J. OPERATOR THEORY © Copyright by THETA, 2001
45(2001), 53-80

UNBOUNDED C*-SEMINORMS AND UNBOUNDED
C*-SPECTRAL ALGEBRAS

SUBHASH J. BHATT, ATSUSHI INOUE and HIDEKAZU OGI

Communicated by Serban Stratila

ABSTRACT. Several s-algebras A carry with them unbounded C™*-seminorms
in the sense that they are C*-seminorms defined on *-subalgebras. Un-
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1. INTRODUCTION

Unbounded C*-seminorms on *-algebras in the sense that they are C*-seminorms
defined on x-subalgebras have appeared in many mathematical and physical sub-
jects (for example, locally convex x-algebras in [5]-[8] and [18], and the quantum
field theory in [1], [14] and [32] etc.). But this systematical study has not yet done
sufficiently. The main purpose of this paper is to do a systematical study of un-
bounded C*-seminorms and to apply it to a study of unbounded *-representations
and that of locally convex x-algebras.

The paper is organized as follows: In Section 2 we construct unbounded
x-representations of a s-algebra from unbounded C*-seminorms and investigate
them. Let A be a x-algebra. Let p be a C*-seminorm defined on A. Every -
representation of the Hausdorff completion of (A, p) gives rise to a *-representation
of A into bounded Hilbert space operators. However, there are a number of sit-
uations in which natural C*-seminorms are defined on *-subalgebras of 4. Then
they should lead to unbounded operator representations of A. An unbounded m™-
(respectively C*-) seminorm is a submultiplicative *-(respectively C*-) seminorm
p defined on a x-subalgebra D(p) of A. Then N, := {z € D(p) : p(z) = 0} is a
«-ideal of D(p) and N, := {x € D(p) : ax € D(p), Va € A} is a left ideal of A.



54 SUBHASH J. BHATT, ATSUSHI INOUE AND HIDEKAZU OGI

It is shown that any faithful nondegenerate x-representation II, : A, — B(H) of
the C*-algebra A, obtained by the Hausdorftf completion of (D(p), p) leads to an
unbounded #-representation m, of A such that ||m,(x)| < p(x) for all x € D(p).
But, 7, is not necessarily nontrivial (that is, Hy, # {0}), and m, is nontrivial
if and only if 91, ¢ N,. We assume that an unbounded C*-seminorm satisfies
the condition M, ¢ N,. Then 7, is always strongly nondegenerate. Here we say
that a *-representation 7 is strongly nondegenerate if there exists a left ideal 7
of A contained in AJ := {z € A : 7(z) is bounded}, such that [7(Z)H,] = Hax,
where [K] denotes the closed linear span of a subset IC of a Hilbert space. We
denote by Rep(.A,p) the set of all such #-representations m, of A. In order to
investigate representations in Rep(A,p) in details, we introduce the notions of
nondegenerate, finite, uniformly semifinite, semifinite and weakly semifinite un-
bounded C*-seminorms, and show that if p is weakly semifinite or semifinite, then
there exists a strongly nondegenerate *-representation 7, in Rep(A,p) such that

lmp(x)|| = p(x) for all x € D(p). Such a 7, is called well-behaved. In Section
3 we consider the converse direction of Section 2. We construct an unbounded
C*-seminorm r, on A from a strongly nondegenerate *-representation 7 of A and
a natural well-behaved representation ﬂﬁ of A constructed from 7, which is the
restriction of the closure 7 of 7. Further, it is shown that if p is a weakly semifinite
unbounded C*-seminorm on A and 7, is any well-behaved *-representation, then
Tx, is a maximal extension of p. In Section 4 we define and characterize the notion
of regular unbounded C*-seminorms. An unbounded C*-seminorm on a x-algebra
A is regularif it is a restriction of the unbounded C*-seminorm sup p,, defined by a

[0
family {p,} of C*-seminorms on A. It is shown that given a semifinite unbounded
C*-seminorm p on A, p is regular if and only if there exists a well-behaved -

representation 7, of A which is a restriction of the direct sum € 7, of bounded
[
x-representations 7w, of A.

In Section 5 we construct the unbounded Gelfand-Naimark C*-seminorm | - |,
on A from an unbounded m*-seminorm p on .A. Yood ([33]) has investigated some
aspects of bounded C*-seminorms by re-examining the construction of Gelfand-
Naimark pseudo-norm discussed in [9]. Here we extend some of Yood’s results
about C*-seminorms to unbounded C*-seminorms. In Section 6 we apply the re-
sults developed earlier to the study of spectral algebras. Following Palmer ([22])
a spectral algebra A is an algebra on which there is defined a submultiplicative
seminorm p (called a spectral seminorm) such that {z € A: p(x) < 1} C A¥(=
the set of all quasi-regular elements of .4). The morale of [22] and [23] is that even
though a spectral algebra need not be normable, it is rich enough to recapture the
pure algebraic flavour of much of the spectral theory of Banach algebras. We call
an unbounded m*-seminorm p to be spectral (respectively hereditary spectral) if
{z € D(p) : p(x) < 1} C D(p)?* (respectively p[B is spectral for each x-subalgebra
B of A). An unbounded x-representation 7 of A is a spectral *-representation (re-

spectively a hereditary spectral x-representation) if Sp Az (z) C Spes(m (m(z)) U{0}

for all z € A,C* () being the C*-algebra generated by m(AT) (respectively n[B
is spectral for each #-subalgebra B of A). It is shown that there exists a strongly
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nondegenerate x-representation m of A such that m, := w[AT is (hereditary) spec-
tral if and only if there exists a maximal, weakly semifinite, (hereditary) spec-
tral unbounded C*-seminorm on A. Further, we define the notion of stability of
unbounded m*- (or C*-) seminorms and characterize it by spectral unbounded
C*-seminorms. An unbounded m*-seminorm p on A is called stable if for any
x-subalgebra B of A, any *-representation m of B such that B(D(p) C Bf and
[r(B\D(p))D(n)] = H, can be dilated to a *-representation ¢ of A such that
D(p) € Aj and [o(D(0))D(0)] = H,. It is shown that a semifinite unbounded
C*-seminorm on A is hereditary spectral if and only if it is spectral and stable. In
Section 7 we give some examples of (regular, spectral, weakly semifinite, semifi-
nite) unbounded C*-seminorms on special *-algebras (locally m-convex x-algebras,
pro-C*-algebras, M*-like (or C*-like) locally convex #-algebras, Kothe sequence al-
gebras, O*-algebras). Throughout this paper we assume that a *-algebra A has
always an identity 1 to simplify the arguments. This assumption does not lose the
generality.

2. REPRESENTATIONS INDUCED BY UNBOUNDED C*-SEMINORMS

In this section we construct a family of *-representations of a *-algebra A induced
by an unbounded C*-seminorm on A and investigate the properties. We begin
with the review of (unbounded) *-representations of A. Throughout this section
let A be a *x-algebra with identity 1. Let D be a dense subspace in a Hilbert space
H and let £7(D) denote the set of all linear operators X in H with the domain
D for which XD C D, D(X*) D D and X*D C D. Then LT(D) is a x-algebra
under the usual operations and the involution X — X' := X*[D. A x-subalgebra
of the x-algebra L(D) is said to be an O*-algebra on D in H. A x-representation
7w of A on a Hilbert space H with a domain D is a *-homomorphism of A into
LT(D) and 7(1) = I, and then we write D and ‘H by D(r) and H,, respectively.
Let m and m be *-representations of A. If H,, is a closed subspace of H,, and
m1(x) C mo(x) for each x € A, then 7, is said to be an extension of m; and denoted
by m C me. In particular, if my C me and H,, = Hr,, then w9 is said to be an
extension of w1 in the same Hilbert space. Let m be a x-representation of A. If
D(m) is complete with the graph topology ¢, defined by the family of seminorms

- lx@ =1l -l + |7(x) - | : # € A}, then 7 is said to be closed. It is well known
that 7 is closed if and only if D(7w) = () D(w(z)). The closure 7 of 7 is defined
z€A

by

D) = () D(r(z)) and F(z)¢=n(x)l forz e A e D).
zeA

Then 7 is the smallest closed extension of . The weak commutant w(A),, of m is
defined by
m(A),, ={C € B(Hx) : C(z)é = n(z*)*CE, Vo € A, V€ € D(m)},

where B(H) is the set of all bounded linear operators on H,, and it is a weakly
closed x-invariant subspace of B(H,), but it is not necessarily an algebra. It is
known that w(A)., D(r) C D(rw) if and only if 7(A), is a von Neumann algebra
and 7(x) is affiliated with the von Neumann algebra (7(A),)’ for each z € A. For
more details we refer to [16], [19], [26] and [29].
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DEFINITION 2.1. A mapping p of a subspace D(p) of A into RT = [0, 00)
is said to be an unbounded (semi)norm on A if it is a (semi)norm on D(p), and
p is said to be an unbounded m*- (respectively C*-) (semi)norm on A if D(p) is
n

a *-subalgebra of A4 and p is a submultiplicative x- (respectively C*-) (semi)norm
on D(p).

