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ABSTRACT. A bounded linear operator T on a Hilbert space H is strongly
irreducible if T' does not commute with any non-trivial idempotent. A nest
N is a chain of subspaces of H contain {0} and H, which is closed under
intersection and closed span. The nest algebra alg N associated with A is
the set of all operators which leave each subspace in A invariant. This paper
proves that the norm closure of the unitary orbit of the strongly irreducible
operators in a nest algebra is the set of operators whose spectrum is connected
if and only if A or N+ are not well-ordered.
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1. INTRODUCTION

Let H be a complex, separable, infinite dimensional Hilbert space. £(H) denotes
the algebra of all bounded linear operators acting on H. An operator T on H is
called strongly irreducible, or briefly, T € (SI), if T does not commute with any
nontrivial idempotent. A nestis a chain N of subspaces of H containing {0} and H,
which is closed under intersection and closed span. It is well known that for a nest
N there is a spectral measure E(t) on [0,1], such that N = {E([0,t])H;t € [0, 1]}
and the compact subset suppE of [0,1] is order-isomorphic to and topologically
homeomorphic to &Y when A is given the order topology and suppE has the order
and the related topology induced on it by the usual topology of the real line. In
what follows we will denote M|, 4y = E([c, d])H when [c,d] C [0, 1] and M; = Mg 4.
Foreach M e Nylet M_ =|{M' e N: M' € M} It M_ # M, Mo M’ is called
an atom of N and the cardinal number dim M © M_ is called the dimension of
the atom. A nest is called continuous if it has no atoms. The nest algebra alg N
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associated with N is the family of operators defined by algN = {T € L(H) :
TM C M for all M € N'}.
D.A. Herrero proved the following theorem ([7]):

THEOREM H. (i) If N is well ordered with finite dimensional atoms, then
UlalgN)~ = (QT).

(i) If Nt is well ordered with finite dimensional atoms, then U(algN')~ =
(QT)".

(iii) If neither (i) nor (ii) holds, then

U(algN)™ = L(H) when d= o0, U(algN)™ = L(H)q when d < oo,

where U(alg N')™ is the norm closure of the unitary orbit U(alg N') of alg N, (QT)
is the set of quasitriangular operators on H, (QT)* :={T € L(H) : T* € (QT)},

d= > dim A, A denotes the set of atoms of N,
A€A

L(H)q = {T eL): Y dimHO\T) < d},
A€oo(T)\oe(THN

ao(T) is the set of normal eigenvalues of T, go(T)" is the polynormally convex

hull of the essential spectrum oo(T') of T and H(X, T') is the Riesz spectral subspace
of T associated with \.

In [12], the authors of this paper proved that each nest algebra contains
strongly irreducible operators, i.e., alg /NN (SI) # @. Furthermore, the authors
proved that U (alg N N (SI))~ = (QT)¢ if N is a well ordered nest, where

(QT)¢ :={T € (QT) : o(T) and the Weyl spectrum, ow(T") of T are connected}

(see [13]) and U(alg N N (SI))~ = {T € L(H) : o(T) is connected} if N is a
continuous nest [14]. The following is the main result of this paper.

THEOREM 1.1. Let N be a mazimal nest. Then U(algN N (SI))” = {T €
L(H) : o(T) is connected} if and only if N and N+ are not well-ordered.

2. PREPARATION

LEmMA 2.1. ([11], Lemma 2) Let A, B € L(H). Assume that
H=\{ker(A\—B)": XeT,k>1}

for a certain subset T' of the point spectrum o, (B) of B, and o,(A) NT = 0; then
TAB 1S injective.

LEMMA 2.2. Let o be the closure of a connected Cauchy domain and € is
an open disc in o. Then there exists an operator A € L(H) N (SI) such that:
(i) 0(A) = owe(A) =0
i) op(A) =Q, nul (A - \) =1(\ € Q), and op,(A*) = 0;
(iii) If { e }32, C Q, pairwise distinct and klim A = Ao € Q, then \/{ker(A—
k

Ap) k=1 =H;
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(iv) [[(A—=XN)7Y < 2/dist (A, o) for A ¢ o.

Proof. Without loss of generality we may assume that {2 is the unit disc.
Let S be the backward lateral shift, i.e., S* = T € L(H;), where H; is the
Hardy space H2. Let M be a diagonal operator on H; with o(M) = o1,0(M) = 0.
Set T'= S* ® M. By a result of J. Agler, E. Franks and D.A. Herrero ([1]), for
each € > 0, there is a compact operator K, ||K|| < g, such that A =T + K is
quasisimilar to T € B1(2). By a result of C.L. Jiang ([15]), A € (SI). Choose ¢
small enough, then A satisfies (i)—(iv). 1

THEOREM 2.3. ([9], Theorem 3.53) Let A, B € L(H), then the following are
equivalent for Tap:
(i) Tap is surjective;
(ii) ov(A) Noy(B) = 0;
(iii) ranTap contains the set of finite rank operators;
(iv) Tag|J is surjective for every norm ideal J;
where Tap € L(L(H)) is given by Tap(X) = AX — XB for X € L(H).

