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Abstract. A bounded linear operator T on a Hilbert space H is strongly
irreducible if T does not commute with any non-trivial idempotent. A nest
N is a chain of subspaces of H contain {0} and H, which is closed under
intersection and closed span. The nest algebra algN associated with N is
the set of all operators which leave each subspace in N invariant. This paper
proves that the norm closure of the unitary orbit of the strongly irreducible
operators in a nest algebra is the set of operators whose spectrum is connected
if and only if N or N⊥ are not well-ordered.

Keywords: Strongly irreducible operator, nest, nest algebra, unitary orbit,
spectrum.

MSC (2000): 47A, 47B, 47C.

1. INTRODUCTION

Let H be a complex, separable, infinite dimensional Hilbert space. L(H) denotes
the algebra of all bounded linear operators acting on H. An operator T on H is
called strongly irreducible, or briefly, T ∈ (SI), if T does not commute with any
nontrivial idempotent. A nest is a chainN of subspaces ofH containing {0} andH,
which is closed under intersection and closed span. It is well known that for a nest
N there is a spectral measure E(t) on [0, 1], such that N = {E([0, t])H; t ∈ [0, 1]}
and the compact subset suppE of [0, 1] is order-isomorphic to and topologically
homeomorphic to N when N is given the order topology and suppE has the order
and the related topology induced on it by the usual topology of the real line. In
what follows we will denote M[c,d] = E([c, d])H when [c, d] ⊂ [0, 1] and Mt = M[0,t].
For each M ∈ N , let M− =

⋃
{M ′ ∈ N : M ′ 6⊆ M}. If M− 6= M , M	M ′ is called

an atom of N and the cardinal number dim M 	 M− is called the dimension of
the atom. A nest is called continuous if it has no atoms. The nest algebra algN
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associated with N is the family of operators defined by algN = {T ∈ L(H) :
TM ⊂ M for all M ∈ N}.

D.A. Herrero proved the following theorem ([7]):

Theorem H. (i) If N is well ordered with finite dimensional atoms, then
U(algN )− = (QT).

(ii) If N⊥ is well ordered with finite dimensional atoms, then U(algN )− =
(QT)∗.

(iii) If neither (i) nor (ii) holds, then

U(algN )− = L(H) when d = ∞, U(algN )− = L(H)d when d < ∞,

where U(algN )− is the norm closure of the unitary orbit U(algN ) of algN , (QT)
is the set of quasitriangular operators on H, (QT)∗ := {T ∈ L(H) : T ∗ ∈ (QT)},
d =

∑
A∈Λ

dim A, Λ denotes the set of atoms of N ,

L(H)d =
{

T ∈ L(H) :
∑

λ∈σ0(T )\σe(T )∧

dimH(λ, T ) 6 d

}
,

σ0(T ) is the set of normal eigenvalues of T , σe(T )∧ is the polynormally convex
hull of the essential spectrum σe(T ) of T and H(λ, T ) is the Riesz spectral subspace
of T associated with λ.

In [12], the authors of this paper proved that each nest algebra contains
strongly irreducible operators, i.e., algN ∩ (SI) 6= ∅. Furthermore, the authors
proved that U(algN ∩ (SI))− = (QT)C if N is a well ordered nest, where

(QT)C := {T ∈ (QT) : σ(T ) and the Weyl spectrum, σW(T ) of T are connected}

(see [13]) and U(algN ∩ (SI))− = {T ∈ L(H) : σ(T ) is connected} if N is a
continuous nest [14]. The following is the main result of this paper.

Theorem 1.1. Let N be a maximal nest. Then U(algN ∩ (SI))− = {T ∈
L(H) : σ(T ) is connected} if and only if N and N⊥ are not well-ordered.

2. PREPARATION

Lemma 2.1. ([11], Lemma 2) Let A,B ∈ L(H). Assume that

H =
∨{

ker(λ−B)k : λ ∈ Γ, k > 1
}

for a certain subset Γ of the point spectrum σp(B) of B, and σp(A) ∩ Γ = ∅; then
τAB is injective.

Lemma 2.2. Let σ be the closure of a connected Cauchy domain and Ω is
an open disc in σ. Then there exists an operator A ∈ L(H) ∩ (SI) such that:

(i) σ(A) = σlre(A) = σ;
(ii) σp(A) = Ω, nul (A− λ) = 1(λ ∈ Ω), and σp(A∗) = ∅;
(iii) If {λk}∞k=1 ⊂ Ω, pairwise distinct and lim

k→∞
λk = λ0 ∈ Ω, then

∨
{ker(A−

λk) : k > 1} = H;
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(iv) ‖(A− λ)−1‖ 6 2/dist (λ, σ) for λ /∈ σ.

Proof. Without loss of generality we may assume that Ω is the unit disc.
Let S be the backward lateral shift, i.e., S∗ = T ∗z ∈ L(H1), where H1 is the
Hardy space H2. Let M be a diagonal operator on H1 with σ(M) = σlre(M) = σ.
Set T = S∗ ⊕M . By a result of J. Agler, E. Franks and D.A. Herrero ([1]), for
each ε > 0, there is a compact operator K, ‖K‖ < ε, such that A = T + K is
quasisimilar to T ∗z ∈ B1(Ω). By a result of C.L. Jiang ([15]), A ∈ (SI). Choose ε
small enough, then A satisfies (i)–(iv).

Theorem 2.3. ([9], Theorem 3.53) Let A,B ∈ L(H), then the following are
equivalent for τAB:

(i) τAB is surjective;
(ii) σr(A) ∩ σl(B) = ∅;
(iii) ran τAB contains the set of finite rank operators;
(iv) τAB |J is surjective for every norm ideal J ;

where τAB ∈ L(L(H)) is given by τAB(X) = AX −XB for X ∈ L(H).

Lemma 2.4. Let σ be the closure of a connected Cauchy domain and Ω be
a connected open subset of σ. Then there exists an operator W ∈ L(H) ∩ (SI)
satisfying:

(i) σ(W ) = σlre(W ) = σ;
(ii) σp(W ) ⊂ Ω, σp(W ∗) = ∅;
(iii) There exists {λk}∞k=1 ⊂ Ω such that lim

k→∞
λk = λ0 ∈ Ω, nul (W−λk) = ∞

(k > 1) and
∨
{ker(W − λk) : k > 1} = H.

