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Abstract. We prove a generalization of the Kasparov technical theorem.
It is known that KK-theory cycles can be defined using unbounded

operators ([3]), even in the equivariant case ([15]). We apply this generalized
Kasparov technical theorem to a problem involving the Kasparov product of
cycles defined by unbounded operators. In some earlier work ([15] and [16])
we showed that the Kasparov product can be defined directly in terms of
unbounded cycles, provided that the cycles satisfy certain conditions. In this
paper we show that these conditions are necessary as well as sufficient, after
equivalence.

Keywords: Kasparov product, unbounded modules, KK-theory.

MSC (2000): Primary 46L80; Secondary 19K33, 19K35.

1. INTRODUCTION

The starting point for Kasparov KK-theory ([12]) is an abstraction and axioma-
tization of the main properties of zeroth order elliptic operators, whereas in un-
bounded Kasparov theory, here denoted Ψ, one axiomatizes the properties of first
order operators instead.

Baaj and Julg showed in [3] that in one simple but important special case, the
Kasparov product is a generalization of the “sharp product” introduced by Atiyah
and Singer in their proof of an index theorem ([2]), and that is easier to define
this product for first order operators than for zeroth order operators. Specifically,
they proved that the so-called external case of the Kasparov product reduces to
a sharp product (a graded tensor product) when written in terms of unbounded
operators: their result is that

[D1]⊗ [D2] = [D1 ⊗ 1 + 1⊗D2]
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in this very special case.
In an earlier paper ([16]) we established conditions for an element of z ∈

Ψ(A,C) to be a product of x ∈ Ψ(A,B) and y ∈ Ψ(B,C), and showed that if z
is a product of x and y in our sense, then b(z) is a Kasparov product of b(x) and
b(y). The conditions are:

Theorem 1.1. ([16]) Suppose that we are given three unbounded cycles:
(E1 ⊗̂E2, ϕ1 ⊗̂ Id, D) ∈ Ψ(A,C), (E1, ϕ1, D1) ∈ Ψ(A,B) and (E2, ϕ2, D2) ∈
Ψ(B,C). They are a Kasparov product if

(i) for all x in some dense subset of ϕ1(A)E1, the operator[(
0 T ∗x
Tx 0

)
,

(
D2 0
0 D

)]
where Tx(e) 7→ x⊗ e,

is bounded on Dom (D2 ⊕D);
(ii) for λ sufficiently large, 〈(D1 ⊗ 1)x, Dx〉 + 〈Dx, (D1 ⊗ 1)x〉 > −λ〈x, x〉

for all x in some dense subset of Dom D ∩Dom (D1 ⊗ 1);
(iii) and the resolvent of D is compatible with D1 ⊗ 1 or the reverse.

The first condition is called the (unbounded) connection condition, and the
second is called the (unbounded) positivity condition. It is technically convenient
to give the positivity condition in terms of quadratic forms, though this is not the
original form of the condition. Compatibility is a mild technical condition to make
the intersection of the domain of D and of D1 large enough. It is satisfied if, for
example, the domain of D is contained in the domain of D1 ⊗ 1:

Lemma 1.2. (Compatibility lemma, [16]) We say that the resolvent of D is
compatible with D1 if there is a dense submodule W such that D1(iµ+D)−1(iµ1 +
D1)−1 is defined on W, for all µ, µ1 ∈ R \ {0}. Any of the following conditions
are sufficient to imply compatibility:

(i) Dom D ⊆ Dom D1;
(ii) (iµ + D)−1 maps the submodule C∞

c (D1)E into Dom D1.

By definition, cycles [D1] and [D2] are composable if there exists a [D] that
satisfies the conditions of Theorem 1.1. In this paper we show that such a D
always exists, up to equivalence, by lifting a general Kasparov product from the
bounded to the unbounded picture. This procedure also gives some information
about the form of D. The theorem is that:

Theorem 1.3. If the three cycles (E1, ϕ1, FE1) ∈ KKG(A,B), (E2, ϕ2, FE2)
∈ KKG(B,C), and (E1⊗ϕ2 E2, ϕ1⊗1, F ) ∈ KKG(A,C) form a Kasparov product,
they lift to unbounded cycles (E1, ϕ1, FE1h

−1
1 ) ∈ ΨG(A,B), (E2, ϕ2, FE2h

−1
2 ) ∈

ΨG(B,C), and (E1 ⊗ϕ2 E2, ϕ1 ⊗ 1, Fh−1
12 ) ∈ ΨG(A,C) that satisfy the conditions

for an unbounded Kasparov product.

If we suppose that FE1 and FE2 come from unbounded cycles, then the above
theorem shows that a suitable pair of unbounded cycles can always be perturbed
to equivalent cycles which are composable. This does not give a general and
completely explicit construction for the product cycle, but the problem of giving
such a construction has guided our work.
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This basic problem of how to find a product cycle given two unbounded
cycles is clearly of great interest. This paper proves the existence of the prod-
uct cycle, but unfortunately in a somewhat indirect way, via bounded KK-theory.
Even though there are many different unbounded cycles that are equivalent to
any given cycle, it is probably impossible to write down a general formula for the
product of two unbounded cycles, and therefore it is not likely that a completely
constructive proof of the existence of the product cycle can be given. Of course,
it may be both preferable and possible to prove the results of this paper entirely
within the unbounded picture, for example by giving a way to perturb two un-
bounded cycles so that the product cycle is given by the sum of the perturbed
operators. Nevertheless, the result we obtain is enough to suggest that in any
concrete situation, one can look for a formula for the unbounded product cycle,
presumably simpler and more informative than the bounded one.

Before giving the proof of the main result we discuss an example that helps,
in hindsight, to motivate the proof. First of all, Baaj and Julg ([3]) gave a “lifting
theorem” that they used to show that the natural map b : Ψ(A,B) → KK(A,B) is
surjective. Proposition 2.9 suggests that one could use the construction of Baaj and
Julg to ‘lift’ a pair of bounded cycles satisfying the ordinary connection condition
to a pair of unbounded cycles satisfying the unbounded connection condition. The
original theorem of Baaj and Julg ([3]) is not directly applicable, but their proof
establishes the following lemma (for unital A):

Lemma 1.4. Given a strictly positive h∈K(E), a cycle (E,ϕ, F )∈KK(A,B)
and a countable dense subset (ai) ⊂ A, there is an ` ∈ C∗(h) such that [F,ϕ(ai)]`−1,
[`−1, ϕ(ai)], [`−1, F ] and (1−F ∗F )1/2`−1 are defined on the range of ` and coincide
with bounded operators.

This lemma is enough to show that (E ⊕ E2, ϕ̃, F ⊕ F2) ∈ KK(A + K(E1 ⊕
B), C) can be lifted to an equivalent unbounded nonselfadjoint cycle (E ⊕ E2, ϕ̃,
(F ⊕ F2)`−1). We can choose an h, therefore an `, which is a direct sum `0 ⊕ `2,
so that F`−1

0 is an unbounded connection for F2`
−1
2 . This shows that unbounded

connections always exist, which is something that could also be proven using the
stabilization theorem. The main reason for the approach we have used is the pos-
sibility that one could lift not just a pair of cycles, but a triple of cycles. If this
could be done in such a way that both the connection condition and the positivity
condition are preserved, then we can show that the conditions for the unbounded
Kasparov product can always be satisfied, and that the unbounded theory is for-
mally completely equivalent to the usual theory. However, one can expect that
certain products can be computed more easily in the unbounded picture, which is
the motivation for introducing the unbounded picture in the first place.

Kasparov’s original approach ([12]) to the product was to show the existence
of operators M and N such that

[F1]⊗ [F2] =
[
M1/2(F1 ⊗ 1) + N1/2(1⊗ F2)

]
.