By [31], if a seminorm p on a *-algebra A is a C*-seminorm, that is, it
satisfies the C*-property p(z*x) = p(x)?, Vz € A, then it is a m*-seminorm on A,
that is, p(z*) = p(z) and p(zy) < p(z)p(y) for Va,y € A.

Let p be an unbounded C*-seminorm on A. We put

N, ={x€D(p) :p(x) =0} and N, ={z€D(p):azr € D(p),Vaec A}.

Then N, is a *-ideal of D(p) and N, is a left ideal of A, and the quotient *-algebra
D(p)/N, is a normed *-algebra with the C*-norm ||z + N, ||, := p(z) (z € D(p)).
We denote by A, the C*-algebra obtained by the completion of D(p)/N,, and
denote by Rep(A,) the set of all faithful nondegenerate *-representations II, of
the C*-algebra A, on Hilbert spaces Hr,. It is well known that Rep(A,) # 0.

For each II, € Rep(A,) we can define a bounded s-representation 7 of D(p) on
the Hilbert space Hi, by

Wg(m) =1II(z + Np), x€D(p).

The natural question arises: Can we extend the bounded *-representation 7T2 of
the #-algebra D(p) to a (generally unbounded) #-representation of the x-algebra
A? We show that this question has affirmative answer.

PROPOSITION 2.2. Let p be an unbounded C*-seminorm on A. For any
IT, € Rep(Ay,), there exists a x-representation m, of A on a Hilbert space Hr,

such that ||m,(b)|| < p(b) for each b € D(p) and ||7,(2)|| = p(x) for each x € N,,.
Proof. Let IT,, € Rep(A,). We put
D(wp) = linear span of {II,(z + N,){ : 2 € M, & € Hu, },

(ZH (xr + Np) §k> ZH (azr + Np)&,  (finite sums)

for a € A, {z} €N, and {&} C Hi,. Since

(I (az + Np)E[Hp(y + Np)n) = (€], ((az + Np)* (y + Np))n)
= (§[Hp(z"a"y + Np)n)
= (I, (=" + Np)Ip(a™y 4 Np)n)
= (Ip(x + Np)E[M, (a™y + Np)n)

for each a € A,z,y € N, and §,n € Hi,, it follows that m,(a) is a well-defined
linear operator on D(m,) for each a € A, so that it is easily shown that m, is

a *-representation of A on the Hilbert space H,, := [D(m,)] = D(w )” | (the
closure of D(7,) in Hyy,) with domain D(7r,). Take an arbitrary b € D(p). By the
definition of 7, we have m,(b) = 79 (b)[D(m), and hence

17 ()] < [T (6 + Np)I| < [1b+ Nyl = p(b).
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Suppose x € N,. It is sufficient to show that ||7,(z)|| = p(z). If p(x) = 0, then it
is obvious. Suppose p(z) # 0. We put y = x/p(z) € N,. For each § € Hyy, with
[I€]l < 1, we have

Iy (y + Np)éll < [[Hp(y + Np) €N = p(m)ENl < 1,
and so
7 (W)l = llmp(y*)ll = sup {|m, (y" )L, (y + Np)E|| = € € Hi, such that [[€] <1}
= sup{||Hp(y*y—|—Np)£|| : £ € Hy, such that [|£]] < 1}
= [T, (y*y + Np)|| = p(y*y) = p(y)* = 1.

Hence, we have ||m,(z)|| = p(z). This completes the proof. 1

We simply sketch the method of the construction of the *-representation ,:

REMARK 2.3. Let p be an unbounded C*-seminorm on .A. As above, we can
construct a set {m,} of *-representations of A from any II,, € Rep(.A4,), but 7, is
not necessarily nontrivial, that is, the case H,, = {0} may arise (Example 7.1,
(2)). It is clear that H,, # {0} if and only if 90, ¢ N,. Hereafter we shall assume
that unbounded C*-seminorms satisfy always this condition: 91, ¢ IN,,.

Let p be an unbounded C*-seminorm on .A. We denote by Rep(A, p) the set
of all x-representations of .4 constructed as above by (A, p), that is,

Rep(A,p) = {mp, : II, € Rep(A4,)}.

DEFINITION 2.4. An unbounded m*-seminorm ¢ on A is said to be nonde-
generate if D(q)? is total in D(q) with respect to the seminorm q. An unbounded
m*-seminorm ¢ on A is said to be finite if D(q) = M,; and ¢ is said to be uniformly
semifinite if there exists a net {uq } in M, such that u?, = u, and g(us) < 1 for each
a and limg(zu, — ) = 0 for each x € D(q); and ¢ is said to be semifinite if N, is

(o7

dense in D(q) with respect to the seminorm ¢. An unbounded C*-seminorm p on A
is said to be weakly semifinite if Rep" 2 (A, p) := {7, € Rep(A,p) : Hr, = Hu,} #

(. An element m, of RepWVB(A, p) is said to be a well-behaved *-representation of
A in Rep(A, p).
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DEFINITION 2.5. A x-representation m of A is said to be strongly non-
degenerate if there exists a left ideal Z of A contained in the bounded part

AT == {z € A:7(z) € B(Hx)} of m such that [7(Z)H~] = Hx.

PROPOSITION 2.6. Let p be an unbounded C*-seminorm on A and m, €
Rep(A,p). Then the following statements hold:

(1) [1p(Np)Hr,] = Hx,, and so m, is strongly nondegenerate.
(2) Suppose m, € RepWVB(A, p). Then:
) I (@ = pl), Yo € D(p);

(i) mp(A)y = mp(D(p)) and mp(A)L,D(mp) C D(mp).

(3) m, satisfies the condition (2) (i) if and only if there exists an element
W;NB of RepWB(A, p) which is a restriction of Tp.

(4) Suppose p is semifinite. Then 7, € RepVB(A, p) and ‘JIIQ) is total in D(p)
with respect to p, and so p is nondegenerate.

(5) Suppose p is uniformly semifinite. Then:

A" = Al :={a € A: 3k, > 0 such that p(az) < kap(z), Yo € N, },
|7 (0)]| = sup{p(bx) : € N, and p(x) < 1}, Vbe AV
for each m, € Rep(A,p).

(6) p is finite if and only if D(p) is a left ideal of A.

Proof. (1) Since the || - ||p-closure 91,[N, p” I of {4+ Np:z2eMN,}in A,
is a left ideal of the C*-algebra A,, it follows that there exists a left approximate
identity {Ey} in M,[N, i, , so that lim |(z + Np)Eq — (z + Np)|lp = 0 for each
e

T € ‘ﬁ For any «, it follows Smce E, € N, that there exists a sequence
{e } in M, such that hm H( M4 N,) — EaHp = 0. Take an arbitrary n €
[, (N, + Np)Hi, | © [ (‘ﬂp)H (M, + Np)Hm,]. Then we have

(I (2 4 Np)&n) = lim (I (2 + Np )L, (Ea)€[1)
= lim lim (IL,(z + Np)Hp(eg" + Np)&ln)

= lim lim (m, ()M, (e 4+ N,)¢ln) =0

for each € M, and § € Hy,, which implies that [m,(9,)I1,(N, + Np)Hi,] =
[, (M, + Np)Hn,] = Hy,. Hence 7, is strongly nondegenerate.
(2) Suppose 7, € RepVB(A, p). Since 7, (b) = I1,(b+ N,)[D(r,), Vb € D(p)

and My, = D(m,) . it follows that 7, (b) = IL,(b+N,), ¥b € D(p), which implies
the statement (i). The statement (ii) follows since

Clly(z + Np)§ = (x4 Np)CE € D(my(a)),
Tp(a)CIL,(x + Np)€ = mp(a)Il,(x + Np)CE = I, (ax + Np)CE
= Cmp(a)lly(z + Np)E
for each C € m,(D(p))’, a € A, x € M, and & € Mo, .
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(3) Suppose m, satisfies condition (i) above. We put

MYB(+ N,) = (B, be Dip).