LEMMA 2.4. Let o be the closure of a connected Cauchy domain and € be
a connected open subset of o. Then there exists an operator W € L(H) N (SI)
satisfying:
(i) (W) = ope(W) = 0;
(il) op(W) C Q, op,(W*) = 0;
(iii) There exists { A}, C Q such that kliﬁrgo Ak =X € Q, nul(W—-X;) =00

(k=21) and \/{ker(W — X)) : k> 1} = H.
Proof. Choose a sequence {D,,}2° of open discs in {2 satisfying D,,\ D, # 0
(n#m,n#0)and Dy C () D,.
n=1

Without loss of generleity we may assume that Dy is the unit disc and
Dy =ay +rDy. Let S* =T € L(Hy), where Hy = H?. Set A; = oy +rS*. Let

H = @ H,, where H,, = Hy (n > 2). For each n > 2, by Lemma 2.2, we can

n=1
construct A, € L(H,) N (SI) satisfying:

(a) 0(An) = one(An) = 0, 0p(An) = Dy, 0p(A%) = 0 and nul (4, —A) =1
for A € Dy;

(b) If {ux}32, C D,, pairwise distinct and klingo pr = po € D, then

Viker(A, — p) ok > 1} = Hy;

(@ (4~ )11 < qrebigy for A ¢ o.

It follows from D,, \ D,, # 0, (b) and Lemma 2.1 that ker74,4, = {0}
(n # m). Since o,(A41) N o1(A,) # 0, by Theorem 2.3, we can find a compact
operator W,, € L(Hn, H1), ||Wal|| < 27™, such that W, ¢ ran7a,a, (n > 2).
Define
A Wy Wi ...
Aoy 0
W = A € L(H).
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Let P € A'(W) be an idempotent and consider the representation

Py Py P
Py Py Pos

Since PW = WP, then A3P>; = P> A;. Moreover, ker 74,4, = {0} implies
that Py = 0. Similarly, P =0 (l > k‘) Thus PyA; = APy and fjﬁ = Py
(1=1,2,...). Since 4, € (SI), Py =0o0r 1 (I =1,2,...). Assume that P;; =0
(otherwise, consider 1 — P). If Poy = 1, Wa € ranty, 4,, a contradiction. Thus
Py = 0 and therefore P = 0. By the same argument, P; = 0 (I = 3,4,...)
and P =0, i.e., W € (SI)(H). Let {A\x}72, C Dy be an arbitrary sequence such

oo
that klim Ak = Ao € Dy, pairwise distinct, then \/{ker( P A, - )\k) k>
— 00 n=2

P=

1} = P H, and \{ker(4; — A\y) : k > 1} = Hy. Note that {A\;}72, C pr(41),
=2

n
thus \{ket(W — X,) : n > 1} = H and nul(W — \,;) = 00 (n = 0,1,2,...).
Since o,(Ag) C Dy and o,(Af) = 0 (k = 1,2,...), computation indicates that

op(W) C Q and op,(W*) = . Observe that W = é A, + K, where K is a
compact operator and ||(A4, — \)7!|| < m for ;\L:é o and n > 1, we have
O'( é An> = alre( é An) = 0. Since o(W) is connected and op,(W*) = 0,
U(V?/:)l: onwe(W) = 07.1:1I

ExXAMPLE 2.5. ([10]) Define y1 = 1, 72 = i, 13 = (M72)% s = (Y1
Yn—1)", ..., and let {a;,} be the sequence

Y15 7Y25 - -5 Y95 V15 V25 - - -5 7Y905 V15 V25 - -+ 5 Y9005 V15 V25 - - - 5 Y90005 V15 - - - -

Let V' be the unilateral weighted shift defined by Ve, = anent1 (n > 1) with
respect to an ONB{e,, }22; of the Hilbert space H. Then V is a quasinilpotent
unicellular operator and V* is not compact for all k = 1,2, .. ..

THEOREM 2.6. ([8]) Let R € L(H) satisfy:
(i) o(R) and ow(R) are connected and contain a connected open set §);
(i) ind (A—R) = 0 for all X € ps-p(R) (i.e., R is a quasitriangular operator);
(iii) ps-r(R) D and ind (A — R) =n for all A € 2.
Then for e > 0, there exists a compact operator K., ||K:|| < €, such that R— K, €
B, () (see the next definition).

DEFINITION 2.7. Let € be a bounded connected open set in C, n is a positive
integer or co. The set B,,(§2) of Cowen-Douglas operators of index n is the set of
operators B in L(H) satisfying:

(i) o(B) D

(ii) ran (A — B) = H for all A € Q;
(iii) nul (A — B) =n for all A €
(iv) V{ker(A = B) : A € Q} =H.

Note that (iv) can be replaced by (iv)’ or (iv)” ([3]):
(iv)" V{ker(Ag — B)* : k > 1} = H for each \g € Q.
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(iv)” \{ker(A, — B) : n > 1} = H for all sequences {\,}>2, C 2 such that
lim /\n = /\Q.

