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Abstract. We make a detailed study of locally inner actions on C∗-algebras
whose primitive ideal spaces have locally compact Hausdorff complete regu-
larizations. We suppose that G has a representation group and compactly
generated abelianization Gab. Then, if A is stable and if the complete reg-
ularization of Prim(A) is X, we show that the collection of exterior equiva-
lence classes of locally inner actions of G on A is parametrized by the group
EG(X) of exterior equivalence classes of C0(X)-actions of G on C0(X,K).
Furthermore, we exhibit a group isomorphism of EG(X) with the direct sum

H1(X, bGab)⊕C
`
X, H2(G, T)

´
. As a consequence, we can compute the equiv-

ariant Brauer group BrG(X) for G acting trivially on X.
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1. INTRODUCTION

One of the original motivations for the study of C∗-algebras arose from the desire to
understand the representation theory of locally compact groups. As is eloquently
described in Rosenberg’s survey article ([46], Section 3), the modern Mackey-
Green machine shows that to make further progress in this direction, it will be
necessary to have detailed knowledge of crossed product C∗-algebras which arise
from actions with a “single orbit type” acting on a continuous-trace C∗-algebra.
There is a considerable volume of work in this direction — for example, [41], [43],
[42], [33], [14], [12] and other references cited in [46], Section 3. Notice that the
case of nonvanishing Mackey obstructions is treated only in [14], [12], and that the
majority of results assume that the group acting is abelian.

In this article, we consider a general family of dynamical systems which
include all spectrum fixing actions of a wide class of locally compact groups on
continuous-trace C∗-algebras. Since the crossed product by any action on a stable
continuous-trace C∗-algebra with single orbit type and constant stabilizer N can
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be decomposed (via the Packer-Raeburn Stabilization Trick, [35], Theorem 3.4)
into an action of N (which is trivial on Â) and an action of G/N on AoαN
(with G/N acting freely on (AoαN)∧), a detailed description of such actions
and their crossed products provides a major step towards a general solution to
Rosenberg’s “Research Problem 1” of [46]. Following ideas developed in [41],
[44], [8], [34], [37] (and others) we are going to describe our actions in terms of
topological invariants living in Moore’s group cohomology and in certain sheaf
cohomology groups. In [15], we will use these topological invariants for a precise
bundle-theoretic description of the corresponding crossed products.

Let us explain our results in more detail. If G is a second countable locally
compact group and X is a second countable locally compact Hausdorff space,
then we denote by EG(X) the set of exterior equivalence classes of C0(X)-linear
(i.e., spectrum fixing) actions of G on C0(X,K). By taking diagonal actions on
the balanced tensor product C0(X,K)⊗C0(X) C0(X,K) ∼= C0(X,K), we obtain an
abelian group operation on EG(X), and EG(X) can be identified with a subgroup of
the equivariant Brauer group BrG(X) of all Morita equivalence classes of spectrum
fixing G-actions on continuous trace algebras with spectrum Â = X ([8]). In fact,
EG(X) is the kernel of the forgetful homomorphism F : BrG(X) → Br(X) ∼=
H3(X,Z), sending a system (A,G, α) to the Dixmier-Douady invariant δ(A) ∈
H3(X,Z). Since F has a natural splitting, BrG(X) ∼= EG(X) ⊕H3(X,Z). Thus,
the Dixmier-Douady invariant and the class in EG(X) completely determine the
class of a spectrum fixing automorphism group on a continuous-trace C∗-algebra
with spectrum X.

If [β] ∈ EG(X), then each x ∈ X determines an element [ωx] ∈ H2(G,T)
(Moore’s group cohomology) called the Mackey obstruction for extending the
evaluation map at x to a covariant representation of (C0(X,K), G, β). The map
ϕβ : X → H2(G,T) given by ϕβ(x) = [ωx] is continuous and we obtain a natural
homomorphism

Φ : EG(X) → C(X,H2(G,T)); [β] 7→ ϕβ .

Notice that ϕβ = 0 if and only if each irreducible representation of C0(X,K) can
be extended to a covariant representation of

(
C0(X,K), G, β

)
; that is, if and only

if β is pointwise unitary. In [34] (see also [37]), Packer observed that if G is an
elementary abelian group (i.e., G is of the form Rn × Tm × Zk × F with F finite
abelian), then Φ is surjective and admits a splitting map. Moreover, a theorem of
Rosenberg (see Theorem 3.8) implies that under these hypotheses, kerΦ coincides
with the (equivalence classes of) locally unitary actions. Therefore the Phillips-
Raeburn obstruction map (see Corollary 3.9) gives an isomorphism of kerΦ with
the isomorphism classes of principal Ĝ-bundles over X, or equivalently, with the
sheaf cohomology group H1(X, Ĝ). (If G is an abelian group, we will use the
corresponding calligraphic letter G to denote the sheaf of germs of continuous G-
valued functions.) Thus as abelian groups, EG(X) ∼= H1(X, Ĝ)⊕C

(
X,H2(G,T)

)
,

and BrG(X) ∼= H1(X, Ĝ) ⊕ C
(
X,H2(G,T)

)
⊕H3(X; Z). Notice that the critical

steps in Packer’s argument are to find a splitting map for Φ and to identify kerΦ
using Rosenberg’s theorem.

Our first main result is to produce a splitting map for Φ in the case that G
has a representation group in the sense of Moore (see Definition 4.1). Such groups
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are called smooth and comprise a large class of locally compact groups including all
compact groups, all discrete groups, and all compactly generated abelian groups
(see Remark 4.2 and Corollary 4.6). Smooth groups G have the property that
H2(G,T) is locally compact and Hausdorff. Thus if Gab is compactly generated,
then G satisfies the hypotheses of Rosenberg’s theorem and allows us to identify
ker Φ with locally unitary actions of G. A suitable modification of the Phillips-
Raeburn theory (see Section 3) gives an isomorphism of kerΦ with H1(X, Ĝab)
(Corollary 3.9). Thus we obtain the following result.

Theorem. (Theorem 5.4 and Corollary 5.5) Suppose that G is smooth and
that Gab is compactly generated. Then for any trivial G-space X,

EG(X) ∼= H1(X, Ĝab)⊕ C
(
X,H2(G,T)

)
,

and
BrG(X) ∼= H1(X, Ĝab)⊕ C

(
X,H2(G,T)

)
⊕H3(X; Z).

This gives new information even if G is abelian, since by Corollary 4.6 our
result applies not only to elementary abelian groups, but to all second countable
compactly generated abelian groups.

One reason that actions on continuous-trace C∗-algebras are more manage-
able than actions on arbitrary C∗-algebras is that, for suitable G (e.g., if the
abelianization Gab = G/[G,G] is compactly generated), any spectrum fixing ac-
tion of G on a continuous-trace C∗-algebra A is locally inner (see the proof of [45],
Corollary 2.2). Thus it is natural to try to classify locally inner actions on arbi-
trary C∗-algebras rather than restricting ourselves to actions on continuous-trace
algebras. We are able to provide this classification for a large class of C∗-algebras,
namely those whose primitive ideal space Prim(A) has a (second countable) lo-
cally compact complete regularization X (this class includes all unital C∗-algebras,
all C∗-algebras with Hausdorff primitive ideal spaces, and all quasi-standard C∗-
algebras in the sense of Archbold and Somerset, [3]). If X is given, then we will
denote by CR(X) the class of C∗-algebras with complete regularization X for
Prim(A). For this class of algebras we obtain the following

Theorem. (Theorem 6.3) Suppose that A ∈ CR(X) and α : G → Aut(A)
is a locally inner action of a smooth group on A. If Gab is compactly generated,
then there is a unique [βα] ∈ EG(X) such that α ⊗X id is exterior equivalent to
id⊗X β

α on A⊗XC0(X,K). In fact, the map [α] 7→ [βα] is a well-defined injective
map from the collection of exterior equivalence classes of locally inner actions on
A to EG(X). This correspondence is bijective if A is stable.

It follows that if A ∈ CR(X) and if (A,G, α) is locally inner, then the
crossed product AoαG is Morita equivalent to one of the special form

(
A ⊗X

C0(X,K)
)

oid⊗Xβ G, where β is in EG(X). Having this, it is possible to describe
the crossed product in terms of the invariants associated to β and a representation
group for G; this we do in [15].

Our work is organized as follows. Section 2 is devoted to some preliminary
results on C0(X)-algebras and on the complete regularization of Prim(A). In
Section 3 we consider locally unitary actions on CR(X)-algebras, and extend the
Phillips-Raeburn classification scheme to this setting. Since smooth groups play
such an important rôle in the sequel, we devote Section 4 to developing some basic
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results about representation groups. The chief result connecting representation
groups to the splitting of Φ is the characterization of smooth groups given in
Lemma 4.3. In Section 5, we prove the first of our main results (Theorem 5.4) which
describes EG(X). Our description of locally inner actions is given in Section 6.

Since Rosenberg’s theorem plays a key rôle, we provide a discussion of possi-
ble extensions of his theorem in Section 7. We give examples which show that the
hypotheses are sharp — that is, the major assumptions that H2(G,T) is Haus-
dorff and that Gab is compactly generated, are both necessary in general. On
the other hand, we also show that Rosenberg’s theorem holds for a strictly larger
class of groups if we restrict ourselves to actions on continuous-trace C∗-algebras
with locally connected spectrum (Theorem 7.4). This class of groups contains
all connected nilpotent Lie groups and all [FD]−groups (Corollary 7.5) — a class
of groups which contains all known examples of groups G for which C∗(G) is a
continuous-trace C∗-algebra.

2. PRELIMINARIES

If A is a C∗-algebra, then we will write Prim(A) for the space of primitive ideals
of A with the Jacobson topology. This topology is badly behaved in general and
may satisfy only the T0-axiom for separability. On the other hand, Prim(A) is
always locally compact (we do not require that compact or locally compact spaces
be Hausdorff), and Prim(A) is second countable whenever A is separable ([10],
Section 3.3). The Jacobson topology on Prim(A) not only describes the ideal
structure of A, but also allows us to completely describe the center ZM(A) of the
multiplier algebra M(A) of A. If a ∈ A, then we will write a(P ) for the image of
a in the quotient A/P , then the Dauns-Hofmann Theorem allows us to identify
Cb

(
Prim(A)

)
with ZM(A) as follows: if f ∈ Cb

(
Prim(A)

)
and if a ∈ A, then f ·a

is the unique element of A satisfying (f · a)(P ) = f(P )a(P ) for all P ∈ Prim(A),
and every element of ZM(A) is of this form (cf. [39], Corollary 4.4.8 or [31]). Note
that A is a nondegenerate central Banach Cb

(
Prim(A)

)
-module.

Since the topology on Prim(A) can be awkward to deal with, a natural
alternative is to use the following definition.

Definition 2.2. Suppose that X is a locally compact Hausdorff space. A
C0(X)-algebra is a C∗-algebra A together with a ∗-homomorphism ΦA : C0(X) →
ZM(A) which is nondegenerate in the sense that

ΦA

(
C0(X)

)
·A := span {ΦA(f)a : f ∈ C0(X) and a ∈ A}

is dense in A.

C0(X)-algebras have enjoyed a considerable amount of attention recently and
there are a number of good treatments available [5], [4], [32]. We recall some of
the basic properties here.