Proof. Choose a sequence {Dn}∞n=0 of open discs in Ω satisfying Dn\Dm 6= ∅
(n 6= m, n 6= 0) and D0 ⊂

∞⋂
n=1

Dn.

Without loss of generality we may assume that D0 is the unit disc and
D1 = α1 + rD0. Let S∗ = T ∗z ∈ L(H1), where H1 = H2. Set A1 = α1 + rS∗. Let

H =
∞⊕

n=1
Hn, where Hn = H1 (n > 2). For each n > 2, by Lemma 2.2, we can

construct An ∈ L(Hn) ∩ (SI) satisfying:
(a) σ(An) = σlre(An) = σ, σp(An) = Dn, σp(A∗n) = ∅ and nul (An − λ) = 1

for λ ∈ Dn;
(b) If {µk}∞k=1 ⊂ Dn, pairwise distinct and lim

k→∞
µk = µ0 ∈ Dn, then∨

{ker(An − µk) : k > 1} = Hn;
(c) ‖(An − λ)−1‖ 6 2

dist (λ,σ) for λ /∈ σ.

It follows from Dn \ Dm 6= ∅, (b) and Lemma 2.1 that ker τAnAm = {0}
(n 6= m). Since σr(A1) ∩ σl(An) 6= ∅, by Theorem 2.3, we can find a compact
operator Wn ∈ L(Hn,H1), ‖Wn‖ < 2−n, such that Wn /∈ ran τA1An

(n > 2).
Define

W =


A1 W2 W3 . . .

A2 0
A3

0
. . .

 ∈ L(H).
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Let P ∈ A′(W ) be an idempotent and consider the representation

P =

[
P11 P12 P13 . . .
P21 P22 P23 . . .
. . . . . . . . . . . . . . . . . . .

]
.

Since PW = WP , then A2P21 = P21A1. Moreover, ker τA2A1 = {0} implies
that P21 = 0. Similarly, Plk = 0 (l > k). Thus PllAl = AlPll and P 2

ll = Pll

(l = 1, 2, . . .). Since Al ∈ (SI), Pll = 0 or 1 (l = 1, 2, . . .). Assume that P11 = 0
(otherwise, consider 1 − P ). If P22 = 1, W2 ∈ ran τA1A2 , a contradiction. Thus
P22 = 0 and therefore P12 = 0. By the same argument, Pll = 0 (l = 3, 4, . . .)
and P = 0, i.e., W ∈ (SI)(H). Let {λk}∞k=1 ⊂ D0 be an arbitrary sequence such

that lim
k→∞

λk = λ0 ∈ D0, pairwise distinct, then
∨ {

ker
( ∞⊕

n=2
An − λk

)
: k >

1
}

=
∞⊕

n=2
Hn and

∨
{ker(A1 − λk) : k > 1} = H1. Note that {λk}∞k=1 ⊂ ρr(A1),

thus
∨
{ker(W − λn) : n > 1} = H and nul (W − λn) = ∞ (n = 0, 1, 2, . . .).

Since σp(Ak) ⊂ Dk and σp(A∗k) = ∅ (k = 1, 2, . . .), computation indicates that

σp(W ) ⊂ Ω and σp(W ∗) = ∅. Observe that W =
∞⊕

n=1
An + K, where K is a

compact operator and ‖(An − λ)−1‖ < 2
dist (λ,σ) for λ /∈ σ and n > 1, we have

σ
( ∞⊕

n=1
An

)
= σlre

( ∞⊕
n=1

An

)
= σ. Since σ(W ) is connected and σp(W ∗) = ∅,

σ(W ) = σlre(W ) = σ.

Example 2.5. ([10]) Define γ1 = 1, γ2 = 1
4 , γ3 = (γ1γ2)3, . . . , γn = (γ1 · · ·

γn−1)n, . . ., and let {αn} be the sequence

γ1, γ2, . . . , γ9, γ1, γ2, . . . , γ90, γ1, γ2, . . . , γ900, γ1, γ2, . . . , γ9000, γ1, . . . .

Let V be the unilateral weighted shift defined by V en = αnen+1 (n > 1) with
respect to an ONB{en}∞n=1 of the Hilbert space H. Then V is a quasinilpotent
unicellular operator and V k is not compact for all k = 1, 2, . . ..

Theorem 2.6. ([8]) Let R ∈ L(H) satisfy:
(i) σ(R) and σW(R) are connected and contain a connected open set Ω;
(ii) ind (λ−R) > 0 for all λ ∈ ρs-F(R) (i.e., R is a quasitriangular operator);
(iii) ρs-F(R) ⊃ Ω and ind (λ−R) = n for all λ ∈ Ω.

Then for ε > 0, there exists a compact operator Kε, ‖Kε‖ < ε, such that R−Kε ∈
Bn(Ω) (see the next definition).

Definition 2.7. Let Ω be a bounded connected open set in C, n is a positive
integer or ∞. The set Bn(Ω) of Cowen-Douglas operators of index n is the set of
operators B in L(H) satisfying:

(i) σ(B) ⊃ Ω;
(ii) ran (λ−B) = H for all λ ∈ Ω;
(iii) nul (λ−B) = n for all λ ∈ Ω;
(iv)

∨ {
ker(λ−B) : λ ∈ Ω

}
= H.

Note that (iv) can be replaced by (iv)′ or (iv)′′ ([3]):
(iv)′

∨
{ker(λ0 −B)k : k > 1} = H for each λ0 ∈ Ω.
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(iv)′′
∨
{ker(λn − B) : n > 1} = H for all sequences {λn}∞n=0 ⊂ Ω such that

lim
n→∞

λn = λ0.

Consider B1, B2 ∈ B1(Ω), (0 ∈ Ω). By Lemma 2.2 of [17], B1 and B2 admit
the following matrix representations

B1 =


0 b1

12 ∗
0 b1

23

0 b1
34

0
. . .

0
. . .


e1

e2

e3

e4
...

, B2 =


0 b2

12 ∗
0 b2

23

0 b2
34

0
. . .

0
. . .


f1

f2

f3

f4
...

,

where {en}∞n=1 and {fn}∞n=1 are ONB’s of H, and |bi
nn+1| > r > 0 (i = 1, 2; n =

1, 2, . . .) for some r.

Define r(B1, B2) = lim
[ n∏

k=1

∣∣∣ b1kk+1

b2
kk+1

∣∣∣] 1
n

.