The operators N and M have very special properties and are not easy to construct
explicitly; furthermore, there are some technical complications coming from the
fact that the tensor product 1⊗F2 is not well-defined in most cases of interest. One
therefore has to stabilize the Hilbert modules involved and this makes it even more
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difficult to explicitly determine the product cycle. We call Kasparov’s approach
the noncommutative partition of unity approach.

The next development was the discovery of the connection approach to the
Kasparov product ([7]). Connes and Skandalis found the following criterion for
(E1 ⊗E2, ϕ1 ⊗ 1, F ) to be the Kasparov product of (E1, ϕ1, F1) and (E2, ϕ2, F2) :

(i) FTx − (−1)∂xTxF2 is compact (where Tx is the tensoring operator Tx :
y 7→ x⊗ y).

(ii) ϕ1(a)[F, F1⊗1]ϕ1(a)∗ is positive modulo compact operators for all a ∈ A.

The author has shown that analoguous conditions hold for unbounded cycles.
These conditions are given in Theorem 1.1. Roughly speaking, the result of using
unbounded cycles instead of bounded ones is that, quite generally, bounded oper-
ators are replaced by unbounded ones, and compactness conditions are replaced
by boundedness conditions. This has the advantage that not only is boundedness
almost always easier to prove than compactness, but the Kasparov product can
be simpler to compute.

The starting point for Kasparov’s original construction of the Kasparov prod-
uct is the construction of a strictly positive compact ` with ±i[F, `] 6 `2 for some
given self-adjoint operator F (see [12], Chapter 3, Theorem 1). Applying `−1

from left and right formally gives ±i[`−1, F ] 6 γ. Kasparov used this commu-
tator construction to prove what is now known as Kasparov’s technical theorem.
There is now a simple proof of this theorem ([11]), but Kasparov’s original proof
was motivated by the pseudodifferential calculus, and it is not difficult to rewrite
some parts of it in terms of unbounded operators. However, in this paper we will
not be able to follow the same steps as in Kasparov’s proof, because we have to
satisfy more conditions on the operators that we construct. Our replacement for
Kasparov’s technical theorem will be:

Theorem 1.5. Suppose B1 and B0 are σ-unital C∗-algebras with B0 =
B1B0. Suppose ∆i ⊂ Der Bi, and ∆10 ⊂ Der (B1, B0) are pointwise norm compact
sets of derivation. Suppose Ki is any norm-compact subset of Bsa

i . Then for each
integer m there are strictly positive elements hi ∈ Bi and a scalar γ with

(i) hm
0 6 hm

1 6 1;

(ii) δ(hk)δ(hk)∗ 6 γhm
k for all δ ∈ ∆k;

(iii) δ(h1)δ(h1)∗ 6 γhm
0 for all δ ∈ ∆10;

(iv) (±i[h1, h0])2 6 γhm
0 ;

(v) ±Ki 6 γhm
i .
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2. DEFINITIONS AND LEMMAS

The adjointable operators L and the compact operators on a Hilbert module E
form C∗-algebras, with the corresponding norm topology. In general, when we
speak of the range of an operator in L(E), we mean its Hilbert module range.
Recall that given a representation ϕ : A → L(E), the right ideal JR

ϕ ⊂ L(E) is{
L ∈ L(E) : Lϕ(A) ⊆ K(E)

}
and Jϕ is the self-adjoint subalgebra JR

ϕ ∩ (JR
ϕ )∗,

which is itself an ideal in Iϕ :=
{
L ∈ L(E) : [ϕ(A), L] ⊆ K(E)

}
. The compact

operators K(E) are a special case of Jϕ, obtained if ϕ(A) is unital. Given a family
of operators from one Banach space to another, the pointwise norm topology on
the family is the weakest topology in which the maps defined by evaluation at a
point are continuous with respect to the norm topology on the range space. By
the Tychonoff theorem, a set of operators

{
Fλ∈Λ : A → B

}
is pointwise norm

compact if and only if the image under evaluation at a point,
{
Fλ(a) : λ ∈ Λ

}
, is

norm-compact in B for each a in A. Finally, an unbounded operator T is said to
be bounded on a domain D if ‖Tx‖ 6 M‖x‖ for all x in D.

In general, we will be looking at unbounded operators of the form F`−1,
where ` is a strictly positive compact operator and F is a bounded self-adjoint op-
erator with ±i[F, `] 6 `2. This implies that F and `−1 commute up to a bounded
operator, and that there is a formal adjoint, (F`−1)∗ := `−1F , with good proper-
ties. However, at the moment this is only a formal adjoint. One of the subtleties of
working with unbounded operators on Hilbert modules is that to show that F`−1

has an adjoint, which means that we have to verify that it is regular. Regularity
means primarily that the graph is an orthogonally complemented submodule of
E ⊕E, though some minor conditions on density of the domain are also assumed:

Definition 2.1. A closed unbounded operator D : E → E is regular with
adjoint T if Γ(D) ⊕M2Γ(T ) = E ⊕ E, in the sense of an orthogonal direct sum,
where M2 is the mirror image operator M2(x, y) := (−y, x). We assume that T
and D are both closed and densely defined.

In the case of F`−1, we can prove the following lemma:

Lemma 2.2. Let E be a Hilbert module, and suppose `, F ∈ L(E). Suppose
` is injective and has dense range, `∗−1F ∗ is densely defined, and F ∗F + `∗` is
invertible. Then F`−1 is regular with adjoint `∗−1F ∗. If ` is in Jϕ(E) then F`−1

has resolvent in Jϕ.

Proof. Since ` has dense range and is injective, F`−1 is an unbounded oper-
ator and is densely defined. Consider the operator T : x 7→ (`x, Fx) whose range
is the graph of F`−1. There is a bounded adjointable right inverse given by

V : (p, q) 7→ (F ∗F + `∗`)−1(`∗p + F ∗q)

and therefore Im T is closed, so that E ⊕ E = Im T ⊕ Ker T ∗ (see [21], 15.3.8),
and F`−1 has orthocomplemented graph. The kernel of T ∗ is the set

{
(y, w) :

`∗y + F ∗w = 0
}
, which is the mirror image of the graph of `∗−1F ∗, and the

adjoint of F`−1 is `∗−1F ∗, as expected. The adjoint is densely defined, so we have
regularity.
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If ` is in Jϕ, then

(1 + (`−1)∗F ∗F`−1)−1 = `(`∗` + F ∗F )−1`∗

is in Jϕ.

Lemma 2.3. (i) If T is regular and T, T ∗ have dense range, then T−1 is
regular and (T−1)∗ = (T ∗)−1.

(ii) Suppose that S, T ∈ L(E) have dense range and adjoints with dense
range. Then S−1T−1 is regular with adjoint (T ∗)−1(S∗)−1.

Proof. T−1 and (T ∗)−1 are densely defined by hypothesis, and the mirror
image map M2 : (x, y) 7→ (−y, x) takes the graph of T to the graph of T−1, so
that T−1 is regular with adjoint (T ∗)−1. This proves part (i).

A continuity argument shows that ST and (ST )∗ have dense range, and
certainly ST ∈ L(E) is regular, so the rest follows from the first part.

We are going to use non-selfadjoint unbounded operators to define KK-cycles,
under the hypothesis that the operators only differ from a self-adjoint operator by
a bounded operator, so we extend the usual definition of unbounded KK-theory
to allow this.

Definition 2.4. The set of unbounded Kasparov modules Ψ(A,B) is given
by triples (E,ϕ, D) where E is a Hilbert B-module, ϕ : A → L(E) is a ∗-
homomorphism, and D is an unbounded regular densely defined degree one oper-
ator on E, such that:

(i) Dom D = Dom D∗ and D −D∗ is bounded;
(ii) the operator (λ + D)−1 is in Jϕ for some λ ∈ C;
(iii) for all a in some dense subalgebra of A, the graded commutator [D,ϕ(a)]

is bounded on the domain of D.