If (A,ΦA) is a C0(X)-algebra, then there is a continuous map σA : Prim(A) →
X such that ΦA(f) = f ◦ σA. (Here and in the sequel, we identify ZM(A) with
Cb

(
Prim(A)

)
via the Dauns-Hofmann Theorem.) As the converse is clear, A is a

C0(X)-algebra if and only if there is a continuous map from Prim(A) to X. We
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will usually suppress ΦA and σA and write f · a in place of ΦA(f)a or (f ◦ σA) · a.
Notice that A is a nondegenerate central Banach C0(X)-module satisfying

(2.1) (f · a)∗ = a∗ · f.
Furthermore, any nondegenerate central C0(X)-module satisfying (2.1) is a
C0(X)-algebra.

Suppose that U is open in X and that J is the ideal of functions in C0(X)
vanishing off U . Then the Cohen factorization theorem ([7], [5], Proposition 1.8)
implies that

J ·A := span {f · a : f ∈ J and a ∈ A} = {f · a : f ∈ J and a ∈ A}.
(The point being that it is unnecessary to take either the closure or the span in
the final set.) Anyway, J · A is an ideal of A which will be denoted by AU . For
each x ∈ X, we write A(x) for the quotient of A by AX\{x}. If a ∈ A, then we
write a(x) for the image of a in A(x). We refer to A(x) as the fibre of A over x.
Notice that it is possible that A(x) = {0}. Even so, we often view elements of A
as “fields” in

∏
x∈X

A(x). This point of view is justified by the following.

Lemma 2.1. ([5], [32]) Suppose that A is a C0(X)-algebra. For each a ∈ A,
the map x 7→ ‖a(x)‖ is upper semicontinuous; that is, {x ∈ X : ‖a(x)‖ > ε} is
closed for all ε > 0. Furthermore,

‖a‖ = sup
x∈X

‖a(x)‖.

Remark 2.3. The map x 7→ ‖a(x)‖ is continuous for all a ∈ A if and only
if σA is open ([24], [32]). In this case, A is the section algebra of a C∗-bundle over
the image of σA ([16], Section 1).

Remark 2.4. Notice that if A is a C0(X)-algebra then each m ∈ M(A)
defines a multiplier m(x) ∈ M

(
A(x)

)
. If m ∈ M(A) and a ∈ A, then ma(x) =

m(x)a(x).

Given a C∗-algebra A, it is natural to look for a nice space X which makes
A a C0(X)-algebra. Since X will be the image of Prim(A) by a continuous map, it
is reasonable to look for a “Hausdorffication of Prim(A)”. Regrettably, there are a
horrifying number of alternatives to choose from (cf., e.g., [9], Chapter III, Section
3). For our purposes, the appropriate notion is the complete regularization. If
P and Q belong to Prim(A), then we define P ∼ Q if f(P ) = f(Q) for all
f ∈ Cb

(
Prim(A)

)
. Then ∼ is an equivalence relation and the set Prim(A)/∼ is

denoted by Glimm(A) ([3]). If we give Glimm(A) the weak topology τcr induced
by the functions in Cb

(
Prim(A)

)
, then

(
Glimm(A), τcr

)
is a completely regular

space ([17], Theorem 3.7). The quotient map q : Prim(A) → Glimm(A) is called
the complete regularization map. It is not clear that τcr coincides with the quotient
topology τq on Glimm(A), although one certainly has τcr ⊆ τq. (These topologies
do differ in general ([17], 3J.3); however, we know of no examples where they
differ for Glimm(A).) In particular, q is continuous; moreover the map f 7→
f ◦ q is an isomorphism of Cb

(
Glimm(A)) and Cb

(
Prim(A)

)
([17], Theorem 3.9).

Furthermore, τcr is the only completely regular topology on Glimm(A) such that
the functions induced by Cb

(
Prim(A)

)
are continuous ([17], Theorem 3.6).
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Here it will be necessary to have the complete regularization
(
Glimm(A), τcr

)
be locally compact. Regrettably, this can fail to be the case ([9], Example 9.2).
Even if the complete regularization is locally compact, we have been unable to
show that it must be second countable if A is separable. Consequently, we must
include both these assumptions in our applications.

Definition 2.5. We will call a separable C∗-algebra a CR-algebra if the
complete regularization X :=

(
Glimm(A), τcr

)
of Prim(A) is a second countable

locally compact Hausdorff space. If X is a second countable locally compact
Hausdorff space, then we will write CR(X) for the collection of CR-algebras with
complete regularization homeomorphic to X.

Despite the pathologies mentioned above, the class of CR-algebras is quite
large. It clearly contains all separable C∗-algebras with Hausdorff primitive ideal
space Prim(A). If A is unital, then Prim(A) is compact. Since the complete
regularization map is continuous, Glimm(A) is compact. Since Cb

(
Prim(A)

)
=

Cb
(
Glimm(A)

)
is actually a closed subalgebra of A in this case, Cb

(
Glimm(A)

)
is

separable and Glimm(A) is second countable. (There is an embedding of Glimm(A)
into Cb

(
Glimm(A)

)∧ which is the Stone-Čech compactification
β
(
Glimm(A)

)
. Since a subset of a locally compact Hausdorff space is locally

compact if and only if it is open in its closure, Glimm(A) is locally compact
exactly when it is open in its Stone-Čech compactification.) Thus every unital
C∗-algebra is a CR-algebra. Another large class of CR-algebras is provided by
the quasi-standard C∗-algebras studied in [3]. Recall that a C∗-algebra is called
quasi-standard if (1) defining P ≈ Q when P and Q cannot be separated by open
sets in Prim(A) is an equivalence relation on Prim(A), and (2) the corresponding
quotient map is open. If A is quasi-standard, then ∼ and ≈ coincide and A is CR
([3], Proposition 3.2). In fact a number of interesting group C∗-algebras turn out
to be quasi-standard ([2], [22]).

Let M(A) be the multiplier algebra of A. Recall that a net {Ti} converges
to T in the strict topology on M(A) if and only if Tia → Ta and T ∗i a → T ∗a for
all a ∈ A. If the net is bounded, then it suffices to take a in the unit ball of A. In
fact, if each Ti is unitary, then it suffices to check only that Tia → Ta for a ∈ A

with ‖a‖ 6 1. Consequently if A is separable, then the unitary group UM(A) is a
second countable topological group in the strict topology which admits a complete
metric (compatible with the topology). That is, UM(A) is a Polish group. Since
ZUM(A) is closed in UM(A), it too is a Polish group.

For notational convenience, let X =
(
Glimm(A), τcr) be the complete regu-

larization of Prim(A). Then we can identify ZM(A) with Cb
(
X), and ZUM(A)

with C(X,T). However it is not immediately obvious how to describe the strict
topology on C(X,T). Our next result says that when X is second countable and
locally compact, then the strict topology on C(X,T) coincides with the compact-
open topology (the topology of uniform convergence on compacta).
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Lemma 2.6. Suppose that X is a second countable locally compact Hausdorff
space and that A ∈ CR(X). Then ZUM(A) with the strict topology is homeomor-
phic to C(X,T) with the compact-open topology.

Remark 2.7. The lemma holds for X = (Glimm(A), τcr) whenever C(X,T)
is a Polish group in the compact-open topology. In general, X is a σ-compact,
completely regular space. If τq = τcr, then X is compactly generated (or a k-
space) by [24], 43H(3), and at least in a compactly generated space, the limit
of continuous functions in the compact-open topology is continuous. In order
that C(X,T) be metric, it seems to be necessary that X be “hemicompact” ([48],
43G(3)). In any case, if X is hemicompact, then the compact open topology is
metric and complete. In this case, C(X,T) is Polish, at least provided that X is
second countable — so that C(X,T) is separable. However we have been unable
to show that X is second countable — even if X is locally compact.

Proof. Suppose that fn → f uniformly on compacta in C(X,T). If a ∈ A is
nonzero and if ε > 0, then the image of

C = {P ∈ Prim(A) : ‖a(P )‖ > ε/2}

is compact in X ([10], Section 3.3). Thus, there is an N such that n > N implies
that |fn

(
q(P )

)
− f

(
q(P )

)
| < ε/‖a‖ for all P ∈ C. If P /∈ C, then for all n,

‖fn · a(P )− f · a(P )‖ 6 ε.

This proves that fn → f strictly.
Since X is second countable and locally compact, there is a sequence of

compact sets {Kn} in X such that X =
⋃
n
Kn and such that every compact set K

in X is contained in some Kn. Then if {Vn} is a countable basis for the topology
of T, we get a sub-basis {Un,m} for the compact-open topology on C(X,T) by
setting

Un,m := {f ∈ C(X,T) : f(Kn) ⊆ Vm}.
It follows that C(X,T) is second countable in the compact-open topology. Using
the Kn’s, it is easy to construct a complete metric on C(X,T) compatible with
the compact-open topology. Thus, C(X,T) is a Polish group in the compact open
topology. Since the first part of the proof shows that the identity map is continuous
from the compact-open topology to the strict topology, the result follows from the
Open Mapping Theorem ([29], Proposition 5 (b)).

An automorphism α of a C∗-algebra A is called inner if there is a u ∈ UM(A)
such that α = Ad (u). (Recall that Ad (u)(a) := uau∗.) An action α : G→ Aut(A)
is called inner if αs is inner for each s ∈ G. An action is called unitary if there
is a strictly continuous homomorphism u : G → UM(A) such that αs = Ad (us)
for all s ∈ G. Unitary actions are considered trivial; for example, if α is unitary,
then the crossed product AoαG is isomorphic to A⊗maxC

∗(G). Also two actions
α : G → Aut(A) and β : G → Aut(A) are called exterior equivalent if there is a
strictly continuous map w : G→ UM(A) such that

(1) αs(a) = wsβs(a)w∗s for all a ∈ A and s ∈ G, and
(2) for all s, t ∈ G, wst = wsβs(wt).
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In this event, we call w a 1-cocycle. Actions α : G→ Aut(A) and β : G→ Aut(B)
are called outer conjugate if there is a ∗-isomorphism Φ : A→ B such that β and
Φ ◦ α ◦ Φ−1 are exterior equivalent.

Although unitary actions are trivial from the point of view of dynamical
systems, inner actions can be quite interesting. Another class of interesting actions
are those which are locally inner or even locally unitary.

Definition 2.8. Let X be a second countable locally compact Hausdorff
space and G a second countable locally compact group. Suppose that A ∈ CR(X)
and that α : G → Aut(A) is an action. Then α is called locally unitary (locally
inner) if every point in X has a neighborhood U such that AU is invariant under
α and the restriction αU of α to AU is unitary (inner).

Remark 2.9. If A has Hausdorff spectrum X, then the above definition
coincides with the usual notion of a locally unitary action (cf. [41], Section 1 and
[45], Section 1).

Recall from Lemma 2.6 that if A ∈ CR(X) then the group ZUM(A) of
A, equipped with the strict topology, is isomorphic to the polish group C(X,T)
equipped with the compact-open topology. Thus we obtain a short exact sequence
of polish groups

1 −→ C(X,T) −→ UM(A) −→ Inn(A) −→ 1.

