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Abstract. We construct the pure states of On that extend a given pure
state of the fixed point algebra Fn of the gauge action, and we show that
the gauge group acts transitively on these extensions. We apply this to
construct and classify the ergodic endomorphisms of B(H) whose tail algebra
has a minimal projection. We discuss examples arising from product states
of Fn and from the trace on the Choi subalgebra of On.
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INTRODUCTION

Let B(H) denote the algebra of bounded linear operators on a separable complex
Hilbert spaceH. An endomorphism of B(H) is a homomorphism of B(H) into itself
which preserves adjoints. The main goal of this paper is to find complete conjugacy
invariants for a certain class of endomorphisms of B(H). Two endomorphisms are
conjugate if there is an intertwining isomorphism of the underlying algebras. Every
isomorphism of B(H) is unitarily implemented, so conjugacy for endomorphisms
of B(H) is spatial equivalence, the strongest reasonable equivalence relation in any
classification scheme.

If an endomorphism α fixes only the scalar operators it is called ergodic, and
if its tail algebra

⋂
k

αk(B(H)) consists only of scalars it is called a shift . The class

of endomorphisms we shall consider includes every ergodic endomorphism whose
tail algebra has a minimal projection; in particular, it includes all shifts.

We shall only consider endomorphisms which preserve the identity operator
I on H. At the other extreme are those endomorphisms α which are completely
nonunital in the sense that αk(I) decreases strongly to zero; we refer the reader to
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Section 2 of [10] for the classification of such endomorphisms. Since any endomor-
phism can be decomposed into unital and completely nonunital components which
determine its conjugacy class, our focus on unital endomorphisms is justified.

As is customary, for 2 6 n 6 ∞ we denote by On the C∗-algebra defined by
Cuntz in [6]. Let { va : 1 6 a 6 n } denote the distinguished generating isometries

in On, so that
n∑
a=1

vav
∗
a 6 1, with equality if n is finite; On is the universal C∗-

algebra generated by such collections of isometries. There is a correspondence
between endomorphisms of B(H) and representations of Cuntz algebras, which
stems from the observation by Arveson ([3]) that every endomorphism α of B(H)
can be implemented by a collection S1, . . . , Sn of isometries on H via α(A) =∑
SaAS

∗
a; if α is unital then such a collection gives rise to a representation of

On via va 7→ Sa. Conversely, any representation π : On → B(H) gives rise to an
endomorphism Adπ of B(H) via

(†) Adπ(A) :=
n∑
a=1

π(va)Aπ(va)∗, A ∈ B(H);

for infinite n the above sum converges in the strong operator topology for every
A. If n < ∞ then Adπ is unital, but for infinite n this need not be the case. A

representation π of O∞ for which Adπ is unital (i.e., for which
∞∑
a=1

π(va)π(va)∗

converges strongly to I) is called essential .
There is an obvious way to construct endomorphisms from states of On: use

the GNS representation for the state to implement an endomorphism via (†). This
correspondence allows us to study endomorphisms by looking at states of On; e.g.
ergodic endomorphisms arise from pure states, and conjugacy of endomorphisms
corresponds to quasi-free equivalence of states ([10]).

A commonly used method of analyzing On is to exploit the gauge action γ
of the circle T on On determined by γλ(va) = λva. We will denote by Fn the
fixed-point algebra of this action. When n is finite, Fn is canonically isomorphic
to the UHF algebra Mn ⊗Mn ⊗Mn ⊗ · · ·, and hence carries a canonical unital
shift, given at the C∗-algebra level by a formula analogous to (†). This shift does
not exist on F∞ because the strong sum does not make sense at this level, but one
can always shift a state ρ of Fn (for finite or infinite n) by defining

α∗ρ(x) :=
n∑
a=1

ρ(vaxv∗a), x ∈ Fn.

A state ρ̃ of O∞ that extends ρ is essential (i.e., its GNS representation is essential)
if and only if each of the shifted positive linear functionals α∗kρ is a state (Remark
2.10 of [10]); in this case we say that ρ is essential . We will only consider essential
states of Fn, with the understanding that the adjective is superfluous when n is
finite.

The state space of Fn is more tractable than that of On, and has often been
used to study representations of Cuntz algebras ([7], [1], [16]) and unital endo-
morphisms of B(H) ([10], [11], [4], [5]). Having a specific procedure for extending
states of Fn to On is extremely useful, especially if it allows one to apply Powers’
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criteria for states of UHF algebras ([14]) to decide when an extension is pure and
when different extensions are unitarily equivalent.

Perhaps the most obvious way to extend a state is by composition with the
canonical conditional expectation Φ : On → Fn obtained by averaging over the
gauge action. This gives the unique gauge-invariant state of On which extends the
given state of Fn. Gauge-invariant extensions of states of Fn have been considered
before: e.g., by Evans ([7]), by Araki, Carey and Evans for product states and n <
∞ ([1]), and later by Laca for factor states and any n ([11]). Extensions of diagonal
states (i.e., states of the diagonal subalgebra D of Fn) have been considered by
Spielberg ([16], [17]), by Archbold, Lazar, Tsui and Wright ([2]), and by Stacey
([19]) in the context of extending the trace on the Choi subalgebra of O2. In
earlier work, Lazar, Tsui and Wright ([12]) dealt with pure state extensions of pure
diagonal states, and identified the unique pure state extension of a nonperiodic
(irrational) point in the spectrum of D ([6]).

A different procedure for extending pure states of Fn was given in Theo-
rem 4.3 of [10], where it played a key rôle in the classification of shifts of B(H)
up to conjugacy. Roughly, the technique used there consisted of lifting the GNS
representation of a state from Fn to On without changing the Hilbert space; see
also Section 5 of [4]. These two techniques for extending a pure state ρ of Fn are
in a sense opposite: the first one always works, but only gives an extension which
is pure if ρ is aperiodic in the sense that its translates by powers of the canonical
shift α∗ are mutually disjoint; the second only works if ρ is quasi-invariant in the
sense that it is quasi-equivalent to α∗ρ, but then gives extensions which are pure.

Here we show how to extend any pure state ρ of Fn which is periodic in the
sense that ρ is quasi-equivalent to α∗pρ for some positive integer p. Our procedure
interpolates between the two techniques described above, and explains them as
extreme cases of the same construction.

The paper is organized as follows. We begin with a preliminary section on
periodicity of states of Fn. In Section 2 we construct and analyze a class of repre-
sentations of On. Roughly speaking, this class is indexed by pairs (ρ, θ) consisting
of a periodic pure state ρ of Fn and a representation θ of C(T). The quasi-orbit of
ρ and the unitary equivalence class of θ determine the unitary equivalence class of
the representation up to a gauge automorphism. This ambiguity can be removed
with the addition of a third parameter, called a linking vector , which is related to
the periodicity of ρ and is determined up to a scalar multiple of modulus one.

In Section 3 we study the state extensions of a periodic pure state ρ of Fn.
Propositions 3.2 and 3.3 form the technical core of the paper, and show that the
representations constructed in Section 2 include the GNS representation associated
with any state which extends ρ. Our main result, Theorem 3.5, parameterizes
the extensions of ρ to states of On by the Borel probability measures on the
circle. In this parameterization the equivalence class of the measure is a complete
invariant for unitary equivalence of state extensions. We also compare states
which extend different pure states of Fn. The invariant we use for this is the set
of quasi-equivalence classes of the shifted states, called the quasi-orbit of ρ; see
Definition 1.2. In Corollary 3.6 we answer to the affirmative a conjecture made in
the final remark of [8], to the effect that a periodic pure state of Fn has precisely
a circle of pure extensions on which the gauge group acts transitively and p-to-1, p
being the period of the state. Aperiodic pure states, in contrast, have unique state
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extensions which are necessarily pure and fixed by the gauge action (Theorem 4.3
of [11]).

In Section 4 we use our representations to construct endomorphisms of B(H)
via (†). Our main classification result is Theorem 4.1, where we obtain complete
conjugacy invariants for these endomorphisms based on the parameters ρ and θ. In
Corollary 4.2 we apply this theorem to classify the endomorphisms which arise from
extending periodic pure states of Fn to On, as described above. The second main
result of the section is Theorem 4.3, where we characterize the endomorphisms
that arise from state extensions in terms of their tail and fixed-point algebras.

Although the pure extensions of a pure state ρ are mutually disjoint, the
(ergodic) endomorphisms they produce are all conjugate. In Corollary 4.4 we
classify these endomorphisms using the action of quasi-free automorphisms on
the quasi-orbit of ρ, and in Corollary 4.5 we characterize them as those ergodic
endomorphisms whose tail algebra has a minimal projection.

In Section 5 we examine several examples arising from pure product states
of Fn. In Example A we show how our Theorem 3.5 generalizes Fowler’s result on
pure product states (Theorem 3.1 of [8]). In Example B we consider product states
which are constructed from periodic sequences of unit vectors in n-dimensional
Hilbert space. We show that the ergodic endomorphisms which correspond to
such periodic sequences are completely classified up to conjugacy by a geometric
invariant used in their construction. This generalizes earlier conjugacy results for
shifts from [15], [18], [10], [4] and for the ergodic endomorphisms constructed in
[11]. Finally, in Example C we apply our techniques to the problem of extending
the trace on the Choi algebra to O2.

1. PRELIMINARIES

A multi-index is a k-tuple s = (s1, . . . , sk), where 1 6 si 6 n for each i, and
k is any nonnegative integer. We write |s| := k and set vs := vs1 · · · vsk

, with
the convention that vs := 1 if |s| = 0. Then On is the closed linear span of
monomials of the form vsv

∗
t , where s and t are arbitrary multi-indices, and Fn

is the closed linear span of such monomials for which |s| = |t|. The canonical
conditional expectation Φ : On → Fn is given by

Φ(vsv∗t ) =
{
vsv

∗
t if |s| = |t|

0 otherwise.

There are two ways to shift an essential state ρ of Fn: “backwards” by α∗,
as defined in the introduction, and “forwards” by β∗, as defined by

β∗ρ(x) = ρ(v∗1xv1), x ∈ Fn.

