L∗ it is implicit that the index that counts the
f ’s runs from 1 up to r(i, j) while in L the index runs from s(i) down to 1. We
will need to consider different ranges for the counting indicies, so we will indicate
these with the sufficies of the arguments of L∗ and L. So, for example L(hs(i),j

s(1),k)

is the product of the annihilation operators l(hs(i),j
r ) with r running from s(1) to

k as we read left to right. It is worth noting that taking the adjoint of an L or L∗

reverses the order of its counting index.
A preparatory lemma follows.
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5.2. Lemma. For d ∈ A with

d =
N∑

i=1

m(i)∑
j=1

l∗(fs(i),j
1 ) · · · l∗(fs(i),j

r(i,j) )pνi,j (g
s(i),j)l(hs(i),j

s(i) ) · · · l(hs(i),j
1 ),

we have for any 0 6 k 6 s(1),

dd∗ >

∣∣∣∣{ N∑
i=1

m(i)∑
j=1

L∗(fs(i),j
r(i,j) )pνi,j L(hs(i),j

s(i),s(1)+1)L(χth
s(i),j
s(1),k+1L(hs(i),j

k )
}∗∣∣∣∣2.

Note that for k = 0 the term L(hs(i),j
k ) does not appear in the above expression.

Proof.

dd∗ =
N∑

i=1

N∑
i′=1

m(i)∑
j=1

m(i′)∑
j′=1

( s(1)∏
r=1

〈hs(i′),j′

r , hs(i),j
r 〉

)
L∗(fs(i),j)

r(i,j)
)pνi,j

L(hs(i),j
s(i) )

◦ L∗(hs(i′),j′

s(i),s(1)+1)L
∗(hs(i′),j′

s(1)+1,s(i′))p
∗
νi′,j′

L(fs(i′),j′

r(i′,j′)
).

The term on the right hand side is equal to∣∣∣∣{ N∑
i=1

m(i)∑
j=1

L∗(fs(i),j)
r(i,j)

)pνi,j L(hs(i),j
s(i),s(1)+1)L(hs(i),j

k )L(hs(i),j
s(1),k+1)

}∗∣∣∣∣2

>

∣∣∣∣{ N∑
i=1

m(i)∑
j=1

L∗(fs(i),j)
r(i,j)

)pνi,j L(hs(i),j
s(i),s(1)+1)L(hs(i),j

k )L(hs(i),j
s(1),k+1)p(χt)

}∗∣∣∣∣2.
The inequality is achieved simply by using the fact that for a, b ∈ A with ‖b‖ 6 1,
we have ab∗ba∗ 6 aa∗. Now equation (i) of Section 2 tells us that l(hs(i),j

k+1 )p(χt) =

l(χth
s(i),j
k+1 ). Notice also that in the expression for dd∗ and the last term, the annihi-

lation operators l(hs(i),j
1 ) · · · l(hs(i),j

s(1) ) interact with each other to give inner product
terms. As a consequence, the order of these terms can be varied (uniformly in ev-
ery term of the double sum) without changing it. (There is a variant of Lemma 4.5
here.) So, by permuting the annihilation operators in L(hs(i),j

s(1),k+2)l(χth
s(i),j
k+1 ) and

using the simple operator inequality above to insert a p(χt), we can arrive at the
inequality

dd∗ >

∣∣∣∣{ N∑
i=1

m(i)∑
j=1

L∗(fs(i),j)
r(i,j)

)pνi,j
L(hs(i),j

s(i),s(1)+1)L(hs(i),j
k )L(χth

s(i),j
s(1),k+1)

}∗∣∣∣∣2.
By one last permutation of the annihilation operators we get

dd∗ >

∣∣∣∣{ N∑
i=1

m(i)∑
j=1

L∗(fs(i),j)
r(i,j)

)pνi,j
L(hs(i),j

s(i),s(1)+1)L(χth
s(i),j
s(1),k+1)L(hs(i),j

k )
}∗∣∣∣∣2.