Since [[IL)R (b + N)|| = [|mp(b)]] = p(b) = [|b+ Np||, for each b € D(p), it follows
from (1) that H;,NB can be extended to a faithful nondegenerate *-representation
of the C*-algebra A, on the Hilbert space H,, and denote it by the same HXVB.
We also denote by WXV B the strongly nondegenerate *-representation of 4 induced
by HXVB. Since

D(my'®) = linear span of {IL)'?(z + Np)¢ : w € My, £ € Hy, }

= linear span of {m,(z)¢ : x € My, £ € Hr, },

it follows from (1) that Hﬂ-XVB =Hx, :HHZVB, which means that w;jv Be RepWB(.A7 D).
The converse follows from (2) (i).

(4) Suppose p is semifinite. Since p is semifinite, it follows that {IL,(x +
N,) : x € M} is uniformly dense in the C*-algebra II,(A,), which implies by
the nondegenerateness of II, that Hy, = Hy,. Hence m, € RepVB(A,p). By
(1) we have Rep"P(A,p) = Rep(A,p). Since the C*-algebra A, has a bounded
approximate identity and 0N, is dense in D(p) with respect to p, it follows that ‘ﬁ%
is total in D(p) with respect to p.

(5) It is clear that A"" C A? without the assumption of the uniform semi-
finiteness of p. Suppose p is uniformly semifinite. Then we show the converse

inclusion. Let {u,} be in Definition 2.4. Take an arbitrary a € A}, {zx} C N,
and {&} C Hi,. Since

||7Tp(a)Hp(ua$k + Np)& — mp(a) L, (zx + Np)gkn = HHp(a(uaxk —xk) + Np)&c”

< Bap(tar — 2)|€ = Fap(itia — 7)€l — 0,
it follows that

Hﬂ'p(a) Z I, (zx + Np)ka = hénHﬂ'P(a) Zﬂp(uaxk + Np)ka
k k

= lim |7, (aua) 3 My + V)& | < Tl Caa) ||| oM (o + V)
k k

)

= @p(aua) an(xk + Np)ka < ka an(wk + Np)&k
k k

Tp

which implies a € Ag’”. Hence we have A = A;
(6) This is trivial. This completes the proof. 1
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3. UNBOUNDED C*-SEMINORMS DEFINED BY *-REPRESENTATIONS

In Section 2 we constructed a family Rep(A,p) (respectively Rep™ ®(A,p)) of
strongly nondegenerate x-representations of A from an (respectively weakly semifi-
nite) unbounded C*-seminorm p on A. Conversely we shall construct an un-
bounded C*-seminorm r, on A from a strongly nondegenerate *-representation m
of A and the natural representation 7Y of A constructed from r,, and investigate

the relation between 7 and wﬁ Let 7 be a strongly nondegenerate x-representation
of A on a Hilbert space H,. We put

={recA:n(z) € B(H;)} and m,(z)=n(x), =€ AT

Then Ag is a #-subalgebra of A with the identity 1 and m, is a bounded *-
representation of Al on H,. We denote by C*(m) the C*-algebra generated by
7, (A]). We now define an unbounded C*-seminorm 7, on A as follows:

D(rr)=A and rg(z)=|m(x)l], =z € D(ry).

Then 7, satisfies the condition M, ¢ N, . In fact, this follows since Z C N, ,
where 7 is a left ideal of A contained in A such that [7(Z)D(n)] = H,. Here we
put

I(x + N, ) =m(x), z€A].
Since |II(z + N,_)|| = r=(x) = ||z + Ny_||», for each x € AT, it follows that II
can be extended to a faithful x-representation HN of A, on the Hilbert space

H,. The *-representation 7¥ of A defined by HN as above is called the natural
representation of A induced by . Since HHN = ’H,r, it follows that ’H,rN is a closed

subspace of H,. We simply sketch the above method of the construction of 71'707r

We have the following results for the relation between 7 and wﬁr

PrROPOSITION 3.1. Let m be a *-representation of A. Suppose that 7 is
strongly nondegenerate, that is, there exists a left ideal T of A contained in A} such
that [7(Z)D(r)] = Hr. Then w € RepVB(A,77) and 7N C 7. Furthermore, if

m(Z)D(x) is total in D(w) with respect to the graph topology tr, then 7/1'5 =T.
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Proof. Since
D(r)) = linear span of {IIY (x+ N, )¢ 1z €N, , £ € Hy}

3.1 ”
(3:-1) = linear span of {m(z)¢: 2z €N,_, £ € Ha},

it follows that

(m(@)* gL (x + N, )€) = (m(a) nlm(x)€) = (w(x)" n(a)"nlé)

(
= (r(az)*nl¢) = (n|m(az)§) = (nlm," ()1} (z + N, )€)
)&

for each a € A,n € D(m(a)*),z € N, and £ € H, which implies ITY (:c+N ) €
D(7(a)) and 7(a)IIY (z + N, )¢ = 7 ()TN (x + N, )¢. Hence, D( Ny c D7)
and 7[D(7l) =7}V

Since 7 is strongly nondegenerate and AT =D(r), it follows that [7(M,. ) H]
= H,, which implies by (3.1) that Hyy =Hr=Hny , so that N cRepVB(A, ry).
Suppose that 7(Z)D(n) is total in D(w)[t,]. Then it follows from (3.1) that WATAZ =
7. This complete the proof. &

By Proposition 2.6 and Proposition 3.1 we have the following diagram:

And we have the following

COROLLARY 3.2. The following statements are equivalent:

(i) There exists an unbounded C*-seminorm p on A such that M, ¢ Np.
(ii) There exists a strongly nondegenerate x-representation of A.
(iii) There exists a well-behaved x-representation of A.

Next we investigate the relations between unbounded C*-seminorms p and
rx, and the x-representations m, and 7N . We first define an order relation among
Tp

unbounded seminorms as follows:

DEFINITION 3.3. Let p and ¢ be unbounded seminorms on A. We say that
p is an extension of q (or ¢ is a restriction of p) if D(q) C D(p) and ¢(x) = p(x)
for each = € D(q), and then denote by g C p.

We denote by C*N(A) the set of all unbounded C*-seminorms p on A such
that 91, ¢ N,. Then C*N(A) is a partially ordered set with the order C. For any
p € C*N(A) we put

C*N(p) ={q € C'N(A) : p C ¢}

Then it follows from Zorn’s lemma that C*N(p) has a maximal element. We show
that if p is weakly semifinite then r, is a maximal element of C*N(p).
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PROPOSITION 3.4. Suppose p is a weakly semifinite unbounded C*-seminorm
on A and m, € Rep“P(A,p). Then r,, is a mazimal element of C*N(p) and

T'm, = T for each m, m, € RepWVB(A4, p).

P

Proof. We show that 7 is a maximal element of C*N(p). Take an arbitrary
r € C*N(ry,). By Proposition 2.6 we have p C 7, C r, and so it follows that the
linear map: = + N, € D(p)/N, — x+ N, € D(p)/N, is a bijection and isometry,
so that A, is regarded as a closed *-subalgebra of the C*-algebra A,. By the
stability of C*-algebras ([11], Proposition 2.10.2) there exists a #-representation
IL,. of A, such that II, C II.. Then we can construct in the same way as the
proof of Proposition 2.6 the x-representation m,. of A induced by II, which is an
extention of m,, which implies that m,(a) is bounded and

(3.2) Imp(a)ll < llmr(a)|| < 7(a),  VaeD(r).

Hence we have

(3.3) D(r) C D(rx,)-

On the other hand, since r,, C 7, we have r = r, . We next show that r, = T
for each ), 7, € RepWB(A,p). Since p C 1 := 1y, it follows from (3.2) and (3.3)

that D(rr,) = D(r) C D(rx,) and rr, (z) = [|mp(2)[| < r(2) = ray () for each
z € D(r) = D(ry,) Similarly we have that D(rr,) C D(rx ) and 7y (2) < 7, ()
for each » € D(rr,). Hence, ry, = rx . This completes the proof. 1

By Proposition 3.1 and Proposition 3.4 we have the following

COROLLARY 3.5. Suppose m is a strongly nondegenerate x-representation of
A. Then ry is mazimal.

For the relation of x-representations 7, and 7 we have the following
TP

PROPOSITION 3.6. Suppose p is a weakly semifinite unbounded C*-seminorm
on A and 7, € Rep"B(A,p). Then , C ﬂ'ffip and 7T7]'er = Tp.