Proposition 2.8. (i) If r(B1, B2) > 1, then ker τB2B1 = {0}.
(ii) If r(B1, B2) = 1, then given ε > 0 (ε < r), there exists a compact

operator K satisfying:
(a) ‖K‖ < ε;
(b) ker τB1,B2+K = ker τB2+K,B1 = {0};
(c) B2 + K ∈ B1(Ω) and r(B1, B2 + K) = 1.

Proof. (ii) Denote di = 1− ε/2i (i = 1, 2, . . .). Since

lim
n→∞

[ n∏
k=1

b1
kk+1

b2
kk+1d1

] 1
n

= d1 > 1,

there exists n1 such that
n1∏

k=1

b1
kk+1

b2
kk+1d1

> 2.

Set βk = 1− d1 (1 6 k 6 n1). Since

lim
n→∞

[( n1∏
k=1

b1
kk+1

b2
kk+1(1− βk)

)( n∏
k=n1+1

b1
kk+1d2

b2
kk+1

)] 1
n

= d2 < 1,

we can find n2 > n1 such that
n1∏

k=1

b1
kk+1

b2
kk+1(1− βk)

·
n2∏

k=n1+1

b1
kk+1d2

b2
kk+1

<
1
2
.

Set βk = 1− 1/d2 (n1 + 1 6 k 6 n2). Inductively, we can define

βk =
{

1− d2l−1, n2l−2 + 1 6 k 6 n2l−1,
1− 1

d2l
, n2l−1 + 1 < k 6 n2l,

such that

(2.1)
n2l−1∏
k=1

b1
kk+1

b2
kk+1(1− βk)

> 2l,

n2l∏
k=1

b1
kk+1

b2
kk+1(1− βk)

< 2−l, l = 1, 2, . . . ,
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and lim
k→∞

βk = 0 and sup
k
|βk| < ε

2 .

Define K ′ek = −b2
kk+1βkek−1 (k = 2, 3, . . .) and K ′e1 = 0. Then K ′ is

compact and ‖K ′‖ < ε/2. It is easily seen that B′
2 + K ′ ∈ B1(Ω). If B′

1X =
X(B′

2 + K ′) for some X ∈ L(H), we can prove that

X =

x11 x12 . . .
x22 . . .

0
. . .


with respect to {en} and

xnn =
n−1∏
k=1

b2
kk+1(1− βk)

b1
kk+1

x11, n = 1, 2, . . . .

By (2.1), xnn = 0 (n = 1, 2, . . .). Similarly, a computation indicates that

xnn+1 =
b1
nn+1

b2
12(1− β1)

n∏
k=1

b2
kk+1(1− βk)

b1
kk+1

x12, k = 2, 3, . . . .

By (2.1), xnn+1 = 0 (n = 1, 2, . . .). Generally, we can prove that xij = 0 (i < j)
and therefore, ker τB′

1B′
2+K′ = {0}. By the same argument, ker τB′

2+K′B′
1

= {0}.
From the definition of {βk}, it is easy to see that r(B′

1, B
′
2+K ′) = 1. Since B1 ' B′

1
and B2 ' B′

2, we can find a compact operator K satisfies all requirements of (ii).
(i) If r(B1, B2) > 1, then there is a subsequence {ni}∞i=1 of natural numbers

such that n1 < n2 < · · · and
nk∏

k=1

b1
kk+1

b2
kk+1

> k, k = 1, 2, . . . .

By the same argument of (ii), ker τB2B1 = {0}.

Let Ω be a non-empty bounded open subset of C with (Ω)◦ = Ω. Let N(Ω)
be the “multiplication by λ” operator acting on L2(Ω,dm). The subspace A2(Ω)
spanned by the rational functions with poles outside Ω is invariant under N(Ω).
By N+(Ω) and N−(Ω) we shall denote the restriction of N(Ω) to A2(Ω) and its
compression to L2(Ω,dm)	A2(Ω), respectively, i.e.,

N(Ω) =
[

N+(Ω) G
0 N−(Ω)

]
A2(Ω)
L2(Ω,dA)	A2(Ω)

,

where N+(Ω) is called Bergmann operator.

Lemma 2.9. Consider a connected compact subset σ of C and pairwise dis-
joint connected open subsets Ωk (0 6 k 6 l, 0 6 l 6 ∞) of σ and given a sequence
{nk}l

k=1 of numbers such that {nk}l
k=0 ⊂ N ∪ {∞}, n0 = ∞ and 1 6 nk 6 ∞

(k > 1). Then there exists an operator A in B∞(Ω0) ∩ (SI) satisfying:

(i) σ(A) = σ, σlre(A) = σ \
l⋃

k=0

Ωk;

(ii) ind (A− λ) = nul (A− λ) = nk for all λ ∈ Ωk (k = 0, 1, . . . , l).
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Proof. Denote Φk = (Ωk)◦, let N+(Φ∗k) be the Bergmann operator on A2(Φ∗k)
and denote A0 = N+(Φ∗0)

∗ and Ak = N+(Φ∗k)∗(nk) (k = 1, 2, . . . , l). Thus σ(A0) =
Ω0, A0 ∈ B1(Φ0) ∩ (SI), σ(Ak) = Ωk and Ak ∈ Bnk

(Φk) (k = 1, 2, . . . , l).

Let {λk}∞k=1 be a dense subset of σ \
l⋃

k=0

Ωk. Set Tk = λk + V ∗, where V is

given in Example 2.5, and define

G = A0 ⊕
( l⊕

k=1

Ak

)
⊕

( ∞⊕
k=1

Tk

)
.

Then G satisfies:

(a) σ(G) = σW(G) = σ, σlre(G) = σ \
l⋃

k=0

Ωk;

(b) ind (G− λ) = nul (G− λ) = 1 for λ ∈ Ω0;
(c) ind (G− λ) = nul (G− λ) = nk for λ ∈ Ωk (k = 1, 2, . . . , l).

By Theorem 2.6, for each ε > 0, there exists a compact operator K with
‖K‖ < ε such that G+K ∈ B1(Ω0). It is completely apparent that G+K satisfies
(a), (b) and (c).

Without loss of generality, we may assume that 0 ∈ Ω0.
Note that B1(Φ0) ⊂ B1(Ω0). By Proposition 2.8 and Theorem 2.3, there

exists a compact operator K1 with ‖K1‖ < ε such that if r(G + K, A0) > 1,

(G + K)⊕A
(∞)
0 + K1 =


G + K D1 D2 . . .