If α : G → Aut(A) is inner, then α defines a continuous homomorphism of G
into Inn(A) with its Polish topology ([42], Corollary 0.2). Thus, we can choose
a Borel map V : G → UM(A) such that Ve = 1 and such that α = AdV . (For
example, [29], Proposition 4 implies there is a Borel section c : Inn(A) → UM(A)
such that c(id) = 1. Then V = c ◦ α will do the job.) Then V determines a Borel
cocycle σ ∈ Z2

(
G,C(X,T)

)
via the equation VsVt = σ(s, t)Vst for s, t ∈ G. The

class [σ] ∈ H2
(
G,C(X,T)

)
only depends on α and is the only obstruction to α

being unitary (see [42], Corollary 0.12). In what follows we will refer to V as a
σ-homomorphism of G into UM(A) which implements α.

Remark 2.10. Suppose that α : G → Aut
(
C0(X,K)

)
is an inner auto-

morphism group which is implemented by a σ-homomorphism as above. Then
the Mackey obstruction for the induced action αx on the fibre over x is the
class of σ(x), where σ(x) is the cocycle in Z2(G,T) obtained by evaluation at
x: σ(x)(s, t) := σ(s, t)(x).
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3. LOCALLY UNITARY ACTIONS

In this section we want to see that the Phillips-Raeburn classification scheme for
locally unitary actions of abelian groups can be extended to all second countable
locally compact groups acting on CR-algebras.

Suppose that A ∈ CR(X) and that α : G→ Aut(A) is locally unitary. Then
there is a cover U = {Ui}i∈I such that αUi = Ad (ui) for strictly continuous
homomorphisms ui : G → UM(AUi

). For convenience, we will write Uij for
Ui ∩ Uj , Aij in place of AUij

, αij for αUij , and uij for (ui)Uij . Even though
uij 6= uji, both uij and uji implement αij . It follows that for each s ∈ G, uij

s (uji
s )∗

belongs to ZUM(Aij). In order to identify ZUM(Aij) with C(Uij ,T) (with the
compact-open topology), we need the following lemma.

Lemma 3.1. Suppose that A ∈ CR(X) and that U is open in X. Then
AU ∈ CR(U).

Proof. Let q : Prim(A) → X be the quotient map. Then we can identify
Prim(AU ) with q−1(U), and Glimm(AU ) is the quotient of the latter with topology
induced by Cb

(
q−1(U)

)
. We have to show that Glimm(AU ) can be identified

with U with the relative topology. However since any f ∈ Cb
(
Prim(A)

)
restricts

to an element of Cb
(
q−1(U)

)
, it is clear that P ∼ Q in q−1(U) implies that

P ∼ Q in Prim(A). On the other hand, suppose that P ∼ Q in Prim(A) and that
f ∈ Cb

(
q−1(U)

)
. Since X is locally compact and U is an open neighborhood of

q(P ) = q(Q), there is a g ∈ C+
c (X) with g

(
q(P )

)
= 1 and supp (g) ⊆ U . Therefore,

we may view h = f(g ◦ q) as an element of Cb
(
Prim(A)

)
. Since h(P ) = h(Q) by

assumption, we must have f(P ) = f(Q). Thus, the two equivalence relations
coincide on q−1(U) and we can identify U with Glimm(AU ) at least as a set.

Let τr be the relative topology on U . A similar argument to that in the
previous paragraph shows that any element of Cb

(
q−1(U)

)
agrees at least locally

with an element of Cb
(
Prim(A)

)
. Thus Cb(U, τr) and Cb(U, τcr) coincide. Since

both topologies on U are completely regular (Hausdorff) topologies, and therefore
are determined by the zero sets of Cb(U) ([17], Theorem 3.7), the topologies
coincide.

Now the previous lemma allows us to conclude that Aij ∈ CR(Uij) so that
we may identify ZUM(Aij) with C(Uij ,T) as claimed. Notice that uij(x) = ui(x).
Since C(Uij ,T) has the compact open topology and s 7→ uij

s (uji
s )∗ is continuous,

it follows that
(x, s) 7→ ui

s(x)u
j
s(x)

∗

is jointly continuous from Uij × G to T. In particular, for each x ∈ Uij , s 7→
ui

s(x)u
j
s(x)

∗ is a continuous character γij(x) on G, and

(3.1) ui
s(x) = γij(x)(s)uj

s(x).

Since any character has to kill the closure of the commutator subgroup [G,G], we
will always view γij(x) as a character on the abelian group Gab := G/[G,G]. The
group Gab is a locally compact abelian group usually called the abelianization of
G. Notice that the joint continuity implies that the functions γij : Uij → Ĝab are
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continuous when Ĝab is given the usual locally compact dual topology (of uniform
convergence on compacta). A straightforward computation using the definition of
the γij ’s shows that if x ∈ Uijk, then

γij(x)γjk(x) = γik(x).

Thus the collection γ = {γij} defines a 1-cocycle in Z1(U, Ĝab) and therefore a
class ζ in H1(X, Ĝab). We claim this class depends only on (A,G, α). Suppose we
had taken a different cover {Vj}j∈J and homomorphisms vi. Passing to a common
refinement allows us to assume that I = J and that Ui = Vi. Then since ui and
vi both implement αi over Ui, an argument similar to that above implies they
differ by a central multiplier λi : Ui → Ĝab. Then it is easy to see that we get
cohomologous cocycles. One usually writes ζ(α) for the class ζ, and ζ(α) is called
the Phillips-Raeburn obstruction.

Remark 3.2. When G is abelian and A is type I with spectrum X, then
ζ(α) is the classical Phillips-Raeburn obstruction of [41]. That is, ζ(α) is the class
of the principal Ĝ-bundle given by the restriction map p : (AoαG)∧ → X as in
[41], Theorem 2.2.

Proposition 3.3. Let X be a second countable locally compact Hausdorff
space. Suppose that A ∈ CR(X) and that α : G → Aut(A) is a second countable
locally compact, locally unitary automorphism group. Then the transition func-
tions (3.1) define a class ζ(α) in H1(X, Ĝab) which depends only on (A,G, α). If
(A,G, β) is another such system, then ζ(α) = ζ(β) if and only if α and β are exte-
rior equivalent. In particular, α is unitary if and only if ζ(α) = 1 (We are writing
the product in H1 multiplicatively; therefore 1 denotes the trivial element.). Fur-
thermore if A is stable, then every class in H1(X, Ĝab) is equal to ζ(α) for some
locally unitary action α : G→ Aut(A).

Proof of all but the last assertion. We have already seen that ζ(α) depends
only on (A,G, α). Now suppose that (A,G, β) is another locally unitary action
with ζ(β) = ζ(α). Then we can find a cover {Ui}i∈I and ui, vi : G → UM(AUi)
such that ui implements αi, vi implements βi, and such that

(3.2) ui
s(x)u

j
s(x)

∗ = γij(x)(s) = vi
s(x)v

j
s(x)

∗.

Let wi
s(x) := ui

s(x)v
i
s(x)

∗. Then s 7→ wi
s(·) is a strictly continuous map of G

into UM(AUi
). Then it is easy to see that αi is exterior equivalent to βi via wi.

However, if x ∈ Uij , then (3.2) implies that

wi
s(x)w

j
s(x)

∗ = ui
s(x)v

i
s(x)

∗vj
s(x)u

j
s(x)

∗ = 1.

Consequently, we can define ws(x) = wi
s(x) if x ∈ Ui. Since each wi defines a

strictly continuous map into UM(AUi
) and since x 7→ ‖a(x)‖ vanishes at infinity

for each a ∈ A, it is not hard to see that w is a strictly continuous map from G
into UM(A). Therefore, α and β are exterior equivalent.

Conversely, if α and β are exterior equivalent via w : G → UM(A), then
with {Ui}i∈I and ui, vi : G → UM(AUi) as above, we must have unimodular
scalars λi(x)(s) for all x ∈ Ui and s ∈ G such that λi(x)(s) = ui

s(x)
∗ws(x)vi

s(x).
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As above, we may view these as continuous functions from Ui to Ĝab. Also, if
x ∈ Uij , then

ui
s(x)

∗uj
s(x) = ui

s(x)
∗ws(x)vi

s(x)v
i
s(x)

∗vj
s(x)

(
uj

s(x)
∗ws(x)vj

s(x)
)∗

= λi(x)(s)λj(x)(s)vi
s(x)

∗vj
s(x).

It follows that ζ(α) = ζ(β).

To prove that every class in H1(X, Ĝab) arises when A is stable, we want
to recall some facts about balanced tensor products. Suppose that A and B are
C0(X)-algebras. Let I be the ideal in A⊗max B generated by

{a · f ⊗ b− a⊗ f · b : a ∈ A, b ∈ B, and f ∈ C0(X)}.

The (maximal) C0(X)-balanced tensor product of A and B is defined to be the
quotient

A⊗X B := (A⊗max B)/I.

Remark 3.4. Balanced tensor products have been studied by several au-
thors, and quite recently by Blanchard ([5], [4]). In particular ifX is compact, then
A⊗XB coincides with Blanchard’s A⊗M

X B. Moreover, A⊗XB is a C0(X)-algebra
and, writing a⊗X b for the image of a⊗ b in A⊗X B, we have

(3.3) f · (a⊗X b) = f · a⊗X b = a⊗X f · b for all f ∈ C0(X).

We intend to discuss these and other properties of ⊗X elsewhere ([15], Section 2).
Here we will be satisfied with the special cases outlined below.

In this work, we shall always assume that A and B are separable, and that B
is nuclear — in fact, it will suffice to consider only the case where B = C0(X,K).
Then [43], Lemma 1.1 applies and we can identify Prim(A⊗X B) with

(3.4) {(P,Q) ∈ Prim(A)× Prim(B) : σA(P ) = σB(Q)}.

In this case, (3.3) is a straightforward consequence of (3.4) and the definition of
I. Moreover, for all x ∈ X,

(3.5) A⊗X B(x) ∼= A(x)⊗B(x),

and (a ⊗X b)(x) = a(x) ⊗ b(x). (Note that we write simply ⊗ when one of the
factors is nuclear.) If B = C0(X,K), then Prim

(
A⊗X C0(X,K)

)
can be identified

with Prim(A). Moreover since C0(X,K) ∼= C0(X)⊗K, the map a⊗X (f ⊗ T ) 7→
a · f ⊗ T extends to a C0(X)-linear isomorphism of A ⊗X C0(X,K) onto A ⊗ K.
Notice that if U is open in X, then this isomorphism identifies (A⊗X C0(X,K))U

with AU ⊗ K. Furthermore, if A is stable, then we can choose an isomorphism
of A ⊗ K and A which induces the identity map on the primitive ideal spaces
(assuming Prim(A⊗K) has been identified with Prim(A)) ([41], Lemma 4.3). Then
A⊗X C0(X,K) is isomorphic to A and (A⊗X C0(X,K))U is identified with AU .
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Lemma 3.5. (cf. [41], Proposition 3.10) Suppose that X is a second countable
locally compact Hausdorff space and that A ∈ CR(X). Then A ⊗X C0(X,K) ∈
CR(X). If α : G → Aut(A) and β : G → Aut

(
C0(X,K)

)
are C0(X)-automor-

phism groups, then the diagonal action α⊗ β on A⊗ C0(X,K) induces an action
α ⊗X β on A ⊗X C0(X,K). If γ is exterior equivalent to α and δ is exterior
equivalent to β, then α⊗X β is exterior equivalent to γ ⊗X δ. Finally, if α and β
are locally unitary, then so is α⊗X β; moreover,

ζ
(
α⊗X β) = ζ(α)ζ(β) in H1(X, Ĝab).