The arbitrary choice of v1 is irrelevant up to unitary equivalence. The shift β∗ is
a quasi-inverse of α∗ in the sense that α∗β∗ρ = ρ

q∼ β∗α∗ρ for any essential state
ρ of Fn (Lemma 3.1 of [11]). (We use

q∼ and u∼ to denote quasi-equivalence and
unitary equivalence, respectively.)
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Example 1.1. It is helpful to see how the shifts α∗ and β∗ act on product
states. Suppose n is finite and E is the n-dimensional Hilbert space spanned
by the vi’s, so that K(E) is isomorphic to the algebra Mn of n × n matrices.
Then Fn is isomorphic to the UHF algebra Mn ⊗ Mn ⊗ Mn ⊗ · · · via vsv

∗
t 7→

es1t1 ⊗ es2t2 ⊗ · · · ⊗ esktk ⊗ 1⊗ 1⊗ · · ·, where s and t are multi-indices of the same
length k, and {eij} is the obvious system of matrix units in Mn ([6]).

Suppose ωi is a state of Mn for each i, and let

ω = ω1 ⊗ ω2 ⊗ ω3 ⊗ · · ·
be the corresponding product state of Fn. Let ωv1 be the pure state of Mn

determined by ωv1(e11) = 1. Then

α∗ω = ω2 ⊗ ω3 ⊗ ω4 ⊗ · · ·
and

β∗ω = ωv1 ⊗ ω1 ⊗ ω2 ⊗ · · · .
Similar considerations apply to product states of F∞ (Section 3 of [11]).

Definition 1.2. The quasi-orbit of an essential state ρ of Fn is the set of
quasi-equivalence classes of the states α∗kρ and β∗kρ for k > 0.

Let us describe the quasi-orbit of an essential factor state ρ. The states α∗kρ
and β∗lρ for k, l > 0 are factor states (of the same type as ρ) (Corollary 3.5 of
[11]), so any given pair of these states is either disjoint or quasi-equivalent. In
the latter case, since both α∗ and β∗ respect quasi-equivalence of factor states
(Corollary 3.6 of [11]) we can apply an appropriate power of one of the shifts to
the quasi-equivalent pair to obtain ρ

q∼ α∗pρ for some p.

Definition 1.3. Suppose ρ is an essential factor state of Fn. The period of
ρ is the smallest positive integer p for which ρ is quasi-equivalent to α∗pρ. If no
such p exists, we say that ρ is aperiodic, or that it has period p = ∞.

The quasi-orbit of an essential factor state ρ with finite period p is thus

{[ρ], [α∗ρ], . . . , [α∗(p−1)ρ]},
or alternatively

{[ρ], [β∗ρ], . . . , [β∗(p−1)ρ]},
where the brackets denote quasi-equivalence classes. In particular, the period of
an essential factor state is the cardinality of its quasi-orbit.

Remark 1.4. Although it would be more accurate to refer to a state which
is quasi-equivalent to its pth translate as quasi-periodic, we will adhere to the
prevailing practice and use the term “periodic” in an asymptotic sense. Examples
of strictly periodic states (i.e., states which are equal to their translate by some
power of α∗) will appear in Section 5.

Quasi-equivalence of essential factor states of Fn is an asymptotic property
(by Theorem 2.7 of [14] for n <∞ and Proposition 3.6 of [10] for n = ∞), so two
essential factor states ρ and ω have the same quasi-orbit if and only if they are
shift-equivalent in the sense that there exists k such that

‖α∗(k+j)ρ− α∗jω‖ → 0 as j →∞.
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When ρ and ω are pure this condition simplifies significantly. Since β∗ preserves
purity (Lemma 4.2 of [10]), ρ and ω have the same quasi-orbit if and only if

ρ
u∼ β∗kω or ω

u∼ β∗kρ for some k > 0.

It should be noted that α∗ρ need not be pure even if ρ is. Some examples of this
have been given in [5].

We close this section by highlighting some relations between the shifts of a
pure essential state ρ with finite period p:

(1.1) β∗kρ
u∼ β∗lρ ⇐⇒ α∗kρ

q∼ α∗lρ ⇐⇒ p divides k − l,

and

(1.2) α∗kρ
q∼ β∗lρ ⇐⇒ p divides k + l.

2. A CLASS OF REPRESENTATIONS OF On.

Suppose ρ̃ is a state of On, ρ is the restriction of ρ̃ to Fn, and σ̃ : On → B(H̃) is
the GNS representation for ρ̃ with canonical cyclic vector ξ. From the unit vectors
σ̃(vk1 )ξ, with k = 0, 1, 2, . . . , we see that the states β∗kρ are vector states in the
restriction of σ̃ to Fn:

β∗kρ(x) = 〈σ̃(x)σ̃(vk1 )ξ, σ̃(vk1 )ξ〉, x ∈ Fn.

As an immediate result, the GNS representations of these shifted states appear
as subrepresentations of the restriction of σ̃ to Fn. Because of this simple fact,
whenever we are extending states or representations from Fn to On, we are forced
to consider the shifted states. It is therefore convenient to establish the following
notation, to be used throughout this paper.

Notation 2.1. Suppose ρ is a pure state of Fn with finite period p; if n = ∞
assume that ρ is essential. For i = 0, 1, . . . , p − 1, denote by πρi : Fn → B(Hρ

i )
the GNS representation for β∗iρ with canonical cyclic vector ξρi . When there is no
chance of confusion we will drop the superscript ρ.

For notational convenience we defineHp := H0 and πp := π0. Our convention
for ξp will be somewhat different:

Definition 2.2. A linking vector for ρ is a vector ξp ∈ H0 such that

β∗pρ(x) = 〈π0(x)ξp, ξp〉, x ∈ Fn.

Since β∗pρ u∼ ρ, there is always a linking vector, and it is determined up to a scalar
multiple of modulus one because ρ is pure.

In the following proposition we use a pure essential state ρ and a linking
vector ξp to construct a representation π̃[ρ, ξp] of On; we will see later (Remark 2.6)
that this representation is irreducible.
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Proposition 2.3. Suppose ρ is a pure state of Fn with finite period p; if
n = ∞ assume that ρ is essential. Let ξp ∈ H0 be a linking vector for ρ.

(i) If 1 6 a 6 n and 0 6 i 6 p − 1, then there is an isometry Sa,i : Hi →
Hi+1 determined by

(2.1) Sa,iπi(x)ξi = πi+1(vaxv∗1)ξi+1, x ∈ Fn.

(ii) Let Sa be the isometry
p−1⊕
i=0

Sa,i on
p−1⊕
i=0

Hi. There is a representation

π̃[ρ, ξp] of On, essential if n = ∞, such that

π̃[ρ, ξp](va) = Sa, 1 6 a 6 n.

(iii) If k = i+mp with 0 6 i 6 p− 1 and m > 0, then Sk1 ξ0 is a unit vector
in Hi which implements β∗kρ as a vector state in πi. For 0 6 k 6 p we have
Sk1 ξ0 = ξk, and for k > p+ 1 we define ξk := Sk1 ξ0.

Proof. If x ∈ Fn, then

‖πi+1(vaxv∗1)ξi+1‖2 = 〈πi+1(v1x∗v∗avaxv
∗
1)ξi+1, ξi+1〉 = β∗(i+1)ρ(v1x∗xv∗1)

= β∗iρ(x∗x) = 〈πi(x∗x)ξi, ξi〉 = ‖πi(x)ξi‖2.

Since vectors of the form πi(x)ξi are dense in Hi, this gives (i).
We will next show that Sa,iS∗a,i = πi+1(vav∗a), for which we first need to find

a formula for S∗a,i. If x, y ∈ Fn, then

〈S∗a,iπi+1(x)ξi+1, πi(y)ξi〉 = 〈πi+1(x)ξi+1, Sa,iπi(y)ξi〉
= 〈πi+1(x)ξi+1, πi+1(vayv∗1)ξi+1〉 = 〈πi+1(v1y∗v∗ax)ξi+1, ξi+1〉
= β∗(i+1)ρ(v1y∗v∗ax) = β∗iρ(y∗v∗axv1) = 〈πi(y∗v∗axv1)ξi, ξi〉
= 〈πi(v∗axv1)ξi, πi(y)ξi〉,

so

(2.2) S∗a,iπi+1(x)ξi+1 = πi(v∗axv1)ξi, x ∈ Fn.
Using the definition of Sa,i we have

Sa,iS
∗
a,iπi+1(x)ξi+1 = Sa,iπi(v∗axv1)ξi = πi+1(vav∗axv1v

∗
1)ξi+1

= πi+1(vav∗a)πi+1(x)πi+1(v1v∗1)ξi+1,

so to show that Sa,iS∗a,i = πi+1(vav∗a) we must verify that

(2.3) πi+1(v1v∗1)ξi+1 = ξi+1, 0 6 i 6 p− 1.

Since πi+1(v1v∗1) is a projection, this follows from the calculation

‖πi+1(v1v∗1)ξi+1‖2 = 〈πi+1(v1v∗1)ξi+1, ξi+1〉 = β∗(i+1)ρ(v1v∗1) = β∗iρ(1) = 1.

It is now easy to see that the range projections SaS∗a sum to the identity op-
erator, from which the existence of the representation π̃[ρ, ξp] follows immediately:
since each πi is essential,

n∑
a=1

SaS
∗
a =

n∑
a=1

p−1⊕
i=0

Sa,iS
∗
a,i =

n∑
a=1

p−1⊕
i=0

πi+1(vav∗a) =
p−1⊕
i=0

Ii+1 = I.
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This completes the proof of (ii).
To see that Sk1 ξ0 implements β∗kρ as a vector state in πi, first observe that

(2.4) S∗1πj+1(x)S1 = πj(v∗1xv1), x ∈ Fn, 0 6 j 6 p− 1;

this is an easy consequence of (2.1) and (2.2). Thus

〈πi(x)Sk1 ξ0, Sk1 ξ0〉 = 〈S∗k1 πi(x)Sk1 ξ0, ξ0〉 = 〈π0(v∗k1 xvk1 )ξ0, ξ0〉
= ρ(v∗k1 xvk1 ) = β∗kρ(x).

By (2.3) we have S1ξk = πk+1(v1v∗1)ξk+1 = ξk+1 for 0 6 k 6 p − 1, so ξk = Sk1 ξ0
for 0 6 k 6 p.

We are now ready to construct the representations of On that will be used
to classify the state extensions of ρ to On. Suppose U0, . . . , Up−1 are unitary
operators on a Hilbert space K. It is immediate from Proposition 2.3 that the

range projections of the isometries
p−1⊕
i=0

Sa,i ⊗Ui for 1 6 a 6 n sum to the identity

operator on
p−1⊕
i=0

Hi ⊗ K. Consequently there is a unique representation of On,

essential if n = ∞, which maps va to
p−1⊕
i=0

Sa,i ⊗ Ui. We will restrict our attention

to p-tuples (U0, . . . , Up−1) in which every component but the last one is equal to
the identity; up to unitary equivalence of the resulting representation there is no
loss of generality in this, as we will see in Proposition 3.2.