B1

B2

0
. . .

 ,

where Bi ∈ B1(Ω0), Di /∈ ran τG+K,Bi
, ker τBi,G+K = {0} (i > 1) and ker τBiBj

=
{0} (i 6= j). If r(G + K, A0) < 1,

(G + K)⊕A
(∞)
0 + K1 =


B1 D1

B1 D2

. . .
...

0 G + K

 ,

where Bi ∈ B1(Ω0), Di ∈ ran τBi,G+K , ker τG+K,Bi = {0} (i > 1) and ker τBiBj =
{0} (i 6= j). By the same argument of Lemma 2.4, A := (G + K)⊕ A

(∞)
0 + K1 ∈

B∞(Ω0) ∩ (SI). Thus A satisfies the requirements of the lemma.

The spectral picture Λ(T ) of the operator T is the compact set σlre(T ), plus
the data corresponding to the indices of λ − T for λ in the bounded components
of ρs-F(T ).

Lemma 2.10. Let T ∈ L(H) with connected spectrum σ(T ) and let σlre(T ) be
the closure of an analytic Cauchy domain. Then there exists an operator A ∈ (SI)
satisfying:

(i) Λ(A) = Λ(T );

(ii) min ind (A− λ) =
{

0, ind (T − λ) 6= 0,
1, λ ∈ ρ◦s-F(T ) ∩ σ(T );
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(iii) A admits a representation A =
[

A1 ∗
0 A2

]
K1

K2
and there is a subset

{λk : k = 0,±1,±2, . . .} of complex numbers such that nul (A1−λk) = ∞ (k > 0),
nul (A2−λk)∗ = ∞ (k < 0),

∨
{ker(A1−λk) : k > 0} = K1 and

∨
{ker(A2−λk)∗ :

k < 0} = K2, where K1,K2 are infinite dimensional Hilbert spaces;
(iv) There is an open disc G ⊂ σlre(A) such that G ∩ σp(A1) = G∗ ∩

σp(A∗2) = ∅.

Proof. Choose an open disc G1 such that G1 ⊂ σlre(T )◦. Denote σ =
σ(T ) \ G1, then σ is connected and σ ∩ σlre(T ) is still the closure of an analytic
Cauchy domain. Let {σk}l1

k=0 and {σ−k}l2
k=1 be the components of σ\ρ−s-F(T ) and,

respectively, σ \ ρ+
s-F(T ). For each k (−l2 6 k 6 l1) choose an open disc Ωk such

that Ωk ⊂ [σk∩σlre(T )]◦ (if for more than one k, (σk∩σlre(T ))∩(σ−j∩σlre(T )) 6= ∅,
let Ω−j equal one of the Ωk’s.) By Lemma 2.9 there is a Bk (−l2 6 k 6 l1) such
that:

(i) if k > 0, Bk ∈ B∞(Ωk) ∩ (SI)(Hk), σ(Bk) = σk, σlre(Bk) = σk ∩
[σlre(T ) \ Ωk], ind (Bk − λ) = nul (Bk − λ) = ind (T − λ) for λ ∈ σk ∩ ρ+

s-F(T ),
ind (Bk − λ) = nul (Bk − λ) = 1 for λ ∈ σk ∩ ρ◦s-F(T );

(ii) if k < 0, B∗
k ∈ B∞(Ω∗k) ∩ (SI)(Hk), σ(Bk) = σk, σlre(Bk) = σk ∩

[σlre(T ) \ Ωk], ind (Bk − λ) = −nul (Bk − λ)∗ = ind (T − λ) for λ ∈ σk ∩ ρ−s-F(T ),
ind (Bk − λ) = −nul (Bk − 1)∗ = −1 for λ ∈ σk ∩ ρ◦s-F(T ).

Choose open discs G and G2 such that G ∪ G2 ⊂ G1 and G ∩ G2 = ∅. By
Lemma 2.4, we can construct an operator W ∈ (SI)(K) satisfying:

(i) σ(W ) = σlre(W ) = G1;
(ii) σp(W ) ⊂ G2, σp(W ∗) = ∅;
(iii) There exists a sequence {µk}∞k=0 ⊂ G2 of distinct numbers such that

lim
k→∞

µk = µ0, nul (W − µk) = ∞ (k > 1) and
∨
{ker(W − µk) : k > 1} = K.

For each k (0 6 k 6 l1), choose Rk ∈ L(Hk,K) by

Rk

{
= 0, if σ(Bk) ∩ σ(W ) = ∅,
/∈ ran τWBk

and Rk is compact, otherwise (Theorem 2.3).

Set R = (R0, R1, . . . , Rl1).
For each pair (i, j) (0 6 i 6 l1; 1 6 j 6 l2) choose Qij ∈ L(H−j ,Hi) by

Qij

{
= 0, if σi ∩ σ−j = ∅,
/∈ ran τBiB−j , Qij is compact, if σi ∩ σ−j 6= ∅.

Set

Q =

 Q01 Q02 . . . Q0l2
...

...
. . .

...
Ql11 Ql12 . . . Ql1l2

 ∈ L
( l2⊕

k=1

H−k,

l1⊕
k=0

Hk

)
.

Define

A =


W R 0

0
l1⊕

k=0

Bk Q

0 0
l2⊕

k=1

B−k

 =
[

A1 ∗
0 A2

]
K1

K2
,
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where K1 = K ⊕
( l1⊕

k=0

Hk

)
, K2 =

l2⊕
k=1

H−k, A1 =

[
W R

0
l1
⊕

k=0
Bk

]
and A2 =

l2⊕
k=1

B−k. It follows from the properties of W , Bk (−l2 6 k 6 l1) and Lemma 2.1

that ker τBkBk′ = ker τB−kB−k′ = 0 (k 6= k′), ker τ l2
⊕

k=1
B−k

l1
⊕

k=0
Bk

= ker τ l2
⊕

k=1
B−kW

=

ker τ l1
⊕

k=0
BkW

= {0}. Since W and each Bk (−l2 6 k 6 l1) are strongly irreducible,

by Lemma 3.1 of [16] A ∈ (SI). From the construction of A, we can get (i) and (ii).