Remark 3.6. If B is an arbitrary element of CR(X), then it seems to be
difficult to decide whether A⊗XB is in CR(X) — even if A and B are both nuclear.
However if one of the algebras is nuclear and A or B has Hausdorff primitive ideal
space, then one can replace C0(X,K) by B in the above and obtain the same
results.

Proof. Since Prim(A ⊗X C0(X,K)) can be identified with Prim(A), A ⊗X

C0(X,K) is certainly in CR(X). If αs and βs are C0(X)-linear, then αs⊗βs maps
the balancing ideal into itself and α⊗X β is a well-defined action on A⊗X B.

Now suppose that u : G→ UM(A) and v : G→ UM
(
C0(X,K)

)
are strictly

continuous 1-cocycles such that αs(a) = usγs(a)u∗s and βs(b) = vsδs(b)v∗s for all
s ∈ G, a ∈ A, and b ∈ C0(X,K). Since the image of C0(X) sits in the center of the
respective multiplier algebras, it is clear that each us and vs commutes with the
C0(X)-actions. Therefore us ⊗ vs defines a well defined element ws := us ⊗X vs

in UM
(
A⊗X C0(X,K)

)
. The continuity of s 7→ wst is clear for t in the algebraic

tensor product A � C0(X,K). This suffices to show strict continuity as each ws

has norm one. Routine calculations show that ws is a 1-cocycle implementing an
exterior equivalence between α⊗X β and γ ⊗X δ.

Finally, suppose that α and β are locally unitary. Then we can find a cover
U = {Ui} such that αUi is implemented by a homomorphism ui : G→ UM(AUi

)
and βUi by a homomorphism vi : G → UM

(
C0(Ui,K)

)
. Let γ = {γij} and

η = {ηij} be the corresponding cocycles representing ζ(α) and ζ(β). As above, we
obtain a homomorphism wi = ui⊗Ui

vi which implements (α⊗Xβ)Ui = αUi⊗Ui
βUi

on AUi ⊗Ui C0(Ui,K) ∼=
(
A ⊗X C0(X,K)

)
Ui . Thus α ⊗X β is locally unitary.

Moreover since wi(x) = ui(x)⊗ vi(x),

wi
s(x) = γij(x)(s)uj

s(x)⊗ ηij(x)(s)vj
s(x) =

(
γij(x)(s)ηij(x)(s)

)
wj

s(x).

The result follows.

Proof of the final assertion in Proposition 3.3. Let ζ0 ∈ H1(X, Ĝab). As
we remarked above, when A is stable there is an isomorphism of A and A ⊗X

C0(X,K) carrying AU onto
(
A ⊗X C0(X,K)

)
U . Thus it will suffice to produce a

locally unitary action α on A ⊗X C0(X,K) with ζ(α) = ζ0. It follows from [41],
Theorem 3.8 and Remark 3.2 that there is a locally unitary action β̃ : Gab →
Aut

(
C0(X,K)

)
with ζ(β̃) = ζ0. Now we simply lift β̃ to G. That is βs := βsH

where H := [G,G]. It is straightforward to check that ζ(β) = ζ(β̃) = ζ0. Now the
result follows by applying Lemma 3.5 to α := 1⊗X β.
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Remark 3.7. Since two actions with the same Phillips-Raeburn obstruction
are exterior equivalent, the above argument makes it clear that any locally unitary
action ofG on a stable CR-algebra A is lifted from an action ofGab. In fact, there is
a one-to-one correspondence between exterior equivalence classes of locally unitary
actions of G on A and exterior equivalence classes of locally unitary actions of Gab

on A.

We end this section with a short discussion on locally unitary action on
continuous-trace C∗-algebras. Assume that A is a separable continuous trace C∗-
algebra with spectrum X. An action α : G → Aut(A) is called pointwise unitary
if α is C0(X)-linear and the action on each fibre A(x) is unitary, or, equivalently,
if each irreducible representation ρ can be extended to a covariant representation
(ρ, V ) of (A,G, α). In general, a pointwise unitary action need not be locally
unitary (see Section 7). Despite this, pointwise unitary actions are locally unitary
under mild additional hypotheses. The strongest result in this direction is due to
Rosenberg.

Theorem 3.8. ([45], Corollary 1.2) Let A be a separable continuous-trace
C∗-algebra with spectrum X and let G be a second countable locally compact group
such that Gab is compactly generated and H2(G,T) is Hausdorff. Then every
pointwise unitary action of G on A is locally unitary.

Thus as a direct corollary of this and Proposition 3.3, we obtain:

Corollary 3.9. Let A and G be as above and assume in addition that A is
stable. Then the Phillips-Raeburn obstruction map α → ζ(α) induces a bijection
between the exterior equivalence classes of pointwise unitary actions of G on A

and H1(X, Ĝab).

4. REPRESENTATION GROUPS

In this section we want to discuss the notion of representation groups of second
countable locally compact groups as introduced by Moore in [28]. Recall that if
1 → Z → H → G→ 1 is a second countable locally compact central extension of G
by the abelian group Z, then the transgression map tg : Ẑ = H1(Z,T) → H2(G,T)
is defined as follows: Let c : G → H be a Borel section for the quotient map
H → G such that c(eZ) = e. Then σ(s, t) := c(s)c(t)c(st)−1 is a cocycle in
Z2(G,Z) (Moore-cohomology with values in the trivial G-module Z). If χ ∈ Ẑ,
then σχ(s, t) := χ(σ(s, t)) defines a cocycle σχ ∈ Z2(G,T) and then tg(χ) := [σχ]
is the cohomology class of σχ in H2(G,T).

Definition 4.1. (Moore) Let G be a second countable locally compact
group and let H be a central extension of G by some abelian group Z such that
the transgression map tg : Ẑ → H2(G,T) is bijective. Then H (or rather the
extension 1 → Z → H → G→ 1) is called a representation group for G. A group
G is called smooth if it has a representation group H.

Remark 4.2. The question of which groups have a representation group
was studied extensively by Moore in [28]. If H is a representation group for G,
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then the transgression map tg : Ẑ → H2(G,T) is actually a homeomorphism by
[28], Theorem 2.2 and [30], Theorem 6, so that in this case H2(G,T) is always
locally compact and Hausdorff. Conversely, if G is almost connected (i.e., G/G0

is compact) and H2(G,T) is Hausdorff, then G is smooth by [28], Proposition 2.7.
Since [27], Theorem A and following remark (2) imply that H2(G,T) is isomor-
phic to Rk for some k > 0 whenever G is a connected and simply connected Lie
group, it follows that such groups are smooth. If G is a connected semisimple
Lie group, then the universal covering group H of G is a representation group
for G by [28], Proposition 3.4. Finally, every compact group is smooth (see the
discussion preceding [28], Proposition 3.1), and every discrete group is smooth by
[28], Theorem 3.1 (see also [36], Corollary 1.3).

We will see below that, in addition to the above, every second countable
compactly generated abelian group is smooth (Corollary 4.6). To prove our results,
we need the following characterization of smooth groups.

Lemma 4.3. Let G be a second countable locally compact group. Then G
is smooth if and only if there exists a second countable locally compact Hausdorff
topology on H2(G,T) and a Borel cocycle ζ ∈ Z2

(
G,H2(G,T)∧

)
such that for each

[ω] ∈ H2(G,T) evaluation of ζ at [ω] gives an element in Z2(G,T) representing [ω].

Proof. Assume 1 → Z → H → G→ 1 is a representation group for G. Since
tg is an isomorphism, we can define an isomorphism tg∗ : Z → H2(G,T)∧ by
tg∗(z)([ω]) = tg−1([ω])(z). Let c : G→ H be a Borel cross section with c(eG) = eH

(eG denoting the unit in G). For s, t ∈ G, define ζ(s, t) := tg∗(c(s)c(t)c(st)−1).
Then ζ ∈ Z2(G,H2(G,T)∧), and if [ω] ∈ H2(G,T), then we obtain ζ(s, t)([ω]) =
tg−1([ω])(c(s)c(t)c(st)−1). Thus, by the definition of tg (see the discussion above)
(s, t) 7→ ζ(s, t)([ω]) is a cocycle representing [ω]. This is what we wanted.

For the converse, assume that there is a second countable locally compact
Hausdorff topology on H2(G,T) and let ζ ∈ Z2(G,H2(G,T)∧) be such that evalu-
ation at each [ω] ∈ H2(G,T) gives a representative for [ω]. LetH denote the exten-
sion G×ζ H

2(G,T)∧ of G by H2(G,T)∧ given by ζ. This is the set G×H2(G,T)∧

with multiplication defined by

(s, χ)(t, µ) = (st, ζ(s, t)χµ),

and equipped with the unique locally compact group topology inducing the product
Borel structure on G×H2(G,T)∧ (see [25], Theorem 7.1). Then

1 → H2(G,T)
∧ → H → G→ 1

is a central extension of G by H2(G,T)∧. Let c : G → H denote the canonical
section c(s) = (s, 1). Then the transgression map is a map from H2(G,T) ∼=
(H2(G,T)∧)

∧
to itself, and for each [ω] ∈ H2(G,T) we obtain a representative for

tg([ω]) by taking the cocycle

ν(s, t) = (c(s)c(t)c(st)−1)([ω]) = ζ(s, t)([ω]).

Therefore the transgression map tg : H2(G,T) → H2(G,T) is the identity, and H
is a representation group for G as required.
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Remark 4.4. If 1 → Z → H → G→ 1 is a representation group for G and
if ζ ∈ Z2(G,H2(G,T)∧) is constructed as above such that the evaluation map is
the identity on H2(G,T), then G ×ζ H

2(G,T)∧ is actually isomorphic to H. An
isomorphism is given by (s, [σ]) 7→ c(s)(tg∗)−1([σ]), where c : G→ H denotes the
Borel section defining ζ as above.

We now show that, under some weak additional assumptions, the direct
product of smooth groups is again smooth.

Proposition 4.5. Suppose that G1 and G2 are smooth and let B(G1, G2)
denote the group of continuous bicharacters χ : G1 × G2 → T. If B(G1, G2) is
locally compact with respect to the compact open topology, then G1×G2 is smooth.
In particular, if the abelianizations (G1)ab, (G2)ab of G1 and G2 are compactly
generated, then G1 ×G2 is smooth.

Proof. In fact we are going to construct a representation group for G1 ×G2

as follows: Choose central extensions

1 −→ H2(Gi,T)
∧ −→ Hi

qi−→ Gi −→ 1

for i = 1, 2 such that the respective transgression maps are both equal to the
identity (see Lemma 4.3 and Remark 4.4). By assumption B(G1, G2) is locally
compact, so the dual group B(G1, G2)

∧ is also a locally compact group. For each
pair (s1, s2) ∈ G1 × G2 define η(s1, s2) ∈ B(G1, G2)

∧ by η(s1, s2)(χ) = χ(s1, s2),
χ ∈ B(G1, G2). Let

H = H1 ×H2 ×B(G1, G2)
∧

with multiplication defined by

(4.1) (h1, h2, µ)(l1, l2, ν) =
(
h1l1, h2l2, µνη(q1(h1), q2(l2))

)
.

Then clearly
Z = H2(G1,T)

∧ ×H2(G2,T)
∧ ×B(G1, G2)

∧

is a central subgroup of H, and we obtain a short exact sequence

1 −→ Z −→ H −→ G1 ×G2 −→ 1.