We say that two cycles are equivalent if and only if the self-adjoint parts are
equivalent. To justify this definition we need to check that the self-adjoint part of
the operator is a cycle in the ordinary sense, so we show that the compactness of
the resolvent is stable under perturbation by bounded operators:

Lemma 2.5. Let T = D + B where D is self-adjoint and regular, and B is
a bounded adjointable operator. Then the following are equivalent:

(i) (1 + T ∗T )−1 ∈ Jϕ;
(ii) for some λ 6∈ SpT , (λ− T )−1 ∈ JR

ϕ ;
(iii) for all λ 6∈ SpT , (λ− T )−1 ∈ Jϕ;
(iv) for all λ 6∈ SpD, (λ−D)−1 ∈ Jϕ.

Proof. First we prove the equivalence of (ii), (iii) and (iv). We have a resol-
vent equation:

(T − λ)−1 − (D − µ)−1 = −(D − µ)−1(B − µ + λ)(T − λ)−1

= −(T − λ)−1(B − µ + λ)(D − µ)−1,

which immediately implies the equivalence of (iii) and (iv). Since D is self-adjoint,
we can replace Jϕ by the one-sided ideal JR

ϕ when establishing condition (iv), and
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then it is clear that (ii) is equivalent to (iv). For the next part of the proof, it is
convenient to suppose that ‖B‖ < 1

2 , so that

(1 + i(B∗ −B) + T ∗T )−1 = (i + T )−1(−i + T ∗)−1.

The equivalence (iv) ⇔ (iii) still holds if we replace D by T ∗T and T by i(B∗ −
B) + T ∗T in the previous proof, so condition (i) is therefore equivalent to

(i′) (i + T )−1(−i + T ∗)−1 ∈ Jϕ.
It is clear that (iii) implies (i′). Factoring (i + T )−1 in L(E) as u|(i +

T )−1|1/2 = u((i + T )−1(−i + T ∗)−1)1/4 shows that (i′) implies (ii).

Corollary 2.6. A KK-cycle (E,ϕ, D) with D self-adjoint is equivalent to
(E,ϕ, D + B) for all B ∈ L(E).

We collect some known results about connections in KK-theory:

Lemma 2.7. Suppose that F ∈ L(E1 ⊗ E2) is an F2-connection.
(i) If L ∈ L(E1), the commutator [L⊗ 1, F ] is a 0-connection.
(ii) If K ∈ K(E1), the commutator [K ⊗ 1, F ] is compact.
(iii) If f is a continuous function and F, F2 are normal, then f(F ) is an

f(F2)-connection.
(iv) If K ∈ K(E1 ⊗ E2) then F + K is an F2-connection.

The following factorization result will be used.

Theorem 2.8. (Cohen, [5]) Let A be a Banach algebra with left approximate
unit bounded by d. Let E be a left Banach A-module. Then for all z ∈ AE and
ε > 0, there is an a ∈ A and y ∈ E with:

(i) z = ay;
(ii) ‖a‖ 6 d; and
(iii) ‖y − z‖ < ε.

Proposition 2.9. Let E := E1 ⊗̂ϕ2 E2. Then (E ⊕ E2, ϕ̃, F ⊕ F2) is a
KK(A +K(E1 ⊕B), C) cycle if and only if:

(i) F is an F2-connection;
(ii) (E,ϕ1 ⊗ 1, F ) is a KK(A,C) cycle; and
(iii) (E2, ϕ2, F2) is a KK(B,C) cycle.

If conditions (i) and (iii) hold then 1− F 2 is a 0-connection.

Remark 2.10. We define the representation ϕ̃ of K(E1 ⊕B) on E ⊕ E2 as
follows:

ϕ̃

(
k e4

〈e3, · 〉 β

)
:=

(
k ⊗ 1 Te4

T ∗e3
ϕ2(β)

)
∈ L(E ⊕ E2)

where the ei are in E1, k is in K(E1) and β is in B. That this action defines a
homomorphism follows from T ∗αTβ = ϕ2(〈α, β〉) and TαT ∗β = α〈β, 〉 ⊗ 1. On A, ϕ̃

is ϕ1 ⊗ 1⊕ 0, and we can extend ϕ̃ to ϕ̃ : A +K(E1 ⊕B) → L(E ⊕ E2).

Proof. First we show that if (i) and (iii) hold then 1−F 2 is an 0-connection.
Consider

G :=
(

0 Tx(1− F 2
2 )

0 0

)
∈ L(E ⊕ E2).
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This operator has a factorization in L(E ⊕ E2) of the form G = u|G|1/2, where

u =
(

u11 u12

u21 u22

)
and |G|2 =

(
0 0
0 (1− F 2

2 )T ∗x Tx(1− F 2
2 )

)
.

But |G|1/2 is compact since T ∗x Tx(1 − F 2
2 ) = ϕ2(〈x, x〉)(1 − F 2

2 ) is, and therefore
Tx(1−F 2

2 ) = u12|G|1/2 is in K(E2, E). Now it follows from the connection property
that (1− F 2)Tx is compact, as claimed.

Next we show that (i), (ii) and (iii) imply that ϕ̃(a)
(
1− (F ⊕ F2)2

)
is com-

pact. Since F and F2 come from KK-cycles, (ϕ1(a) ⊗ 1)(1 − F 2) and ϕ2(b)(1 −
F 2

2 ) are compact. Because 1 − F 2 is a 0-connection, (K(E1) ⊗ 1)(1 − F 2) and(
0 Tx

T ∗x 0

) (
1− F 2 0

0 1− F 2
2

)
are also compact, so ϕ̃(a)

(
1− F 2 0

0 1− F 2
2

)
is

compact for all self-adjoint a in A +K(E1 ⊕B).
Next we show that if (i), (ii), and (iii) hold, then [ϕ̃(a), F ⊕ F2] is compact.

It is again enough to consider a self-adjoint a, in which case the commutator[(
(ϕ1(a)⊗ 1) + k Tx

T ∗x ϕ2(b)

)
,

(
F 0
0 F2

)]
(where a ∈ A, k ∈ K(E1), b ∈ B) is clearly compact.

Therefore we have shown that (E⊕E2, ϕ̃, F ⊕F2) is a KK(A+K(E1⊕B), C)
cycle if the conditions (i), (ii), and (iii) hold. The converse is easily shown.

We can prove an interesting lemma for commutator estimates:
Proposition 2.11. Suppose that a and c are commuting elements of a (Z2-

graded) C∗-algebra, D is an unbounded operator, and a is a self-adjoint operator
that preserves the domain of D. Let f be operator monotone on an interval con-
taining the spectrum of a. If ±[a,D] 6 c, then f(a) preserves the domain of D
and ±[f(a), D] 6 f ′(a)c.

Proof. Replacing f(x) by f(x − λ) and a by a + λ for a suitable λ, we can
assume that a is positive. If f is operator monotone on [0, ‖a‖], then f can be
represented there by

f(x) =
∫

R+

x(1 + αx)−1 dµ(α),

where µ is a positive Riemann-Stieltjes measure ([10]). The remark about preser-
vation of the domain by f(a) follows from the next lemma, applied to 1 + αa.
Also,

[a(1 + αa)−1, D] = − [(1 + αa)−1, D]
α

= −(1 + αa)−1[D, 1 + αa]
(1 + αa)−1

α

= −(1 + αa)−1[D, a](1 + αa)−1.

Hence for x in the domain of D,〈
x, [f(a), D]x

〉
=

∫
R+

〈
x, (1 + αa)−1

(
(−1)∂D∂a[a,D]

)
(1 + αa)−1x

〉
dµ(α)

6
∫

R+

〈
x, c(1 + αa)−2x

〉
dµ(α)

and the last expression is equal to
〈
x, cf ′(a)x

〉
.
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Lemma 2.12. If a is a positive and invertible bounded operator that preserves
the domain of a closed operator D, and if [D, a] is bounded on that domain, then
a is a bijection of the domain.