Proof. 1t follows from the definition of ﬂf«\; ) that Hr, = Hpy and since

N, C ‘ﬂ,«ﬂp - .A;rp and
My + Np)é = mp@)€ =TI (0 Ny, )¢
for each » € M, and £ € H,,, we have D(m,) C D(ﬂ'fip). Furthermore, since
Tp(a)IL,(z + Np)E = mp(ax)é = Wﬁrp (a)Hﬁvﬂp (x+ Ny, )§ = Wi\ip (a)II(x + Np)E

for each a € A,z € M, and £ € H,,, it follows that 7, = WTJ,\LP [D(mp). On the
other hand, we have D(r}Y p) C D(7m,) by Proposition 3.1. Therefore it follows

that Hr, = Hqn , m C ﬂﬁp and 7, = Wi\frp. This completes the proof. 1§
Tp
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4. REGULAR UNBOUNDED C*-SEMINORMS
In this section we define and characterize the notion of regular unbounded C*-
seminorms on *-algebras. We first prepare an unbounded C*-seminorm sup p,

«
constructed by a family {p,} of unbounded C*-seminorms on A and the notion
of direct sum of *-representations of A. Let {p,} be a family of unbounded C*-
seminorms on A. We put

D(suppy) = {x € ND(pa) : suppa(z) < oo},
(suppa)(x) = suppa(z), € D(suppa).
Then supp,, is an unbounded C*-seminorm on A, and it is an unbounded C*-norm
(03
if and only if p,(z) = 0, Vo implies z = 0.
DEFINITION 4.1. An unbounded C*-(semi)norm p on A is said to be regular

if p C sup pa, where {p,} is a family of C*-seminorms on A.
[e3%

Let {m,} be a family of *-representations of A. We put

D(Pra) = { = ) ¢ PHa. : éa € Dra), Ya

[e3%

and Y || 7q(a)éa|? < o0, Va € A},

(B ) @(E) = (Ma(@). acA () eD(Prma).

[e3 [e3

Then @ 7, is a x-representation of A on @ H,_ such that
« «

@™o
reA”  iff mo(x) is bounded Vo, and  sup||m.(z)] < oo.
«@
DEFINITION 4.2. A s-representation 7 of A is said to be weakly bounded
if 7 C @7, as the same Hilbert space, where {m,} is a family of bounded x-
(0%
representations of A.
LEMMA 4.3. Let p be an unbounded C*-seminorm on A. Suppose p C sup pq
(0%

for a net {po} of weakly semifinite unbounded C*-seminorms on A, and further
N, is dense in D(p,) with respect to {ps}. Then p is weakly semifinite, and for

any mp, of RepWVB(A, po) Vo, there exists an element T of RepVB(A, p) such
that m, C @ mp,.
«

Proof. We put
M (z + Ny)(&a) = (M, (2 + Np,)&a), @ € D(p), (€a) € P Ha,, -

Since
1Ly (2 + Np)[| = sup [, (z + Np, )| = suppa(z) = p()
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for each = € D(p), it follows that I, can be extended to a faithful *-representation
of A, on @H,, . We denote 7, the *-representation of A induced by II,. Then

we have
D(mp) = linear span of {II,(x + Np) :x € My, £ € Hy,}
= linear span of {(m,, (z)&) 12 €My, £ = (&a) € DHn,. |,
Tp(a)(Tp,, (2)€a) = (mp, (az)&a).
We show that p is weakly semifinite, that is, D(m,) is dense in @ Hr, . Take an
«

arbitrary § = (o) € @ Hx,, © D(nmp). Take an arbitrary a. For any 7, € Hr,,
we have :
(4.1) (Wpa ()naléa) = (5aﬁ77p5 (z)nsl&) =0

for each € M,. Since M, is dense in D(p,) with respect to p,, it follows that
Tpo (Mp)Hr,, is total in 7y (D(pa))Hx,, , and further it follows from the weak

semifiniteness of p, that mp, (D(pa))Hx,, is total in H,, . Hence, m,, (M,)Hn,,
is total in H,, , and so by (4.1) {, = 0. Hence, §& = 0. Thus, D(7,) is dense in
@ Hx,. . By the definition of m, we have 7, C @ 7, . This completes the proof. 1

By Lemma 4.3 we have the following

PROPOSITION 4.4. Let p be an unbounded C*-seminorm on A. Suppose p
is regular, that is, p C supp, for some net {ps} of C*-seminorms on A, and

«
further 9, is dense in A with respect to {pn}. Then there exists an element m,

of RepVB(A,p) which is weakly bounded. Conversely suppose m, € Rep" (A, p)
and it is weakly bounded. Then p is regular.

In Section 7 we shall give several examples of regular unbounded C*-(semi)
norms.

5. UNBOUNDED GELFAND-NAIMARK C*-SEMINORMS

In this section we construct and characterize an unbounded Gelfand-Naimark C*-
seminorm | - |, from an unbounded m*-seminorm p on a *-algebra A. An un-
bounded m*-seminorm p on A is said to be representable if there exists a non-zero
nondegenerate bounded #-representation 7 of D(p) such that ||7(z)|| < p(z) for
each x € D(p). Every unbounded C*-seminorm on A is representable, but an un-
bounded m*-seminorm is not necessarily representable (see Section 37, Example
16 in [9]). Let p be a representable unbounded m*-seminorm on A and Rep(p)
the set of all nondegenerate bounded *-representations 7 of D(p) on H, such that
|7 (2)|| < kxp(x), Yo € D(p) for some constant k.. Let m € Rep(p). It is easily
shown that ||7(x)|| < p(z) for each 2 € D(p), and so we can define an unbounded
C*-seminorm | - |, on A by

D(| - |p) =D(p) and |z|,= sup |x(z), 2eD(p)
mERep(p)
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and call it the unbounded Gelfand-Naimark C*-seminorm of the unbounded m*-
seminorm p. To investigate the unbounded Gelfand-Naimark C*-seminorm | - |,
we prepare another order < on C*N(p) as follows: 11 < ro iff D(rg) C D(r1) and
ri(z) < ro(z), Yo € D(rq).

PROPOSITION 5.1. Let p be a representable unbounded m*-seminorm on a
x-algebra A. Then the following statements hold:
(i) | - |p is the largest element of (C*N(p), <).

(ii) If p is semifinite, then | - |, is semifinite.
(ill) Suppose N, is dense in D(p) with respect to the set {r. : m € Rep(p)} of
seminorms r.. Then | - |, is weakly semifinite and there exists a -representation

7p of A such that ||m,(x)|| = |z|, for each x € D(p).
(iv) Suppose p is an unbounded C*-seminorm on A. Then | - |, = p.

Proof. (i) Let r be any unbounded C*-seminorm on A such that r < p. For
any II,. € Rep(A,) we define a bounded *-representation 70 of D(r) by

7(z) =,.(x + N,), x€D(r).
Then since D(p) C D(r), it follows that 7°[D(p) is a bounded *-repesentation of
D(p) and || 72(x)|| = r(x) < p(x) for each x € D(p), which implies 7°[D(p) €
Rep(p). Hence it follows that r(x) < |z|, for each x € D(p).
(ii) This follows since D(| - |,) = D(p), N|.|, =N, and |z, < p(z), Vo €

D(p)-
(iii) We put

I, (x4 N|.|,) = ( D w) (), z€D(p).
mERep(p)

Then II,, can be extended to a faithful nondegenerate *-representation of the C*-
algebra Aj.| on @ H, and denote it by the same II,,. Here we denote by ,

wERep(p)
the *-representation of A defined by II,,, that is,
D(m,) = linear span of {II,(z + N|.|,)(&x) : @ € Ny, &x € Hr}
= linear span of {(7(x)&;) : x € Ny, & € Ha ),
Tp(a)(m(2)&r) = (w(ax)éx), a €A x €Ny, & € Ha

Since N, is dense in D(p) with respect to r (7 € Rep(p)) and any 7 is nondegen-
erate, it follows that D(m,) is dense in € H,, which implies that | - |, is weakly

semifinite. Hence, it follows from Proposition 2.6 that |z|, = ||m,(z)| for each
x € D(p).

(iv) Suppose p is an unbounded C*-seminorm on A. Take an arbitrary
II, € Rep(A,). We put

ﬂg(w) =II,(z+ N,), z€D(p).

Then it follows that m) € Rep(p) and |7)(z)|| = p(z) for each x € D(p), which
implies | - |, = p. This completes the proof. 1
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We next characterize the unbounded Gelfand-Naimark C*-seminorm | - |,
of a representable unbounded m*-seminorm p extending some main results in [33]
about C*-seminorms on *-algebras with identity to unbounded C*-seminorms on
x-algebras without identity. A positive linear functional f on A is said to be
representable if there exists a constant v > 0 such that |f(z)|?> < vf(z*z) for all
e A

Let F,, be the set of all p-continuous representable positive linear functionals
f on D(p) such that |f(z)|?> < f(z*x) for each z € D(p). Then we have the
following

PROPOSITION 5.2. Let p be a representable unbounded m™*-seminorms on A.