Notation 2.4. Consider a triple (ρ, ξp, θ) in which
(i) ρ is a pure state of Fn with finite period p, essential if n = ∞;
(ii) ξp ∈ H0 is a linking vector for ρ; and
(iii) θ is a representation of C(T) on a Hilbert space Kθ.
Let Uθ be the p-tuple (I, I, . . . , θ(z)) of unitaries onKθ, where z is the identity

function on T. We will denote by π̃[ρ, ξp, θ] the representation of On on K̃θ :=
p−1⊕
i=0

Hi ⊗Kθ which is determined by

(2.5) π̃[ρ, ξp, θ](va) =
p−1⊕
i=0

Sa,i ⊗ Uθ,i, 1 6 a 6 n.

Proposition 2.5. Suppose ρ is a pure state of Fn with finite period p; if
n = ∞ assume that ρ is essential. Suppose ξp ∈ H0 is a linking vector for ρ and
θ is a representation of C(T) on a Hilbert space Kθ.

(i) The restriction of π̃[ρ, ξp, θ] to Fn is
p−1⊕
i=0

πi ⊗ Iθ.

(ii) If ψ is another representation of C(T), then π̃[ρ, ξp, θ] and π̃[ρ, ξp, ψ] are
unitarily equivalent (resp. disjoint) if and only if θ and ψ are unitarily equivalent
(resp. disjoint).

(iii) π̃[ρ, ξp, θ] is irreducible if and only if θ is irreducible (i.e., dimKθ = 1).
(iv) If η ∈ Kθ, then ξ0⊗η is cyclic for π̃[ρ, ξp, θ] if and only if η is cyclic for θ.
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(v) For each λ ∈ T let τλ be translation by λ on C(T); that is, τλf(z) =
f(λ−1z) for f ∈ C(T) and z ∈ T. If µp = λ ∈ T, then

(2.6) π̃[ρ, λξp, θ] = π̃[ρ, ξp, θ ◦ τλ]
u∼ π̃[ρ, ξp, θ] ◦ γµ.

Proof. (i) For the moment write π̃ for π̃[ρ, ξp, θ] and σ for
p−1⊕
i=0

πi ⊗ I. Since

both σ and the restriction of π̃ to Fn are unital representations and Fn
= span {vsv∗t : |s| = |t|}, it suffices, by induction, to show that π̃(y) = σ(y)
implies that π̃(vjyv∗k) = σ(vjyv∗k) whenever y ∈ Fn and 1 6 j, k 6 n. If x ∈ Fn,
0 6 i 6 p− 1, and η ∈ Kθ, then

π̃(vjyv∗k)(πi+1(x)ξi+1 ⊗ η) = π̃(vj)σ(y)π̃(vk)∗(πi+1(x)ξi+1 ⊗ η)

= π̃(vj)σ(y)(πi(v∗kxv1)ξi ⊗ U∗θ,iη) = π̃(vj)(πi(yv∗kxv1)ξi ⊗ U∗θ,iη)

= πi+1(vjyv∗kxv1v
∗
1)ξi+1 ⊗ Uθ,iU

∗
θ,iη = σ(vjyv∗k)(πi+1(x)ξi+1 ⊗ η) (by (2.3)).

(ii) Let I be the intertwining space

I := {T ∈ B(K̃θ, K̃ψ) : T π̃[ρ, ξp, θ](z) = π̃[ρ, ξp, ψ](z)T ∀ z ∈ On },
and let

I0 :=
{
T =

p−1⊕
i=0

Ii ⊗ T0 ∈ B(K̃θ, K̃ψ) : T0θ(f) = ψ(f)T0 ∀f ∈ C(T)
}
.

We claim that I = I0, from which (ii) follows immediately.
As a first step we describe the space J ⊇ I defined by

J := {T ∈ B(K̃θ, K̃ψ) : T π̃[ρ, ξp, θ](x) = π̃[ρ, ξp, ψ](x)T ∀x ∈ Fn }.

By (i), J is the set of operators which intertwine
p−1⊕
i=0

πi⊗Iθ and
p−1⊕
i=0

πi⊗Iψ. Since

π0, . . . , πp−1 are irreducible and mutually disjoint, we have

J =
{
T =

p−1⊕
i=0

Ii ⊗ Ti : Ti ∈ B(Kθ,Kψ)
}
.

Suppose that T =
p−1⊕
i=0

Ii ⊗ Ti ∈ J . For notational convenience let Tp := T0.

If x ∈ Fn, 0 6 i 6 p− 1 and η ∈ Kθ, then

(2.7)
T π̃[ρ, ξp, θ](va)(πi(x)ξi ⊗ η) = T (πi+1(vaxv∗1)ξi+1 ⊗ Uθ,iη)

= πi+1(vaxv∗1)ξi+1 ⊗ Ti+1Uθ,iη,

whereas

(2.8)
π̃[ρ, ξp, ψ](va)T (πi(x)ξi ⊗ η) = π̃[ρ, ξp, ψ](va)(πi(x)ξi ⊗ Tiη)

= πi+1(vaxv∗1)ξi+1 ⊗ Uψ,iTiη.

Now suppose that T ∈ I. By (2.7) and (2.8) we have

(2.9) Ti+1Uθ,i = Uψ,iTi, 0 6 i 6 p− 1.
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Setting i = 0, 1, . . . , p − 2 gives T0 = T1 = · · · = Tp−1, and setting i = p − 1
gives T0θ(z) = ψ(z)T0. Since z generates C(T) this implies that T ∈ I0, and thus
I ⊆ I0.

Conversely, suppose T0 intertwines θ and ψ, so that T :=
p−1⊕
i=0

Ii ⊗ T0 ∈ I0.

By setting Ti := T0 for 1 6 i 6 p, we see that (2.9) holds. By (2.7) and (2.8)
it follows that T π̃[ρ, ξp, θ](va) = π̃[ρ, ξp, ψ](va)T for each a, so that T ∈ I. Thus
I = I0 as claimed, completing the proof of (ii).

(iii) Setting ψ = θ in the proof of (ii) gives

(2.10) π̃[ρ, ξp, θ](On)′ =
{
T =

p−1⊕
i=0

Ii ⊗ T0 : T0 ∈ θ(C(T))′
}
,

from which (iii) is immediate.
(iv) Let M ⊆ K̃θ be the cyclic subspace for π̃[ρ, ξp, θ] generated by ξ0 ⊗ η.

The orthogonal projection P of K̃θ onto M commutes with π̃[ρ, ξp, θ](On), so by

(2.10) there is a projection P0 ∈ θ(C(T))′ such that P =
p−1⊕
i=0

Ii⊗P0. On the other

hand, M is the closed linear span of vectors of the form π̃[ρ, ξp, θ](vsv∗t )(ξ0 ⊗ η),
where s and t are multi-indices. Given such a vector, express |s| − |t| = j+mp for
j ∈ {0, . . . , p− 1} and m ∈ Z. By (2.5),

π̃[ρ, ξp, θ](vsv∗t )(ξ0 ⊗ η) ∈ Hj ⊗ θ(zm)η,

from which it follows that the range of P0 is the closure of θ(C(T))η. Assertion (iv)
now follows easily.

(v) If x ∈ Fn and η ∈ Kθ, then

π̃[ρ, λξp, θ](va)(πi(x)ξi ⊗ η) =
{
πi+1(vaxv∗1)ξi+1 ⊗ η if 0 6 i 6 p− 2
π0(vaxv∗1)(λξp)⊗ θ(z)η if i = p− 1

=
{
πi+1(vaxv∗1)ξi+1 ⊗ η if 0 6 i 6 p− 2
π0(vaxv∗1)ξp ⊗ θ(λz)η if i = p− 1

=
{
πi+1(vaxv∗1)ξi+1 ⊗ η if 0 6 i 6 p− 2
π0(vaxv∗1)ξp ⊗ θ ◦ τλ(z)η if i = p− 1

= π̃[ρ, ξp, θ ◦ τλ](va)(πi(x)ξi ⊗ η),

giving the first half of (2.6). Let T be the unitary operator
p−1⊕
i=0

Ii ⊗ µiIθ on K̃θ.

Then
π̃[ρ, ξp, θ] ◦ γµ(va)T (πi(x)ξi ⊗ η) = µπ̃[ρ, ξp, θ](va)(πi(x)ξi ⊗ µiη)

=
{
πi+1(vaxv∗1)ξi+1 ⊗ µi+1η if 0 6 i 6 p− 2
π0(vaxv∗1)ξp ⊗ λθ(z)η if i = p− 1

=
{
πi+1(vaxv∗1)ξi+1 ⊗ µi+1η if 0 6 i 6 p− 2
π0(vaxv∗1)ξp ⊗ θ ◦ τλ(z)η if i = p− 1

= T π̃[ρ, ξp, θ ◦ τλ](va)(πi(x)ξi ⊗ η),

from which the second half of (2.6) follows.
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Remark 2.6. The representation π̃[ρ, ξp] of Proposition 2.3 is irreducible
because it is unitarily equivalent to π̃[ρ, ξp, ε1], where ε1 is evaluation at 1 ∈ T,
and π̃[ρ, ξp, ε1] is irreducible by Proposition 2.5 (iii).

Proposition 2.7. Suppose ρ and ω are periodic pure states of Fn, essential
if n = ∞. If ρ and ω have the same quasi-orbit (and hence the same period p),
then there are linking vectors ξρp and ξωp such that π̃[ρ, ξρp , θ] and π̃[ω, ξωp , θ] are
unitarily equivalent for every representation θ of C(T).

Proof. Define a relation ≈ on the pure essential states of Fn with finite period
p as follows: ρ ≈ ω if there are linking vectors ξρp and ξωp such that π̃[ρ, ξρp , θ]

u∼
π̃[ω, ξωp , θ] for every representation θ of C(T). Then ≈ is an equivalence relation.
To show transitivity recall that the linking vector for a pure essential state is
unique up to a scalar of modulus one and observe that if π̃[ρ, ξρp , θ]

u∼ π̃[ω, ξωp , θ]
and µ ∈ T, then by (2.6)

π̃[ρ, µpξρp , θ]
u∼ π̃[ρ, ξρp , θ] ◦ γµ

u∼ π̃[ω, ξωp , θ] ◦ γµ
u∼ π̃[ω, µpξωp , θ].