We claim that H is a representation group for G1 ×G2.
For this recall that if ω1 ∈ Z2(G1,T), ω2 ∈ Z2(G2,T) and χ ∈ B(G1, G2),

then ω1 ⊗ ω2 ⊗ χ defined by

ω1 ⊗ ω2 ⊗ χ((s1, s2), (t1, t2)) = ω1(s1, t1)ω2(s2, t2)χ(s1, t2)

is a cocycle in Z2(G1 × G2,T). By [26], Theorem 9.6 and [23], Propositions 1.4
and 1.6 we know that the map

([ω1], [ω2], χ) 7−→ [ω1 ⊗ ω2 ⊗ χ]

is an (algebraic) isomorphism of H2(G1,T)×H2(G2,T)×B(G1, G2) onto H2(G1×
G2,T), from which it follows that Z is isomorphic toH2(G1 ×G2,T)∧. Now choose
Borel sections ci : Gi → Hi and define ζi ∈ Z2(Gi,H

2(Gi,T)∧) by ζi(s, t) =
ci(s)ci(t)ci(st)−1, for s, t ∈ Gi. Since the transgression maps are both equal to
the identity map, we see that evaluation of ζi at [ωi] ∈ H2(Gi,T) is a cocycle
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representing [ωi]. Defining c : G1 × G2 → H1 × H2 × B(G1, G2)
∧ by c(s1, s2) =

(c1(s1), c2(s2), 1), we easily compute

ζ((s1, s2), (t1, t2)) := c(s1, s2)c(t1, t2)c(s1t1, s2t2)−1

= (ζ1(s1, t1), ζ2(s2, t2), η(s1, t2)).

Thus, evaluating ζ at [ω1 ⊗ω2 ⊗χ] ∈ H2(G1 ×G2,T) gives a cocycle representing
this class. This proves the claim. The final assertion now follows from the fact
that B(G1, G2) = B((G1)ab, (G2)ab) and [23], Theorem 2.1.

Corollary 4.6. Every second countable compactly generated abelian group
is smooth.

Proof. By the structure theorem for compactly generated abelian groups
([20], Theorem 9.8), we know that G ∼= Rn ×K ×Zm for some n,m > 0 and some
compact group K. By the results mentioned in Remark 4.2, it follows that Rn,K
and Zm are smooth. Now apply the proposition.

The example given at the bottom of [28], p. 85 shows that there are nons-
mooth abelian locally compact groups. The group constructed there is a direct
product of R with an infinite direct sum of copies of Z. Thus it also provides
an example of two smooth groups whose direct product is not smooth. Thus the
assumption on B(G1, G2) in Proposition 4.5 is certainly not superfluous.

It is certainly interesting to see specific examples of representation groups.
Some explicit constructions can be found in [28] and [36], Corollary 1.3 and Ex-
amples 1.4. For instance, if G = R2 (respectively G = Z2), then the three dimen-
sional Heisenberg group (respectively discrete Heisenberg group) is a representa-
tion group for G. In the following example, we use Proposition 4.5 to construct
representation groups for Rn.

Example 4.7. Let G = Rn and, as a set, let Hn = Rn(n+1)/2. We write an
element of Hn as s = (si, sj,k), 1 6 i 6 n, 1 6 j < k 6 n. Define multiplication on
Hn by st = ((st)i, (st)j,k) with

(st)i := si + ti and (st)j,k := sj,k + tj,k + sjtk.

Then Hn is clearly a central extension of Rn by R(n−1)n/2.
We claim that Hn is a representation group for Rn. Since H2(R,T) is trivial,

this is certainly true for n = 1. For the step n → n + 1 assume that Hn is a
representation group for Rn. For s = (s1, . . . , sn) ∈ Rn define χs ∈ B(Rn,R) by

χs((t1, . . . , tn), r) := eir(s1t1+···+sntn).

Since χs(t, r) = χrs(t, 1), s 7→ χs is an isomorphism of Rn onto B(Rn,R), and we
see that B(Rn,R)∧ is isomorphic to Rn via the map t 7→ ηt defined by ηt(χs) =
χs(t, 1), for t ∈ Rn. Moreover, if (s, r) ∈ Rn × R, and η(s, r) ∈ B(Rn,R)∧ is
defined by η(s, r)(χt) = χt(s, r), then we get the identity η(s, r) = ηrs. It follows
now from Proposition 4.5 and (4.1) that H ′ = Hn × R × Rn with multiplication
defined by(

(si, sj,k), r, t
)(

(s′i, s
′
j,k), r′, t′

)
=

(
(si, sj,k)(s′i, s

′
j,k), r + r′, t + t′ + r′s

)
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is a representation group for Rn+1. Putting sn+1 = r and sj,n+1 = tj , 1 6 j 6 n,
we see that this formula coincides with the multiplication formula for Hn+1.

Using similar arguments, it is not hard to show that a representation group
for Zn is given by the integer subgroup ofHn constructed above, i.e., assuming that
all si and sj,k are integers. Notice that the group Hn constructed above is isomor-
phic to the connected and simply connected two-step nilpotent Lie group corre-
sponding to the universal two-step nilpotent Lie algebra generated by X1, . . . , Xn

and the commutators [Xj , Xk], 1 6 j < k 6 n. Note that any connected two-step
nilpotent Lie group is a quotient of one of these groups (e.g., see [6], p. 409).

We conclude this section with a discussion of which conditions will imply
that all representation groups of a given group G are isomorphic. Schur observed
that even finite groups can have nonisomorphic representation groups ([47]), and
Moore considers the case for G compact or discrete in [28], Section 3. Here we
give a sufficient condition for the uniqueness of the representation group (up to
isomorphism) valid for all smooth G.

Proposition 4.8. Let G be smooth and let Z := H2(G,T)∧. Then the rep-
resentation groups of G are unique (up to isomorphism of groups) if every abelian
extension 1 → Z → H → Gab → 1 splits. In particular, if Gab is isomorphic to
Rn ×Zm or if Z is isomorphic to Rn ×Tm, for some n,m > 0, then all represen-
tation groups of G are isomorphic.

Proof. Let 1 → Z → H1 → G → 1 and 1 → Z → H2 → G → 1 be two
representation groups of G. By Lemma (4.3) and Remark (4.4) we may assume
that (up to isomorphism) both extensions are given by cocycles ζ1, ζ2 ∈ Z2(G,Z)
such that the transgression maps H2(G,T) = Ẑ → H2(G,T) induced by ζ1 and
ζ2 are the identity maps. Now let σ = ζ1 ◦ ζ−1

2 ∈ Z2(G,Z) and let 1 → Z → L→
G → 1 denote the extension defined by σ. We want to show that this extension
splits (then σ ∈ B2(G,Z) and [ζ1] = [ζ2] ∈ H2(G,Z)).

Since χ ◦ σ = (χ ◦ ζ1) · (χ ◦ ζ−1
2 ) and [χ ◦ ζ1] = [χ ◦ ζ2] ∈ H2(G,T), it follows

that the transgression map Ẑ → H2(G,T) induced by σ is trivial. But this implies
that any character of Z can be extended to a character of L, which implies that
L̂ab is an extension 1 → Ĝab → L̂ab → Ẑ → 1. By assumption (using duality), this
extension splits. Thus we find an injective homomorphism χ 7→ µχ from Ẑ → L̂ab

such that each µχ is an extension of χ to L. Let G̃ = {s ∈ L : µχ(s) = 1 for all χ ∈
Ẑ}. Then G̃ ∩ Z = {e} and G̃ · Z = L. To see the latter, let l ∈ L and let z ∈ Z
such that µχ(l) = χ(z) for all χ ∈ Ẑ. Then lz−1 ∈ G̃. It follows that the quotient
map q : L→ G restricts to an isomorphism G̃→ G. This proves all but the final
statement.

By duality, it suffices to prove the final assertion only for Gab isomorphic to
Rn × Zm. By induction, it suffices to consider only the cases Z and R. Since the
first is straightforward, we will show only that if G is abelian, then any continuous
open surjection q : G → R has a continuous section. By [20], Theorem 24.30, we
may assume that G = Rm×H, where H has a compact, open subgroup. It follows
that q|Rm is surjective. Thus there is an x ∈ Rm such that q(x) = 1. Then we
can define q∗ : R → Rm by q(λ) = λ · x.
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5. THE BRAUER GROUP FOR TRIVIAL ACTIONS

In this section we want to give a precise description of the set EG(X) of exterior
equivalence classes of C0(X)-linear actions β : G → Aut

(
C0(X,K)

)
in the case

where G is smooth, Gab is compactly generated, and X is a second countable lo-
cally compact Hausdorff space. This analysis also allows a description of the Brauer
group BrG(X) of [8] for a trivial G-space X, and, more generally, a description
of the set of exterior equivalence classes of locally inner actions α : G → Aut(A)
when A ∈ CR(X).

A C∗-dynamical system (A,G, α) is called a C0(X)-system if A is a C0(X)-
algebra and each αs is C0(X)-linear. Two systems (A,G, α) and (B,G, β) are
Morita equivalent if there is a pair (X, µ) consisting of an A−B-imprimitivity bi-
module X and a strongly continuous action µ of G on X by linear transformations
such that

αs

(
A〈x, y〉

)
= A〈µs(x), µs(y)〉 and βs

(
〈x, y〉B

)
= 〈µs(x), µs(y)〉B

for all x, y ∈ X and s ∈ G. The actions of A and B on X extend to the multiplier
algebras M(A) and M(B). In particular, if A and B are C0(X)-algebras, then X is
both a left and a right C0(X)-module. We say that two C0(X)-systems (A,G, α)
and (B,G, β) are C0(X)-Morita equivalent if they are Morita equivalent via X and
if f · x = x · f for all x ∈ X and f ∈ C0(X). If we let G act trivially on X,
then the equivariant Brauer group BrG(X) of [8] is the collection of C0(X)-Morita
equivalence classes of C0(X)-systems (A,G, α) where A is a separable continuous-
trace C∗-algebra with spectrum X. Then BrG(X) forms an abelian group ([8],
Theorem 3.6). Recall that the group multiplication is defined using the balanced
tensor product

(5.1) [A,α][B, β] = [A⊗X B,α⊗X β].

The identity is the class of
(
C0(X), id

)
and the inverse of [A,α] is given by the

class of the conjugate system (A,α).
The collection of [A,α] in BrG(X) such that the Dixmier-Douady class of

A is zero is a subgroup. Note that each such element has a representative of
the form

(
C0(X,K), α

)
. That we can identify this subgroup with EG(X) follows

from the next proposition. In particular, EG(X) is also an abelian group with
multiplication given by (5.1) after identifying C0(X,K)⊗X C0(X,K) with C0(X)
via a C0(X)-isomorphism.

Proposition 5.1. Suppose that α, γ : G → Aut
(
C0(X,K)

)
are C0(X)-

actions such that [C0(X,K), α] = [C0(X,K), γ] in BrG(X). Then α and γ are
exterior equivalent.

Proof. Since C0(X,K) is stable, it follows from [8], Lemma 3.1 that γ is
exterior equivalent to an action β of the form β = Φ◦α for some C0(X)-linear au-
tomorphism Φ of C0(X,K). Thus it will suffice to see that β is exterior equivalent
to α.