Consider By, By € B1(©2), (0 € ). By Lemma 2.2 of [17], By and By admit
the following matrix representations

1 1
0 b%g . €9 0 b%3 9 f2
By = 0 b3y ¢ By = 0 b3 I3
0 . . 6'4 O c. . f4
0 ] 0 '

where {e,}52, and {f,}32, are ONB’s of H, and |b},,, 1| >7 >0 (i=1,2; n=
1,2,...) for some 7.
}%

Define r(By, Bz) = lim [ 11
k=1
PROPOSITION 2.8. (i) If r(By, B2) > 1, then ker 7g,5, = {0}.
(ii) If r(B1,B2) = 1, then given € > 0 (¢ < r), there exists a compact
operator K satisfying:
(a) [[K]| <e;
(b) ker 75, B,k = ker7p,1 kB, = {0};
(C) B+ K € Bl(Q) and T’(Bl,BQ + K) =1.

Proof. (ii) Denote d; =1 —¢/2* (i =1,2,...). Since

1
bkk+1
2

kk+1

1

noopl 1
lim [ kk“} =d; > 1,
nmee 1_[1 bk

there exists ny such that
ni bl
kk+1

> 2.
bik+1d1

k=1
Set B, =1—d; (1 <k <ny). Since

T ﬁ bkt ﬁ bsada\ 1"
I K )( ‘ )] —dy <1,
n=o0 [\ Oka (1= Be) k=n1+1 L

we can find ny > ny such that

n2

bkk-i—l bppsrde 1
Hb2 B I =<3

re1 ( JA——— k41

Set B, =1—1/dy (n1 +1 < k < ng). Inductively, we can define

1 —da—1, Noj—o + 1< k< ngy—q,
Br = 1

o Noi—1 + 1 < k < ngg,

such that

n2p—1 n2g

Di-t1
k=1 b%kJrl(l — Bk)

1
bkk+1

B A <27 I=12...,
k=1 bikJrl(l = Bk)

(2.1) > 2,
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and klim Br = 0 and sup |G| < §.

Define K'ey, = —b%,,10ker—1 (k = 2,3,...) and K'e; = 0. Then K’ is
compact and ||K'|| < /2. It is easily seen that By + K’ € B1(Q). If B{X =
X (B + K') for some X € L(H), we can prove that

T11 212
X = T22

with respect to {e,} and

n—1
_ bikJrl(l - ﬂk)
xnn - 17
k=1 bkk-‘,—l
By (2.1), xpp =0 (n=1,2,...). Similarly, a computation indicates that
T Dirga (1 — Br)

1
k=1 bkk+1

b}szrl
Tnn =
06

12, k‘:2,3,....

By (2.1), Znnt1 =0 (n =1,2,...). Generally, we can prove that z;; =0 (i < j)
and therefore, ker 7/ p; y i+ = {0}. By the same argument, ker 75, o/p; = {0}.
From the definition of {8y}, it is easy to see that r(Bf, B4+ K') = 1. Since By ~ Bj
and By ~ Bj, we can find a compact operator K satisfies all requirements of (ii).

(i) If (B, B2) > 1, then there is a subsequence {n;}2; of natural numbers
such that n; < ng < --- and

Nk 71
b§k+1>k, k=1,2,....
=1 kk+1

By the same argument of (ii), ker 75,5, = {0}. 1

Let Q be a non-empty bounded open subset of C with (2)° = Q. Let N(Q)
be the “multiplication by \” operator acting on L?(2,dm). The subspace A2(Q)
spanned by the rational functions with poles outside {2 is invariant under N ().
By N, () and N_(f2) we shall denote the restriction of N(Q) to A%(Q) and its
compression to L?(Q,dm) © A%(), respectively, i.e.,

N_(O G A%(Q
N(Q) = +0() N_(Q) LQ((Q?dA)eAQ(Q)’

where N, (Q) is called Bergmann operator.

LEMMA 2.9. Consider a connected compact subset o of C and pairwise dis-
joint connected open subsets Qi (0 < k<1, 0 <1< 00) of o and given a sequence
{niYe_, of numbers such that {ni}._, € NU{oo}, ng = oo and 1 < nj < o0
(k > 1). Then there exists an operator A in Boo (o) N (SI) satisfying:

l
(i) 0(A) = 0, ope(A) =0\ k!o Qg ;
(i) ind (A — ) = nul (A — \) = ny, for all A€ Qy, (k=0,1,...,1).
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Proof. Denote @, = (,)°, let N1 (®}) be the Bergmann operator on A%(®})
and denote Ag = Ny (®5)* and A = N1 (95)*) (k=1,2,...,1). Thus o(4g) =
Qo, Ap € Bl(q)o) N (SI), O’(Ak) =Qr and Ay € Bnk (@k) (k =1,2,.. ,l)

l
Let {\r}72, be a dense subset of o\ |J Qi. Set T, = Ay + V*, where V is

k=0
given in Example 2.5, and define

G=A® (éAk) ® (éTk)-
k=1 k=1
Then G satisfies:

(a) 0(G) = ow(G) =0, 011e(G) = 0\ kLiJO Q.

(b) ind (G —=A) =nul (G —A) =1 for A € Qp;
(¢)ind(G—=A)=nul(G—A) =ngfor e Qy (k=1,2,...,1).

By Theorem 2.6, for each € > 0, there exists a compact operator K with
|K|| < e such that G+ K € B1(Qg). It is completely apparent that G+ K satisfies
(a), (b) and (c).