Proof. Let A := ‖a‖. The spectrum of a is contained in some disk about A
of radius A− ε. Let

∞∑
0

cn(x−A)n

be the Taylor series expansion about A of 1
x . The partial sums of this series, fn(a),

clearly preserve Dom D, so we only need to show that [D, a−1− fn(a)]x converges
to zero in norm for every x ∈ Dom D. Note that∥∥[(a−A)n, D]

∥∥ 6 n‖a−A‖n−1
∥∥[a−A,D]

∥∥ 6 n(A− ε)n−1
∥∥[a,D]

∥∥,

so ∥∥cn[(a−A)n, D]
∥∥ 6

n

A2

(A− ε

A

)n−1∥∥[a,D]
∥∥

for n > 1, and the sequence N 7→
[
D,

∞∑
N+1

cn(a−A)n
]
x converges to zero in norm.

We see that the sequence Dfn(a)x converges in norm to Da−1x for each x in the
domain of D. D being closed, it follows that a−1x is in the domain of D. Therefore
a maps the domain of D onto itself.

Lemma 2.13. ([1], p. 332) Given a continuous function f : [−1, 1] → R,
there is a continuous function δ with δ(0) = 0, such that

∥∥[S, f(T )]
∥∥ is bounded by

δ
(∥∥ [S, T ]

∥∥)
for all S and all self-adjoint T in the unit ball.

Lemma 2.14. If K is a norm-compact subset of a C∗-algebra B, there is
b ∈ B and a norm-compact subset C such that K = Cb. Given ε > 0, we can
choose to have ‖C‖ 6 (1 + ε)‖K‖ and ‖b‖ 6 1.

Proof. The algebra B acts on C(K, B) from the right. Since K is compact
and B has a canonical approximate unit, there is an approximate unit for C(K, B)
in B. By Cohen’s theorem, the identity function ι : K → K ⊂ B can be factored
as ι(k) = f(k)b with ‖b‖ 6 1 and

sup
x∈K

‖f(x)‖ 6 (1 + ε) sup
x∈K

‖x‖.

Then, define C to be the image of f . The set C is norm-compact because f is
continuous, and clearly is bounded by (1 + ε)‖K‖.

Lemma 2.15. Given ε > 0, a strictly positive element p of a C∗-algebra
B, and a compact subset of self-adjoint operators K ⊂ Bsa, there is a function
f ∈ C0(Sp p) with K 6 f(p) and 0 6 f 6 (1 + ε)‖K‖.

Proof. We can as well consider only the positive part of the operators in
K. By Lemma 2.14 applied to K1/2, there is b ∈ B with ‖b‖ 6 1 such that
K = b∗Cb and ‖C‖ 6 (1 + ε)1/2‖K‖. Since C∗(p) contains an approximate unit



264 Dan Kucerovsky

for B, Cohen’s theorem gives g with b = b′g(p), where ‖b′‖ 6 1 and |g| 6 (1+ε)1/4.
Therefore, K = g(p)b′∗Cb′g(p) and b′∗Cb′ 6 (1 + ε)1/2‖K‖, implying that

K 6 g(p)2(1 + ε)1/2‖K‖ =: f(p).

The next lemma is a special case of the one given in [4], Remark 4.2.2, and
is based on Arveson’s construction of quasi-central approximate units. We will
see later that it extends to the case of a group action, in which case we obtain
approximate equivariance under the action of a suitable set of group elements.

Lemma 2.16. Suppose that p 6 1 in a C∗-algebra A and that fn(p) ⊂ C∗(p)
is an increasing approximate unit. Given ε > 0, and a pointwise norm compact
subset ∆ ⊂ Der A, a norm-compact subset U ⊂ A and g ∈ C0(0, 1] with g < 1,
there is h ∈ Conv (fn) such that

∥∥∆(h(p))
∥∥ < ε,

∥∥(1− h(p))U
∥∥ < ε and h > g.

Proof. The convex set

T := {z ∈ Conv {fn(p)} : z > g(p)}
contains an approximate unit for A. Hence 1 is in the strict closure of T . Define
the affine map F : A → C(∆, A)⊕C(U,A) by x 7→ `(x)⊕ (1− x)u, u ∈ U, ` ∈ ∆.
This map has a strictly continuous extension to the multiplier algebras, so the
strict closure of F(T ) contains F(1) = 0. In particular, the C∗-weak closure of
F(T ) contains 0. But F(T ) is convex, so the norm closure coincides with the weak
closure ([8]), and there is a sequence in F(T ) that converges to zero in norm. We
choose an h(p) ∈ T with ‖F(h(p))‖ < ε.

3. A LIFTING THEOREM THAT PRESERVES POSITIVITY

From the proof of Theorem 1 in [12], Section 3, we extract the following lemma:

Lemma 3.1. Suppose A is a unital C∗-algebra and B is a closed subalgebra.
Let (ur) be an increasing commutative approximate unit in B, and let C ⊂ A be a
self-adjoint subset of operators, satisfying the norm inequalities:

(i)
∥∥(1− ur+1)1/4u

1/4
r

∥∥ 6 2−r;
(ii)

∥∥(1− ur+1)1/4cu
1/4
r

∥∥ 6 2−r for all c ∈ C.
Then, for any positive integer n, the operator h :=

∑
(r−1/n − (r + 1)−1/n)ur

satisfies the operator inequality

[h, c][h, c]∗ 6 γ(n)h2n+2 for all c ∈ C,

where γ(n) is a scalar depending only on n.

Remark 3.2. Given two C∗-algebras B0 and B1 with B0 = B1B0 inside
some larger C∗-algebra A, Cohen’s theorem shows that B1 is in the multiplier
algebra of B0, so we can take A = M(B0). If B0 is actually contained in B1, then
the condition B0 = B1B0 holds if and only if B0 is an ideal in B1.

Also recall that compactness in the pointwise norm topology simply means
that the image of a given set of operators, after evalution at a point, is norm
compact.
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Proposition 3.3. Suppose B1 and B0 are C∗-algebras with strictly positive
elements `i, and suppose B0 = B1B0. Let ∆i ⊆ Der Bi and ∆10 ⊆ Der (B1, B0) be
pointwise norm compact sets of derivations. Let Ki ⊂ Bsa

i be some given norm-
compact subset of selfadjoint operators. Then for every integer m there is a scalar
γ and a function f ∈ C0(R+), with hi := f(`i) satisfying:

(i) δ(hi)δ(hi)∗ 6 γhm
i for all δ ∈ ∆i;

(ii) δ(h1)δ(h1)∗ 6 γhm
0 for all δ ∈ ∆10;

(iii) [h1, h0][h1, h0]∗ 6 γhm
i ;

(iv) Ki 6 γhm
i ; and

(v) fm is operator monotone.