5.3. Theorem. For each a ∈ A, Ẽt(aa∗) > 0.
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Proof. Let a =
n∑

i=1

m(i)∑
j=1

ai,j as before with

ai,j = L∗(fs(i),j)
r(i,j) )pνi,j

L(hs(i),j
s(i) ).

Define

bk =
∣∣∣∣{ n∑

i=n−k+1

ai

}∗∣∣∣∣2, 1 6 k 6 n, b0 = 0,

and note that bn = aa∗ = |a∗|2; furthermore, define

(µ)ai =
m(i)∑
j=1

L∗(χtf
s(i),j)
r(i,j) )pνi,j L(χth

s(i),j
s(i),s(n−µ)+1)L(hs(i),j

s(n−µ))

with n− i < µ 6 n− 1, and

(n−i)ai =
m(i)∑
j=1

L∗(χtf
s(i),j)
r(i,j)

)pνi,j
L(hs(i),j

s(i) ).

Finally, write pνi,j (χt) for pνi,j (χtg
s(n),j). We now consider

Ẽtb1 = Ẽt(ana∗n) = Ẽt

{m(n)∑
j=1

m(n)∑
j′=1

an,jan,j′∗
}

= Ẽt

{m(n)∑
j=1

m(n)∑
j′=1

L∗(fs(n),j
r(n,j)

)pνn,j
L(hs(n),j

s(n) )L∗(hs(n),j′

s(n) )p∗νn,j′
L(fs(n),j′

r(n,j′)
)
}

=
m(n)∑
j=1

m(n)∑
j′=1

( s(n)∏
r=1

〈hs(n),j′

r , hs(n),j
r 〉

)
L∗(χtf

s(n),j
r(n,j)

)pνn,j
(χt)p∗νn,j′

(χt)L(χtf
s(n),j′

r(n,j′) )

=
m(n)∑
j=1

m(n)∑
j′=1

L∗(χtf
s(n),j
r(n,j)

)pνn,j
(χt)L(hs(n),j

s(n) )L∗(hs(n),j′

s(n) )pνn,j′ (χt)L(χtf
s(n),j′

r(n,j′)
)

=
∣∣∣∣{m(n)∑

j=1

L∗(χtf
s(n),j
r(n,j)

)pνn,j
(χt)L(hs(n),j

s(n) )
}∗∣∣∣∣2 = (0)an · (0)a∗n.

We shall now show that:

Ẽt(bµ+1) >
∣∣{(µ)an + (µ)an−1 + · · ·+ (µ)an−µ

}∗∣∣2
for 0 6 µ 6 n− 1. Indeed, we showed previously that:

Ẽt(b1) = (0)an · (0)a∗n

We shall show this by proving that

Ẽt(bµ) >
∣∣{(µ−1)an + · · ·+(µ−1) an−µ+1}∗

∣∣2
⇒ Ẽt(bµ+1) >

∣∣{(µ)an + · · ·+(µ) an−µ}∗
∣∣2, for 0 6 µ 6 n− 1.
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To begin with

(5.1)

Ẽt(bµ+1) = Ẽt

∣∣∣∣{ n∑
i=n−µ

ai

}∗∣∣∣∣2

= Ẽt

[{( n∑
i=n−µ+1

ai

)
+ an−µ

}{( n∑
i′=n−µ+1

a∗i′

)
+ a∗n−µ

}]

= Ẽt

{
bµ + 2R

(
an−µ ·

n∑
i′=n−µ+1

a∗i′

)
+ |a∗n−µ|2

}

>
∣∣∣{(µ−1)

an + · · ·+(µ−1) an−µ+1

}∗∣∣∣2
+ 2R

{
Ẽt

(
an−µ ·

n∑
i′=n−µ+1

a∗i′

)}
+ Ẽt|a∗n−µ|2

using the hypothesis and because Ẽt{R(a)} = R(Ẽta). Consider first:

Ẽt|a∗n−µ|2 = Ẽt(an−µ · a∗n−µ)

= Ẽt

{m(n−µ)∑
j=1

m(n−µ)∑
j′=1

L∗(fs(n−µ),j
r(n−µ,j) )pνn−µ,j

L(hs(n−µ),j
s(n−µ) )