Since a C0(X)-linear automorphism of C0(X,K) is locally inner ([40]), we
may find an open cover {Ui}i∈I of X and continuous functions ui from Ui to
U(H) for each i ∈ I such that Φ(f)(x) = ui(x)f(x)ui(x)∗ for all f ∈ C0(Ui,K).
Moreover, on each overlap Uij , there exist continuous functions χij ∈ C(Uij ,T)
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such that uj(x) = χij(x)ui(x) for all x ∈ Uij . Since βs is a C0(X)-automorphism,
there are automorphisms βx

s for each x ∈ X such that βs(f)(x) = βx
s

(
f(x)

)
. Since

αs = AdΦ ◦ βs it follows for all x ∈ Ui,

αs(f)(x) = ui(x)∗β
x

s

(
ui(x)

)
βx

s (f)(x)β
x

s (ui(x)∗)ui(x),

where β
x

s is the canonical extension of βx
s to M

(
A(x)

)
. If x ∈ Uij , then

uj(x)∗β
x

s

(
uj(x)

)
= χij(x)ui(x)∗β

x

s

(
χij(x)ui(x)

)
= ui(x)∗β

x

s

(
ui(x)

)
.

Consequently, we can define a map from G to U(H) by vs(x) = ui(x)∗β
x

s

(
ui(x)

)
.

Moreover, s 7→ vs is strictly continuous, and we have α = Ad v ◦ β. Thus we only
need to verify that v is a 1-cocycle. For all x ∈ X we get

vst(x) = ui(x)∗β
x

st

(
ui(x)

)
= ui(x)∗β

x

s

(
β

x

t

(
ui(x)

))
= ui(x)∗β

x

s

(
ui(x)

)
β

x

s

(
ui(x)∗β

x

t

(
ui(x)

))
= vs(x)β

x

s

(
vt(x)

)
,

which implies vst = vsβs(vt).

Remark 5.2. Suppose that γ : G → Aut
(
C0(X,K)

)
is a C0(X)-automor-

phism group. In the sequel, we will write γo for a representative of the “inverse”
automorphism group in EG(X). That is, [C0(X,K), γ]−1 := [C0(X,K), γo]. Propo-
sition 5.1 implies that γo is unique up to exterior equivalence and that γo ⊗X γ is
exterior equivalent to id⊗X id.

The next lemma is a mild strengthening of [33], Lemma 3.3 to our setting.

Lemma 5.3. Suppose that β : G→ Aut
(
C0(X,K)

)
is a C0(X)-linear action

and that [ωx] is the Mackey obstruction for the induced automorphism group βx

on the fibre over x. Then the Mackey obstruction map φβ : X → H2(G,T) given
by φβ(x) := [ωx] is continuous.

Proof. Fix x0 ∈ X and suppose that {xn} is a sequence converging to x0 in
X. It will suffice to show that [ωxn

] converges to [ωx0 ] in H2(G,T). Let M be the
compact set {xn}∞n=1 ∪ {x0}. Let βM be the induced action on C(M,K). Since β
and βM induce the same action on the fibres, we have φβM

= φβ |M . Thus it will
suffice to see that the former is continuous. But H2(M ; Z) is trivial; any principal
T-bundle over M is locally trivial and therefore trivial. If follows from the Phillips-
Raeburn exact sequence [40], Theorem 2.1 that βM is inner. As in Remark 2.10,
there is an obstruction to βM being unitary given by a cocycle ζ ∈ Z2

(
G,C(M,T)

)
,

and φβM

(x) = [ζ(x)]. Since for each s, t ∈ G, ζ(s, t) is continuous, it follows that
ζ(xn) converges to ζ(x) pointwise. Therefore ζ(xn) → ζ(x) in Z2(G,T) ([29],
Proposition 6). Since H2 has the quotient topology, the result follows.

Using the above lemma, the discussion in the introduction shows that there
is a homomorphism Φ from EG(X) to C

(
X,H2(G,T)

)
which assigns to each [α]

in EG(X) its “Mackey obstruction map” φα.
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Theorem 5.4. Suppose that G is smooth. Then the homomorphism Φ :
EG(X) → C

(
X,H2(G,T)

)
given by [β] 7→ ϕβ is surjective and the short exact

sequence
1 −→ ker Φ −→ EG(X) −→ C

(
X,H2(G,T)

)
−→ 1

splits. If, in addition, Gab is compactly generated, then

EG(X) ∼= H1(X, Ĝab)⊕ C
(
X,H2(G,T)

)
as abelian groups.

Proof. We have to construct a splitting homomorphism Φ∗ : C
(
X,H2(G,T)

)
→ EG(X) for Φ. Recall from [28], Theorem 5.1 and [21], Proposition 3.1 that there
is a canonical homomorphism µ : H2

(
G,C(X,T)

)
→ EG(X) defined as follows:

Let σ ∈ Z2
(
G,C(X,T)

)
, and let Lσ(x) denote the left regular σ(x)-representation,

where σ(x) denotes evaluation of σ at x ∈ X. A representative for the class
µ([σ]) ∈ EG(X) is then given by the action βσ : G → Aut

(
C0(X,K(L2(G)))

)
defined by

βσ
s (f)(x) = AdLσ(x)

s

(
f(x)

)
, f ∈ C0(X,K(L2(G))).

(If G is finite we have to stabilize this action in order to get an action on
C0

(
X,K

(
L2(G)

))
⊗K ∼= C0(X,K).)

By Lemma 4.3 we know that H2(G,T) is locally compact and that there
exists an element ζ ∈ Z2(G,H2(G,T)∧) such that evaluation of ζ at a point [ω] ∈
H2(G,T) is a cocycle representing ω. If we give C(H2(G,T),T) the compact-open
topology, then we can viewH2(G,T)∧ as a subset of C(H2(G,T),T). Furthermore,
if ϕ ∈ C

(
X,H2(G,T)

)
, then ζ ◦ ϕ(s, t)(x) := ζ(s, t)

(
ϕ(x)

)
defines a Borel cocycle

ζ ◦ ϕ ∈ Z2
(
G,C(X,T)

)
.

We claim that Φ∗(ϕ) := µ([ζ ◦ ϕ]) defines a splitting homomorphism for Φ.
To see that it is a homomorphism just notice that if ϕ,ψ ∈ C

(
X,H2(G,T)

)
, then

since ζ(s, t) ∈ H2(G,T)∧, ζ(s, t)
(
ϕ(x)

)
ζ(s, t)

(
ψ(x)

)
= ζ(s, t)

(
ϕ(x)ψ(x)

)
. Thus

ϕ 7→ [ζ ◦ ϕ] is a homomorphism of C
(
X,H2(G,T)

)
into H2

(
G,C(X,T)

)
. By the

construction of µ we can choose a representative β for µ([ζ ◦ ϕ]) such that βx

is implemented by a ζ
(
ϕ(x)

)
-representation V : G → U(H). Since ζ

(
ϕ(x)

)
is a

representative for ϕ(x), it follows that Φ ◦ Φ∗ = id.
We have shown that if G is smooth, then

1 −→ ker Φ −→ EG(X) −→ C
(
X,H2(G,T)

)
−→ 1

is a split short exact sequence. If, in addition, Gab is compactly generated, then
we know from Corollary 3.9 that the Phillips-Raeburn obstruction β 7→ ζ(β) ∈
H1(X, Ĝab) of Proposition 3.3 defines a bijection of kerΦ onto H1(X, Ĝab), which
by Lemma 3.5 is multiplicative. This completes the proof.

Let F : BrG(X) → H3(X,Z) denote the forgetful homomorphism described
in the introduction. It admits a natural splitting map, which assigns to an element
δ ∈ H3(X,Z) the (equivalence class of the) system (Aδ, G, id), where Aδ is the
unique stable continuous-trace C∗-algebra with Dixmier-Douady invariant δ and
id denotes the trivial action of G on Aδ. Since kerF is naturally isomorphic to
EG(X) by Proposition 5.1, we obtain the following as an immediate corollary.
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Corollary 5.5. Suppose that G is smooth and that Gab is compactly gen-

erated. Then, for any trivial G-space X, we have a group isomorphism

BrG(X) ∼= H1(X, Ĝab)⊕ C
(
X,H2(G,T)

)
⊕H3(X; Z),

where H3(X; Z) denotes the third integral Čech cohomology.

We conclude this section with a discussion of some special cases.

Example 5.6. If G is connected and H2(X,Z) is countable then it fol-
lows from [8] Section 6.3 that the homomorphism µ : H2

(
G,C(X,T)

)
→ EG(X)

described in the proof of Theorem 5.4 is actually an isomorphism (in particu-

lar, all C0(X)-actions are inner). Under this isomorphism, the Mackey obstruc-
tion map Φ : EG(X) → C

(
X,H2(G,T)

)
corresponds to the evaluation map

H2
(
G,C(X,T)

)
→ C

(
X,H2(G,T)

)
and the kernel of Φ corresponds to the sub-

group H2
pt

(
G,C(X,T)

)
of pointwise trivial elements in H2

(
G,C(X,T)

)
.

If G is not connected, there are usually lots of C0(X)-linear actions of G on
C0(X,K) which are not inner, for instance, if G = Zn, then H2

(
Zn, C(X,T)

) ∼=
C

(
X,H2(Zn,T)

)
by [34], Corollary 1.5, but H1(X, Ẑn) is often nontrivial (for

instance for G = Z and X = S2). In any case, if G is smooth and if ζ is as in
Lemma 4.3, then the map ϕ 7→ ζ ◦ ϕ from C

(
X,H2(G,T)

)
to H2

(
G,C(X,T)

)
is

a splitting homorphism for the exact sequence

1 −→ H2
pt

(
G,C(X,T)

)
−→ H2

(
G,C(X,T)

)
−→ C

(
X,H2(G,T)

)
−→ 1.

Example 5.7. If G is smooth and Gab is a vector group (i.e., Gab is isomor-
phic to some Rl for l > 0) then H1(X, Ĝab) = 0 and EG(X) ∼= C

(
X,H2(G,T)

)
.

This applies to all simply connected and connected Lie groups.

Example 5.8. If G is any second countable locally compact group such that
H2(G,T) is trivial (e.g., if G = R, T, Z, or any connected and simply connected

semisimple Lie group), then G serves as a representation group for itself. Hence, if
Gab is also compactly generated, then EG(X) ∼= H1(X, Ĝab). If, in addition, Gab

is a vector group, then it follows from Example 5.7 that EG(X) is trivial.

Example 5.9. It follows from the previous example, that if G is any con-
nected and simply connected Lie group withH2(G,T) trivial, then EG(X) is trivial.
Since H2

(
G,C(X,T)

)
imbeds injectively into EG(X) by [8], Section 6.3, it follows

that for such groups H2
(
G,C(X,T)

)
is trivial for all X. For compact X this was

shown in [19], Theorem 2.6.
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6. LOCALLY INNER ACTIONS ON CR-ALGEBRAS

In this section we want to use our description of EG(X) to describe locally inner
actions on elements of CR(X). The next lemma provides an analogue for the
Mackey-obstruction map β 7→ ϕβ ∈ C

(
X,H2(G,T)

)
of Theorem 5.4 in case of

locally inner actions on general elements of CR(X).

Lemma 6.1. Let G be a second countable locally compact group, A ∈ CR(X),
and let α : G → Aut(A) be locally inner. For each x ∈ X let U be an open
neighborhood of x such that the restriction αU : G→ Aut(AU ) of α is inner, and
let [σ] ∈ H2

(
G,C(U,T)

)
be the obstruction for αU being unitary. Then ϕα(x) :=

[σ(x)] determines a well defined continuous map ϕα : X → H2(G,T). If β is
exterior equivalent to α, then ϕα = ϕβ.