Note that σ
( l1⊕

k=0

Bk

)
∩ G ⊂ σ

( l1⊕
k=0

Bk

)
∩ G1 ⊂ σ ∩ G1 = ∅ and σ

( l2⊕
k=1

B−k

)
∩

G ⊂ σ
( l2⊕

k=1

B−k

)
∩ G1 ⊂ σ ∩ G1 = ∅. Since σp(W ) ⊂ G2 and σp(W ∗) = ∅,

σp(A1) ∩ G = σp(A∗2) ∩ G∗ = ∅. Since Ωk ∩ G1 = ∅ (−l2 6 k 6 l1), there are
{λk}∞k=1 ⊂ σp(A1) and {λ∗−k}∞k=1 ⊂ σp(A∗2) satisfying (iii).

Lemma 2.11. Let σ be the closure of a connected Cauchy domain and let
{σk}∞k=0 and {Ωk}∞k=1 be two classes of subsets of σ◦ satisfying:

(i) each σk is a connected Cauchy domain;
(ii) σk ⊂ σk+1 and σk+1 \ σk is a connected Cauchy domain (k = 0, 1, . . .);

(iii) σ =
[ ∞⋃

k=0

σk

]−
;

(iv) each Ωk is an open disc and Ωk ⊂ σk+1 \ σk (k = 1, 2, . . .).
Then there exists an operator T ∈ (SI)(H) satisfying:

(a) σ(T ) = σlre(T ) = σ, σp(T ) ⊂
∞⋃

k=1

Ωk and σp(T ∗) = ∅;

(b) there is a subset {µn}∞n=1 of σp(T ) such that nul (T − µn) = ∞ (n =
1, 2, . . .) and

∨
{ker(T − µn) : n > 1} = H;

(c) if A ∈ L(H) such that σ(A) ∩ σ◦ = ∅, then ker τAT = ker τTA = {0}.

Proof. According to Lemma 2.4 we can construct an operator Tk ∈ (SI)(Hk)
such that σ(Tk) = σlre(Tk) = σk, σp(Tk) ⊂ Ωk, σp(T ∗k ) = ∅ and there is a sequence
{λk

n}∞n=0 ⊂ Ωk satisfying lim
n→∞

λk
n = λ0, nul (Tk − λk

n) = ∞ (n = 1, 2, . . .) and∨
{ker(Tk − λn

k ) : n > 1} = Hk (k = 1, 2, . . .). Since σr(T1) ∩ σl(Tk) = σ1 ∩ σk 6= ∅
(k > 2), there is a compact operator Dk /∈ ran τT1Tk

, ‖Dk‖ < 2−k (k > 2).
Set

T =


T1 D2 D3 . . .

T2

T3

0
. . .

 ∈ L(H),

where H =
∞⊕

k=1

Hk. Since {Ωk}∞k=1 are pairwise disjoint, ker τTiTj = {0} (i 6= j).

By the same argument of Lemma 2.4, T ∈ (SI). It follows from the construction
of T that T satisfies (i) and (ii). By Lemma 2.1, ker τAT = {0}. If there is an
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operator X ∈ L(H) such that TX = XA, let X =

X1

X2
...

; then we have T2X2 =

X2A, . . . , TnXn = XnA, (n > 2). Since σ(A) ∩ σ◦ = ∅ and σ(Tn) = σn ⊂ σ◦,
σ(A) ∩ σ(Tn) = ∅. Thus Xn = 0 (n > 2) and T1X1 = X1A. For the same reason
X1 = 0 and X = 0, i.e., ker τTA = {0}.

Lemma 2.12. Let n ∈ N or n = ∞, let σ be a connected compact subset of
C and Ω be a connected open subset of σ◦ such that σ◦ \Ω 6= ∅. Then there exists
an operator A ∈ (SI)(H) satisfying:

(i) σ(A) = σ, σlre(A) = σ \ Ω, σp(A∗) = ∅;
(ii) ind (A− λ) = n for λ ∈ Ω;
(iii) there exists a subset {λk}∞k=1 of σ such that nul (A − λk) = ∞ (k > 1)

and
∨
{ker(A− λk) : k > 1} = H.

Proof. Let H = H1⊕H2, dimH1 = dimH2 = ∞. Choose open discs G1, G2

such that G2 ⊂ G1 ⊂ G1 ⊂ σ◦ \Ω. According to Lemma 2.9, we can construct an
operator A1 ∈ B∞(G1)∩(SI)(H1) satisfying σ(A1) = σ, σlre(A1) = σ\(G1∪Ω) and
ind (A1−λ) = n for λ ∈ Ω. By Lemma 2.4, we can find an operator A2 ∈ (SI)(H2)
satisfying σ(A2) = σlre(A2) = G1, σp(A2) ⊂ G2, σp(A∗2) = ∅ and there exists a
sequence {µi}∞i=1 ⊂ G2 such that nul (A2 − µi) = ∞ (i > 1) and

∨
{ker(A2 − µi) :

i > 1} = H2. By Lemma 2.1 ker τA2A1 = {0}. By Theorem 2.3, there is a compact
operator K ∈ L(H2,H1) such that K /∈ ran τA1A2 .

Define A =
[

A1 K
0 A2

]
H1

H2
. By the same argument of Lemma 2.4, A ∈

(SI)(H) and satisfies (i), (ii) and (iii).

Lemma 2.13. Let T ∈ L(H) with connected spectrum σ(T ) and assume that
σlre(T ) is the closure of an analytic Cauchy domain, then there exists an operator
W ∈ (SI)(H) satisfying:

(i) Λ(W ) = Λ(T );

(ii) min ind (W − λ) =
{

0, if λ ∈ ρ±s-F(W ),
1, if λ ∈ σ(W ) ∩ ρ◦s-F(W );

(iii) W =
[

W1 ∗
0 W2

]
H1

H2
, where dimH1 = dimH2 = ∞, and there is a

sequence {λk : k = 0,±1,±2, . . .} of numbers such that
∨
{ker(W1 − λk)∗ : k >

0} = H1 and
∨
{ker(W2 − λk) : k < 0} = H2;

(iv) there is an open disc G ⊂ σlre(W ) such that G ∩ σp(W2) = G∗ ∩
σp(W ∗

1 ) = ∅.
Proof. Assume that

{Ω1i}l1
i=1 are the components of ρ−s-F(T ),

{Ω2j}l2
j=1 are the components of ρ◦s-F(T ) ∩ σ(T ),

{Ω3k}l3
k=1 are the components of ρ+

s-F(T ).