Proof. As pointed out in the remark, Cohen’s theorem (Theorem 2.8) implies
that B0 = B1B0 = B1B0. The positive elements `i can be used to produce abelian
countable approximate units,

(
`
1/jm
i

)∞
j=1

⊂ Bi, and because B0 factors through

B1, `
1/jm
1 is an approximate unit for B0 + B1.
Let us suppose that Ki and ∆i are bounded by 1. We use Lemma 2.16 with

A := B1 + B0 to find a sequence of functions gi in the convex hull of
{
t1/im :

i ∈ N
}
, such that gi(t) > t1/im,

∥∥∆0(gi(`0))
∥∥ 6 2−i,

∥∥∆1(gi(`1))
∥∥ 6 2−i, and∥∥∆10(gi(`1))

∥∥ 6 2−i. The condition gi(t) > t1/im implies that (gi(`1)) is still an
approximate unit for B0 + B1. Define Dk := {0} ∪ {δ(gi(`k)) : i ∈ N, δ ∈ ∆k}.
The function gi were chosen so that the sequence i 7→ ∆k(gi(`k)) would converge
uniformly to zero, implying that Dk is compact. Since Dk ×Dk is compact, the
set

{0} ∪ {δ(gi(`k))δ(gj(`k))∗ + δ(gj(`k))δ(gi(`k))∗ : i, j ∈ N, δ ∈ ∆k}

is also compact, is bounded by 1, and is in Bk by hypothesis. Applying the same
argument to ∆10, we see that the sets:

K ′
0 := K0 ∪ {0} ∪ {δ(gi(`1))δ(gj(`1))∗ + δ(gj(`1))δ(gi(`1))∗ : i, j ∈ N, δ ∈ ∆10}

∪ {δ(gi(`0))δ(gj(`0))∗ + δ(gj(`0))δ(gi(`0))∗ : i, j ∈ N, δ ∈ ∆0}
K ′

1 := K1 ∪ {0} ∪ {δ(gi(`1))δ(gj(`1))∗ + δ(gj(`1))δ(gi(`1))∗ : i, j ∈ N, δ ∈ ∆1}

are norm-compact and bounded by 1.
By Lemma 2.15, there is a function κ ∈ C0(R+) such that 1 > κ and 2κ(`0⊕

`1) > K ′
0 ⊕K ′

1.
Clearly the (gn(`i))∞n=1 are approximate units. We inductively choose a se-

quence of functions fr from the convex hull of gn such that:

(i) fr+1 > κ1/m;
(ii) fr+1 > fr and fr+1 > gr+1;
(iii)

∥∥(1− fr+1)1/4f
1/4
r

∥∥ 6 2−(r+1);
(iv)

∥∥[fr+1(`i), f
1/4
n (`j)]

∥∥ 6 2−(r+1) for all n 6 r;
(v)

∥∥[(1− fr+1(`i))1/4, fn(`j)]
∥∥ 6 2−(r+1) for all n 6 r,

where j = 1 − i and i ∈ {0, 1}. Suppose that fr is known and we choose fr+1 as
follows. Let f ∈ C0(0, 1] be a function which is less than 1, but larger than κ1/m,
larger than fr and larger than gr+1, and is such that (1 − f)1/4f

1/4
r 6 2−(r+1).
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Apply Lemma 2.16 with `0 ⊕ `1 as the strictly positive element, f as the function
which is there referred to as g, and ∆ given by the commutators

x 7→ [x, fn(`0 ⊕ `1)], x 7→
[
x, fn(`0 ⊕ `1)1/4

]
.

Finally, ε in Lemma 2.16 is chosen small enough so that all the inequalities are
satisfied, using the fact that t 7→ t1/4 acting on M(Bi) is strictly continuous, and
preserves quasicentrality by Lemma 2.13.

Looking at the last three of the above five conditions, we see that

(vi)
∥∥(1− fr+1(`i))1/4fn(`j)f

1/4
r (`i)

∥∥ 6 2−r for all n.

If n 6 r, this follows from (iii) and (v) of the above list; if n − 1 > r, it
follows from (iii) and (iv). If we then define

f :=
∑

µrfr and hi := f(`i)

where µr is defined to be r−1/s − (r + 1)−1/s for some integer s larger than m−2
2 ,

then

(vi′)
∥∥(1− fr+1(`i))1/4hjf

1/4
r (`i)

∥∥ 6 2−r for all n.

This and conditions (ii) and (iii) allow us to apply Lemma 3.1 with fk(`i) as the
approximate unit, Bi as B, and {hj} as the subset of operators. We obtain a
scalar γ such that:

(i) [hj , hi][hj , hi]∗ 6 γhm
i .

Since fr > κ1/m for all r, we have hi > κ(`i)1/m in C∗(`i), implying that hm
0 ⊕hm

1 >
κ(`0 ⊕ `1) > 1

2 (K ′
0 ⊕K ′

1); therefore:
(ii) 2hm

i > Ki;
(iii) 2hm

k > δ(gi(`k))δ(gj(`k))∗ + δ(gj(`k))δ(gi(`k))∗ for all δ ∈ ∆k and i, j ∈
N, and

(iv) 2hm
0 > δ(gi(`1))δ(gj(`1))∗ + δ(gj(`1))δ(gi(`1))∗ for all δ ∈ ∆10 and

i, j ∈ N.

Because h1 is in the convex hull of {gi(`1)}, we have h1 =
∑

ωigi(`1). Summing
δ(gi(`1))∗δ(gj(`1)) with coefficients ωiωj , we find that 2hm

0 > δ(h1)∗δ(h1) for all
δ ∈ ∆10. Similarly, 2hm

k > δ(hk)∗δ(hk) for all δ ∈ ∆k.
Finally, recalling that the fi are in the convex hull of (t1/im)∞i=1, we see that

the m-fold products fr1fr2 · · · frm are convex combinations of operator monotone
functions, so that fm =

( ∑
µrfr

)m is also operator monotone.

Corollary 3.4. Suppose B1 and B0 are σ-unital C∗-algebras with B0 =
B1B0. Suppose ∆i ⊂ Der Bi, and ∆10 ⊂ Der (B1, B0) are pointwise norm compact
sets of derivations. Suppose Ki is any norm-compact subset of Bsa

i . Then for each
positive integer m there are strictly positive elements hi ∈ Bi and a scalar γ such
that:

(i) hm
0 6 hm

1 6 1;
(ii) δ(hk)δ(hk)∗ 6 γhm

k for all δ ∈ ∆k;
(iii) δ(h1)δ(h1)∗ 6 γhm

0 for all δ ∈ ∆10;
(iv) [h1, h0][h1, h0]∗ 6 γhm

0 ;
(v) ±Ki 6 γhm

i .
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Remark 3.5. If m > 4, then we can multiply hi by a suitable scalar in order
to replace γ by 1, but then we can no longer expect that hm

1 6 1.

Proof. By Cohen’s theorem, the hypothesis B0 = B1B0 implies B0 = B1B0 =
B0B1. The existence of countable approximate units implies that there are strictly
positive elements pi ∈ Bi. Suppose that ‖pi‖ 6 1, and define `21 := p1, `20 = `1p0`1,
so that `20 6 `21 in M(B0), and `0 is in B0. Because `1B0 = (`1B1)B0 and `1B1 is
dense in B1, we have `1B0 dense in B0. A continuity argument shows that the com-
position of two operators with dense range has dense range, so `1p0`1B0 is dense
in B0; and `20, hence `0, is strictly positive in B0. Replacing Ki by (−Ki)∪Ki, we
apply Proposition 3.2, and multiply the hi by a suitable positive scalar to make
h1 6 1. The operator monotonicity of fm implies that hm

0 6 hm
1 6 1 in M(B0).

Finally, note that the operators hi are in fact strictly positive, because it can be
easily verified that hi > α`i > 0 for some scalar α.

4. UNBOUNDED KASPAROV PRODUCTS

We now apply the above results to prove a theorem concerning unbounded Kas-
parov products.

We begin with some lemmas about Hilbert module ranges that fit the situ-
ation of Proposition 3.2. In Hilbert space case, the range of an operator A ∈ LC
contains the range of another operator B ∈ LC if and only if there exists a factor-
ization B = AD. The difficulty with the corresponding result for a Hilbert module
is that the bounded operator D does not necessarily have to be adjointable, and
questions about the extension of partially defined bounded operators to adjointable
operators arise. Hence range inclusion results, which are really statements about
the existence of certain, possibly nonadjointable, bounded operators, are easier to
obtain than the corresponding factorization results, and are quite sufficient for our
application. In the next lemma, a different proof allows replacing the exponent 4
by 2 + ε, but the exact value of the exponent does not matter for our application.

Lemma 4.1. Let S, T ∈ L(E) be self-adjoint, with S having dense range. If
0 6 S4 6 T 4 then Ran S ⊆ RanT .