Without loss of generality, we may assume that 0 € .

Note that By (®g) C Bi(Qp). By Proposition 2.8 and Theorem 2.3, there
exists a compact operator K7 with || K| < e such that if r(G + K, Ag) > 1,

G+K Dy Do
B;
G+ K)o Ay + K, = B, :

0

where B; € B1(0), D; ¢ ran71gyk,B;, ker 7p, g4k = {0} (1 > 1) and ker 7,5, =
{0} (i #j). Ur(G+ K,Ay) <1,

B4 D4
. B, D,
G+ K)o AP + Ky = . o
0 G+ K

where B; € B1(), D; € ran7p, a4k, ker a4k B, = {0} (1 > 1) and ker 7,5, =

{0} (i # j). By the same argument of Lemma 2.4, A := (G+ K) @ A(()OO) + K, €
Boo(Q0) N (SI). Thus A satisfies the requirements of the lemma. 1

The spectral picture A(T) of the operator T is the compact set o16(7'), plus
the data corresponding to the indices of A — T for A in the bounded components

of Ps-F (T)

LEMMA 2.10. Let T € L(H) with connected spectrum o(T) and let on.e(T) be
the closure of an analytic Cauchy domain. Then there exists an operator A € (SI)
satisfying:

(i) A(A) = A(T);
o {0, ind(T—\) #0,
(ii) minind (A = \) = { 1 A€ plp(T)Nol(T);
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Al * ’Cl
{Ap 1 k=0,£1,£2,...} of complex numbers such that nul (A1 — A\) = oo (k > 0),
nul (Ay —Ap)* = o0 (k < 0), V{ker(A; —Xg) : k = 0} = K1 and \/{ker(A2 —Xg)* :
k <0} = Ko, where K1, K2 are infinite dimensional Hilbert spaces;

(iv) There is an open disc G C one(A) such that G Nop(41) = G* N
op(A3) = 0.

Proof. Choose an open disc G such that G; C 01.(T)°. Denote 0 =
o(T) \ G1, then o is connected and o N oy,.(T) is still the closure of an analytic
Cauchy domain. Let {ak}gzo and {U,k}fle be the components of o\ p_r(T") and,
respectively, o \ pf (7). For each k (—lz < k < 1) choose an open disc €, such
that Qi C [oxNo1e(T)]° (if for more than one k, (0xNowe(T))N(0—jNowe(T)) # 0,
let Q_; equal one of the €’s.) By Lemma 2.9 there is a By, (—l2 < k < {1) such
that:

(1) if & > 0, By € Boo(Q) N (SD(Hr), o
[O’]re(T) \ Qk}, md( k — ) = nul (Bk — ) = ind
ind (B —A) =nul (By, — A) =1 for A € o, N pSp(T);

(i) if & < 0, B} € Boo(2f) N (SI)(Hk), 0(Bk) = 0k, owe(Br) = 0% N
[owe(T) \ ], ind (Br — A) = —nul (B, — A)* =ind (T' — ) for A € o4, N p_(T
ind (B —A) = —nul (B, — 1)* = —1 for A € oy, N p2p(T).

Choose open discs G and G such that GUG, C G; and G NGy = 0. By
Lemma 2.4, we can construct an operator W € (SI)(K) satisfying:

(i) (W) = one(W) = G1;

(il) op (W) C G2, op (W) = 0;

(ili) There exists a sequence {u}pe, C Go of distinct numbers such that
kli_)rg@ pr = po, nul (W — pg) =00 (k> 1) and \/{ker(W — pg) : k > 1} = K.

For each k (0 < k < 1), choose Ry, € L(Hy,K) b
R { =0, if o(Bg)No(W) =0,

¢ ran Ty g, and Ry is compact, otherwise (Theorem 2.3).

(iii) A admits a representation A = and there is a subset

(Bk) = 0k, Owe(Br) =
(T —X) for A € o, N :

Set R = (Ro,Rl, . 7Rl1).
For each pair (¢,7) (0 <i<11;1 < j <ly) choose Qi € L(H_j,H;) b

Q“{ZO? ifO'iﬂU,j:QL

¢ ran7p,p_,,Qi; is compact, if o;No_; # 0.

Set
Qo1 Qo2 ... Qo I L
Q=| : S EE(@H_k,@Hk>_
Qlll QIIQ e Ql1l2 k=1 k=0
Define
w l R 0
A= 0 @ Bk Q _ A1 * ]Cl
0 Ky
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I Iy w R
where ICl = IC@ <I§_BOHk)7 ICQ = s’élf'{_l€7 Al = 0 éé Bk and A2 =
= = k=0
l
EZB B_j. It follows from the properties of W, By (—la < k < l1) and Lemma 2.1
k=1
that ker7p, B, = ker7p_,p_,, =0 (k # k'), ker 7., I =kerrt,, =
[5>) B_ k D Bk (&) B_kW
k=1 k=0 k=1
ker 7, = {0}. Since W and each By (—ly < k < l1) are strongly irreducible,

b BW
k=0
by Lemma 3.1 of [16] A € (SI). From the construction of A, we can get (i ( ) and (ii).
I _
Note that U(@Bk) NG C U(@Bk> NGy ConNGy =0 and 0(@B_k) N
k=0 k=1