Choose connected Cauchy domains Φij in σ(T ) (i = 1, 2, 3; j = 1, 2, · · · , ji) such
that Φij ⊃ Ωij , Φij\Ωij are connected Cauchy domains, {Φij} are pairwise disjoint
and σ(T ) \

⋃
Φij is the closure of an analytic Cauchy domain.
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Choose an open disc σ0 ⊂ [σ(T ) \
⋃

Φij ]◦. Let {σk}l4
k=1 be the components

of σ(T ) \ [σ◦0 ∪ (
⋃

Φij)]. Choose an open disc G such that G ⊂ σ◦0 . For each k
(0 6 k 6 l4), according to Lemma 2.11, we can construct an operator Ek ∈ (SI)(H)
satisfying:

(i) σ(Ek) = σlre(Ek) = σk;
(ii) σp(E0) = ∅ and there is a subset {µn : n > 1} of σ0 \ G such that

nul (E0 − µn)∗ = ∞,
∨
{ker(E0 − µn)∗ : n > 1} = H and G∗ ∩ σp(E∗

0 ) = ∅;
(iii) For each k > 1, σp(E∗

k) = ∅ and there is a subset {µkn : n > 1} of σk

such that nul (Ek − µkn) = ∞,
∨
{ker(Ek − µkn) : n > 1} = H;

(iv) For each k and each operator F , if σ(F ) ∩ σ◦k = ∅, then ker τEkF =
ker τFEk

= {0}.
According to Lemma 2.12, we construct the following (SI) operators.

Step 1. Construct Ai ∈ (SI)(H) (1 6 i 6 l1) such that σ(Ai) = Φ1i,
σp(Ai) = ∅, σlre(Ai) = Φ1i \ Ω1i, ind (Ai − λ) = ind (T − λ) for λ ∈ Ω1i and there
is a countable subset Λ1i of σ(Ai) such that nul (Ai − λ)∗ = ∞ (λ ∈ Λ1i) and∨
{ker(Ai − λ)∗ : λ ∈ Λ1i} = H.

Step 2. Construct Bk ∈ (SI)(H) (1 6 k 6 l3) such that σ(Bk) = Φ3k,
σp(B∗

k) = ∅, σlre(Bk) = Φ3k \ Ω3k, ind (Bk − λ) = ind (T − λ) for λ ∈ Ω3k and
there is a countable subset Λ3k of σ(Bk) such that nul (Bk − λ) = ∞ (λ ∈ Λ3k)
and

∨
{ker(Bk − λ) : λ ∈ Λ3k} = H.

Step 3. Construct Cj ∈ (SI)(H) (1 6 j 6 l2) such that σ(Cj) = Φ2j ,
σp(Cj) = ∅, σlre(Cj) = Φ2j \ Ω2j , ind (Cj − λ) = −1 for λ ∈ Ω2j and there
is a countable subset Λ2j ∈ σ(Cj) such that nul (Cj − λ)∗ = ∞ (λ ∈ Λ3j) and∨
{ker(Cj − λ)∗ : λ ∈ Λ3j} = H.

Step 4. Construct Dh ∈ (SI)(H) (1 6 h 6 l2) such that σ(Dh) = Φ2h,
σp(D∗

h) = ∅, σlre(Dh) = Φ2h \ Ω2h, ind (Dh − λ) = 1 for λ ∈ Ω2h and there is
a countable subset Λ4h of σ(Dh) such that nul (Dh − λ) = ∞ (λ ∈ Λ4h) and∨
{ker(Dh − λ) : λ ∈ Λ4h} = H.

By the definitions, it is easily seen that

ker τAiAj
= ker τBiBj

= ker τCiCj
= ker τDiDj

= ker τEiEj
= {0}, i 6= j.

Set A =
l1⊕

i=1

Ai ∈ L(H(l1)), B =
l3⊕

k=1

Bk ∈ L(H(l3)), C =
l2⊕

j=1

Cj , D =

l2⊕
h=1

Dh ∈ L(H(l2)) and E =
l4⊕

k=1

Ek ∈ L(H(l4)).

Define Qi ∈ L(H) (1 6 i 6 l4) as follows

Qi =
{

compact and /∈ ran τE0Ei
, if σ(Ei) ∩ σ(E0) 6= ∅,

0, otherwise.

Set X0 = (Q1, Q2, . . . , Ql4) ∈ L(H(l4),H).
Define X1 = (Qij)l1×l4 ∈ L(H(l4),H(l1)) as follows

Qij =
{

compact and /∈ ran τAiEj , if σ(Ai) ∩ σ(Ej) 6= ∅,
0, otherwise.
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X2 ∈ L(H(l4),H(l2)), and X4 = L(H(l4),H(l3)) are defined similarly. X3 =
(Mij)l2×l4 ∈ L(H(l4),H(l2)) is defined as follows: Mij is compact and Mij + K /∈
ran τDiEj

for all K ∈ K(H) if σ(Di) ∩ σ(Ej) = Φ1i ∩ σj 6= ∅ (Theorem 2.3) and
Mij = 0 if σ(Di) ∩ σ(Ej) = ∅.

Define

W =


E0 X0

A 0 X1

C X2

D X3

0 B X4

E


H
H(l1)

H(l2)

H(l2)

H(l3)

H(l4)

.

Assume that P ∈ A′(W ) is an idempotent. It follows from Lemma 2.1 and
the properties of {Ek} that P admits the following representation

P =


P1 P16

P2 0 P26

P3 P36

P43 P4 P46

P5 P56

0 P6


H
H(l1)

H(l2)

H(l2)

H(l3)

H(l4)

.

Since E0 ∈ (SI) and since A,B,C, D, E are direct sums of (SI) operators with

disjoint spectrum respectively, P1 = 0 or 1, P2 =
l1⊕

i=1

δ2i, P3 =
l2⊕

i=1

δ3i, P4 =
l2⊕

i=1

δ4i,

P5 =
l3⊕

i=1

δ5i and P6 =
l4⊕

i=1

δ6i, where δji = 0 or 1. Without loss of generality,

we can assume that P1 = 0. By the argument of Lemma 3.1 of [15], we can get
P2 = P3 = P5 = P6 = 0. Since PW = WP , P43X2 + P4X3 + P46E = DP46. Note
that X2 is compact, thus P43X2 is compact. For each j (1 6 j 6 l2), there must
exists an integer k such that σre(Dj) ∩ σle(Ek) = Φ1j ∩ σk 6= ∅. Suppose that
P46 = (Lih)l2×l4 , then

DjLjk − LjkEk = δ4jMjk + K,

where K is a compact operator. By the choice of Mjk, δ4j = 0. Thus P4 = 0.
Since P 2 = P , P = 0 and W ∈ (SI).