Then
D(p) = {x € D(p) : sup f(z"r) < oo},
feF,
x|, = sup f(z*z)'/%, 2 € D(p).

feF,

Proof. Take an arbitrary f € F, . Since f is p-continuous, there exists a
constant My > 0 such that |f(z)| < Msp(x), Vo € D(p), which implies

[f(@)* < fla"z) < Myp(a*a) < Myp(x)*

for each x € D(p). Repeating this, we have
[f(@)] < M"p(z), Va€D(p), ¥neN.

Hence we have

(5.1) [f(@)] < p(x), VzeD(p)

For any y € D(p) with f(y*y) = 1 we define a positive linear functional on D(p)
by
fy(@) = f(y"zy), = €D(p).

Then we have

[fu (@) = £ ay)? < F ) f(y e ay) = fy(2"2)
and by (5.1)
£y (@) < p(y)*p(x)
for each x € D(p). Hence we have

(5.2) fy € Fp for each y € D(p) with f(y*y) = 1.

Here we put
D(rg,) ={z €D(p) : sup f(a"z) < oo}
€Fp

rF,(x) = sup flz*x)'/?, x € D(rg,).
fer,

By (5.1) we have
(5.3) D(rz,) =D(p) and 7z () <p(zr), VeeD(p).
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Let (mf, A\f, Hy) be the GNS-construction for f. We show

D(p) ={z € D(p) : sup |ms(x)|| < oo}
feF,

€Fp
rr, () = sup Ims(@)ll, = €D(p).

P

In fact, take an arbitrary € D(p). By (5.2) we have, for any y € D(p) with
flyry) =1,
Ims (@A )I1? = fy(a™z) < rr(x)?

for each « € D(p), which implies that 7¢(x) is bounded and |7y (x)|| < rz(z) for
each z € D(p). Hence we have

sup [|7y(z)[| <77, (2), VreD(p)
feFy

Since |f(z)| < f(z*x)/? = |As(2)|, = € D(p), it follows from the Riesz theorem
that there exists an element &y of H; such that ||{7|| < 1 and f(z) = (Af(x)[&s)

for all € D(p), which implies by the boundedness of 7y (x) that As(x) = mp(x)&s

and

|[f(@*a)[V? = ||ms ()|l < g (@), Vo € D(p).

Hence

rF,(x) < sup ||lms(z)|, V€ D(p).
FEF,

Thus we have

7, (@) = sup |[7s(z)ll, =< Dp),

p

which implies that 77, is an unbounded C*-seminorm on A such that D(rg,) =
D(p) and r,(v) < |z|, for each x € D(p). On the other hands, take arbitrary
7 € Rep(p) and & € H, such that ||| = 1. Then the positive linear functional f¢
on D(p) defined by fe(x) = (m(x)E[€), x € D(p) belongs to F,, and so

(@) = sup fe(a*x)'/? <7z (2), @ €D(p)

l€l=1
Hence, we have
lzlp <77,(z), Vo eD(p)

Thus we have | - |, = r#,. This completes the proof. 1
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6. SPECTRAL *-REPRESENTATIONS AND SPECTRAL
UNBOUNDED C*-SEMINORMS

In this section we define the notion of (hereditary) spectrality of unbounded C*-
seminorms and further define the notion of stable unbounded C*-seminorms and
investigate the relation of spectrality and stability of unbounded C*-seminorms.

Let B be a *-subalgebra of a x-algebra A with identity 1 and the *-algebra
BBy obtained by adjoining the identity 1 to B when B does not have the identity.
We denote by BY the set of all quasi-reqular elements = of B, that is, 1 — z is
invertible in By. We have the spectrum Spgz(z) and the spectral radius rg(x) of
x € B as follows:

Spg(z) ={A€C: AL —z)""in By} and rg(x) =sup{|\|: X € Spg(z)}.
By Theorem 3.1 of [21] we have the following

LEMMA 6.1. Let p be an unbounded m*-seminorm on A. Then the following
statements are equivalent:
(i) { € D(p) : p(z) <1} C D(p)*.
(i) 75, (z) < p(x) for each x € D(p).
(iil) 7, (z) = lim p(z™)Y/"™ for each x € D(p).

In particular, if p is an unbounded C*-seminorm on A, then the conditions (i) ~
(iii) are equivalent to
(iv) rpp)(x) = p(x) for each x € D(p) with x*x = rx*.

We remark that the equivalence of (i) and (i) in Lemma 6.1 holds for a
general unbounded seminorm p.

DEFINITION 6.2. An unbounded m*- (or C*-) seminorm p on a *-algebra
A is said to be spectral if it satisfies one of equivalent conditions (i) ~ (iii) in
Lemma 6.1.

Here we need a new notion of hereditary spectral unbounded m*- (or C*-)
seminorms which plays an important rule in this section.

DEFINITION 6.3. An unbounded m*- (or C*-) seminorm p on A is said to
be hereditary spectral if for any #-subalgebra B of A the restriction p[B of p to B
is spectral.

The hereditary spectrality of unbounded m*- (or C*-) seminorms implies
the spectrality, but the converse does not hold in general. For example, if A is a
C*-algebra, there is a spectral m*-seminorm on .4 which is not hereditary spectral
([23]). According to Palmer ([22] and [23]), a spectral algebra A is an algebra on
which there is defined a spectral seminorm with D(p) = A. A spectral algebra
need not be normable, however it is rich enough to admit a satisfactory spectral
theory like Banach algebras. A C*-spectral (hereditary C*-spectral) algebra which
is a #-algebra with a spectral (hereditary spectral) C*-seminorm has been studied
in [8]. C*-spectral (hereditary C*-spectral) algebras appear to be potential enough
to recapture much of the algebraic theory of C*-algebras. They also help to clarify
the notion of local algebras that arises in non-commutative geometry, in particular,
smooth structure in C*-algebras ([10] and [11]). Here we define and characterize
unbounded C*-spectral algebras and unbounded hereditary C*-spectral algebras.
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DEFINITION 6.4. An unbounded C*-spectral algebra is a *-algebra admit-
ting a spectral unbounded C*-seminorm. An unbounded hereditary C*-spectral
algebra is a x-algebra A admitting a hereditary spectral unbounded C*-seminorm

on A.

We define the notion of (hereditary) spectral #-representations and character-
ize unbounded (hereditary) C*-spectral algebras by the existence of (hereditary)
spectral strongly nondegenerate x-representations.

DEFINITION 6.5. Let m be a *-representation of A and z € A. We define a
spectrum of the closed operator w(x) in C*(m) as follows:

SPe+ () (m(z)) = {A € C: (M — ()" does not exist in C*(n)}.

If SpAg(x) = {A € C: (M — z)7" does not exist in AT} C Spee () (m(z)) U
{0}, Vx € A, then 7 is said to be spectral. If for any *-subalgebra B of A the

restriction [B of 7 to B is a spectral *-representation of B, then = is said to be
hereditary spectral.

Let 7 be a s-representation of A. It is easily shown that
(6.1) SPe- () (7(2)) U {0} C Spr(m(2) € Spap (@), V€ A

We first characterize the spectrality of bounded *-repesentation m, of the x-al-
gebra AT

LEMMA 6.6. Let w be a x-representation of A. Consider the following state-
ments:
(i) 7 is spectral;

(ug ™, is spectral, that is, Sp 4= (z) C Spes(m) (m(z)) U {0}, Vo € AT;
(iil) r, is spectral;
(iv) SpA;r (z) = Spw(A“ (n(z)), Yz € AT and the normed *-algebra (A7)
with norm r is a Q-algebra, that is, W(Ag) s open;
(V) Spz () = Spomy(m(@)), Vo € A.
Then the implications (i) = (ii) < (ili) < (iv) = (v) hold.

Proof. (i) = (ii) This is trivial. (ii) = (iii) Suppose 7, is spectral. Take
an arbitrary x € AT with r.(z) < 1. Since |7(z)|| < 1,7(z) is quasi-regular in
the C*-algebra C*(r), and so 1 ¢ SP g (T (m(z)). Since 7, is spectral, we have
1¢ SpA;r (x), and so x € (A])?. Therefore it follows from Lemma 6.1 that 7, is

spectral.
(iii) = (ii) Suppose r is spectral. Take arbitrary x € AT and A # 0 € C such

that (A — 7(z))~" € C*(n). Since C*(r) = m(AT)

there exists an element

y € AJ such that r,r( —|—y — —) = ||I — (I — 77(% ))(I —7( || < 1 and
re(3+y— %) = 1= =7) (I —7(32))[| < L.
Since 7 is bpectral it follows from Lemma 6.1 that § +y — 5 =1 — (Il —

12) (1 —-y), L4y— % =1— (1—-y)(1- 3z) are contained in (A’“)qr7 and so
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(1-+z)(1—y) and (1—y)(1—$2) are invertible in A7. Hence, 1— 1z is invertible
in A”, and so A € Sp . (v).
b

(ii) = (iv) It follows from (6.1) and the assumption (ii) that
P (r) (7)) U 0} = by (7)) = Sps (), Var € AT,
Further, it follows from Proposition 2 of [4] that
SPe- () ((2)) U {0} = Spr(n(w), Vo € AT
if and only if 7(A]) is a Q-algebra.