The proof of the proposition is based on the following two claims.

Claim 1: If ρ u∼ ω, then ρ ≈ ω.
Claim 2: ρ ≈ β∗kρ for every positive integer k.

Given the claims, the proof is easy: if ρ and ω have the same quasi-orbit,
then ρ u∼ β∗kω for some positive integer k, and by the two claims ρ ≈ β∗kω ≈ ω.

Proof of Claim 1. If ρ u∼ ω, then there is a vector ζ ∈ Hρ
0 such that ω(x) =

〈πρ0(x)ζ, ζ〉 for x ∈ Fn. Let ξρp be a linking vector for ρ, and let S1 be the isometry

on
p−1⊕
i=0

Hρ
i defined in Proposition 2.3. If 0 6 i 6 p and x ∈ Fn, then by (2.4)

β∗iω(x) = ω(v∗i1 xv
i
1) = 〈πρ0(v∗i1 xv

i
1)ζ, ζ〉 = 〈S∗i1 π

ρ
i (x)S

i
1ζ, ζ〉,= 〈πρi (x)S

i
1ζ, S

i
1ζ〉,

so Si1ζ implements β∗iω as a vector state in πρi . Hence for each i ∈ {0, . . . , p− 1}
there is a unique unitary operator Vi : Hω

i → Hρ
i which intertwines πωi and πρi and

maps ξωi to Si1ζ. Define ξωp := V ∗0 S
p
1ζ; then ξωp is a linking vector for ω. Let θ be

a representation of C(T), and let V :
p−1⊕
i=0

Hω
i ⊗Kθ →

p−1⊕
i=0

Hρ
i ⊗Kθ be the unitary

operator
p−1⊕
i=0

Vi ⊗ Iθ. Then V intertwines π̃[ω, ξωp , θ] and π̃[ρ, ξρp , θ]. To see this,

suppose 1 6 a 6 n, 0 6 i 6 p − 1, x ∈ Fn and η ∈ Kθ. Using Proposition 2.5 (i)
and the convention Vp := V0,

V π̃[ω, ξωp , θ](va)(π
ω
i (x)ξωi ⊗ η) = Vi+1π

ω
i+1(vaxv

∗
1)ξωi+1 ⊗ Uθ,iη

= πρi+1(vaxv
∗
1)Si+1

1 ζ ⊗ Uθ,iη = π̃[ρ, ξρp , θ](vaxv
∗
1)(Si+1

1 ζ ⊗ Uθ,iη)

= π̃[ρ, ξρp , θ](vax)(S
i
1ζ ⊗ η) = π̃[ρ, ξρp , θ](va)(π

ρ
i (x)S

i
1ζ ⊗ η)

= π̃[ρ, ξρp , θ](va)V (πωi (x)ξωi ⊗ η).

This completes the proof of Claim 1.
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Proof of Claim 2. It suffices to prove the claim for k = 1. Let ω := β∗ρ.
Then πωi = πρi+1, Hω

i = Hρ
i+1 and ξωi = ξρi+1 for 0 6 i 6 p− 2.

Fix a linking vector ξρp for ρ. By Proposition 2.3 (iii), ξωp := ξρp+1 is a linking
vector for ω. Let θ be a representation of C(T). We claim that π̃[ρ, ξρp , θ]

u∼
π̃[ω, ξωp , θ]. To construct the intertwining unitary, let W0 : Hρ

0 → Hω
p−1 be the

unique unitary operator which intertwines πρ0 and πωp−1 and maps ξρp to ξωp−1. Let

W :
p−1⊕
i=0

Hρ
i ⊗ Kθ →

p−1⊕
i=0

Hω
i ⊗ Kθ be the unitary operator which is the identity

from Hρ
i+1 ⊗ Kθ to Hω

i ⊗ Kθ for 0 6 i 6 p − 2, and W0 ⊗ θ(z)∗ from Hρ
0 ⊗ Kθ to

Hω
p−1 ⊗Kθ. If 1 6 i 6 p, x ∈ Fn and η ∈ Kθ, then

W (πρi (x)ξ
ρ
i ⊗ η) =

{
πωi−1(x)ξ

ω
i−1 ⊗ η if 1 6 i 6 p− 1

πωp−1(x)ξ
ω
p−1 ⊗ θ(z)∗η if i = p,

so for each a ∈ 1, . . . , n we have

Wπ̃[ρ, ξρp , θ](va)(π
ρ
i (x)ξ

ρ
i ⊗ η) =


W (πρi+1(vaxv

∗
1)ξρi+1 ⊗ η) if 1 6 i 6 p− 2

W (πρ0(vaxv∗1)ξρp ⊗ θ(z)η) if i = p− 1
W (πρ1(vaxv∗1)ξρp+1 ⊗ η) if i = p

= πωi (vaxv∗1)ξωi ⊗ η

=
{
π̃[ω, ξωp , θ](va)(π

ω
i−1(x)ξ

ω
i−1 ⊗ η) if 1 6 i 6 p− 1

π̃[ω, ξωp , θ](va)(π
ω
p−1(x)ξ

ω
p−1 ⊗ θ(z)∗η) if i = p

= π̃[ω, ξωp , θ](va)W (πρi (x)ξ
ρ
i ⊗ η).

Thus W intertwines π̃[ρ, ξρp , θ] and π̃[ω, ξωp , θ], completing the proof of Claim 2.

Corrolary 2.8. Suppose ρ and ω are pure states of Fn with finite periods
p and q, respectively; if n = ∞ assume also that ρ and ω are essential. Suppose
θ and ψ are representations of C(T). Then π̃[ρ, ξρp , θ] and π̃[ω, ξωq , ψ] are unitarily
equivalent (for some choice of linking vectors ξρp and ξωq ) if and only if

(i) ρ and ω have the same quasi-orbit, and
(ii) θ is unitarily equivalent to ψ ◦ τλ for some λ ∈ T.

Proof. Suppose π̃[ρ, ξρp , θ]
u∼ π̃[ω, ξωq , ψ]. By Proposition 2.5(i), the unitary

operator which implements this equivalence also intertwines the representations
p−1⊕
i=0

πρi ⊗ Iθ and
q−1⊕
j=0

πωj ⊗ Iψ of Fn. From this it is evident that Kθ ∼= Kψ, p = q,

and πω0
u∼ πρk for some k ∈ {0, 1, . . . , p− 1}. Thus ω u∼ β∗kρ, so ρ and ω have the

same quasi-orbit.
By Proposition 2.7 and the essential uniqueness of linking vectors, there

are scalars a, b ∈ T such that π̃[ρ, aξρp , ϕ] u∼ π̃[ω, bξωp , ϕ] for every represention ϕ of
C(T). By (2.6) we then have π̃[ρ, ξρp , ϕ◦τa]

u∼ π̃[ω, ξωp , ϕ◦τb] for each ϕ, and taking
ϕ = ψ ◦ τb gives π̃[ρ, ξρp , ψ ◦ τba]

u∼ π̃[ω, ξωp , ψ]. Thus π̃[ρ, ξρp , θ]
u∼ π̃[ρ, ξρp , ψ ◦ τba], so

by Proposition 2.5(ii) we have θ u∼ ψ ◦ τba.
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Conversely, suppose ρ and ω have the same quasi-orbit and θ
u∼ ψ ◦ τλ. By

Proposition 2.7, there are linking vectors ξρp and ξωp such that

π̃[ρ, ξρp , ψ ◦ τλ]
u∼ π̃[ω, ξωp , ψ ◦ τλ].

The first of these representations is unitarily equivalent to π̃[ρ, ξρp , θ] (Proposi-
tion 2.5 (ii)), and the second to π̃[ω, λξωp , ψ] (Proposition 2.5 (v)). Thus π̃[ρ, ξρp , θ]

u∼
π̃[ω, λξωp , ψ].

3. EXTENSIONS OF PERIODIC PURE STATES OF Fn TO On.

In this section we use the representations constructed in Section 2 to parameterize
and classify the state extensions of periodic pure essential states of Fn. Our main
result, Theorem 3.5, is preceded by a general technical lemma and two technical
propositions.

Lemma 3.1. Suppose π is a representation of a C∗-algebra A on a Hilbert
space H and {πi : i ∈ I} is a collection of subrepresentations of π, each of which is
quasi-equivalent to a given representation ϕ. Let Hi be the representation space of
πi. If

⋃
i∈I

Hi has dense linear span in H, then no subrepresentation of π is disjoint

from ϕ. If in addition ϕ is factorial, then π is factorial and quasi-equivalent to ϕ.

Proof. Suppose ψ is a subrepresentation of π, and let ξ be a nonzero vector
in the representation space of ψ. Since

⋃
i∈I

Hi has dense linear span in H, there

is an i ∈ I such that ξ /∈ H⊥
i . Express ξ = ξ0 + ξ1 ∈ Hi ⊕ H⊥

i , and let ωξ,
ωξ0 and ωξ1 be the corresponding vector functionals. Then ωξ = ωξ0 + ωξ1 , so
ωξ0 6 ωξ. Let πξ and πξ0 denote the GNS representations associated with ωξ and
ωξ0 , respectively. Then πξ0 is unitarily equivalent to a subrepresentation of πξ,
which in turn is unitarily equivalent to a subrepresentation of ψ. But πξ0 is also
unitarily equivalent to a subrepresentation of πi, which is quasi-equivalent to ϕ.
Thus ψ and ϕ are not disjoint. If ϕ is factorial, this means that π

q∼ ϕ.

Proposition 3.2. Let σ̃ be a representation of On on a separable Hilbert
space K̃; if n = ∞ assume that σ̃ is essential. Suppose there exists a pure state
ρ of Fn with finite period p such that the restriction of σ̃ to Fn decomposes as a

direct sum
p−1⊕
i=0

σi, where σi is quasi-equivalent to the GNS representation πi for

β∗iρ. Then there is a linking vector ξp for ρ and a representation θ of C(T) such
that σ̃ is unitarily equivalent to π̃[ρ, ξp, θ]. Consequently, the multiplicity of πi in
σi is independent of i = 0, 1, . . . , p− 1.