· L∗(hs(n−µ),j
s(n−µ) )p∗νn−µ,j′

L(fs(n−µ),j′

r(n−µ,j′) )
}

=
m(n−µ)∑

j=1

m(n−µ)∑
j′=1

( s(n−µ)∏
r=1

〈hs(n−µ),j′

r , hs(n−µ),j
r 〉

)
· L∗(χtf

s(n−µ),j
r(n−µ,j)

)pνn−µ,j (χt)pνn−µ,j′ (χt)∗L(χtf
s(n−µ),j′

r(n−µ,j′) )

=
∣∣∣∣{m(n−µ)∑

j=1

L∗(χtf
s(n−µ),j
r(n−µ,j) )pνn−µ,j

(χt)L(hs(n−µ),j
s(n−µ) )

}∗∣∣∣∣2
= (µ)an−µ ·(µ) a∗n−µ = |(µ)a∗n−µ|2.

Now, the following inequality follows from Lemma 5.2∣∣{(µ−1)an + · · ·+ (µ−1)an−µ+1

}∗∣∣2 >
∣∣{(µ)an + · · ·+ (µ)an−µ+1

}∗∣∣2
using the notation of that lemma, d = (µ−1)an + · · · + (µ−1)an−µ+1, s(n − µ + 1)
is the minimum number of annihilation operators of d, corresponding to s(1) of
Lemma 5.2, and s(n− µ) corresponds to k in Lemma 5.2.

Finally, we consider the term

Ẽt

{
an−µ ·

n∑
i′=n−µ+1

a∗i′
}



A conditional expectation for the full Fock space 19

which is equal to
n∑

i′=n−µ+1

Ẽt

{m(n−µ)∑
j=1

L∗(fs(n−µ),j
r(n−µ,j) )pνn−µ,j L(hs(n−µ),j

s(n−µ) )

·
m(i′)∑
j′=1

L∗(hs(i′),j′

s(i′) )p∗νi′,j′
L(fs(i′),j′

r(i′,j′) )
}

=
n∑

i′=n−µ+1

m(n−µ)∑
j=1

m(i′)∑
j′=1

{( s(n−µ)∏
r=1

〈hs(i′),j′

r , hs(n−µ),j
r 〉

)
L∗(χtf

s(n−µ),j
r(n−µ,j) )pνn−µ,j

(χt)

· L∗(χth
s(i′),j′

s(n−µ)+1,s(i′))pνi′,j′ (χt)∗L(χtf
s(i′),j′

r(i′,j′) )
}

=
{m(n−µ)∑

j=1

L∗(χtf
s(n−µ),j
r(n−µ,j)pνn−µ,j (χt)L(hs(n−µ),j

s(n−µ) )
}

·
{ n∑

i′=n−µ+1

m(i)∑
j′=1

L∗(χtf
s(i′),j
r(i′,j′))pνi′,j′ (χt)L(χth

s(i′),j′

s(i′),s(n−µ))L(hs(i′),j′

s(n−µ))
}∗

= (µ)an−µ ·
n∑

i′=n−µ+1

(µ)a∗i′ .

Hence inequality (5.1) becomes

Ẽt(bµ+1) >
∣∣{(µ)an+· · · (µ)an−µ+1

}∗∣∣2+2R
[
(µ)an−µ ·

n∑
i′=n−µ+1

(µ)a∗i′

]
+

∣∣(µ)a∗n−µ

∣∣2
=

∣∣{(µ)
an + · · ·+ (µ)an−µ

}∗∣∣2
as required. Finally, using this result (n − 1)-times beginning with Ẽt(b1) =
(0)an · (0)a∗n we get

Ẽt(bn) >
∣∣{(n−1)an + · · ·+ (n−1)a1

}∗∣∣2.
Hence

Ẽt(aa∗) = Ẽtbn > 0.