Proof. Let fα(λ) := (λ1/4 + α)−1. Let x ∈ RanS. Observing that (β−α)2

α2β2+g(λ)

is operator monotone decreasing if g is operator monotone increasing, we see that

(fα(λ)− fβ(λ))2 =
(β − α)2

(α + λ1/4)2(β + λ1/4)2

is operator monotone decreasing for all α, β > 0. Hence

(fα(T 4)− fβ(T 4))2 6 (fα(S4)− fβ(S4))2.

Apply L 7→
∥∥〈

Lx, x
〉∥∥1/2 to both sides, obtaining∥∥(α + T )−1x− (β + T )−1x

∥∥ 6
∥∥(α + S)−1x− (β + S)−1x

∥∥.
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We claim that α 7→ (α+S)−1x converges as α 7→ 0+, in which case α 7→ (α+T )−1x
also converges, and hence

Ran T 3 T lim(α + T )−1x = x− limα(α + T )−1x = x.

To verify the claim, we use Cohen’s theorem to factor x ∈ RanS into Sf(S)y with
f ∈ C0(Sp S), and then it follows that∥∥S−1x− (α + S)−1x

∥∥ 6
∥∥y

∥∥ sup
λ∈Sp S

∣∣∣ α

α + λ
f(λ)

∣∣∣
goes to zero as α does.

Corollary 4.2. If 0 6 S4 6 T 4 and S has dense range, then T−1S is
bounded and ST−1 is bounded on Dom T−1.

Proof. The closed graph theorem implies that T−1S is bounded. Since〈
S2y, y

〉
6

〈
T 2y, y

〉
, for all x in the domain of T−1 we have

〈
ST−1x, ST−1x

〉
6〈

x, x
〉

and ‖ST−1x‖2 6 ‖x‖, hence ST−1 is bounded on its domain.

Again, in the next lemma, the exponents can be improved; for example, 3
can be replaced by 2 + ε.

Lemma 4.3. In a C∗-algebra A,
(i) if CC∗ 6 S3 then C = Sa for some a ∈ A;
(ii) if C is self-adjoint and ±C 6 S3 then C = SbS for some selfadjoint

b ∈ A;
(iii) if C is self-adjoint and ±C 6 S8 and S3 6 T 3, then C = STcTS and

S2 = Td for some selfadjoint c ∈ A.

Proof. The first statement is standard ([17], 1.4.5). The second statement
follows if we note that (√

S3 ± C

2

)2

6 S3,

so
√

S3±C
2 = Sa± by the first part, and C = S(a+a∗+ − a−a∗−)S. Now we prove

the third part. By part (i), S3/2 = Ta. By part (ii), the operator inequality
±C 6 ‖S1/2‖S15/2 implies that C = S5/2bS5/2 = STaba∗TS.

Lemma 4.4. Suppose that S and T are strictly positive, and d is selfadjoint
in L(E). If

(i) ±i[S, T ] 6 S8;
(ii) S3 6 T 3;
(iii) ±i[d, T ] 6 S8,

then [T−1, d]S−1 is bounded on Ran TS.

Proof. By Lemma 4.3 there are bounded adjointable operators p, u, r ∈ L(E)
such that

[d, T ] = STuTS = TrT and [T, S] = STpTS.

By Corollary 4.2 there is a possibly nonadjointable bounded operator L] := T−1S,
and

(L]Tu + rTp)x = (T−1[d, T ]S−1T−1 + T−1[d, T ](T−1S−1 − S−1T−1))x

= ([T−1, d]S−1)x
for all x in Ran TS.
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Lemma 4.5. Suppose that S and T are strictly positive operators on a Hilbert
B-module, and M is a bounded self-adjoint operator. If

(i) ±i[S, T ] 6 S8;
(ii) S4 6 T 4;
(iii) ±i[M,T ] 6 S4 and ±i[M,S] 6 S8,

then
(a) S−1M2T−1 − S−1T−1M2 is bounded on Ran TS; and
(b) S−1T−1M2 −MT−1/2S−1T−1/2M is bounded on Ran TS.

Proof. Step 1. First we show that M preserves D := Ran TS.
Since [M,S] = STuTS for some u ∈ L(E), the unbounded operator T−1[M,

S−1] is in fact bounded on Ran S ⊇ D. (This range inclusion comes from the
factorization TS − ST = STbTS.) By Lemma 4.4, [M,T−1]S−1 is bounded on
D, so by the derivation property of commutators, [M,T−1S−1] is bounded on D.
Since on this domain S−1T−1−T−1S−1 is bounded, by the previous factorization,
[M,S−1T−1] is also bounded. In fact, we have the consequence that

M2S−1T−1 ∼ MS−1T−1M ∼ S−1T−1M2 ∼ M2T−1S−1

where the equivalence signs denote equivalence modulo bounded operators on the
domain D.

Step 2. Now we show that S−1M2T−1 ∼ S−1T−1M2.
By Lemma 4.4, the first and the last terms on the right hand side of

[T−1,M2]S−1 = M [T−1,M ]S−1 + [T−1,M ][M,S−1] + [T−1,M ]S−1M

are bounded on D. By Lemma 4.3, [M,S−1] = TuT and [M,T ] = TrT , so the
middle term is equal to the bounded operator rTuT on D.

Step 3. The proof of the last part of the lemma is based on the proof of
Proposition 2.11. Recall that for all x in Ran S,

[T 1/2, S−1]x =
∫

R+

(1 + αT )−1[T, S−1](1 + αT )−1xdµ(α),

for some positive Riemann-Stiltjes measure µ. Because of the factorization [T, S] =
STuTS, we see that

[T 1/2, S] = STvTS where v :=
∫

R+

(1 + αT )−1u(1 + αT )−1 dµ(α).

To verify the convergence of this integral, we note that ±iu 6 λT 2, implying

±i
∫

R+

(1 + αT )−1u(1 + αT )−1 dµ(α) 6 λT 3/2.

Hence T−1/2[T−1/2, S−1]T−1/2 is bounded onD, so that in particular, [T−1/2, S−1]
T−1/2 is bounded on D.

Step 4. Combining Steps 1 and 3 of the above proof, we see that the
operators MS−1T−1M − S−1T−1M2 and MT−1/2S−1T−1/2M − MS−1T−1M
are bounded on D, as desired.
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Suppose that we are given three cycles satisfying the usual conditions for
a Kasparov product: (E1, ϕ1, FE1) ∈ KK(A,B), (E2, ϕ2, FE2) ∈ KK(B,C), and
(E1 ⊗ϕ2 E2, ϕ1 ⊗ 1, F ) ∈ KK(A,C) where F is an F2-connection and [F, FE1 ] is
positive in Iϕ1⊗1 modulo Jϕ1⊗1. We shall find three unbounded operators and lift
each of these cycles, in such a way that the unbounded connection conditions are
satisfied. We assume that the algebras A,B and C are σ-unital.

In the following theorem, the conditions for an unbounded Kasparov product
are those given in Introduction, modified in a minor way to allow for nonselfadjoint
unbounded cycles, as in Definition 2.4.

Theorem 4.6. If the three cycles (E1, ϕ1, FE1) ∈ KK(A,B), (E2, ϕ2, FE2) ∈
KK(B,C), and (E1⊗ϕ2 E2, ϕ1⊗ 1, F ) ∈ KK(A,C) form a Kasparov product, they
lift to unbounded cycles (E1, ϕ1, FE1h

−1
1 ) ∈ Ψ(A,B), (E2, ϕ2, FE2h

−1
2 ) ∈ Ψ(B,C),

and (E1 ⊗ϕ2 E2, ϕ1 ⊗ 1, Fh−1
12 ) ∈ Ψ(A,C) that satisfy the conditions for an un-

bounded Kasparov product.

Proof. We state the proof for unital algebras A,B and C, which simplifies
the exposition by replacing Iϕ1 and Jϕ1 with L and K, respectively. However, it
is the same proof in either case, since it is easily verified that all operators that
appear are in Iϕ1 .