Proof. Let σ =
p−1⊕
i=0

σi be the restriction of σ̃ to Fn. Each σi is unitarily

equivalent to the representation πi⊗Ii of Fn on Hi⊗Ki for some separable Hilbert

space Ki, so modulo a unitary equivalence we may assume that K̃ =
p−1⊕
i=0

Hi ⊗ Ki
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and σ =
p−1⊕
i=0

πi ⊗ Ii. Let ξp be a linking vector for ρ, and adopt the notation

convention Kp := K0. Of course πp := π0 and Hp := H0, as usual.
Fix i ∈ {0, 1, . . . , p − 1} and η ∈ Ki. We claim that there is a (necessarily

unique) vector Uiη ∈ Ki+1 such that

(3.1) σ̃(v1)(ξi ⊗ η) = ξi+1 ⊗ Uiη.

To begin with, note that for any x ∈ Fn,

〈σ(x)σ̃(v1)(ξi ⊗ η), σ̃(v1)(ξi ⊗ η)〉 = 〈σ(v∗1xv1)(ξi ⊗ η), ξi ⊗ η〉
= ‖η‖2〈πi(v∗1xv1)ξi, ξi〉 = ‖η‖2β∗iρ(v∗1xv1) = ‖η‖2β∗(i+1)ρ(x).

On the other hand, we can express σ̃(v1)(ξi⊗η) =
p∑
j=1

∑
k

ζj,k⊗δj,k, where ζj,k ∈ Hj

and for each j the set {δj,k} is an orthonormal basis for Kj . Then

〈σ(x)σ̃(v1)(ξi ⊗ η), σ̃(v1)(ξi ⊗ η)〉 =
p∑
j=1

〈∑
k

πj(x)ζj,k ⊗ δj,k,
∑
l

ζj,l ⊗ δj,l

〉
=

p∑
j=1

∑
k

〈πj(x)ζj,k, ζj,k〉.

Since β∗(i+1)ρ is pure, each of the positive linear functionals ωζj,k
(x)

:= 〈πj(x)ζj,k, ζj,k〉 is a multiple of β∗(i+1)ρ. However, ωζj,k
is also unitarily equiv-

alent to a multiple of β∗jρ, because πj is irreducible. Since the states β∗jρ for
j = 1, 2, . . . , p are mutually disjoint, we thus have ζj,k = 0 unless j = i+ 1. More-
over, ωζi+1,k

is a scalar multiple of β∗(i+1)ρ if and only if ζi+1,k is a scalar multiple

of ξi+1, so after simplifying and rearranging, the sum
p∑
j=1

∑
k

ζj,k ⊗ δj,k turns out

to be an elementary tensor; specifically, it belongs to the subspace ξi+1 ⊗ Ki+1.
Thus we can define Ui : Ki → Ki+1 by (3.1), as claimed.

We next claim that Ui is a unitary operator. It is evident that Ui is linear,
and since

〈Uiη, Uiζ〉 = 〈σ̃(v1)(ξi ⊗ η), σ̃(v1)(ξi ⊗ ζ)〉 = 〈ξi ⊗ η, ξi ⊗ ζ〉 = 〈η, ζ〉, η, ζ ∈ Ki,
Ui is an isometry. To see that Ui is surjective, suppose ζ ∈ Ki+1. By (2.3) we have

ξi+1 ⊗ ζ = πi+1(v1v∗1)ξi+1 ⊗ ζ = σ(v1v∗1)(ξi+1 ⊗ ζ) = σ̃(v1)σ̃(v∗1)(ξi+1 ⊗ ζ).

Now σ̃(v∗1)(ξi+1 ⊗ ζ) can be approximated by a finite sum of vectors of the form
πj(x)ξj ⊗ η, where 0 6 j 6 p− 1, x ∈ Fn and η ∈ Kj , and for each such vector

(3.2)
σ̃(v1)(πj(x)ξj ⊗ η) = σ̃(v1)σ(x)(ξj ⊗ η) = σ(v1xv∗1)σ̃(v1)(ξj ⊗ η)

= σ(v1xv∗1)(ξj+1 ⊗ Ujη) = πj+1(v1xv∗1)ξj+1 ⊗ Ujη ∈ Hj+1 ⊗ ranUj .

Thus

ξi+1 ⊗ ζ = σ̃(v1)σ̃(v∗1)(ξi+1 ⊗ ζ) ∈
p−1⊕
j=0

Hj+1 ⊗ ranUj ,
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which shows that ζ ∈ ranUi. Thus Ui is surjective.
Define unitary operators T0, . . . , Tp−1 inductively by T0 := Up−1 and Ti+1 =

UiTi for 0 6 i 6 p− 2. Then Tp−1 is a unitary operator on Kp−1, so θ(z) = Tp−1

determines a representation θ of C(T) on Kp−1. We claim that σ̃ is unitarily

equivalent to π̃[ρ, ξp, θ]. For this, let T :
p−1⊕
i=0

Hi ⊗ Kp−1 →
p−1⊕
i=0

Hi ⊗ Ki be the

unitary
p−1⊕
i=0

Ii ⊗ Ti. If 1 6 a 6 n, 0 6 i 6 p − 1, x ∈ Fn and η ∈ Kp−1,

then by (3.2)

σ̃(va)T (πi(x)ξi ⊗ η) = σ(vav∗1)σ̃(v1)(πi(x)ξi ⊗ Tiη)

= σ(vav∗1)(πi+1(v1xv∗1)ξi+1 ⊗ UiTiη)

=
{
πi+1(vaxv∗1)ξi+1 ⊗ Ti+1η if 0 6 i 6 p− 2
π0(vaxv∗1)ξp ⊗ T0θ(z)η if i = p− 1

= T π̃[ρ, ξp, θ](va)(πi(x)ξi ⊗ η),

so T intertwines π̃[ρ, ξp, θ] and σ̃.
The multiplicity of πi in σi is the dimension of Ki. Since each Ui : Ki → Ki+1

is unitary, this multiplicity is constant in i.

Proposition 3.3. Suppose ρ is a pure state of Fn with finite period p;
if n = ∞ assume that ρ is essential. Let σ̃ be the GNS representation of On
corresponding to a state ρ̃ extending ρ. Then the restriction of σ̃ to Fn decomposes

as a direct sum
p−1⊕
i=0

σi, with σi quasi-equivalent to the GNS representation πi of

β∗iρ. Furthermore, the decomposition is central and the multiplicity of πi in σi is
independent of i = 0, 1, . . . , p− 1.

Proof. Let H̃ be the Hilbert space on which σ̃ represents On, and let ξ ∈ H̃
be the canonical cyclic vector which implements ρ̃ as a vector state. Let σ denote
the restriction of σ̃ to Fn. For each k ∈ Z let

Gk = {z ∈ On : γλ(z) = λkz, λ ∈ T}.
Notice that G0 = Fn and, in general, that Gk is the kth spectral subspace of On
under the action of the gauge group {γλ : λ ∈ T}. Define

Mk := {σ̃(z)ξ : z ∈ Gk}.

Then Mk is invariant under σ(Fn) and H̃ = span
⋃
k∈Z

Mk. Let ϕk denote the

subrepresentation of σ obtained by restricting each of the operators σ(x) to Mk.
We claim that

(3.3) ϕk
q∼ πi,

where i is the unique element of {0, 1, . . . , p− 1} such that k − i ∈ pZ. The proof
follows Lemma 3.5 of [11].

Suppose k > 0. Since Gk = Fnvk1 , the vector σ̃(vk1 )ξ ∈ Mk is cyclic for ϕk.
Moreover, for x ∈ Fn we have

〈ϕk(x)σ̃(vk1 )ξ, σ̃(vk1 )ξ〉 = 〈σ(v∗k1 xvk1 )ξ, ξ〉 = β∗kρ(x).
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By the uniqueness of the GNS representation and (1.1) it follows that ϕk
u∼ πk

u∼
πi.

Suppose now that k < 0. Using s to denote a multi-index, for x ∈ Fn we
have

α∗|k|ρ(x) =
∑
|s|=|k|

ρ(vsxv∗s ) =
∑
|s|=|k|

〈σ(vsxv∗s )ξ, ξ〉 =
∑
|s|=|k|

〈ϕk(x)σ̃(v∗s )ξ, σ̃(v∗s )ξ〉.

We claim that {σ̃(v∗s )ξ : |s| = |k|} is generating for ϕk. Since {vrv∗t : |r| − |t| = k}
has dense linear span in Gk, it suffices to show that

σ̃(vrv∗t )ξ ∈ span {σ(x)σ̃(v∗s )ξ : x ∈ Fn, |s| = |k|}

for each such r, t. But this is easy: simply write t = st′, where |s| = |k|, so that
σ̃(vrv∗t )ξ = σ(vrv∗t′)σ̃(v∗s )ξ.

Since {σ̃(v∗s )ξ : |s| = |k|} is generating for ϕk, Lemma 3.2 of [11] gives that
ϕk is quasi-equivalent to the GNS representation for α∗|k|ρ. By (1.2), this implies
that ϕk

q∼ πi, finishing the proof of (3.3).
For i = 0, 1, . . . , p − 1, let Si = span

⋃
b∈Z

Mi+bp. Each Si is invariant under

σ(Fn), and by Lemma 3.1 the corresponding subrepresentation σi of σ is quasi-
equivalent to πi. The proof will be complete once we show that Si ⊥ Sj if i 6= j,

and hence that σ =
p−1⊕
i=0

σi. For this, suppose w ∈ Gk and z ∈ Gl, where k− l /∈ pZ;

we will show that σ̃(w)ξ ⊥ σ̃(z)ξ. Without loss of generality assume that k > l.
Let ζ = σ̃(z∗w)ξ ∈ Mk−l, and write ζ = ζ0 ⊕ ζ1 ∈ M0 ⊕M⊥

0 . If ζ 6= 0, then
the vector functional ωζ is unitarily equivalent to (a nonzero multiple of) β∗(k−l)ρ.
Since β∗(k−l)ρ is pure and ωζ = ωζ0 + ωζ1 , either ωζ0

u∼ β∗(k−l)ρ or ζ0 = 0. Since
ωζ0

u∼ ρ and p does not divide k− l, by (1.1) we thus have ζ0 = 0; that is, ζ ⊥M0.
In particular,

〈σ̃(w)ξ, σ̃(z)ξ〉 = 〈σ̃(z∗w)ξ, ξ〉 = 〈ζ, ξ〉 = 0.

The decomposition σ =
p−1⊕
i=0

σi is central because the σi are mutually disjoint;

the multiplicity of σi is constant in i by Proposition 3.2.