5.4. Corollary. If b ∈ A and b > 0, then Ẽt(b) > 0.

Proof. Let Aτn denote the norm closure of A. For b ∈ A, b > 0, there is an
element a ∈ Aτn with b = aa∗, since Aτn is a C∗-algebra. Since a ∈ Aτn there
is a sequence (an)∞n=1 in A with an → a in τn-topology. Since multiplication and
∗-operation are τn-continuous an · a∗n → b in the τn-topology. Hence, ana∗n → b
pointwise on D0 or b − an · a∗n → 0 pointwise on D0. Now by Theorem 4.8,
Ẽt(b − an · a∗n) → 0 pointwise on D0. By linearity, Ẽt(b − an · a∗n) → 0 pointwise
on D. So ∀u ∈ D:

〈Ẽtbu, u〉 = lim
n→∞

〈Ẽt(an · a∗n)u, u〉 > 0
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by Theorem 5.3.
Finally, for h ∈ F , ∃ a sequence (un)∞n=1 in spanD with un → h; then

〈Ẽtbh, h〉 = lim
n→∞

〈Ẽtbun, un〉

since Ẽtb is a bounded operator and thus 〈Ẽtbh, h〉 > 0. Therefore Ẽtb > 0.

Lemma 5.5. For every a ∈ A
Ẽt(a · a∗) > Ẽta · Ẽta

∗,

and
‖Ẽta‖ 6 ‖a‖.

Proof. By Theorem 5.3, for the element a− Ẽta we have

Ẽt

{
(a− Ẽta) · (a− Ẽta)∗

}
> 0

⇒ Ẽt

{
a · a∗ − Ẽta · a∗ − a · Ẽta

∗ + Ẽta · Ẽta
∗} > 0

⇒ Ẽt(a · a∗)− Ẽta · Ẽta
∗ − ẼtaẼta

∗ + Ẽta · Ẽta
∗ > 0

(by Theorem 5.1 (iii)–(iv))

⇒ Ẽt(a · a∗) > Ẽta · Ẽta
∗

⇒ ‖Ẽt(aa∗)‖ > ‖Ẽta · Ẽta
∗‖

(since for any two positive operators a, b in A with
a > b we have ‖a‖ = sup

‖h‖61

〈ah, h〉 6 sup
‖h‖61

〈bh, h〉 = ‖b‖)

⇒ ‖Ẽt(aa∗) > ‖Ẽta‖2

(since the bounded operators on F form a C∗-algebra).
Now ‖a‖2I > aa∗ and Ẽt is positivity preserving so ‖a‖ > ‖Ẽta‖.
We can now extend the expectation to V.

6. DEFINITION OF Et

6.1. Lemma. (i) If (an)∞n=1 is a sequence in A which is Cauchy in the τs-
topology, then (Ẽtan)∞n=1 is also Cauchy in the τs-topology.

(ii) If (an)∞n=1 is a sequence in A such that an → 0 in the τs-topology, then
Ẽtan → 0 in the τs-topology.

Proof. (i) As (an) is τs Cauchy on F it is certainly Cauchy τs-on D. By
Theorem 4.8, (Ẽtan)∞n=1 is Cauchy τs-on D. By Banach-Steinhaus Theorem

sup
n
‖an‖ < ∞

and by Lemma 5.5
sup

n
‖Ẽtan‖ 6 sup

n
‖an‖ < ∞.

So we have a uniformly bounded sequence of operators pointwise convergent on a
linear set dense in F . It follows that (Ẽtan)∞n=1 is Cauchy in the τs-topology.

(ii) The proof of this is similar to (i).
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6.2. Lemma. If x ∈ V, ∃(an)∞n=1 in A such that an → x in the τs-topology.

Proof. Kaplansky’s density theorem tells us that any operator T in V1 is
the τs-limit of a net of operators from A. Since in our case the τs-topology is
metrisable on bounded subsets of B(F) we can choose a subsequence from this
net converging τs to T .

6.3. Definition. Let x ∈ V, by Lemma 6.2 we can choose an (an)∞n=1 in
A with an → x in the τs-topology. By Theorem 4.8 (i), since (an) is τs Cauchy
then so is

(
Ẽt(an)

)
. Since Vt is complete for the τs-topology it follows that Ẽtan

converges to an element of Vt. Define

Etx = lim Ẽtan ∈ Vt.