Proof. We have to show that if U1 and U2 are two open neighborhoods
of x such that, for i = 1, 2, there exist cocycles σi ∈ Z2

(
G,C(Ui,T)

)
and σi-

homomorphism V i : G → UM(AUi
) which implement αi := αUi , then [σ1(x)] =

[σ2(x)] in H2(G,T). Let Uij := U1 ∩ U2 and let V ij
s denote the image of V i

s in
UM(AUij ), i, j ∈ {1, 2}, and let σij denote the restriction of σi to Uij ; that is,
σij(s, t)(x) = σi(s, t)(x) for all x ∈ U1 ∩ U2. Then V ij is a σij-homomorphism
which implements the restriction αUij : G → Aut(AUij ). Thus it follows that
[σ12] = [σ21] ∈ H2

(
G,C(Uij ,T)

)
, which in particular implies that [σ1(x)] =

[σ2(x)]. Thus ϕα is well defined. The continuity of ϕα follows from the conti-
nuity of the evaluation map x 7→ [σ(x)] on U as shown in the proof of Lemma 5.3.

Finally, suppose that β = Ad (w) ◦ α for some 1-cocycle w. Since ϕα is
defined locally, we can assume that α = Ad (V ) for some σ-homomorphism V .
Then β = Ad (wV ), and it is easily checked that wV is a σ-homomorphism.

Notice that if β : G → Aut
(
C0(X,K)

)
is a C0(X)-linear action, then the

element ϕβ constructed above is the same as the map ϕβ which appeared in The-
orem 5.4. Notice also that ϕα = 0 if and only if all of the induced actions αx of G
on the fibres A(x) of A are unitary.

Proposition 6.2. Let G be a smooth group such that Gab is compactly
generated, and let A ∈ CR(X). Let Φ∗ : C

(
X,H2(G,T)

)
→ EG(X) denote the

splitting homomorphism for the short exact sequence

1 −→ H1(X, Ĝab) −→ EG(X) −→ C
(
X,H2(G,T)

)
−→ 1

as constructed in the proof of Theorem 5.4. If α : G → Aut(A) is locally inner
and [γ] = Φ∗(ϕα), then α⊗X γo is locally unitary.

Proof. By the construction of Φ∗ we know that there exists a Borel cocycle
σ ∈ H2

(
G,C(X,T)

)
and a σ-homomorphism W : G→ UM

(
C0(X,K)

)
such that

γo = AdW and such that [σ(x)] = ϕα(x)−1 in H2(G,T) for all x ∈ X. Since α is
locally inner, we know further that for each x ∈ X there exists a neighborhood U of
x, a cocycle ω ∈ Z2

(
G,C(U,T)

)
, and a ω-homomorphism V : G→ UM(AU ) such

that αU = AdV . Then ϕα(x) = [ω(x)] for all x ∈ U by Lemma 6.1. It follows that
the restriction (α⊗X γo)U of α⊗X γo to

(
A⊗X C0(X,K)

)
U
∼= AU ⊗C0(U)C0(U,K)
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is implemented by the ω ·σ-homomorphism s 7→ Vs⊗U Ws. Since [ω ·σ(x)] = 0 for
all x ∈ U , it follows now from [45], Theorem 2.1 that there exists a neighborhood
U1 ⊆ U of x such that the restriction of ω · σ to U1 is trivial in H2

(
G,C(U1,T)

)
.

But this implies that the restriction of α⊗X γo to
(
A⊗X C0(X,K)

)
U1 is unitary.

This completes the proof.

Theorem 6.3. Let G be a smooth group such that Gab is compactly gener-
ated. Suppose that A ∈ CR(X), and that α : G → Aut(A) is locally inner. Then
there exists a C0(X)-linear action βα : G→ Aut

(
C0(X,K)

)
, unique up to exterior

equivalence, such that the stabilized action α⊗X id on A⊗X C0(X,K) (∼= A⊗K)
is exterior equivalent to the diagonal action id⊗X βα of G on A⊗X C0(X,K).

Moreover, if LIG(A) denotes the set of exterior equivalence classes of locally
inner G-actions on A, then α 7→ βα factors through a well defined injective map
[α] 7→ [βα] of LIG(A) into EG(X), which is a bijection if A is stable.

Proof. Let α : G → Aut(A) be locally inner, let Φ∗ : C
(
X,H2(G,T)

)
→

EG(X) denote the splitting homomorphism of Theorem 5.4, and let [γ] = Φ∗(ϕα).
Then, by Proposition 6.2, α⊗X γo is a locally unitary action of G on A⊗K.

Let ζ(α ⊗X γo) ∈ H1(X, Ĝab) denote the Phillips-Raeburn obstruction (see
Proposition 3.3). If δ : G→ Aut

(
C0(X,K)

)
is locally unitary with ζ(δ) = ζ(α⊗X

γo), then it also follows from Proposition 3.3 that α ⊗X γo is exterior equivalent
to the diagonal action id ⊗X δ of G on A ⊗X C0(X,K). Since taking diagonal
actions on balanced tensor products preserves exterior equivalence by Lemma 3.5,
and since γo⊗X γ is exterior equivalent to the trivial action id⊗X id (Remark 5.2),
it follows that for β′ = δ ⊗X γ on C0(X,K)⊗X C0(X,K),

α⊗X id⊗X id ∼ α⊗X (γo ⊗X γ) ∼ (α⊗X γo)⊗X γ ∼ (id⊗X δ)⊗X γ ∼ id⊗X β′,

where ∼ denotes exterior equivalence. Since C0(X,K) ⊗X C0(X,K) ∼= C0(X,K),
it follows that α⊗X id ∼ id⊗X β for some β on C0(X,K).

We have to show that β is unique up to exterior equivalence. For this observe
that α ⊗X id ∼ id⊗X β implies that ϕα = ϕα⊗X id = ϕid⊗Xβ = ϕβ (Lemma 6.1).
Thus, if β′ is another C0(X)-action of G on C0(X,K) such that α⊗X id ∼ id⊗X β

′,
then it follows that ϕβ′ = ϕα = ϕβ . Thus if [γ] = Φ∗(ϕα) is as above, then

id⊗X (β′ ⊗X γo) ∼ α⊗X id⊗X γo ∼ id⊗X (β ⊗X γo),
which implies that the Phillips-Raeburn obstructions ζ(β′⊗X γo), and ζ(β⊗X γo)
coincide (Lemma 3.5). But then it follows from Proposition 3.3 that β′ ⊗X γo ∼
β ⊗X γo which, via multiplication with γ, implies that β ∼ β′.

It follows that there is a well defined map [α] 7→ [βα] from LIG(A) into
EG(A) which is determined by the property that α⊗X id ∼ id⊗X βα. Since β ∼ β′

implies that id⊗X β ∼ id⊗X β′, this map is injective. Finally, if A is stable, then
we can define an inverse by choosing a fixed C0(X)-isomorphism Θ : A⊗ K → A
([41], Lemma 4.3), and defining [β] → [AdΘ◦(id⊗X β)] of EG(X) onto LIG(A).

We immediately get the following corollary.

Corollary 6.4. Let G be a smooth group such that Gab is compactly gen-
erated. Let X be a second countable locally compact space and let A ∈ CR(X).
Then α : G→ Aut(A) is locally inner if and only if there exists [β] ∈ EG(X) such
that the stabilized action α⊗X id is exterior equivalent to id⊗X β.
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7. ROSENBERG’S THEOREM

One of the important ingredients for the proof of our results was Rosenberg’s
theorem (see Theorem 3.8) which implies that if

(a) Gab is compactly generated and if
(b) H2(G,T) is Hausdorff,

then any pointwise unitary action on a separable continuous-trace C∗-algebra A
is automatically locally unitary.

Our interest in smooth groups is partially explained by the fact that all
smooth groups with Gab compactly generated satisfy these assumptions. We give
examples below which show that neither of conditions (a) and (b) can be weakened
in general. On the other hand, if we assume that A has continuous trace with lo-
cally connected spectrum, then the class of groups with the property that pointwise
unitary actions on A are automatically locally unitary is significantly larger than
the class of groups which satisfy the conditions of Rosenberg’s theorem (Theorem
7.4).

Example 7.1. Suppose that G is a second countable locally compact abelian
group acting freely and properly on a separable locally compact space X such that
X is not a locally trivial principal G-bundle. Although Palais’s Slice Theorem
([38], Theorem 4.1) implies that G cannot be a Lie group, we can, for example,

take G =
∞∏

n=1
{1,−1}, X =

∞∏
n=1

T, and let G act by translation on X. Let α

denote the corresponding action of G on C0(X) and let A = C0(X) oαG. Then
A has continuous trace by [18], Theorem 17, and the dual action α̂ of Ĝ is point-
wise unitary ([33], Proof of Theorem 3.1). If α̂ would be locally unitary, then
((C0(X) oαG) o

α̂
Ĝ)

∧ ∼= X would be a locally trivial principal G-bundle with
respect to the double dual action ̂̂α ([41]). But by the Takesaki-Takai duality
theorem, this implies that X is a locally trivial principal G bundle with respect to
the original action; this contradicts our original assumption.

Since Ĝ is discrete, Ĝ is smooth and therefore H2(Ĝ,T) is Hausdorff. Of
course, Ĝ is not compactly generated as required in Rosenberg’s theorem.

We are now going to construct in Example 7.3 a pointwise unitary action
of a compactly generated group G on a continuous-trace algebra A which is not
locally unitary. Of course, H2(G,T) will fail to be Hausdorff. Before we start,
recall that if N is a closed normal subgroup of a second countable locally compact
group G, then the inflation-restriction sequence

H1(N,T)G tg−→ H2(G/N,T) inf−→ H2(G,T)

is exact at H2(G/N,T), where H1(N,T)G denotes the group of G-invariant char-
acters of N and inf denotes the inflation map ([27], p. 53).
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Example 7.2. (cf. [28], p. 85) Our group G will be a central extension of
T2 by R2. For each λ ∈ R let ωλ denote the two-cocycle

ωλ

(
(s1, t1), (s2, t2)

)
= eiλs1t2

on R2. Since the real Heisenberg group is a representation group for R2 (Exam-
ple 4.7), λ 7→ [ωλ] is an isomorphism between R and H2(R2,T). Let θ be any
irrational number and let ω1 and ωθ denote the cocycles in Z2(R2,T) correspond-
ing to 1 and θ, respectively. Let G1 = R2 ×ω1 T be the central extension of R2 by
T corresponding to ω1, and let G = (R2×ω1 T)×ωθ

T denote the central extension
of G1 corresponding to the inflation of ωθ to G1. Then G is a central extension
of R2 by T2, and is therefore a connected two-step nilpotent group of dimension
four. Since the cocycles involved are continuous, G is homeomorphic to the direct
product R2 × T2 with multiplication given by

(s1, t1, z1, w1)(s2, t2, z2, w2) = (s1 + s2, t1 + t2, eis1t2z1z2, eiθs1t2w1w2).

There is a natural continuous section c from R2 ∼= G/T2 ontoG given by c(s1, s2) :=
(s1, s2, 1, 1). Using the formula for the transgression map

tg : Z2 ∼= H1(T2,T) → H2(R2,T),

a straightforward computation shows that tg(l,m) = [ωl+θm]. Since Z + θZ is
dense in R and inf is continuous, the identity is not closed in H2(G,T); in other
words, H2(G,T) is not Hausdorff.