Notation 3.4. Let P (T) be the space of Borel probability measures on the
circle T. For each µ ∈ P (T), let Mµ be the representation of C(T) on L2(T, µ) by
multiplication operators. Let 1l be the function of constant value 1 on T.

Theorem 3.5. Suppose ρ is a pure state of Fn with finite period p; if n = ∞
assume that ρ is essential. For i ∈ {0, 1, . . . , p − 1} let πi : Fn → B(Hi) be the
GNS representation for β∗iρ with canonical cyclic vector ξi. Let ξp be a linking
vector for ρ (as in Definition 2.2), and for k = i + mp > p + 1 let ξk be the
corresponding vector in Hi which implements β∗kρ as a vector state in πi (as in
Proposition 2.3 (iii)).

(i) For each µ ∈ P (T) there is a unique state ρ̃ [µ, ξp] of On such that

(3.4) ρ̃ [µ, ξp](vsv∗t ) =

{
〈π0(vsv∗t v

∗k
1 )ξk, ξ0〉

∫
T
zk/p dµ(z) if p divides k

0 otherwise,
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where s and t are multi-indices with k := |s|−|t| > 0. The state ρ̃ [µ, ξp] extends ρ.
(ii) If ρ̃ is a state of On which extends ρ, then ρ̃ = ρ̃ [µ, ξp] for some µ ∈

P (T).
(iii) With the linking vector ξp fixed, the map µ 7→ ρ̃ [µ, ξp] is an affine iso-

morphism of P (T) onto the states of On which extend ρ, and ρ̃ [µ, ξp] is pure if
and only if µ is a unit point mass.

(iv) ρ̃ [µ, ξp] and ρ̃ [ν, ξp] are unitarily equivalent (resp. disjoint) if and only
if the measures µ and ν are equivalent (resp. disjoint).

(v) Suppose ω is another pure essential state of Fn.
(a) If ρ and ω have the same quasi-orbit (and hence the same period p),

then there are linking vectors ξρp and ξωp such that ρ̃ [µ, ξρp ] and ω̃[µ, ξωp ] are unitarily
equivalent for every µ ∈ P (T).

(b) If ρ̃ [µ, ξρp ] and ω̃[ν, ξωq ] are unitarily equivalent, then ρ and ω have the
same quasi-orbit and µ is equivalent to a translation of ν.

Proof. (i) Suppose s and t are multi-indices such that k := |s| − |t| > 0.
Since elements of the form vsv

∗
t and their adjoints have dense linear span in On,

there is at most one state ρ̃ [µ, ξp] which satisfies (3.4). For existence, express
k = i+mp with 0 6 i 6 p− 1, and let π̃ be the representation π̃[ρ, ξp,Mµ] of On

on
p−1⊕
i=0

Hi ⊗ L2(T, µ) defined in (2.5). Then

〈π̃(vsv∗t )(ξ0 ⊗ 1l), ξ0 ⊗ 1l〉
= 〈π̃(vsv∗t v

∗k
1 )π̃(vk1 )(ξ0 ⊗ 1l), ξ0 ⊗ 1l〉

= 〈πi(vsv∗t v∗k1 )ξk ⊗ zm, ξ0 ⊗ 1l〉 = 〈πi(vsv∗t v∗k1 )ξk, ξ0〉〈zm, 1l〉

=

 〈π0(vsv∗t v
∗k
1 )ξk, ξ0〉

∫
T

zk/p dµ(z) if p divides k

0 otherwise,

so ρ̃ [µ, ξp] is the vector state in π̃[ρ, ξp,Mµ] implemented by ξ0 ⊗ 1l. Setting
|s| − |t| = 0 shows that ρ̃ [µ, ξp] extends ρ.

(ii) Suppose ρ̃ is a state of On which extends ρ. By Propositions 3.3 and 3.2,
there is a linking vector ζ for ρ and a representation ψ of C(T) such that the GNS
representation for ρ̃ is unitarily equivalent to π̃[ρ, ζ, ψ]. Let λ ∈ T be such that
ζ = λξp, and let θ := ψ ◦ τλ; by (2.6), π̃[ρ, ζ, ψ] u∼ π̃[ρ, ξp, θ]. Hence there is a unit

vector ξ ∈
p−1⊕
i=0

Hi ⊗Kθ which is cyclic for π̃[ρ, ξp, θ] and which implements ρ̃ as a

vector state. By the argument used in Proposition 3.2 to derive (3.1), there is a
vector η ∈ Kθ such that ξ = ξ0 ⊗ η. Thus

(3.5) ρ̃(x) = 〈π̃[ρ, ξp, θ](x)(ξ0 ⊗ η), ξ0 ⊗ η〉, x ∈ On.

Since ξ0 ⊗ η is cyclic for π̃[ρ, ξp, θ], by Proposition 2.5 (iv) the vector η is
cyclic for θ. It follows that if we define µ ∈ P (T) by∫

T

f dµ = 〈θ(f)η, η〉, f ∈ C(T),
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then T0f = θ(f)η for f ∈ C(T) determines a unitary operator T0 : L2(T, µ) → Kθ.

Let T :
p−1⊕
i=0

Hi ⊗ L2(T, µ) →
p−1⊕
i=0

Hi ⊗ Kθ be the unitary operator
p−1⊕
i=0

I ⊗ T0.

Routine calculations show that T intertwines π̃[ρ, ξp,Mµ] and π̃[ρ, ξp, θ] and maps
ξ0 ⊗ 1l to ξ0 ⊗ η. It now follows immediately from (3.5) that ξ0 ⊗ 1l implements ρ̃
as a vector state in π̃[ρ, ξp,Mµ], so by the proof of (i) we have ρ̃ = ρ̃ [µ, ξp].

(iii) From (3.4) and part (ii) it is clear that µ 7→ ρ̃ [µ, ξp] is affine and sur-
jective. To see that it is injective, suppose µ, ν ∈ P (T) and µ 6= ν. Then there
is a positive integer m such that

∫
zm dµ(z) 6=

∫
zm dν(z). Let k := mp. Since

π0 is irreducible and Fn = span { vav∗b : |a| = |b| }, there are multi-indices a and
b of equal length such that 〈π0(vav∗b )ξk, ξ0〉 6= 0. Using v∗j vi = δij1l, the element
vav

∗
bv
k
1 can be written in the form vsv

∗
t . Since ξk = π0(vk1v

∗k
1 )ξk we then have

〈π0(vsv∗t v
∗k
1 )ξk, ξ0〉 = 〈π0(vav∗b )π0(vk1v

∗k
1 )ξk, ξ0〉 = 〈π0(vav∗b )ξk, ξ0〉 6= 0.

By (3.4) it follows that ρ̃ [µ, ξp](vsv∗t ) 6= ρ̃ [ν, ξp](vsv∗t ), completing the proof of
injectivity. Since µ 7→ ρ̃ [µ, ξp] is an affine isomorphism it preserves extreme points;
hence point masses correspond to pure states.

(iv) Since 1l is cyclic for Mµ, by Proposition 2.5 (iv) the vector ξ0⊗1l is cyclic
for π̃[ρ, ξp,Mµ]. Thus π̃[ρ, ξp,Mµ] is unitarily equivalent to the GNS representation
for ρ̃ [µ, ξp]. Since Mµ and Mν are unitarily equivalent (resp. disjoint) if and only
if µ and ν are equivalent (resp. disjoint) measures, (iv) follows immediately from
Proposition 2.5 (ii).

Finally, since µ is equivalent to a translate of ν if and only if Mµ
u∼Mν ◦τλ for

some λ ∈ T, (v) is an immediate consequence of Proposition 2.7 and Corollary 2.8.

Corollary 3.6. Suppose ρ is a pure state of Fn with finite period p; if
n = ∞ assume that ρ is essential. The gauge group acts p-to-1 and transitively on
the pure extensions of ρ to On, and distinct pure extensions are disjoint.

Proof. Fix a linking vector ξp for ρ. By Theorem 3.5 (iii), the pure extensions
of ρ are { ρ̃ [µc, ξp] : c ∈ T }, where µc denotes the unit point mass at c. Since no
two different point masses are equivalent, it follows from Theorem 3.5 (iv) that
no two different pure extensions are unitarily equivalent; that is, distinct pure
extensions are disjoint.

If s and t are multi-indices with k := |s| − |t| > 0, then by (3.4)

ρ̃ [µc, ξp](vsv∗t ) =
{
ck/p〈π0(vsv∗t v

∗k
1 )ξk, ξ0〉 if p divides k

0 otherwise.
On the other hand, if λ ∈ T, then

ρ̃ [µc, ξp] ◦ γλ(vsv∗t ) =
{

(λpc)k/p〈π0(vsv∗t v
∗k
1 )ξk, ξ0〉 if p divides k

0 otherwise,

so ρ̃ [µc, ξp] ◦ γλ = ρ̃ [µλpc, ξp]. Thus the gauge action is transitive on the pure
extensions of ρ, and for any pure extension ρ̃ we have ρ̃ ◦ γλ = ρ̃ if and only if
λp = 1.
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4. ENDOMORPHISMS OF B(H).

We are now ready to construct and classify endomorphisms of B(H) using the rep-
resentations from Section 2. We will use c∼ to denote conjugacy of endomorphisms.

Recall that a representation ϕ : On → B(H) gives rise to an endomorphism
of B(H) via

Adϕ(A) =
n∑
k=1

ϕ(vk)Aϕ(vk)∗, A ∈ B(H).

Recall also that the gauge action γ : T → Aut(On) extends to an action of the
unitary group U(E) by quasi-free automorphisms, determined by γW (va) = Wva.
Modifying ϕ by a quasi-free automorphism does not change Adϕ, and modifying
it by a unitary equivalence only changes Adϕ to a conjugate endomorphism. This
is indeed all the collapsing there is in the map ϕ 7→ Adϕ: the endomorphisms
Adϕ1 and Adϕ2 are conjugate if and only if ϕ2

u∼ ϕ1 ◦ γW for some W ∈ U(E)
(Proposition 2.4 of [10]).

Suppose ρ is a periodic pure essential state of Fn and θ is a representation
of C(T). For each choice of linking vector ξp for ρ we can form the representa-
tion π̃[ρ, ξp, θ] as in (2.5). By Proposition 2.5(v), two representations of the form
π̃[ρ, ∗, θ] differ by at most a gauge automorphism and a unitary equivalence, so
the conjugacy class of Ad π̃[ρ, ξp, θ] does not depend on the choice of ξp. We will
denote this conjugacy class, or a representative thereof, by

αρ,θ := Ad π̃[ρ, ξp, θ].