Set W1 =

[
E0 0 0
0 A 0
0 0 C

]
, W2 =

[
D 0 X3

0 B X4

0 0 E

]
, then W =

[
W1 ∗
0 W2

]
H1

H2
,

where H1 = H(l1+l2+1), H2 = H(l2+l3+l4). By the properties of {Ai} and {Ci} we
have min ind (W1 − λ) = 0 for λ ∈ ρs-F(T ) ∩ σ(T ) and

ind (W1 − λ) =
{

ind (T − λ), λ ∈ ρ−s-F(T ),
−1, λ ∈ ρ◦s-F(T ) ∩ σ(T ).

By the properties of E0, {Ai} and {Ci}, we can find a sequence {λk}∞k=0 of numbers
such that nul (W1 − λk)∗ = ∞ (k > 0) and

∨
{ker(W1 − λk)∗ : k > 0} = H1.

Similarly, by the properties of {Ei}, {Bi} and {Di}, we have min ind (W2 −
λ) = 0 for λ ∈ ρs-F(T ) ∩ σ(T ),

ind (W2 − λ) =
{

ind (T − λ), λ ∈ ρ+
s-F(T ),

1, λ ∈ ρ◦s-F(T ) ∩ σ(T ),
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and there is a sequence {λk}−∞k=−1 of numbers such that nul (W2−λk) = ∞ (k 6 −1)
and

∨
{ker(W2 − λk) : k 6 −1} = H2.

It follows from G ∩
[( l4⋃

k=1

σk

)
∪

( ⋃
{Φij : i = 1, 2, 3; j = 1, 2, . . . , li}

)]
and

the properties of E0 that we have G ∩ σp(W2) = ∅ and G∗ ∩ σp(W ∗
1 ) = ∅. Thus

W satisfies (iii) and (iv) of the lemma. It is easy to see that W satisfies (i) and
(ii). Thus the proof of the lemma is now complete.

3. PROOF OF THEOREM 1.1

In [13], we have proved that if N is well-ordered with finite dimensional atoms,
then U(algN ∩ (SI))− = (QT)C. Thus we only need to show that if N is maximal
and N and N⊥ are not well-ordered, then

U(algN ∩ (SI))− = {T ∈ L(H) : σ(T ) is connected}.

Given an operator T ∈ L(H) with connected σ(T ) and given ε > 0, by the theory
of approximation of Hilbert space operators, there is an operator Tε ∈ L(H) with
σ(Tε) connected such that σlre(Tε) is the closure of an analytic Cauchy domain and
‖T − Tε‖ < ε. Thus for the maximal nest N , with N and N⊥ not well-ordered, it
suffices to show that for each operator T with connected σ(T ) and whose σlre(T )
is the closure of an analytic Cauchy domain, we always can find an (SI) operator
A in algN such that ‖UAU∗ − T‖ < ε, where U is a unitary operator, i.e., it is
needed to show that

∆ := {T ∈ L(H) :σ(T ) is connected and σlre(T ) is the

closure of an analytic Cauchy domain} ⊂ U(algN ∩ (SI))−.

If N and N⊥ are not well-ordered, there are three possibilities.
Case A. There are {tn}∞n=−∞ ⊂ [0, 1] such that

0 = t0 < t1 < t2 < · · · < tn < · · · < t−n < · · · < t−2 < t−1 = 1,

lim
n→∞

tn = lim
n→∞

t−n and dim M(tn−1,tn] = ∞ (n = ±1,±2, . . .), where

M(tn−1,tn] = E
(
(tn−1, tn]

)
H

and E is the spectral measure associated with N .
Case B. There are t0, t1, t2, t3 ∈ [0, 1], such that 0 < t0 < t1 < t2 < t3 < 1

and
N0 := {Mt : 0 6 t 6 t0} is atomic,

N1 := {Mt 	Mt0 : t 6 t1} has the type ω + 1,

N2 := {Mt 	Mt1 : t1 6 t 6 t2} is atomic,

N3 := {Mt 	Mt2 : t2 6 t 6 t3} has the type 1 + ω∗,

N4 := {Mt 	Mt3 : t3 6 t 6 1} is atomic,

where Mt = M[0,t] = E([0, t])H.
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Case C. There are t0, t1, t2, t3 ∈ [0, 1] such that 0 < t0 < t1 < t2 < t3 < 1
and

N0 := {Mt : 0 6 t 6 t0} is atomic,

N1 := {Mt 	Mt0 : t0 6 t 6 t1} has the type 1 + ω∗,

N2 := {Mt 	Mt1 : t1 6 t 6 t2} is atomic,

N3 := {Mt 	Mt2 : t2 6 t 6 t3} has the type ω + 1,

N4 := {Mt 	Mt3 : t3 6 t 6 1} is atomic.

In Case A, according to Lemma 2.10, there exists an operator A ∈ (SI)
such that Λ(A) = Λ(T ), min ind (A − λ) 6 min ind (T − λ) for λ ∈ ρs-F(A) and

A =
[

A1 A12

0 A2

]
K1

K2
, where

A1 =


λ1 ∗

λ2

λ3

0
. . .


H1

H2

H3
...

, A2 =


. . . ∗

λ−3

λ−2

0 λ−1


...

H−3

H−2

H−1

,

Hn =
∨
{ker(A1 − λk) : 1 6 k 6 n} 	 Hn−1, H−n =

∨
{ker(A2 − λk) : −n 6

k 6 −1} 	 H−n+1 (n = 1, 2, . . .), H0 = {0}, dimHn = ∞ (n = ±1,±2, . . .), K1 =
∞⊕

n=1
Hn and K2 =

−∞⊕
n=−1

Hn, {λk : k = ±1,±2, . . .} are given in Lemma 2.10 (iii).

By Similarity Orbit Theorem ([2]), T ∈ S(A)−, i.e., for each ε > 0, there
exists an invertible operator X such that ‖XAX−1−T‖ < ε. It is easily seen that
XAX−1 admits a same matrix representation with respect to another decompo-
sition of the space,

XAX−1 =



λ1

λ2 ∗
λ3

. . .
. . .