(6.2)

Hence, the statement (iv) holds.

(iv) = (ii) This follows from (6.2) and the assumption (iv).

(ii) = (v) Take arbitrary z € A and A # 0 € C such that (A — 7(z))~! €
m(AT). Then there exists an element y of AT such that (I — n(y))(I — (%)) =
(I-n(%))I—m(y) =1,andsom(%+y— %) =m(%+y—2) = 0. Hence,
1 ¢ Sy (7(5 +y = %)) U Sprgam) (7(5 +y = %)) Since Sprrzmy(n(a)) C
SPes () (7 7(a)) for each a € AT, it follows from (i) that 1 ¢ SpAw( +y— %)
and 1 gZ Sp Aﬂ'( +y — %), and so there exist elements z; and z; of AT such

that (1—2)(1—y)(1— %) =T and (1— %)(1—y)(1— 22) = 1. Hence we have
T € (AN and so A & SpA;r (z). This completes the proof. &

LEMMA 6.7. Let A be a x-representation of A. Then the following state-
ments are equivalent:

(i) m, is hereditary spectral;

(ii) rx is a hereditary spectral unbounded C*-seminorm on A.

Proof. This is proved similarly to the proof of (ii) < (iii) in Lemma 6.6. 1

THEOREM 6.8. The following statements are equivalent:

(i) There exists a strongly nondegenerate x-representation m of A such that
my, is (hereditary) spectral.

(ii) There exists a mazimal, weakly semifinite, (hereditary) spectral unbounded
C*-seminorm on A.

Proof. (i) = (ii) Let m be a strongly nondegenerate *-representation of A
such that 7, is (hereditary) spectral. By Proposition 3.1 and Corollary 3.5, r; is
a maximal, weakly semifinite unbounded C*-seminorm on A. Further, it follows
from Lemmas 6.6 and 6.7 that r, is (hereditary) spectral.

(ii) = (i) Let p be a maximal, weakly semifinite, (hereditary) spectral un-
bounded C*-seminorm on A. Then there exists an element 7 of Rep"'? (A, p) such
that p = r,. By Proposition 2.6 (1), 7 is strongly nondegenerate. Further, it
follows from Lemmas 6.6 and 6.7 that = is (hereditary) spectral. This completes
the proof. 1
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We next generalize the following property (stability) of C*-algebras ([12],
Proposition 2.10.2) to general #-algebras, and characterize it by the hereditary
spectrality of unbounded C*-seminorms.

Let A be a C*-algebra and B any closed x-subalgebra of A. For any *-
representation w of B on a Hilbert space H, there exists a x-representation © of A
on a Hilbert space Hz such that Hz D Hy as a closed subspace and w(x) = T(x) [Hx
for each x € B.

DEFINITION 6.9. An unbounded m*-(or C*-)seminorms p is said to be stable
if for any *-subalgebra B of A and any *-representation 7 of B such that BND(p) C
Br and [7(B N D(p))D(w)] = H, there exists a s-representation o of A such
that D(p) C A}, [o(D(p))D(0)] = H,, H, contains H, as a closed subspace and

m(x) = o(x)[H for each x € BND(p).

The following is one of main results of the paper.

THEOREM 6.10. Let A be a x-algebra and p a semifinite unbounded C*-
seminorm on A. Then the following statements are equivalent:

(i) p is hereditary spectral;

(ii) p is spectral and stable.

Proof. (i) = (ii) Let B be a #-subalgebra of A and let 7 be a *-representation

of B such that BN D(p) C B and [7(BND(p))Hx| = Hr. Since p is hereditary
spectral, it follows that

— _— -
Jim (|7 (2) [ = e (7(2)) < rrgapey (T1(#) = rnpe) (¥) < p(e)

for each € BND(p), which implies that |7 (h)|| < p(h) for each h* = h € BND(p).
Then, for any € BN D(p) we have

Ir@)II* = Ir(z*2)|l < p(a*z) = p(x)?,

and so

(6.3) ||7(z)|| < p(xz) for each z € BND(p).

By the semifiniteness of p we have Rep™ ®(A, p) # ¢. Let m, € Rep"V (A, p) and
put

oo(mp(z)) = m(z), = €BND(p).
It follows from Proposition 2.6 and (6.3) that

(6.4) l[eo(mp (@) < p(x) = [y ()l
for each x € BN D(p), and hence gy can be extended to a *-representation of

the C*-algebra m,(B N D(p))” A on H, and it is denoted by the same gg. By the
stability of C*-algebras there exists a Hilbert space H; containing H, as a closed

subspace and a *-representation g of the C*-algebra ﬂp(D(p))” A on Hz such that

3(A)[Hx = Go(A) for each A € m,(BNDp)) |

{D(g) = linear span of {9(m,(x))¢ : x € N, & € Hz},
o(a)o(mp(x))¢ = o(mp(ax))é  forae A, zeNy, £ € H,.

‘. We here put
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Then it is easily shown that g is a *-representation of A on D(p) in H, := D(o).
Since p is semifinite, it follows that H, = [o(7,(D(p)))Hs], so that

Her = [7(BND(p))Hx] = [20(mp(B N D(p)))Hx] = [2(mp (BN D(p)))Hx] C Hy.

By the definition of ¢ we have D(p) C A? and o(z)[H. = o(my(2))[H, =
0o(mp(z)) = m(x) for each x € BN D(p). Further, since p is semifinite, it fol-
lows from Proposition 2.6 (4) that [o(D(p))H,] = H,. Thus we have that p is
stable.

(ii) = (i) Let m, € Rep"P(A,p) and B be any *-subalgebra of A. We first
show that

(6.5) Sp

(b)NR C Sp (mp(b)) U {0}

BND(p) mll I

for each b* = b € BND(p). Let b* = b € BND(p) and 0 # A € SPyroin (O)NR. Let C

be the x-subalgebra of BND(p) generated by b. Then C (%b— Il) is a proper modular

x-ideal of C with modular identity u := %b. Hence there exists a maximal modular

x-ideal M of C containing C (%bf ]1). Then the quotient algebra C /90t is isomorphic

to C. In fact, since u* —u € 9 for all k € N, it follows that z+9M = > ap \Fu+M
k

for any x = Y agb* € C. Thus C/M = {au+M:a € C}, and 7: au + M — «

k
gives a *-isomorphism of C/9Mt onto C. Let + : C — C/M, o(x) = = + M. Let

7 = T 01; thus, ﬁ(Zakbk) = Y axAk. Then 7 is a 1-dimensional *-representation
k k
of C such that 7(b) = A. By the stability of p there exists a *-representation g of

A such that
(6.6) Ay D D(p), [o(D(p))Ho) = H, and  o(b)[C = m(b) = A.

Since p is spectral and (6.6), we have

lo(h)|| = ro-(o) (e(h)) < Tp@p) (h) < p(h)
for each h* = h € D(p), which implies
le(@)[* = lle(z*)]l < p(a*z) < p(z)?
for each = € D(p). Hence it follows from Proposition 2.6 that
(6.7) le@)|l < p(x) = [[mp ()l

for each = € D(p). Hence, m,(z) +— o(z) can be extended to a *-representation of
the C*-algebra 1, (B N D(p))” | which implies by (6.6) that

(7 (1))

A=m(b) € Sp

@D !

We next show

(6.8) Sp C{reC: A <p(@)}, VreBND(p).

BAD(p) ()
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Let z € BND(p) and |\ > p(z) = ||m|| Then (A — 7, (2))* (M — 7, (2)) is
invertible in (W“ il

IAI” & Sp

)17 and so

(mp(Az* + Az — 2*2)).
@)
Hence it follows from (6.5) that |\|? ¢ SPurnin (Az* + Ax — z*x), which implies
(A1 — 2)*(A1 — z) is invertible in (B N D(p))1. Similarly, (A1 — z)(A1 — z)* is
invertible in (B N D(p))1. Thus, we have A\ ¢ SPyrp(,, (@) 1t follows from (6.8)

that 73np(p) () < p(z) for each 2 € BN D(p), which means that p is hereditary
spectral. This completes the proof. I

REMARK 6.11. As seen in the proof of Theorem 6.10, the implication (ii)
= (i) in Theorem 6.10 holds under the assumption of weak semifiniteness of the
unbounded C*-seminorm p instead of that of the semifiniteness.