Since we only look at endomorphisms modulo conjugacy, this slight abuse of no-
tation will not cause problems.

Two endomorphisms coming from different states of Fn and representations
of C(T) can be conjugate, and the following theorem determines exactly when this
happens.

Theorem 4.1. Suppose ρ and ω are periodic pure states of Fn, essential
if n = ∞, and let θ and ψ be representations of C(T). Then αρ,θ and αω,ψ are
conjugate if and only if

(i) there is a unitary operator W on E such that ρ ◦ γW and ω have the
same quasi-orbit, and

(ii) θ is unitarily equivalent to ψ ◦ τλ for some λ ∈ T.

Proof. Let ξρp and ξωq be linking vectors for ρ and ω, respectively. The endo-
morphisms αρ,θ and αω,ψ are conjugate if and only if there is a unitary operator
W on E such that π̃[ρ, ξρp , θ] ◦ γW and π̃[ω, ξωq , ψ] are unitarily equivalent. The
proof will be by direct application of Corollary 2.8 once π̃[ρ, ξρp , θ] ◦ γW has been
changed to an appropriate form. It suffices to prove the following:

Claim. For every unitary W on E there is a linking vector ξρ◦γW
p for ρ ◦ γW

such that
π̃[ρ, ξρp , θ] ◦ γW

u∼ π̃[ρ ◦ γW , ξρ◦γW
p , θ].



132 Neal J. Fowler and Marcelo Laca

Proof of Claim. Fix a unitary operator W on E , let ξρp be a linking vector for

ρ, and let S1 be the isometry on
p−1⊕
i=0

Hρ
i defined in Proposition 2.3. If 0 6 i 6 p

and x ∈ Fn, then by (2.4) and Proposition 2.3 (iii)

(β∗i(ρ ◦ γW ))(x) = ρ ◦ γW (v∗i1 xv
i
1) = 〈πρ0 ◦ γW (v∗i1 xv

i
1)ξ

ρ
0 , ξ

ρ
0〉

= 〈S∗i1 π
ρ
i (v

i
1γW (v∗i1 xv

i
1)v

∗i
1 )Si1ξ

ρ
0 , ξ

ρ
0〉 = 〈πρi (v

i
1γW (v∗i1 xv

i
1)v

∗i
1 )ξρi , ξ

ρ
i 〉

= 〈πρi ◦ γW (x)πρi (γW (vi1)v
∗i
1 )ξρi , π

ρ
i (γW (vi1)v

∗i
1 )ξρi 〉,

so πρi (γW (vi1)v
∗i
1 )ξρi implements β∗i(ρ ◦ γW ) as a vector state in πρi ◦ γW . Hence

for each i ∈ {0, . . . , p − 1} there is a unique unitary operator Vi : Hρ◦γW

i → Hρ
i

which intertwines πρ◦γW

i and πρi ◦ γW and satisfies

Viξ
ρ◦γW

i = πρi (γW (vi1)v
∗i
1 )ξρi .

Define ξρ◦γW
p := V ∗0 π

ρ
0(γW (vp1)v∗p1 )ξρp ; then ξρ◦γW

p is a linking vector for ρ ◦ γW .

Let θ be a representation of C(T), and let V :
p−1⊕
i=0

Hρ◦γW

i ⊗ Kθ →
p−1⊕
i=0

Hρ
i ⊗ Kθ

be the unitary operator
p−1⊕
i=0

Vi ⊗ Iθ. Then V intertwines π̃[ρ ◦ γW , ξρ◦γW
p , θ] and

π̃[ρ, ξρp , θ] ◦ γW . To see this, suppose 1 6 a 6 n, 0 6 i 6 p− 1, x ∈ Fn and η ∈ Kθ.
Using Proposition 2.5 (i) and the convention Vp := V0,

V π̃[ρ ◦ γW ,ξρ◦γW
p , θ](va)(π

ρ◦γW

i (x)ξρ◦γW

i ⊗ η) = Vi+1π
ρ◦γW

i+1 (vaxv∗1)ξρ◦γW

i+1 ⊗ Uθ,iη

= πρi+1 ◦ γW (vaxv∗1)πρi+1(γW (vi+1
1 )v∗(i+1)

1 )ξρi+1 ⊗ Uθ,iη

= πρi+1(γW (vaxvi1)v
∗(i+1)
1 )ξρi+1 ⊗ Uθ,iη

= π̃[ρ, ξρp , θ](γW (vaxvi1)v
∗(i+1)
1 )π̃[ρ, ξρp , θ](v1)(ξ

ρ
i ⊗ η)

= π̃[ρ, ξρp , θ](γW (vaxvi1)v
∗i
1 )(ξρi ⊗ η)

= π̃[ρ, ξρp , θ] ◦ γW (va)(π
ρ
i ◦ γW (x)πρi (γW (vi1)v

∗i
1 )ξρi ⊗ η)

= π̃[ρ, ξρp , θ] ◦ γW (va)V (πρ◦γW

i (x)ξρ◦γW

i ⊗ η).

This completes the proof of the claim, and hence the theorem.

When θ is the representation Mµ by multiplication operators on L2(T, µ) we
write simply αρ,µ in place of αρ,Mµ . As an immediate corollary to Theorem 3.5
we can now parameterize and classify the endomorphisms constructed using the
strategy of [10], wherein one starts with a pure essential state ρ of Fn, extends ρ
to a state ρ̃ of On, and then uses the GNS representation for ρ̃ to implement an
endomorphism of B(H).

Corollary 4.2. Suppose ρ is a periodic pure state of Fn, essential if n =
∞, and σ̃ is the GNS representation for a state ρ̃ of On which extends ρ. Then
there is a Borel probability measure µ on the circle T such that Ad σ̃ is conjugate
to αρ,µ.

Let ω be another periodic pure essential state of Fn, and let ν ∈ P (T). Then
αρ,µ and αω,ν are conjugate if and only if
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(i) there is a unitary operator W on E such that ρ ◦ γW and ω have the
same quasi-orbit, and

(ii) µ is equivalent to a translate of ν.

Proof. Fix a linking vector ξp for ρ. By Theorem 3.5 (ii), ρ̃ = ρ̃ [µ, ξp] for
some µ ∈ P (T), so that σ̃ u∼ π̃[ρ, ξp,Mµ]. Thus Ad σ̃ c∼ αρ,µ.

Since the measure µ is equivalent to a translate of ν if and only if Mµ
u∼

Mν ◦ τλ for some λ ∈ T, the second part follows directly from Theorem 4.1.

There are two von Neumann algebras naturally associated with an endomor-
phism α of B(H): its tail algebra

Tail (α) :=
∞⋂
k=1

αk(B(H)),

and its fixed-point algebra

FPA (α) := {A ∈ B(H) : α(A) = A }.
Assuming as we are that α is unital, one can always realize α as Adϕ for some
(essential) representation ϕ of On. By Proposition 3.1 of [10], FPA (α) is the
commutant of ϕ(On) and Tail (α) is the commutant of ϕ(Fn). If ϕ is the GNS
representation of some state ρ̃ of On, then the canonical cyclic vector ξ for ϕ is
separating for FPA (α). In the following theorem we show that when the restriction
of ρ̃ to Fn is pure, much more is true: FPA (α) is abelian, and the projection onto
the closure of Tail (α)′ξ is minimal in Tail (α). Moreover, the latter condition
characterizes these endomorphisms.

Theorem 4.3. Suppose α is a unital endomorphism of B(H) with Powers
index n (2 6 n 6 ∞). Then (i) and (ii) below are equivalent:

(i) α is conjugate to Ad σ̃ for σ̃ the GNS representation of a state extending
a pure essential state ρ of Fn.

(ii) Tail (α) has a minimal projection whose range contains a separating
vector for FPA (α).

If α satisfies (i) and (ii), then the center of Tail (α) is finite-dimensional if
and only if ρ has finite period, in which case dimZ(Tail (α)) is the period of ρ.
Moreover,

(a) If ρ has finite period p, then there is a Borel probability measure µ on the
circle T such that Tail (α) is spatially isomorphic to

(4.1)
{ p−1⊕

i=0

Ii ⊗ Ti : Ti ∈ B(L2(T, µ))
}
⊂ B

( p−1⊕
i=0

Hi ⊗ L2(T, µ)
)

and FPA (α) is spatially isomorphic to the abelian algebra

(4.2)
{ p−1⊕

i=0

Ii ⊗ T0 : T0 ∈Mµ(L∞(T, µ))
}
⊂ B

( p−1⊕
i=0

Hi ⊗ L2(T, µ)
)
,

where as usual Hi denotes the GNS Hilbert space for β∗iρ.
(b) If ρ is aperiodic, then Tail (α) is isomorphic to `∞(Z).
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Proof. (ii) ⇒ (i) Suppose Tail (α) has a minimal projection P whose range
contains a vector ξ which is separating for FPA (α). Let ϕ be a representation of
On such that α = Adϕ, and let ρ̃ be the vector state of On in ϕ implemented by
ξ. Since ξ is separating for FPA (α) = ϕ(On)′ it is cyclic for ϕ, so α c∼ Ad σ̃ with
σ̃ the GNS representation for ρ̃. The restriction of ρ̃ to Fn is pure because P is
minimal in Tail (α) = ϕ(Fn)′.

(i) ⇒ (ii) If (i) holds and ρ has finite period p, then by Corollary 4.2 there
is a Borel probability measure µ on T such that α c∼ αρ,µ. Let ξp be a linking
vector for ρ. The tail and fixed-point algebras of α are then spatially equivalent
to those of Ad π̃[ρ, ξp,Mµ], which by the proof of Proposition 2.5(ii) are given by
(4.1) and (4.2), respectively; the second of these requires the extra observation that
Mµ(C(T))′ = Mµ(L∞(T, µ)). Let P0 be the rank-one projection onto the constant

function 1l ∈ L2(T, µ), let Pi = 0 for i = 1, . . . , p− 1, and let P =
p−1⊕
i=0

Ii⊗Pi; then

P is a minimal projection in the tail algebra. Since 1l is cyclic for Mµ(C(T)) it is
separating for Mµ(C(T))′, so any nonzero vector in the range of P is separating
for the fixed-point algebra.