Example 7.3. We shall construct a pointwise unitary action of the group G
from the previous example which is not locally unitary. Let X = { 1

n : n ∈ N}∪{0}.
We define α : G→ Aut

(
C(X,K)

)
as follows. Since Z + θZ is dense in R, we find

a sequence (λn)n∈N ⊆ Z + θZ such that λn → 0 in R while λn 6= λm 6= 0 for all
n,m ∈ N, with n 6= m. Putting λ0 = 0 and λ1/n := λn we obtain a continuous
map x 7→ λx of X to Z+θZ ⊆ R. For each x ∈ X let V̇x : R2 → U(L2(R2)) denote
the regular ωλx-representation of R2, which is given by the formula

(V̇x(s, t)ξ)(s′, t′) = eiλxs(t′−t)ξ(s′ − s, t′ − t),

and let Vx : G → U
(
L2(R2)

)
denote the inflation of V̇x to G. Since x 7→ λx

is continuous, it follows that we obtain a strongly continuous action α : G →
Aut

(
C(X,K)

)
with K = K

(
L2(R2)

)
given by defining

αg(a)(x) = Vx(g)a(x)Vx(g)∗.

Since Vx is an inf(ωλx
)-representation for each x ∈ X and α is implemented

pointwise by the representations Vx, and since each [ωλx
] lies in the range of the

transgression map, it follows that α is pointwise unitary.
We claim that α is not locally unitary. Since X has only one accumulation

point, α is locally unitary if and only if it is unitary. So assume that there were
a strictly continuous homomorphism U : G → U

(
C(X,K)

)
which implements α.

Thus, for each x ∈ X and g ∈ G we would obtain

Ux(g)a(x)Ux(g)∗ = Vx(g)a(x)Vx(g)∗,
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from which it follows that

V ∗
x (g)Ux(g) = γx(g)1

for some γx(g) ∈ T. Since, by construction, the maps (x, g) → Vx(g) and (x, g) →
Ux(g) are strongly continuous, (x, g) → γx(g) defines a continuous map γ : X ×
G → T. Moreover, since Vx|T2 ≡ 1, it follows that χx = γx|T2 is a character of
T2 for all x ∈ X. By continuity we have χ 1

n
→ χ0 in T̂2. Moreover, since V0 is a

unitary representation, it follows that V0 and U0 are both unitary representations
which implement α at the point 0. But this implies that γ0 is a character of G.
Thus, multiplying each Ux with γ0, we may assume that U0 = V0. In particular,
this implies that χ0 is the trivial character of T2.

We finally show that χ 1
n

is not trivial for all n ∈ N. Since T̂2 ∼= Z2 is
discrete, this will contradict the fact that χ 1

n
→ χ0. Assume that χ 1

n
is trivial for

some n ∈ N. Then U 1
n
|T2 ≡ 1, from which it follows that U 1

n
is actually inflated

from some unitary representation U̇ 1
n

: R2 → U
(
L2(R2)

)
. Since, by construction,

V 1
n

is inflated from the regular ωλn
-representation, say V̇ 1

n
of R2, it follows that

U̇ 1
n

and V̇ 1
n

implement the same action of R2 on K
(
L2(R2)

)
, which contradicts

the fact that [ωλn ], the Mackey-obstruction for the action implemented by V 1
n
, is

non-trivial in H2(R2,T).

Note that the space X in the above example is totally disconnected; in par-
ticular, the point 0 has no connected neighborhoods in X. The following theorem
shows that this lack of connectedness plays a crucial rôle in our counterexample.

Theorem 7.4. Suppose that N is a closed normal subgroup of a second
countable locally compact group G such that:

(i) G/N is compactly generated,
(ii) H2(G/N,T) is Hausdorff, and
(iii) H2(N,T) is Hausdorff and Nab := N/[N,N ] is compact.

Suppose further that A is a separable continuous-trace C∗-algebra such that Â is
locally connected. Then any pointwise unitary action of G on A is automatically
locally unitary.

Proof. Let α be a pointwise unitary action of G on A. Since the properties
of being unitary and locally unitary are preserved under Morita equivalence of
systems ([11], Proposition 3), we can replace (A,G, α) with (A ⊗ K, G, α ⊗ id)
and assume that A is stable. Clearly, (A,N, α|N) is pointwise unitary, so by
Rosenberg’s theorem, it is locally unitary. Since G must act trivially on Â, we can
replace A by an ideal and assume that A = C0(X,K) and that α|N = Ad (u) for
a strictly continuous homomorphism u : N → UM

(
C0(X,K)

)
.

Localizing further if necessary, we claim that u is a Green twisting map;
that is, αs(un) = usns−1 for all s ∈ G and n ∈ N . Since M

(
C0(X,K)

)
can

be identified with the bounded strictly continuous functions from X to B(H)
([1], Corollary 3.4), and since the strict topology on U(H) coincides with the
strong topology, it is not hard to see that we may view u as a strongly continuous
function from X × N to U(H) such that for all n ∈ N and x ∈ X, we have
αn(a)(x) = u(x, n)a(x)u(x, n)∗.
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In order to show that u defines a Green twisting map for α, we need to show
that αs

(
u( · , n)

)
= u( · , sns−1) for all s ∈ G and n ∈ N . However by assumption,

for each x ∈ X there is a unitary representation Vx : G → B(H) such that
αs(a)(x) = Vx(s)a(x)Vx(s)∗ for all a ∈ A and s ∈ G. Since both Vx and u(x, ·)
implement the same automorphism of K, there is a character γx of Nab such that
u(x, n) = γx(n)Vx(n) for all n ∈ N . Now if we abuse notation slightly and write
αs(u)(x, n) for αs

(
u( · , n)

)
(x), then

αs(u)(x, n) = Vx(s)u(x, n)Vx(s)∗ = γx(n)Vx(s)Vx(n)Vx(s−1)

= γx(n)Vx(sns−1) = γx(n)γx(sns−1)u(x, sns−1).

For each x ∈ X, sN ∈ G/N , and n ∈ N , define λ(x, sN)(n) = γx(n)γx(sns−1) =
γx(n)s · γx(n), where s · γ := γ(s · s−1). Clearly, u will be a twisting map exactly
when we can arrange for λ to be identically one. (This invariant was also studied
in [44], Section 5. The definition was slightly different there — partly to make
equations such as (7.1) more attractive than we require here.) Since A = C0(X,K),
it is not hard to see that the map

(x, sN, n) 7→ u(x, sns−1)αs(u)(x, n) = λ(x, sN)(n)1A

is continuous. Consequently, we can view λ as a continuous function fromX×G/N
into N̂ab. Notice that

(7.1) λ(x, stN) = t · λ(x, sN)λ(x, tN).

Fix x0 ∈ X. Since we may pass to still another ideal of A, it will suffice to
produce a neighborhood U of x0 in X such that λ(x, sN)(n) = 1 for all sN ∈ G,
n ∈ N , and x ∈ U . Of course, replacing u(x, n) by γx0(n)u(x, n), we may assume
that λ(x0, sN)(n) = 1 for all s ∈ G and n ∈ N . In fact, since N̂ab is discrete,
given any t ∈ G, there is a neighborhood Ut × Vt ⊆ X × G of (x0, t) such that
λ(x, sN) = 1 provided (x, sN) ∈ Ut × Vt. In view of (7.1), λ(x, sN) = 1 for
all x ∈ Ut and sN in the subgroup of G/N generated by Vt. By condition (i),
there is a compact set K which generates G/N . We can choose t1, . . . , tn and
neighborhoods (Ut1 × Vt1), . . . , (Utn

× Vtn
) such that K ⊆

⋃
i

Vti
. Then we can let

U =
n⋂

i=1

Uti . Then λ(x, sN)(n) = 1 for all x ∈ U , s ∈ G, and n ∈ N . Then after

passing to the ideal of A corresponding to U , we can indeed assume that u is a
Green twisting map.

Now let ρx0 be the element of Â corresponding to the point x0 as chosen
above. Then by the above constructions, there exists a covariant representation
(ρx0 , V0) of (A,G, α) such that V0|N = ρx0 ◦ u, which just means that (ρx0 , V0)
preserves the twist u in the sense of Green. Since A is stable, it follows from [11],
Corollary 1 that (A,G, α, u) is exterior equivalent to (A,G, β, 1), for some action β
of G on A. Then β is inflated from an action β̇ of G/N (see Remark 1 on page 176
of [11]). We are now going to show that β̇ is also pointwise unitary. Since Â is
locally connected we may localize further in order to assume that Â is connected,
and we may also assume that Â is compact. Let (ρx0 , U0) denote the representa-
tion of (A,G, β) corresponding to (ρx0 , V0) via the exterior equivalence between
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(A,G, α, u) and (A,G, β, 1). Then (ρx0 , U0) preserves 1, since (ρx0 , V0) preserves
u. Thus it follows that U0 is inflated from a representation U̇0 of G/N . Now, by
assumption, β is pointwise unitary, which implies that β̇ induces the trivial action
of G/N on Â. For each ρ ∈ Â let [ωρ] ∈ H2(G/N,T) denote the Mackey obstruc-
tion to extend ρ to a covariant representation of (A,G/N, β̇). Then [ωρx0

] = 0
and the map ρ 7→ [ωρ] is continuous by [33], Lemma 3.3 (or Lemma 5.3 above).
Since Â is connected, it follows that its image, say M , is a compact and connected
subset of H2(G/N,T). But since β is pointwise unitary, it follows that M lies
in the kernel of the inflation map inf : H2(G/N,T) → H2(G,T), and hence in
the image of the transgression map tg : H1(N,T)G → H2(G/N,T). By assump-
tion, Nab is compact, so H1(N,T)G is discrete and countable (by the separability
assumptions). Thus M is a countable and connected compact Hausdorff space,
which implies that M consists of a single point. (For example, Baire’s Theorem
implies that a countable compact Hausdorff space has a clopen point.) But since
[ωρx0

] is trivial, it follows that [ωρ] is trivial for all ρ ∈ Â; in other words, β̇ is
pointwise unitary.

Now we can apply Rosenberg’s theorem to the system (A,G/N, β̇), from
which follows that β̇ is locally unitary. But this implies that β, and hence also α
is locally unitary.

We now recall that G is a [FD]−group if [G,G] is compact and G/[G,G] is
abelian. These groups are of particular interest since every type I [FD]−group
has a continuous-trace group C∗-algebra ([13], Lemma 6) and there are no known
examples of groups with continuous-trace C∗-algebra which are not [FD]−groups.

Corollary 7.5. Suppose that G is a separable compactly generated [FD]-
group, or that G is a connected nilpotent Lie group. Then every pointwise unitary
action of G on a separable continuous-trace algebra with locally connected spectrum
is locally unitary.

Proof. IfG is a separable compactly generated [FD]−group, then the theorem
applies with the normal subgroup N = [G,G]. So assume that G is a connected
nilpotent Lie group. Then there exists a maximal torus T in the center of G
such that G/T is simply connected (Any connected Lie group is a quotient of a
simply connected Lie group by some central discrete group, thus the center of a
connected nilpotent group is of the form Rl × Tm and the quotient of G by Tm

is a simply connected nilpotent group), and hence H2(G/T,T) is Hausdorff, since
G/T is smooth.
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