‘We consider the case of unbounded m*-seminorms.

PROPOSITION 6.12. Let p be a semifinite representable unbounded m*-semi-

norm on a *-algebra A and | - |, the unbounded Gelfand-Naimark C*-seminorm
of p. Then the following statements are equivalent:

() | - |p is hereditary spectral;

(ii) | - |p ts spectral and stable;

(iii) p is spectral and stable.
If this is true, then p is hereditary spectral.

Proof. Since D(p) = D(] - |,) and | - |, < p on D(p), it follows that | - |,
is semifinite, and p is stable if and only if | - |, is stable, which implies by Theo-
rem 6.10 that the statements (i) and (ii) are equivalent, and the implication (ii)
= (iii) holds. We show the implication (ili) = (ii). Since | - |, is a semifinite
unbounded C*-seminorm on A, there exists a *-representation 7, of A such that
|mp(x)|| = |z|p for each z € D(| - |,) = D(p). It is shown similarly to the proof of
(ii) = (i) in Theorem 6.10 that | - |, is spectral. Here we note simply the proof.
Take arbitrary h* = h € D(p) and A # 0 € Spp(, (k) NR. By the stablity of p
there exists a *-representation ¢ of A such that A7 D D(p), [o(D(p))H,] = H,

and o(h)[C = \. Further, it follows from the spectrality of p that ||o(z)|| < p(z)
for each = € D(p), which implies that o[D(p) € Rep(p). Hence we have

le(@)|l < [zlp = |[mp(2)ll, Vo e D(p),

which implies A € Sp i1 (mp(h)). Hence we have

7 (D(p))
Spp(p) (h) NR C Spmu A (mp(h)) U {0},
which implies
Spppy () C{AEC: A < fzlp}, Vo e D(p).

Hence it follows that rpy)(z) < ||, for each x € D(p). Thus, | - |, is spectral.
This completes the proof. 1§
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The implication (iii) = (i) in Proposition 6.13 holds under a weaker assump-
tion than that of semifiniteness of p as follows:

COROLLARY 6.13. Suppose p is a spectral, stable, representable unbounded
m*-seminorm on A such that M, is dense in D(p) with respect to any r, (7 €
Rep(p)). Then | - |, is hereditary spectral and A is an unbounded hereditary C*-
spectral algebra.

Proof. By Proposition 5.1, | - |, is weakly semifinite and there exists a *-
representation m, of A such that ||m,(x)| = |z|, for each x € D(p). Hence it is
shown in the same way as the proof (iii) = (ii) in Proposition 6.12 that | - |, is

spectral, which implies by Proposition 6.12 that | - |, is hereditary spectral. 1

7. EXAMPLES

We give some examples of unbounded C*-seminorms on *-algebras.

EXAMPLE 7.1. A locally convex *-algebra is a *-algebra which is also a
Hausdorff locally convex space such that the multiplication is separately contin-
uous and the involution is continuous. Let A be a locally convex x-algebra with
identity 1. We denote by B the collection of closed, bounded absolutely convex
subsets B of A satisfying 1 € B and B> C B. For every B € 9B, the linear span
A[B] of B forms a normed algebra equipped with the Minkowski functional || - |5
of B. If A[B] is complete for every B € B, then A is said to be pseudo-complete.
If A is sequentially complete, then it is pseudo-complete. An element x of A is
bounded if {(Az)™ : n € N} is bounded for some A € C, and denote by Ay the set
of all bounded elements of A. G.R. Allan ([2]) and P.G. Dixon ([13]) defined the
notion of GB*-algebra which is a generalization of C*-algebra. A pseudo-complete
locally convex *-algebra A is said to be a GB*-algebra over By if By is the greatest
member in B* := {B € B* : B* = B} and (1+ x*z)~! € A[By] for every z € A.
Then A[By] is a C*-algebra with the C*-norm || - ||g,. We put

D(pgp-) = AlBy] and pgp-(2) = ||z|l5,, = € A[Bo].

Then pgp= is a spectral unbounded C*-norm on A. Hence every GB*-algebra is
an unbounded C*-spectral algebra. We consider the following questions:

(1.) When does pap- satisfy the condition M,.,. ¢ N,
Ny 7 {0))?
(2.) When is pgp~ semifinite or weakly semifinite?
(3.) When does there exist a family {px}rea of seminorms determining the
topology such that pap- = sup p)?
AEA

(equivalently

GB*

Let 91 be a left ideal of a GB*-algebra A contained in A[Bg]. Suppose 9
is dense in the C*-algebra A[By]. By standard C*-algebra theory, 9 contains a
bounded approximate identity {u,, } for the C*-algebra A[Bg], vl = ua, [|tallB, <1
for all . By the proof of Theorem 3.6 in [5] (see also [24], Proposition 3.11 for a
particular case), {uq } is a bounded approximate identity for A. Since M C N, .,
it follows that pgp+ is uniformly semifinite. Let 7 be any #-representation of A

having A7 = A[By]. Let rr(z) = ||n(z)| for x € D(rr) = AJ. Since M C N,_,
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it follows from Proposition 3.1 that 7% = 7. Here we consider the cases of pro-
C*-algebras and C*-like locally convex x-algebras which are important in GB*-
algebras.

(1) A complete locally convex #-algebra A[7] is said to be a pro-C*-algebra
([24]) if the topology 7 is determined by a direct family {py}rea of C*-seminorms.
Then A is a GB*-algebra over By = U(suppy) := {z € A : suppr(x) < 1} with
e = SUD P AEA AeA

AEA

(a) Let X be a locally compact non-compact Hausdorff-space and A = C(X)
is a locally convex x-algebra of all complex-valued continuous functions on X with
the compact open topology. The compact open topology is defined by a family
{pa : M is a compact subset of X} : pps(f) = sup |f(z)], f € C(X). Then A is

xeM

a pro-C*-algebra and A[By] equals the C*-algebra (C,(X), || - ||s) of all bounded
continuous functions on X. Since C.(X) := {f € C,(X) : suppf is compact} C
Ny 5 it follows that N, .. is dense in D(pgp+) with respect to the compact open
topology, but pgp+ is not semifinite in general. For example, when X = R, pgp«
is maximal and weakly semifinite, but not semifinite.

(b) Let X be a o-finite measure space and A = L2 (X) is a locally convex
x-algebra of all measurable functions which are essentially bounded on every set of
finite measure equipped with the topology defined by the family of C*-seminorms
{l-lla: Iflla = esssup|f(z)|, where A C X is any set of finite measure}. Then

z€A

A is a pro-C*-algebra and a GB*-algebra having A[By] = L>(X) and pgp-(f) =
[ flloo = Slj;prHA’ f € L*(X). Since

LX(X) :={f € Li5,(X) : supp f is contained in some set

of finite measure} C N,..,

it follows that 9,,,. is dense in D(pgp~) with respect to the locally convex topol-
ogy and pgp+ is maximal and weakly semifinite.

(c) Let B be a C*-algebra without identity. Let K be the Pedersen ideal of
B, M(B) be the C*-algebra of all multipliers of B, and A = I'(Kg) be the x-algebra
of all multipliers of Kp ([15] and [25]). Let p be any C*-seminorm on B. Then p
can be regarded as an unbounded C*-seminorm on A with D(p) = B. Since Kz
is a *-ideal of A and it is dense in B, it follows that Kz C 0, and p is uniformly
semifinite. In fact, A is a pro-C*-algebra with appropriate topology.

(2) A complete locally convex x-algebra A[7] is said to be C*-like if there
exists a C*-like family {py }rea of seminorms determining the topology 7 such that

D(suppy) :={z € A: suppy(x) < 0o} is 7-dense in .A. Here we say that {px}rea
AeA AEA

is C*-like if for any A € A there exists A’ € A such that py(zy) < px(x)pa(y),
pa(z*) = pa(x) and px(z)? < pa(z*x) for each x,y € A. It follows from ([18],
Theorem 2.1) that A is a GB*-algebra over By = U(sup py) with pgp- = sup pa.
AEA AEA
Let A= L¥[0,1] := () LP[0,1] be the Arens GB*-algebra equipped with the
1<p<co
topology defined by the family of LP-norms ([3]). Then A is a C*-like locally
convex *-algebra with the C*-like family {|| - ||, : 1 < p < oo} of seminorms, and
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A[Bo] = L*[0,1] and pgg- = sup | - || But, L¥[0,1] is not a pro-C*-algebra
1<p<oo
and Mp,,. = {0}. Here is a non-commutative analogue of this ([17]). Let My be

a von Neumann algebra with a faithful normal tracial state ¢. Let LP(My, ¢)(1 <
p < 00) be the Segal LP-space ([30]). Then LP(My, ¢) is a Banach space of closed
operators in H affiliated with Mo with LP-norm || X ||, := (| X|P)}/P. For 1 < r <
p, L®(Mo,¢) = My C LP(Myg,p) C L" (Mo, ) C L' (Mg, ¢). By using non-

commutative Holder’s inequality it follows that L¥ (Mg, ) :== [ LP(My, ) is
1<p<o

a x-algebra with identity and with strong operators : X + Y, AX, XY and operator
adjoint as the involution. Let 7, be the topology on L¥(My, ) defined by the
C*-like family T' = {|| - ||, : 1 < p < oo}. Then L¥(My, ¢) is a C*-like locally
convex *-algebra with pgg+(X) = sup || X||n = || X || (operator-norm).

neN

ExXAMPLE 7.2. We consider Kothe sequence spaces and convolution algebras.