If ρ is aperiodic, then ρ̃ must be the gauge-invariant state ρ ◦ Φ. Let σ be
the restriction of σ̃ to Fn. By Propositions 2.2 and 3.4 of [11], σ decomposes as

a direct sum
∞⊕

i=−∞
σi, where σi is irreducible and quasi-equivalent to the GNS

representation of β∗iρ (resp. α∗|i|ρ) if i > 0 (resp. i < 0). Since these irreducible
summands are mutually disjoint,

Tail (Ad σ̃) = σ(Fn)′ ∼= `∞(Z).

Let P be any minimal projection in this algebra. Any nonzero vector in the range
of P is separating for FPA (α) since α is ergodic.

Ergodic endomorphisms. By Proposition 3.1 of [10], Adϕ is ergodic if and only
if ϕ is irreducible. Thus the pure extensions of a pure essential state ρ yield ergodic
endomorphisms via their GNS representations. Since these pure extensions are in
the same gauge orbit, the corresponding endomorphisms are all conjugate:

Corollary 4.4. Suppose ρ is a pure state of Fn, essential if n = ∞.
(i) Let σ̃ be the GNS representation for a pure extension of ρ. Then the

ergodic endomorphism Ad σ̃ depends only on ρ up to conjugacy, so we denote it
by αρ := Ad σ̃.

(ii) If ω is another pure essential state of Fn, then αρ and αω are conjugate
if and only if there is a unitary operator W on E such that ρ ◦ γW and ω have the
same quasi-orbit.

Proof. First suppose ρ is periodic. Let ξp be a linking vector for ρ. If ρ̃ is a
pure state of On which extends ρ, then by Theorem 3.5(iii) there is a unit point
mass µ on T such that ρ̃ = ρ̃ [µ, ξp]. The GNS representation σ̃ for ρ̃ is thus uni-
tarily equivalent to π̃[ρ, ξp,Mµ], so that Ad σ̃ is conjugate to αρ,µ. Since condition
(ii) of Corollary 4.2 is automatic for point masses, all such endomorphisms Ad σ̃
are conjugate. The second assertion also follows from Corollary 4.2.
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Suppose now that ρ is aperiodic. By Theorem 4.3 of [11], the gauge-invariant
extension ρ ◦Φ is the only state of On which extends ρ, and ρ ◦Φ is pure, so (i) is
trivial. Part (ii) follows from remarks following the proof of Theorem 4.3 of [11].

Finally we give an intrinsic characterization of the class of ergodic endomor-
phisms arising from pure states of Fn in terms of the tail algebra.

Corollary 4.5. (i) Suppose ρ is a pure state of Fn, essential if n = ∞.
Let αρ be the ergodic endomorphism associated with ρ as in Corollary 4.4. Then
Tail (αρ) is isomorphic to Cp if ρ has finite period p, and `∞(Z) if ρ is aperiodic.

(ii) Suppose α is an ergodic endomorphism of B(H) whose tail algebra has
a minimal projection. Then there is a pure essential state ρ of Fn such that α is
conjugate to αρ. In particular, if α is a shift then it is conjugate to αρ for some
pure essential quasi-invariant state ρ.

Proof. (i) By definition, αρ satisfies condition (i) of Theorem 4.3. The result
is thus immediate from this theorem for aperiodic ρ. If ρ has finite period p then
Tail (αρ) is given by (4.1) for some point mass µ, and is hence isomorphic to Cp.

(ii) Let P be a minimal projection in Tail (α). Every nonzero vector in the
range of P is separating for FPA (α) = CI, so by (ii)⇒(i) of Theorem 4.3 and
Corollary 4.4(i), α = αρ for some pure essential state ρ of Fn. If α is a shift then
Tail (α) consists of scalar operators so the identity is a minimal projection. Thus
α = αρ for some pure essential state ρ, and by Theorem 4.5 of [10], ρ must be
quasi-invariant.

We finish the section by pointing out that, as a consequence of the corollary,
there is an interesting restriction on the possible tail algebras of ergodic endomor-
phisms:

Scholium 4.6. If the tail algebra of an ergodic endomorphism has a minimal
projection, then it is isomorphic to either Cp or `∞(Z), depending on the period p
of the state arising from a vector in the range of the minimal projection.

5. EXAMPLES

Our main source of examples are the pure product states ω =
∞⊗
i=1

ωi of Fn, where

each ωi is a pure state of K(E); cf. Example 1.1. For each unit vector v in E
let ωv be the pure state of K(E) given by ωv(T ) = 〈Tv, v〉; strictly speaking, ωv
depends only on the one-dimensional subspace [v] := Cv and not on v itself. If f =
(f1, f2, . . .) is a sequence of unit vectors we let ωf :=

⊗
i

ωfi
be the corresponding

pure product state of Fn. Thus

ωf (vs1 · · · vsk
v∗tk · · · v

∗
t1) = 〈vs1 , f1〉 · · · 〈vsk

, fk〉〈fk, vtk〉 · · · 〈f1, vt1〉.

A. Periodic pure essential product states. Suppose ωf has finite period
p; this is equivalent to p being the smallest positive integer for which the series
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(1− |〈fi, fi+p〉|) converges (Section 4 of [10]). The GNS triple for ωf is unitar-

ily equivalent to (π′0,H′
0, ξ

′
0), where H′

0 is the infinite tensor product E⊗∞ with
canonical unit vector ξ′0 := f1 ⊗ f2 ⊗ · · ·, and

π′0(vs1 · · ·vsk
v∗tk · · · v

∗
t1)(h1 ⊗ h2 ⊗ · · ·)

= 〈h1, vt1〉 · · · 〈hk, vtk〉vs1 ⊗ · · · ⊗ vsk
⊗ hk+1 ⊗ hk+2 ⊗ · · · .

(See [13] and [9] for the definitions and basic properties of infinite tensor products.)
The state β∗iωf corresponds to the sequence (v1, . . . , v1︸ ︷︷ ︸

i

, f1, f2, . . .), so we can

similarly define (π′i,H′
i, ξ

′
i). Replacing (πi,Hi, ξi) with (π′i,H′

i, ξ
′
i) for 0 6 i 6 p−1

in Theorem 3.5,
ξ′p := v1 ⊗ · · · ⊗ v1︸ ︷︷ ︸

p

⊗f1 ⊗ f2 ⊗ · · · ∈ H′
0

is a linking vector for ωf . For this choice of ξ′p, the vectors ξk for k = i+mp > p+1
are similarly given by

ξ′k := v1 ⊗ · · · ⊗ v1︸ ︷︷ ︸
k

⊗f1 ⊗ f2 ⊗ · · · ∈ H′
i.

It is routine to check that (3.4) yields the same formula for extensions of ωf as
that given in Theorem 3.1 of [8].

B. Generalized Cuntz states. Next we use periodic sequences to construct
and classify examples along the lines of those from Section 4 of [10] and Corol-
lary 5.5 of [11]. When f is a constant sequence, the pure extensions of ωf to On
are the Cuntz states ([6]), and lead to shifts which admit a pure normal invariant
state ([15]). We consider here the more general case where f has period p, so that
it is determined by the p-tuple (f1, . . . , fp). For such a sequence, ωf is periodic in
a stronger sense than that of Definition 1.3: indeed α∗pωf = ωf .

Although the pure extensions of ωf are mutually disjoint, by Corollary 4.4(i)
they induce the same endomorphism of B(H) up to conjugacy. In order to compare
the endomorphisms coming from two different sequences we use Corollary 4.4(ii).
The criterion is particularly easy to apply in this strictly periodic situation because
the quasi-orbit of ωf is obtained by simply taking the cyclic permutations of the
p-tuple (f1, . . . , fp).

Corollary 5.1. Suppose f and g are periodic sequences of unit vectors in
n-dimensional Hilbert space E. Let αf (resp. αg) be the ergodic endomorphism
associated to a pure extension of ωf (resp. ωg). Then αf is conjugate to αg if and
only if there is a unitary W on E such that the p-tuple of 1-dimensional subspaces
([Wf1], . . . , [Wfp]) is a cyclic permutation of ([g1], . . . , [gp]).

Proof. Corollary 4.4 (ii) reduces the question of conjugacy to finding a quasi-
free automorphism γW of Fn that superimposes the quasi-orbit of ωf to that of
ωg. By Corollary 5.3 of [11] the quasi-orbits of ωf ◦ γW and ωg coincide if and
only if the series

∑
j

(1− |〈Wfj , gj+k〉|) converges for some k. Since the sequences

f and g are periodic, this series converges if and only if all its terms vanish; i.e. if
and only if [Wfj ] = [gj+k] for some fixed k and every j.
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Remark 5.2. The orbit of the p-tuple ([f1], . . . , [fp]) of one-dimensional
subspaces of E under the joint action of cyclic permutations and of the unitary
group U(E) (acting diagonally on p-tuples) is thus a complete conjugacy invariant
for the class of ergodic endomorphisms arising from pure essential product states
of Fn which are strictly periodic under α∗.

This invariant also classifies the larger class of ergodic endomorphisms as-
sociated with pure essential product states which are eventually strictly peri-
odic, in the sense that there exists p > 1 such that for large enough k one has
α∗(k+p)ωf = α∗kωf .

C. Pure extensions of diagonal states. Assume n is finite. The diagonal
D in Fn is the abelian subalgebra generated by the projections vsv∗s , where s is
any multi-index. The spectrum D̂ of D is canonically isomorphic to the totally
disconnected compact space {1, 2, . . . , n}N. A rational point in D̂ is one which
corresponds to a sequence which is eventually periodic, and irrational points cor-
respond to aperiodic sequences ([6]).

When the sequence f = (fi) consists of basis vectors (that is, each fi ∈ {vk :
1 6 k 6 n}), the state ωf of Fn is a diagonal pure state; i.e. it corresponds to a
point in D̂. It was observed by Cuntz that if the sequence is aperiodic then the
state ωf has a unique pure extension. Using our Corollary 3.6 we can say what
happens at the rational points.

Corollary 5.3. Suppose f is a sequence of basis vectors with periodic tail,
so that ωf |D is a rational point in the spectrum of D. Then the pure extensions
of ωf to On are mutually disjoint and indexed by the circle T (via the composition
of e2πit 7→ e2πit/p and the gauge action).

Setting n = 2 gives uncountably many inequivalent pure extensions of the
trace on the Choi subalgebra of O2 arising from each rational point in D̂.

Proof. The first assertion follows from Corollary 3.6; the second one is im-
mediate because if a state of O2 restricts to a diagonal state on Fn, then it extends
the trace on the Choi algebra ([2] and [19]).
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