We define E = E1 ⊗ϕ2 E2, Ẽ = E ⊕ E2, F1 := FE1 ⊗ 1⊕ 0, F0 := F ⊕ FE2 ,
and [F0, F1] = [F, FE1 ⊗ 1] ⊕ 0 = M2 + Y , where F is the given F2-connection,
M is positive and Y is compact. Define two subalgebras of L(Ẽ) to be B1 :=
K(E1) ⊗ 1 ⊕ K(E2) and B0 := K(E1 ⊗ E2) ⊕ K(E2). By Lemma 2.7, the square
root of the positive part of [F, FE1 ⊗1] is a 0-connection, so M derives B1 into B0.
Since F is a connection, F0 also derives B1 into B0.

Recall that the connection part of the conditions for a Kasparov product
implies, by Proposition 2.9, that there exists a cycle (E ⊕ E2, ϕ̃, F0) ∈ KK(A +
K(E⊕B), C) with F0 = F ⊕FE2 , and the unbounded connection condition is then
taken care of simply by lifting this cycle to any unbounded cycle (E⊕E2, ϕ̃, F0`

−1
0 )

with `0 = h12 ⊕ h2 ∈ B0. To see this, note that if (E ⊕ E2, ϕ̃, F0`
−1
0 ) is in

Ψ(A +K(E ⊕E), C), then from the definition of ϕ̃ in Remark 2.10 we have that:

(i) (E,ϕ1 ⊗ 1, Fh−1
12 ) is in Ψ(A,C);

(ii) (E2, ϕ2, FE2h
−1
2 ) is in Ψ(B,C); and,

(iii) the two cycles satisfy the first unbounded connection condition since

ϕ̃

(
0 e〈

e, ·
〉

0

)
=

(
0 Te

T ∗e 0

)
.

This shows that the first unbounded connection condition of Theorem 1.1 (i)
can be obtained quite easily, only by using the fact that the operator `−1

0 is a direct
sum. At the same time, we want to satisfy the unbounded positivity condition by
lifting (E1, ϕ1, FE1) to an unbounded cycle (E1, ϕ1, FE1h

−1
1 ) ∈ Ψ(A,B) with the

sesquilinear form given by commutator of the self-adjoint parts of F0`
−1
0 and of

FE1h
−1
1 ⊗ 1 ⊕ 1 semibounded below. In order to do this, we will have to use our

generalization of the Kasparov technical theorem, as given in Corollary 3.4.
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Let Ã be a norm-compact set of self-adjoint operators with dense linear span
in A +K(E ⊕B), and let A be a norm-compact set of self-adjoint operators with
dense linear span in A. Consider

K0 := {Y, (1− F 2
0 ), i[ϕ̃(Ã), F0]}.

Recall that F0 = F ⊕ FE2 , where F defines a KK(A,C) cycle and FE2 defines a
KK(B,C) cycle. Since A and B are unital, 1− F 2

0 is in K(E ⊕ E2). Hence K0 is
in B0 and is norm-compact. Let

∆10 := {x 7→ [F0, x], x 7→ [M,x]},
K1 := {(1− F 2

1 ), i[ϕ1(A)⊗ 1, F1]},
∆0 := {x 7→ [F1, x], x 7→ [M,x], x 7→ [F0, x], x 7→ [ϕ̃(Ã), x]},

and
∆1 := {x 7→ [F1, x], x 7→ [ϕ(A)⊗ 1, x]}.

Now apply Corollary 3.4 with m = 16 to obtain `i ∈ Bi with:
(i) ±i[M, `0] 6 `80, ±i[F0, `0] 6 `80;
(ii) [ϕ̃(ã), F0`

−1
0 ] and [ϕ1(a) ⊗ 1, F1`

−1
1 ] compact for all a in A ⊂ A and ã

in Ã;
(iii) `−2

0 Y `−2
0 , `−1

0 (1− F 2
0 )`−1

0 and `−1
1 (1− F 2

1 )`−1
1 bounded, by Lemma 4.3

combined with part (v) of our version of Kasparov’s technical theorem;
(iv) `80 6 `81;
(v) ±i[`1,M ] 6 `80, ±i[`1, F0] 6 `80;
(vi) ±i[`1, F1] 6 `81, ±i[`0, F1] 6 `80; and
(vii) ±i[`1, `0] 6 `80.
The special operators `i ∈ L(E⊕E2) that we have obtained from the theorem

are in B1 = (K(E1) ⊗ 1) ⊕ K(E2) and B0 = K(E1 ⊗ E2) ⊕ K(E2), so as before,
we can write `0 =: h12 ⊕ h2, and `1 =: h1 ⊗ 1⊕ h2. Properties (i) and (vi) of the
above list show that the unbounded operators Fi`

−1
i are almost self-adjoint.

Since we have λ`2i > 1−F 2
i for some λ, the operators λ`2i +F 2

i are invertible,
and so Lemma 2.2 implies that the operators Fi`

−1
i are regular and that F0`

−1
0

and FE1h
−1
1 have compact resolvents. Since `40 6 `41, we have h4

12 6 h4
1 ⊗ 1 and

the domain of Fh−1
12 is contained in the domain of (FE1h

−1
1 ) ⊗ 1 which implies

compatibility.
Finally, we take care of the positivity condition by showing that the sesquilin-

ear form associated with the graded commutator of the self-adjoint parts of F1`
−1
1

and F0`
−1
0 is the sum of a positive unbounded form and a bounded form, so

the commutator is semibounded below on its domain as a form. Recall that
[F1, F0] = M2 + Y with M positive. The commutator that we are interested in
can be expanded using the derivation property:

[F1`
−1
1 +`−1

1 F1, F0`
−1
0 +`−1

0 F0]=F1[`−1
1 , F0]`−1

0 +F1F0[`−1
1 , `−1

0 ]−F0[F1, `
−1
0 ]`−1

1

+ [F1, F0]`−1
0 `−1

1 − F0`
−1
1 [F1, `

−1
0 ] + F0[`−1

1 , `−1
0 ]F1 + [`−1

1 , F0]F1`
−1
0

+ `−1
1 [F1, F0]`−1

0 + eight more terms, the adjoints of the above.

We consider the above expression, term by term.
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(1) The form given by [F1, F0]`−1
0 `−1

1 plus `−1
1 [F1, F0]`−1

0 is equivalent to a
positive (unbounded) form plus a form that is bounded on its domain.

To see this, we recall that [F1, F0] = M2 + Y and consider the case of M
and the case of Y separately. Lemma 4.5 shows that the terms involving M2 are
equivalent to a positive unbounded form:

2
〈
`
−1/2
0 `

−1/2
1 Mx, `

−1/2
0 `

−1/2
1 My

〉
.

The terms involving Y are bounded, because it is easy to deduce from the factor-
ization Lemma 4.3 and Corollary 4.2 that Y `−1

0 `−1
1 and `−1

1 Y `−1
0 are bounded.

(2) F1F0[`−1
1 , `−1

0 ] and F0[`−1
1 , `−1

0 ]F1 are bounded because [`−1
1 , `−1

0 ] is.
(3) −F0[F1, `

−1
0 ]`−1

1 − F0`
−1
1 [F1, `

−1
0 ] is bounded because ±i[F1, `0] 6 `80 im-

plies (by Lemma 4.3 (iii)) that `−1
1 [F1, `

−1
0 ] is bounded.

(4) F1[`−1
1 , F0]`−1

0 + [`−1
1 , F0]F1`

−1
0 is bounded because, first of all, by Lem-

ma 4.4, [`−1
1 , F0]`−1

0 is bounded, and if we write

[`−1
1 , F0]F1`

−1
0 = [`−1

1 , F0][F1, `
−1
0 ] + [`−1

1 , F0]`−1
0 F1,

then Lemma 4.3 shows the middle term is bounded.