(EBB )OGHCUﬂGl:@ Since o,(W) C G2 and op,(W*) = 0,

op (A1 )ﬂ G = op(A5)NG* = 0. Since U NGy =0 (—ly < k < ly), there are
{/\k}k_1 C op(A1) and {\* . }%°, C op(AS) satisfying (iii). o

LEMMA 2.11. Let o be the closure of a connected Cauchy domain and let

{o1}72 and {2}, be two classes of subsets of o° satisfying:
(i) each o is a connected Cauchy domain;

(ii) ok C og+1 and ok11 \ Tk is a connected Cauchy domain (k=0,1,...);

yo=|Ual
k=0

(iv) each Qy is an open disc and Qi C op41 \ Tk (K =1,2,...).

Then there exists an operator T € (SI)(H) satisfying:

(a) o(T) = one(T) =0, 0p(T) C U Qs and op(T*) = 0;
k=1
(b) there is a subset {p,}o2, of op(T) such that nul (T — p,) = oo (n =

1,2,...) and \[{ker(T — pp) :m =21} =H
(c) if A€ L(H) such that c(A) Na® =0, then ker Tar = ker 74 = {0}.

(iii

Proof. According to Lemma 2.4 we can construct an operator Ty, € (ST)(Hy,)
such that o(Ty) = owe(Tk) = ok, 0p(Tk) C U, 0p(T}) = 0 and there is a sequence
{AEYoe o C Q satisfying lim AE = Ao, nul (T — A\f) = 00 (n = 1,2,...) and

n—oo

Viker(Tp = A}) :n > 1}y =Hy (k=1,2,...). Since 0,(Th) No1(Ty) = o1 Nog # 0
(k > 2), there is a compact operator Dy, & ranTr,1,, | Dkl < 27% (k > 2).
Set
v Dy Ds
T
T= Ty € L(H),

0

where H = @ Hy. Since {2}, are pairwise disjoint, ker 77,7, = {0} (i # j).
k=
By the same argument of Lemma 2.4, T' € (SI). It follows from the construction

of T that T satisfies (i) and (ii). By Lemma 2.1, ker a7 = {0}. If there is an
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Xy
operator X € L(H) such that TX = XA, let X = Xy ; then we have Th X, =

XA, ..., T X, = X, A, (n > 2). Since 0(A) No°® =0 and o(T},) = o, C 0°,
a(A)No(T,) =0. Thus X,, =0 (n > 2) and T1 X7 = X3 A. For the same reason
X1 =0and X =0, i.e,, kertpa = {0}. 1

LEMMA 2.12. Letn € N orn = oo, let o be a connected compact subset of
C and Q be a connected open subset of 0° such that 0°\ Q # 0. Then there exists
an operator A € (SI)(H) satisfying:
() 0(4) = 0, 0ol A) = 0\ ©, (A7) = 0;
(ii) ind (A — X) =n for A € Q;
(iii) there exists a subset {\}72, of o such that nul (A — ;) = oo (k > 1)
and \/{ker(A —X¢): k> 1} =H.

Proof. Let H ="H; & Hs, dim’H; = dim Hs = co. Choose open discs G1, G2
such that Go C G; C G; C 0°\ Q. According to Lemma 2.9, we can construct an
operator Ay € By, (G1)N(SI)(H;) satisfying o(A1) = 7, ope(41) = o\ (G1UQ) and
ind (A1 — ) =n for A € Q. By Lemma 2.4, we can find an operator Ay € (SI)(H2)
satisfying o(Az) = one(A2) = Gi, 0p(A2) C Gz, 0p(A5) = 0 and there exists a
sequence {u; 152, C Gy such that nul (A — p;) = 0o (¢ > 1) and \/{ker(As — p;) :
i > 1} = Ho. By Lemma 2.1 ker 74,4, = {0}. By Theorem 2.3, there is a compact
operator K € L(Hz,H;) such that K ¢ ranta, 4,.

Define A = [Al K By the same argument of Lemma 2.4, A €

0 As| Hso'
(SI)(H) and satisfies (i), (ii) and (iii). 1

LEMMA 2.13. Let T € L(H) with connected spectrum o(T') and assume that
owe(T') is the closure of an analytic Cauchy domain, then there exists an operator
W e (S)(H) satisfying:

(i) AW) = AM(T); N
oy w0, ifAepip(W),

(ii) minind (W — X) = { 1L if A€ o(W) N pep(W);
_ W1 * Hl
(iii) W = 0 Wyl Hy
sequence { A, : k = 0,£1,£2,...} of numbers such that \/{ker(Wy — A\p)* : k >
0} = Hy and \/{ker(Wy — \) : k < 0} = Ho;

(iv) there is an open disc G C oue(W) such that G N op,(W2) = G* N
op(W7) = 0.

Proof. Assume that

where dimH, = dimHy = oo, and there is a

{Qu}él:l are the components of p_(T),
{Qy; }22:1 are the components of pJ (T) No(T),
{ng}f’:l are the components of pl (7).