Suppose now that (bn) is another sequence from A converging τs to x. Then
an−bn → 0 and (an−bn) is a sequence in A. By Theorem 4.8 (ii), Ẽt(an−bn) → 0
in the τs-topology, or Ẽtbn → Etx. So Et is well defined. Finally, we note that if
x ∈ A, Etx = Ẽtx.

6.4. Lemma. (Properties if Et) (i) Et is a linear map from V onto Vt;
(ii) (Etx)∗ = Etx

∗, ∀x ∈ V;
(iii) E2

t = Et;
(iv) Et[(Etx) · y] = Etx · Ety = Et[x · (Ety)], ∀x, y ∈ V;
(v) Etx > 0, ∀x ∈ V+;
(vi) ‖Etx‖ 6 ‖x‖, ∀x ∈ V.
These properties show that Et is a conditional expectation.

Proof. Items (i), (ii), (iii) are proved in the obvious way.
(iv) Suppose x, y ∈ V with an → x, bn → y in the τs-topology and (an), (bn) ⊆

A. Then, by Banach–Steinhaus Theorem

sup
n
‖an‖∞ < ∞, sup

n
‖bn‖∞ < ∞.

Furthermore, Ẽtan → Eta in the τs-topology, and sup
n
‖Ẽtan‖ < ∞. Now,

Et

[
(Etx) · y

]
= Et

[{
lim

n→∞
(Ẽtan)

}
·
{

lim
n→∞

bn

}]
= Et

[
lim

n→∞

(
Ẽtan · bn

)]
(since multiplication is continuous in the τs-topology)

= lim
n→∞

Ẽt

[
(Ẽtan) · bn

]
(by definition of Et and since (Ẽtan) · bn ∈ A, ∀n ∈ N)

= lim
n→∞

[
(Ẽtan) · (Ẽtbn)

]
(properties of Ẽt)

=
(

lim
n→∞

Ẽtan

)
·
(

lim
n→∞

Ẽtbn

)
(continuity of multiplication in the τs-topology on bounded sets)
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= Etx · Ety.

Furthermore,{
Et

[
x · (Ety)

]}∗ = Et

{[
x · Ety

]∗} (by (ii))

= Et

{
Ety

∗ · x∗
}

(by (ii))

= Ety
∗ · Etx

∗ (by above)

=
[
Etx · Ety

]∗ (by (ii))

Et

[
Et(x) · y

]
= Etx · Ety = Et

[
x · (Ety)

]
, ∀x, y ∈ V.

Item (v) uses the fact that ∀x ∈ V+, ∃y = y∗ ∈ V such that y2 = x.
Approximating y with a sequence (an) of Hermitian elements from A, we see that
(a2

n) approximates x, and each a2
n is a positive operator.

Ẽt(a2
n) → Et(y2) = Etx

in the τs-topology. So Etx is a strong operator limit of positive operators, so it is
positive.

(vi) follows from (v) with x replased by (x− Etx) · (x− Etx)∗.

6.5. Theorem. Et is τs-continuous on bounded sets of V.

Proof. It suffices to show that:

Et :
(
V1, τs-topology

)
→

(
V1, τs-topology

)
is continuous. (‖Etx‖ 6 ‖x‖ so Et(V1) ⊂ V1.)

By Lemma 2.3, (V1, τs-topology) is metrisable, and we shall denote this met-
ric by ρ.

So all we need to show is that if xn → x in ρ in V1 then Etxn → Etx in ρ.
By definition of Etxn, ∃an ∈ A such that:

ρ(xn, an) <
1
n

and ρ(Etxn, Etan) <
1
n

.

Hence
ρ(an, x) 6 ρ(an, xn) + ρ(xn, x) → 0.

So an → x in the ρ-topology.
By the definition of Etx, Etan → Etx in ρ.
Hence:

ρ(Etxn, Etx) 6 ρ(Etxn, Etan) + ρ(Etan, Etx) → 0

as required.
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