This completes the proof of the main result, Theorem 1.3, in the case of no
group action. For simplicity of exposition, we have focused on the equivariant
case. However, the equivariant case presents no new problems. Recall that a
locally compact group G is said to have an action on a graded C∗-algebra B if
there is a homomorphism α from G into the degree zero ∗-automorphisms of B.
The group acts on a Hilbert B-module E by a homomorphism, also denoted α,
into the invertible bounded linear transformations on E as a Banach space, with
αg(eb) = αg(e)αg(b), αg〈x, y〉 = 〈αgx, αgy〉. It will be convenient to consider
Ẽ := C(K, E), where K ⊂ G is compact, and then there are two natural ways to
transfer operators from E to Ẽ, defined by (L̃f)(g) := Lf(g) and (α(L̃)f)(g) :=
αg(Lα−1

g (f(g)). For the sake of completeness we give the definition of ΨG, as first
given by the author in [15]:

Definition 4.7. The set of unbounded equivariant Kasparov modules
ΨG(A,B) is given by triples (E,ϕ, D) where E is a Hilbert B-module with G-
action; ϕ : A → L(E) is a ∗-homomorphism satisfying αg(ϕ(a)e) = ϕ(αg(a))e;
and D is an unbounded regular degree one self-adjoint operator on E, such that:

(i) g 7→
{
D − αg(D)

}
is continous as a map from G into the bounded

operators on E with the pointwise norm topology;
(ii) the operator (i + D)−1 is in Jϕ;
(iii) for all a in some dense subalgebra of A, the commutator [D,ϕ(a)] is

bounded on the domain of D.

It is perhaps surprising that pointwise norm continuity (strong continuity in
the Hilbert module sense) is all that is needed in part (i) of the above definition.
It has been shown by the author that the unbounded connection conditions for a
Kasparov product still hold and have the same form in the equivariant case.
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Theorem 4.8. Suppose that G is a locally compact second countable topo-
logical group. If the three cycles (E1, ϕ1, FE1) ∈ KKG(A,B), (E2, ϕ2, FE2) ∈
KKG(B,C), and (E1 ⊗ϕ2 E2, ϕ1 ⊗ 1, F ) ∈ KKG(A,C) form a Kasparov product,
they lift to unbounded cycles (E1, ϕ1, FE1h

−1
1 ) ∈ ΨG(A,B), (E2, ϕ2, FE2h

−1
2 ) ∈

ΨG(B,C), and (E1 ⊗ϕ2 E2, ϕ1 ⊗ 1, Fh−1
12 ) ∈ ΨG(A,C) that satisfy the conditions

for an unbounded equivariant Kasparov product.

Proof. We indicate the changes necessary for adapting the proof of Theo-
rem 4.6. Let K be a precompact neighbourhood of e ∈ G with K−1 = K. Replace
E1 and E2 by C(K, E1) and C(K, E2) so that, for example, B1 and B0 become
B1 := C(K, (K(E1) ⊗ 1) ⊕ K(E2)) and B0 := C(K,K(E1 ⊗ E2) ⊕ K(E2)). Let
α ∈M(Bi) be given by the action of K on Ei. Now note that the only place in the
proof of Proposition 3.3 where we use the fact that the ∆i are sets of derivations
is in Lemma 2.16. Therefore the only change needed to add the “quasiderivation”
L 7→ α(L)−L to the sets ∆i in Proposition 3.3 is to do so in the lemma. Deferring
the proof that this can be done to Lemma 4.9, we next define

K0 := {α(F0)− F0, Y, (1− F 2
0 ), i[ϕ̃(Ã), F0]},

K1 := {α(F1)− F1, (1− F 2
1 ), i[ϕ1(A)⊗ 1, F1]},

∆0 := {x 7→ α(x)− x, x 7→ α−1(x)− x, x 7→ [F1, x],

x 7→ [M,x], x 7→ [F0, x], x 7→ [ϕ̃(Ã), x]},
∆1 := {x 7→ α(x)− x, x 7→ α−1(x)− x, x 7→ [F1, x], x 7→ [ϕ(A)⊗ 1, x]},

and ∆10 is chosen in the same way as before.
Now we choose strictly positive constant sections of Bi and proceed as before

to obtain operators `−1
i , having the additional properties that α(`−1) − `−1 and

(α(Fi) − Fi)`−1
i are uniformly bounded and strongly continuous as functions of

g ∈ K, using Lemma 4.11. Therefore,

g 7→ Fi`
−1
i − αg(Fi`

−1
i )

is pointwise continuous and uniformly bounded over K ⊂ G. Since the group G
is σ-compact, any g ∈ G can be written as a finite product of elements in K,
and it follows that Fi`

−1
i − αg(Fi`

−1
i ) is locally bounded and strongly continuous

everywhere in G. We then proceed as in the proof of Theorem 4.6 and obtain
elements of unbounded equivariant KK-theory.

We now prove the required equivariant generalization of Lemma 2.16.

Lemma 4.9. Suppose that p 6 1 in a C∗-algebra A and that fn(p) ⊂ C∗(p)
is an increasing approximate unit. Given ε > 0, and a pointwise norm compact
subset ∆ ⊂ Der A, a norm-compact subset U ⊂ A and g ∈ C0(0, 1] with g < 1,
there is an h ∈ Conv (fn) such that

∥∥∆(h(p))
∥∥ < ε,

∥∥(1− h(p))U
∥∥ < ε and h > g.

If there is a group action on A, and if we are given a pointwise norm compact set
of group elements K, then

∥∥h(p)− αk(h(p))
∥∥ < ε.

Remark 4.10. Pointwise norm compactness of the action of a subset K of
the group means that the sets {αka : k ∈ K} are norm-compact in A for each
a ∈ A. The corresponding topology on the group is the unique weakest topology
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in which all the maps πa : G → A given by πa : g 7→ αga are continuous. In
general this topology is not even T0.

Proof. The convex set

T := {z ∈ Conv {fn(p)} : z > g(p)}

contains an approximate unit for A. Hence 1 is in the strict closure of T . Define the
affine map F : A → C(∆, A)⊕C(U,A)⊕C(K, A) by x 7→ `(x)⊕(1−x)u⊕(x−αkx),
u ∈ U, ` ∈ ∆, k ∈ K. This map has a strictly continuous extension to the multiplier
algebras, so the strict closure of F(T ) contains F(1) = 0, and the C∗-weak closure
of F(T ) contains 0. But F(T ) is convex, so the norm closure coincides with the
weak closure ([8]), and there is a sequence in F(T ) that converges to zero in norm.
We choose an h(p) ∈ T with ‖F(h(p))‖ < ε.

Lemma 4.11. If

±(α(`)− `) 6 γ`3 and ± (α−1(`)− `) 6 γ`3

on C(K, E) then α(`−1)− `−1 is bounded on Ran `.

Proof. By Lemma 4.3 there are bounded operators u and v such that α(`)−
` = `u` and α−1(`)− ` = −`v`. Hence

α(`)(`−1 − α(`−1))` = α(`)− ` = `u` = α(`)α(v)α(`) = α(`)α(v)(` + `u`),

which implies that `−1 − α(`−1) = α(v)(1 + `u) on Ran `.
This completes the proof of Theorem 1.3.

5. FINAL REMARKS

There is the natural question of whether our arguments generalize to ideals other
than Jϕ C Iϕ. Most of what we have done is quite general, but we do need the
existence of approximate units having various special properties, in particular,
quasicentrality in Iϕ. If we specialize to the case of K-homology, then Voiculescu
([20]) shows that the existence of quasicentral approximate units is a necessary
condition for the existence of an unbounded K-homology cycle with respect to a
given ideal. The most important ideals to consider are the Schatten-von Neumann
p-classes, since K-homology with Schatten classes instead of compact operators is
the starting point for noncommutative geometry ([6]).

This work was partially supported by the Swiss National Fund for Scientific Re-
search, grant 20-46899.96, and by NSERC.
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