Choose connected Cauchy domains ®,; in o(T) (i = 1,2,3;j = 1,2,---,j;) such
that ®;; D Q;;, ®;;\Q;; are connected Cauchy domains, {®;;} are pairwise disjoint
and o(T') \ |J @i, is the closure of an analytic Cauchy domain.
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Choose an open disc og C [o(T) \ | ®4;]°. Let {o}}t | be the components
of o(T) \ [o§ U (U®i;)]. Choose an open disc G such that G C of. For each k
(0 < k < ly), according to Lemma 2.11, we can construct an operator Ey € (SI)(H)
satisfying:

(i) o(Ex) = one(Ex) = o3

(ii) op(Ep) = 0 and there is a subset {u, : n > 1} of op \ G such that
nul (Ey — ptn)* = 00, \/{ker(Ey — pn)* :n > 1} = H and G* Nop(Ef) = 0;

(iii) For each k > 1, op(E}) = 0 and there is a subset {pg, : n > 1} of oy,
such that nul (E) — pgn) = 00, V{ker(Ey — pign) :n = 1} =H;

(iv) For each k and each operator F, if o(F) N oy = 0, then ker g, p =
keI‘TFEk = {O}

According to Lemma 2.12, we construct the following (SI) operators.

Step 1. Construct A; € (SI)(H) (1 < i < ly) such that o(4;) = @y,
Up(Ai) = @, Ulre(Ai) = 611‘ \ Qli; ind (Az — A) =ind (T — A) for \ € Qli and there
is a countable subset Aj; of o(A4;) such that nul (4; — A\)* = oo (A € Ay;) and
\/{ker(Ai — /\)* A€ Ali} =H.

Step 2. Construct By € (SI)(H) (1 < k < I3) such that o(By) = s,
0p(B}) = 0, owe(Br) = ®3x \ 3k, ind (B, — A) = ind (T — \) for A € Q3 and
there is a countable subset Ay of o(By) such that nul (B — A) = oo (A € Asg)
and \/{ker(Br — \) : A € Az} = H.

Step 3. Construct C; € (SI)(H) (1 < j < l2) such that o(C;) = Py,
Up(Cj) = @, Ulre(Oj) = 62j \ ng, lHd(C] — )\) = —1 for X\ € ng and there
is a countable subset Ay; € 0(C;) such that nul(C; — A\)* = 0o (A € Ag;) and
\/{ker(Cj — )\)* A E A3j} ="H.

Step 4. Construct D;, € (SI)(H) (1 < h < lp) such that o(Dy) = ®ap,
op(D;) = 0, one(Dp) = ®Pap \ Qop, ind (Dy, — A) = 1 for X € Qop, and there is
a countable subset A4y, of o(Dy,) such that nul (D, — X) = oo (A € Ayy) and
\/{ker(Dh — /\) A€ A4h} =H.

By the definitions, it is easily seen that

ker Ty, 4; = ker g, p; = kerre,¢; = ker7p,p, = ker7p,m; = {0}, i #J.
l . z
Set A = @A € LHW), B = @B € LHW), C = &Cj. D =
i=1 o =z
! !
é Dy € L(H!"2)) and E = é By, € L(H®W).
h=1 k=1
Define Q; € L(H) (1 <i < ly) as follows

0, = compact and ¢ rantg,g,, if o(E;)Na(Ey) # 0,
70, otherwise.

Set XO = (Q17 Q27 DR Ql4) € E(H(l4)aH)'
Define X1 = (Qij)1,x1, € L(H") HW) as follows

Q. — compact and ¢ ranta,p,, if o(4A;) No(E;) # 0,
Y0, otherwise.



36 You QING J1, CHUN LAN JIANG AND ZONG YAO WANG

X, € L(HU) H)) and X, = L(H") HI)) are defined similarly. X3 =
(M;j)1, 1, € L(H) H2)) is defined as follows: M;; is compact and M;; + K ¢
rantp, g, for all K € K(H) if o(D;) No(E;) = ®1;No; # 0 (Theorem 2.3) and
Mij =0if O'(D,) ﬂO’(Ej) = @
Define
Ey Xo

Assume that P € A'(W) is an idempotent. It follows from Lemma 2.1 and
the properties of { E} that P admits the following representation

Pl P16 H
P, 0 Pyg | HW)
P Py Psg H(12)
- Pz Py Py | HE)
P;  Psg H3)
0 Py FH (la)

Since Fy € (SI) and since A, B, C, D, E are direct sums of (SI) operators with

l1 lo lo
disjoint spectrum respectively, Py =0 or 1, Py = @ 82, Ps = P 934, Py = D 044,
i=1 i=1 i=1

K3

l l
P = ESB 05, and Pg = E4B d6i, where 0;; = 0 or 1. Without loss of generality,

i=1 i=1
we can assume that P, = 0. By the argument of Lemma 3.1 of [15], we can get
P2:P3:P5:P6:0. Since PW:WP, P43X2+P4X3+P46E:DP46. Note
that X5 is compact, thus P35 X5 is compact. For each j (1 < j < l2), there must
exists an integer k such that o..(D;) N owe(Ex) = ®1; N o, # 0. Suppose that
Pys = (Lin)1,x1,, then

Dijk — ijEk = 54ijk —+ K,
where K is a compact operator. By the choice of My, d45 = 0. Thus P, = 0.
Since P2 = P, P =0 and W € (SI).