λ−3

0 λ−2

λ−1



M1

M2

M3
...
...
M−3

M−2

M−1

,

where dimMn = ∞ (n = ±1,±2, . . .).
Choose a unitary operator U so that UMn = M(tn−1,tn] (n = ±1,±2, . . .),

then UXAX−1U∗ ∈ algN ∩ (SI), i.e., T ∈ U(algN ∩ (SI))−.
If B is the case, for simplicity we only prove the conclusion of the theorem

when t0 = 0 and t3 = 1. Denote the operator A in Case A by A1 which satisfies
(i), (ii), (iii) and (iv) of Lemma 2.10. Let {fα}α∈Λ be the unit vectors of the atoms
of N2,

∨
{fα : α ∈ Λ} = Mt2 	 Mt1 . Assume that G is the open disc contained

in σlre(A) given in Lemma 2.10 (iv), then choose cα ∈ G (α ∈ Λ) such that {cα}
is pairwise distinct and define A3 =

∑
cαfα ⊗ fα. By the construction of A1 in

Lemma 2.10, G ⊂ σlre(A1). Thus for each α there is a unit vector gα ∈ K1 such
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that gα /∈ ran (A1 − cα). Let {dα}α∈Λ be positive numbers satisfying
∑

α∈Λ

dα = 1.

Set K =
∑

α∈Λ

dαgα ⊗ fα and

A =

[
A1 K A12

0 A3 0
0 0 A2

] K1

Mt2 	Mt1
K2

.

Then it is easily seen that Λ(A) = Λ(T ) and min ind (A−λ) 6 min ind (T −λ) for
λ ∈ ρs-F(T ). By Lemma 2.10 (iii), (iv) we have ker τA3A1 = ker τA2A3 = {0}.

Assume that P is an idempotent commuting with A and

P =

[
P11 P12 P13

P21 P22 P23

P31 P32 P33

] K1

Mt2 	Mt1
K2

,

then by Lemma 2.1, P =

[
P11 P12 P13

0 P22 0
0 0 P33

]
. Observe that P ′ =

[
P11 0 P13

0 0 0
0 0 P33

]

is an idempotent commuting with

[
A1 0 A12

0 0 0
0 0 A2

]
and A′ =

[
A1 A12

0 A2

]
∈ (SI),

thus P ′ = 0 or 1. Without loss of generality we can assume that P ′ = 0, or

P =

[
0 P12 0
0 P22 0
0 0 0

]
. Since PA = AP , P12A3 = A1P12 + KP2. It follows from

P22A3 = A3P22 and pairwise distinction of cα’s that P22 =
⊕

α∈Λ

δα, where δα = 0

or 1. Thus for each α ∈ Λ

(A1P12 − P12A3)fα = A1P12fα − cαP12fα = −δαdαgα.

Since gα /∈ ran (A1 − cα), δα = 0. Therefore P = 0 and A ∈ (SI). By Similarity
Orbit Theorem ([2]), T ∈ S(A)−, i.e., for each ε > 0 there exists an invertible
operator X such that ‖XAX−1 − T‖ < ε. By Lemma 2.10 (iii), A1 and A∗2 admit
upper triangular matrix representations

A1 =


λ0 ∗

λ1

λ2

0
. . .


e1
0

e1
1

e1
2
...

, A2 =


. . . ∗

λ−3

λ−2

0 λ−1


...
e2
3

e2
2

e2
1

with respect to some ONB{e1
n}∞n=0 of K1 and, respectively, ONB{e2

n}∞n=1 of K2.
Set

M =


n∨

i=1

{e1
i }(n = 0, 1, 2, . . .);

∞∨
i=1

{e1
i } ⊕N(N ∈ N2);

∞∨
i=1

{e1
i } ⊕ (Mt2 	Mt1)⊕

∞∨
j=n

{e2
j}(n = 0, 1, 2, . . .)

 ,

then M is a maximal atomic nest, and unitarily equivalent to N . Thus, there
exists a unitary operator U such that UXAX−1U∗ ∈ algN . Therefore T ∈
U(algN ∩ (SI))−.
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For Case C, we only prove the conclusion of the theorem when t1 = t2.
According to Lemma 2.13 we get an operator W ∈ (SI) satisfying (i)–(iv) of

Lemma 2.13. Let W =
[

W1 W12

0 W2

]
H1

H2
.

Let N−∞ =
⋂
{Mtn

: −∞ < n < ∞}, N∞ =
∨
{Mtn

: −∞ < n < ∞}. Let
N− = {Mt ∈ N : 0 6 t 6 t0}, N+ = {Mt 	Mt3 : t3 6 t 6 1}. Let {fα}α∈Λ1 and
{gβ}β∈Λ2 be the unit vectors of the atoms of N− and, respectively, N+. Define
B1 =

∑
α∈Λ1

cαfα ⊗ fα and B2 =
∑

β∈Λ2

dβgβ ⊗ gβ , where {cα, α ∈ Λ1; dβ , β ∈ Λ2} ⊂

G ⊂ σlre(W ) are pairwise distinct and G is given in Lemma 2.13 (iv). By the
similar way of Case B, construct operators E1 ∈ L(H1 ⊕ H2,

∨
{fα : α ∈ Λ1})

and E2 ∈ L(
∨
{gβ : β ∈ Λ2},H1 ⊕H2) such that E∗

1fα /∈ ran (W1 − cα)∗, E2gβ /∈
ran (W2 − dβ) (α ∈ Λ1, β ∈ Λ2).

Set

A =

[
B1 E1 0
0 W E2

0 0 B2

] ∨
{fα : α ∈ Λ1}

H1 ⊕H2∨
{gβ : β ∈ Λ2}

.

By the same argument of Case B, A ∈ (SI) and T ∈ S(A)−. Thus for each ε > 0,
‖XAX−1 − T‖ < ε for some invertible operator X. Note that by (i), (ii) and (iii)
of Lemma 2.13

W =



. . .
λ−2 ∗

λ−1

λ0

λ1

0 λ2

. . .



...
e−2

e−1

e0

e1

e2
...

with respect to some ONB{en}∞n=−∞ of H1 ⊕H2. Thus by the argument of Case
B, there is a unitary operator U such that UXAX−1U∗ ∈ algN and therefore
T ∈ U(algN ∩ (SI))−. The proof of the theorem is now complete.

The second and the third author were partially supported by NNSFC.
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