(1) Let w denote the set of all sequences of complex numbers. Let P be a set
of positive sequences a = {a,} in w satisfying

(i) Y{an},{bn} € P, Hcn} €P; an < cp, by < cp, nEN;

(ii) a, >0, Vn € N for V{a,} € P;

(iil) ant1 < an, ¥n € N for V{a,} € P;

(iv) "{an} € P, H{dn} € P; an, < d?, Vn € N.

Let 1 < g < co. The Kéthe sequence space £4(P) is defined as

1(P) = {x ={z,} €w:pl(x):= (Z|xn|qag) Va = |lzallq < o0, Ya € ’P}.

¢4(P) is a complete locally convex x-algebra (pointwise operations, complex con-
jugation) with respect to the topology 75 defined by seminorms {p : a € P} ([6]).
It is clear that P C £°° and ¢?(P) contains ¢? as a dense x-subalgebra. Further, it
follows from (iv) that for any a € P, p?(zy) < pi(z)pi(y) and p(z*) = pl(zx) for
each z,y € ¢9(P), which implies that sup p? is a spectral unbounded m*-norm on

a€P
¢1(P). Let ¢ = co. Then
((P) :={o ={an} €w:pX(z) = ||zale < oo, Va € P}

is a C*-like locally convex #x-algebra with the C*-like direct family {pS° : a € P}
of seminorms. Hence sup p2° is a spectral unbounded C*-norm on ¢*°(P).
a€P
Further, suppose
(V) ||lalloo < 1 for Va € P.
Then since D(sup pl) D ¢ and
acP

Noup p2 O F :={x = {2} €w: x, =0 except for finite many n},

a€eP

it follows that sup p? is semifinite. Similarly, sup pS° is semifinite. Here is an
acP acP
important special case. Let

s={z={2,} €ew: {nz,} € £, Vk e N}
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be the x-algebra consisting of all rapidly decreasing sequences. Then

P = {{|z,|} : {zn} € s, sup|z,| < 1 and |zn41| < |240], V0 € N}

satisfies the condition (i)-(v). Then we have

NP ={z={x,} €w: {wpyn} €', Yy = {y.} € P}
= s’ (the set of all tempered sequences)

—m

={z € w:sup|z,|n™™ < oo for some m € N},

n
D(sup pl) = {z € s’ : sup eylls < oo},
yeP yeP

(sup p,)(z) =sup |zyli, =€ D(sup p,)
yeP yeP yeP

and sup p}/ is a semifinite spectral unbounded m*-norm on s’.
yeP

We can define the following unbounded m*-norms p? and pZ, on ¢4(P) by

D(p?) =L1(P)N¢1 =41 and pi(z) = |zl,, x € D(p?);
D(pd,) = L4(P) ne= and  pl () = [|7]|oc, = € D(pL,).

Since (€9, - ||4) is a Banach *-algebra and 91, contains a dense subspace F in ¢9,
it follows that p? is a semifinite spectral unbounded m*-norm on ¢¢(P), and p%,
is the unbounded Gelfand-Naimark C*-norm defined by the unbounded m*-norm
p?, and it is semifinite.

(2) The above (1) can be used to model certain convolution algebra as illus-

trated below. Let A = {z € C: |z| < 1}, H(A) be the nuclear Fréchet space of all
functions holomorphic on A. H(A) is a -algebra with involution f*(z) = f(Z) and
Hadamard product (f % g)(z) = 5= [ f(2)g(zz71)27dz, |z| < r < 1. The func-
tion e(z) = (1 — 2z)~ ! is the identity of H(A). The algebra H(A) is x-isomorphic
to £1(P) with P = {{r"}22, : 0 < r < 1} via the isomorphism v : H(A) — ¢1(P),

P(f) = {%} o It follows that a?(f) = sup {Z %r”

1
03
["1<q<x)
n= 0<r<l tn

defines a semifinite unbounded norm on H(A). Let T = {z € C : |z| = 1}
be the unit circle. The Fréchet space C°(T) of C*°-functions on T with the

topology 7 defined by the seminorms p,(f) = > & sup] f®)(t)] is a convolu-
k=0 teT

tion *-algebra with involuiton f*(z) = f(z). C°°(T) is isomorphic to the se-
quence algebra s(Z) := {z = {z,}=, : {In[fz,}> € ¢*,Vk € N}. The
dual of C*°(T) is the commutative convolution algebra D(T') of all distributions
on T, the identity being the Dirac delta 6 and the involution being v — u*,
<ur f >= {(u, f*) (f € C®°(T)). Let u — @, u(n) = (u,exp(—int)) (n € Z)
be the Fourier-Schwarz transform that map D(T)--isomorphically onto the -
algebra s'(Z) = {a = {a,}> : a, = O(|n|™) for some m depending on a} having
pointwise operations and complex conjugation as the involution. Under this map,
the x-subalgebra PM(T") (pseudo measures on T') of D(T') is mapped onto ¢>°(Z).
By (1) we can define a semifinite spectral unbounded m*-norm on D(T) and a
semifinite spectral unbounded C*-norm on PM(T'). In fact, D(T) is a sequentially
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complete GB*-algebra with sequentially jointly continuous multiplication and hav-

ing bounded part A[By] = PM(T'). For the unbounded C*-norm pgp+, we have

D(pgp+) = PM(T) and pgp-(x) = sup |Z(n)| = ||Z||co. Further, by (12.6.2, p.74)
ne

in [15] C°(T) is an ideal of D(T") and so C*°(T) C N

PcB* *

EXAMPLE 7.3. We consider unbounded C*-norms on O*-algebras. We put
D(py) = My :={X € M : X is bounded }

and py(X) = || X||, X € D(pp). Then py, is an unbounded C*-norm on M.
(1) Let {Mx}rea be a family of bounded *-algebras M on Hilbert spaces

H, with identity operator and [] M be the product of {M}rea. We put
AEA

D(TT M) ={(€) e @rr: T IK&IP < o0, ¥(x3) € [T Mi ),

AEA AEA AEA AEA

(X)(E) = (X&), (X e[ My, ()€ D( 11 MA)-

AEA AEA

Then [] M, is an O*-algebra on D( [[ My) in € Hia. A *-subalgebra of such
XEA XeA AEA
an O*-algebra is said to be weakly bounded. Let M be a weakly bounded O*-

algebra, that is, a #-subalgebra of the O*-algebra [] M. Then
XeA

D(py) = {(X») e M: sup 1Xx ]l < oo},
P (X)) = sup XAl (XX) € D(py)-

Suppose that M contains the family {E)}aea of the projection Ey of € Hy onto
AEA
H, in particular, M = [] M,. Then p, is a maximal, regular and semifinite
AEA
unbounded C*-norm on M. Schmiidgen ([28]) has given necessary and sufficient
conditions under which a closed O*-algebra is weakly bounded.

(2) Let M be an O*-algebra on D in H. Suppose M D {¢, ® &, : n € N},
where {,} is an orthonormal basis in H contained in D. Then p, is a maximal
and weakly semifinite unbounded C*-norm on M.

(3) Let My be the O*-algebra on the Schwartz space S(R) generated by
the momentum operator P and the position operator Q. Then D(p,) = CI and
MN,, = {0}. Let M be an O*-algebra on S(R) generated by Mg and {f,, ® f,, : n =
0,1,...}, where {f,,} is an orthonormal basis in L?(R) consisting of the normalized
Hermite functions. Then it follows that 91, equals the *-algebra generated by
{A(fn®@fn): A€ My, n=0,1,...}, so that p, is a maximal and weakly semifinite
unbounded C*-norm on M.

We intend to study unbounded m*-(or C*-)seminorms on locally convex -
algebras. In particular, it seems important to define and study the notions of
topologically (hereditary) C*-spectral algebras, topologically (hereditary) spectral
x-representations and topological stability in case of locally convex x-algebras.
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