Ey, 0 0 D 0 X; T
Set Wy =10 A 0|, Wo=|0 B X4 ,thenVV:[O1 W}Hl’
0 0 C 0 0 FE 2] 2

where Hy = H(hFlt) H, = H{2Hls+l) By the properties of {A4;} and {C;} we
have minind (W; — X) = 0 for A € po-p(T) No(T) and

ind (T - )‘)7 A€ ps_—F(T)v
1, X € pop(T) No(T).

By the properties of Ey, {A;} and {C;}, we can find a sequence {\;}32, of numbers
such that nul (W; — \g)* = oo (k = 0) and \/{ker(W; — A\p)* : k > 0} = H;.

Similarly, by the properties of {E;},{B;} and {D;}, we have minind (W5 —
A) =0 for A € perp(T)No(T),

ind (Wy — \) = {

ind (T = \), A€ pfp(T),

ind (Wy — \) = { 1 A€ pep(T)No(T),
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and there is a sequence { Ay}, °° ; of numbers such that nul (Wa—\) = oo (k < —1)
and \/{ker(Ws — A;) : k < —1} = Ha.
!
It follows from G N [( Lj ak) U (U{(I)ij i=1,2,37=1,2,...,1; )} and
k=1
the properties of Ey that we have G Nop(Ws2) = 0 and G* N o, (W5) = 0. Thus
W satisfies (iii) and (iv) of the lemma. It is easy to see that W satisfies (i) and

(ii). Thus the proof of the lemma is now complete. 1

3. PROOF OF THEOREM 1.1

In [13], we have proved that if N is well-ordered with finite dimensional atoms,
then U (alg NN (SI))~ = (QT)c. Thus we only need to show that if A" is maximal
and A and N+ are not well-ordered, then

UalgN' N (SI))” ={T € L(H) : o(T) is connected}.

Given an operator T' € L(H) with connected ¢(T") and given € > 0, by the theory
of approximation of Hilbert space operators, there is an operator T, € L(H) with
o(T:) connected such that o1,¢(7%) is the closure of an analytic Cauchy domain and
|T — T:|| < . Thus for the maximal nest A/, with N and N+ not well-ordered, it
suffices to show that for each operator T with connected o(7T") and whose o1,¢(T)
is the closure of an analytic Cauchy domain, we always can find an (SI) operator
A in alg N such that ||[UAU* — T|| < €, where U is a unitary operator, i.e., it is

needed to show that
A:={T € L(H) :0(T) is connected and oy,e(T) is the
closure of an analytic Cauchy domain} C U (alg ' N (SI))

If M and N+ are not well-ordered, there are three possibilities.
Case A. There are {t,}52_., C [0,1] such that

O=to<ti<tag< - <tp<--+<t_,<--<tog<t_g=1,

lim ¢, = lim ¢, and dim M, =00 (n=+1,42,...), where

n—1,t
n—o00 n—oo n—1,tn]

M(tn—lvtn] = E((tn*17 tn])H

and FE is the spectral measure associated with N.
Case B. There are tg,t1,t2,t3 € [0,1], such that 0 < tg < t; < t2 < t3 <1

and
No = {M; : 0 <t < to} is atomic,

N1 = {M; & My, : t < t1} has the type w + 1,
No:={M; &M, :t; <t <
N3 :={M; & M,, : ts <t < t3} has the type 1 + w™,
Ny :={M, & My, : t3 <t <

where M; = Mg = E([0,t])H.

to} is atomic,

1} is atomic,
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Case C. There are tg,t1,t2,t3 € [0,1] such that 0 < tp < t; <t2 <t3 <1
and
Ny :={M; : 0 <t <tp} is atomic,

N1 = {M; & My, : tg <t <1} has the type 1 + w*,
No={M; &My, :t; <t<
N3 = {M; © My, : to <t < t3} has the type w+ 1,
Ny={M; &M :t3 <t <

to} is atomic,

1} is atomic.

In Case A, according to Lemma 2.10, there exists an operator A € (SI)
such that A(A) = A(T), minind (A — A) < minind (T — A) for A € pyr(A) and
_ A A K
A= { 0 A | Ky where

/\1 * Hl .. « :
Ao Ho ’ :
A = A Ho » As= A3 H_3,
3 | ‘s A o
0 . . 0 )\71 H71

H, = V{ker(A; — Ag) : 1 < k < n}OHuo1, Hopp = V{ker(As — Xg) : —n
E<—-1}oH_py1 (n=1,2,...), Hy = {0}, dimH,, = o0 (n = £1,£2,...), K4

o0 — 00
H, and Ko = @ Hy, {Mp: k=+£1,£2,...} are given in Lemma 2.10 (iii).
n=1 n=-—1
By Similarity Orbit Theorem ([2]), T € S(A)~, i.e., for each € > 0, there
exists an invertible operator X such that || XAX ! —T| < e. It is easily seen that
XAX ™! admits a same matrix representation with respect to another decompo-
sition of the space,

A

A1 71 My
A2 * Moy
A3 Ms
XAX = ' )
)\,3 ../\/(73
0 Ao M_q
L Aol My

where dim M,, = oo (n = +1,+2,...).

Choose a unitary operator U so that UM, = M, ;.1 (n = £1,%2,...),
then UXAX ~'U* € alg N N (SI), i.e., T € U(alg N N (SI)) .

If B is the case, for simplicity we only prove the conclusion of the theorem
when tg = 0 and t3 = 1. Denote the operator A in Case A by A; which satisfies
(1), (ii), (iii) and (iv) of Lemma 2.10. Let {f, }aeca be the unit vectors of the atoms
of Noy V{fa : @« € A} = My, © My,. Assume that G is the open disc contained
in oy0(A) given in Lemma 2.10 (iv), then choose ¢, € G (o € A) such that {c,}
is pairwise distinct and define A3 = > cofa ® fo. By the construction of A; in
Lemma 2.10, G C oy,e(A1). Thus for each « there is a unit vector g, € Ky such
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that g ¢ ran (A1 — co). Let {dq}aeca be positive numbers satisfying Y d, = 1.

aEN
Set K = Y doga ® fo and
aEAN
A K Al Ky
A=]10 A O My, © My, .
0 0 Ay ] Ko

Then it is easily seen that A(A) = A(T) and minind (A — A) < minind (7" — ) for
A € pe-r(T). By Lemma 2.10 (iii), (iv) we have ker 74,4, = ker 74,4, = {0}.
Assume that P is an idempotent commuting with A and

Py P P3| Ky
P=|Py P Pg| My, oMy,
Py Py Pa3] Ko
Py P Pris P 0 Pi3
then by Lemma 2.1, P=| 0 Py, 0 |. Observethat P =| 0 0 0
0 0 Ps3 0 0 Ps3
A 0 A A A
is an idempotent commuting with | 0 0 0 | and A’ = ! 121 ¢ (S1),
0 0 A 0 4
thus P = 0 or 1. Without loss of generality we can assume that P’ = 0, or
0 P O
P=10 Py 0]. Since PA = AP, PisAs = A{Pis + KP,. It follows from
0O 0 O
Pyy A3 = A3Pso and pairwise distinction of ¢,’s that Py = @5 64, where d, =0

aceA
or 1. Thus for each o € A

(A1P12 — P1aA3) fo = A1Pi2fo — caPr2fo = —0adaga-
Since g, ¢ ran (A; — ¢q), 0o = 0. Therefore P = 0 and A € (SI). By Similarity
Orbit Theorem ([2]), T € S(A)~, i.e., for each £ > 0 there exists an invertible

operator X such that [|[XAX ™! —T| < e. By Lemma 2.10 (iii), A; and A} admit
upper triangular matrix representations

)\0 * 6(1) .
A e% . * .2
Al = )\ 1 R A2 = )\73 63
2 ' 6.2 A o2
0 . : 0 A1 e%
with respect to some ONB{el}>° ; of K1 and, respectively, ONB{e2}>° ; of K.

Set

Vel n=0,1,2,..); V {e}} © N(N € No);
M={ = i1 ,
_\:/1{611} @ (M, © My,) @ \:/ {e2}(n=0,1,2,...)

then M is a maximal atomic nest, and unitarily equivalent to A'. Thus, there
exists a unitary operator U such that UXAX'U* € algN. Therefore T €
U(alg N N (SI))~.
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For Case C, we only prove the conclusion of the theorem when t; = to.
According to Lemma 2.13 we get an operator W € (SI) satisfying (i)—(iv) of
Lemma 2.13. Let W = {Vgl MI/{/I;] g;
Let Nooo = ({ M, : —00 < n < o0}, Noo = V{M;, : —00 < n < oo}. Let
No={M; e N:0<t<to}, Ny ={M; & My, :t5 <t <1} Let {fa}taca, and
{95} sen, be the unit vectors of the atoms of N_ and, respectively, Ny. Define
Bi= ) cafa® faand Bo = > dggs ® gg, where {cq, v € A15dg, B € Ao} C
acNy BEAs
G C ope(W) are pairwise distinct and G is given in Lemma 2.13 (iv). By the
similar way of Case B, construct operators Ey € L(H1 & Ha, V{fa : @ € A1})
and Ey € L(\{gp : 8 € A2}, H1 ® Hz) such that Eff, ¢ ran (W71 — co)*, Eogp ¢
ran (We —dg) (o € Ay, 0 € Ag).

Set
Bl E1 0 \/{fa e Al}
A= 0 W Es| Hi®H- .
0 0 By \/{gg : ﬁ S AQ}

By the same argument of Case B, A € (SI) and T € S(A)~. Thus for each € > 0,
[ XAX~1 —T|| < e for some invertible operator X. Note that by (i), (ii) and (iii)
of Lemma 2.13

with respect to some ONB{e, }72 __ of Hi @ Hs. Thus by the argument of Case
B, there is a unitary operator U such that UXAX~'U* € alg N and therefore
T € U(alg N N (SI))~. The proof of the theorem is now complete. 1

The second and the third author were partially supported by NNSFC.
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