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1. INTRODUCTION — MULTIPLICITY THEORIES

In a number of previous papers [5], [1], [2], the authors dealt with the question of
multiplicity theories for analytic operator-valued functions. An analytic operator-
valued function A is an analytic map A : D → L(E,E), where D = D(A) is an
open subset of the complex plane C and E = E(A) is a complex Banach space.
For such a function A the singular set Σ(A) of A is defined as the set of points
z ∈ D(A) such that A(z) is not invertible.

A subset Ω of C is said to be admissible for the analytic operator-valued
function A : D → L(E,E) if it is bounded, Ω ⊂ D(A) and ∂Ω∩Σ(A) = ∅. We then
refer to (A,Ω) as an admissible pair. A multiplicity theory for analytic operator-
valued functions assigns to each admissible pair (A,Ω) an element m(A,Ω) of a
fixed abelian semigroup M such that certain axioms are satisfied. These axioms
were stated in [2].

It is the purpose of the present paper to extend the concept of a multiplicity
theory to functions taking values in certain Banach algebras. At first sight it
is not at all obvious that an extension exists to any class of Banach algebras
beyond the algebra of bounded operators on a Banach space. It is therefore not
surprising that we have had to restrict the class of algebras. The problem is to
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find a class in which the concepts appearing in the axioms make sense. Moreover,
the construction of a multiplicity theory depends on the interdependent concepts
of suspension-equivalence and linearization. The importance of these concepts was
brought out by the paper of Gohberg, Kaashoek and Lay ([3]) (these authors use
the term extension instead of suspension) and their paper provides a proof of the
existence of linearizations for analytic operator-valued functions.

Our task has been to find a suitable Banach-algebra framework to which the
construction given in [3], which we refer to as the GKL-process, can be adapted.
For this purpose we propose a class of algebras obtained by taking the quotient of
the class of all bounded Banach space operators by a fixed operator ideal. With
each Banach space E is then associated a Banach algebra K(E,E), and we are
able to replace the consideration of functions with values in L(E,E) by that of
functions with values in K(E,E). Suitable replacements are then available for all
the concepts needed, and moreover the GKL-process both makes sense and can be
carried out.

2. OPERATOR IDEALS

The notion of an operator ideal generalizes the properties of compact operators be-
tween Banach spaces. A good source of information is the monograph of A. Pietsch
([6]). Let L denote the class of all bounded operators between complex Banach
spaces. An operator ideal is a subclass J of L which satisfies certain axioms. Let
us denote the space of all bounded linear operators from the complex Banach space
E to the complex Banach space F by L(E,F ) instead of the more usual L(E,E).
The set J ∩ L(E,F ) is denoted by J (E,F ) and is called the (E,F )-component
of J . We may also refer to components of J without mentioning E and F ex-
plicitly. We now state the axioms for an operator ideal, assuming, without further
comment, that all Banach spaces are complex.

(1) J (E,F ) is a vector-subspace of L(E,F ) for each pair of Banach spaces
E and F .

(2) If S ∈ L(E,F ), T ∈ J (F,G) and U ∈ L(G,H), then UTS ∈ J (E,H).

Axiom (2) can be summarized in the neat form LJL ⊂ J and in fact it is
clear that LJL = J . We remark that in [6] there is an axiom which asserts that
J contains the identity operator on the one-dimensional Banach space C. This
seems to be designed to ensure that J is not trivial, and is an assumption we wish
to avoid.

The book [6] gives many examples of operator ideals. Perhaps the most
important are L itself, and the class of all compact operators, although for us the
trivial ideal 0 consisting of the zero operator on every Banach space will be more
important than L. Further examples will be mentioned in due course.

An operator ideal J is said to be closed if, for each pair of Banach spaces
E and F , the component J (E,F ) is closed in L(E,F ) in the norm topology.
Throughout the rest of this article J will denote a fixed, closed operator ideal.

For each pair of Banach spaces E and F we form the quotient

K(E,F ) = L(E,F )/J (E,F ).
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Since J is closed, the quotient K(E,F ) is a Banach space, and K(E,E) a Banach
algebra. We shall denote the canonical linear mapping from L(E,F ) to K(E,F )
by κ, irrespective of E and F .

Lemma 2.1. Consider elements of L(E ⊕ F,E′ ⊕ F ′) as matrices
[
A B
C D

]
with A ∈ L(E,E′), B ∈ L(F,E′), C ∈ L(E,F ′) and D ∈ L(F, F ′). Then[
A B
C D

]
∈ J (E ⊕ F,E′ ⊕ F ′) if and only if A ∈ J (E,E′), B ∈ J (F,E′),

C ∈ J (E,F ′) and D ∈ J (F, F ′).

Proof. Let I1 ∈ L(E,E ⊕ F ), I2 ∈ L(F,E ⊕ F ), P1 ∈ L(E′ ⊕ F ′, E′) and
P2 ∈ L(E′⊕F ′, F ′) be given by I1u = (u, 0), I2v = (0, v), P1(u, v) = u, P2(u, v) =
v. Then

A = P1

[
A B
C D

]
I1, B = P1

[
A B
C D

]
I2,

C = P2

[
A B
C D

]
I1, D = P2

[
A B
C D

]
I2,[

A B
C D

]
= I1AP1 + I2CP1 + I1BP2 + I2DP2.

The conclusions now follow from the axioms.

The lemma implies that we may view K(E ⊕ F,E′ ⊕ F ′) as consisting of

matrices
[
a b
c d

]
with a ∈ K(E,E′), b ∈ K(F,E′), c ∈ K(E,F ′) and d ∈ K(F, F ′).

Similar arguments permit the use of matrices of elements of other dimensions,
provided the elements are suitably compatible. Henceforth we shall usually take
the matrix point of view. As an example of it, let a ∈ K(E,E′) and b ∈ K(F, F ′).
We define

a⊕ b =
[
a 0
0 b

]
∈ K(E ⊕ F,E′ ⊕ F ′).

We denote the multiplicative identity of the Banach algebra K(E,E), the element
κ(IE), by 1E . If a ∈ K(E,F ) and b ∈ K(F,G) we may unambiguously define the
product ba ∈ K(E,G) by

ba = κ(BA)

where A ∈ L(E,F ), B ∈ L(F,G), κA = a and κB = b. This product is bilinear,
associative, distributive over addition, and continuous. Moreover it is consistent
with matrix multiplication when we view K(E ⊕ F,E′ ⊕ F ′) as consisting of ma-
trices. An element a ∈ K(E,F ) is said to be invertible if there exists b ∈ K(F,E)
such that ab = 1F and ba = 1E . Then b, which is clearly unique, is called the
inverse of a and is denoted by a−1.

Let E and F be Banach spaces. We say that E and F are J -isomorphic
if K(E,F ) contains an invertible element. If a is such an element we obtain an
algebraic isomorphism from the Banach algebra K(E,E) onto the Banach algebra
K(F, F ) given by x 7→ axa−1. We shall refer to such an isomorphism as a J -
algebraic isomorphism. It seems conceivable that any algebraic isomorphism from
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K(E,E) to K(F, F ) is a J -algebraic isomorphism. This is known to be the case if
J = 0, see [7].

J -isomorphism classes form an abelian semigroup with zero. Let [E]J denote
the J -isomorphism class of the Banach space E. Then, unambiguously, we may
define

[E]J + [F ]J = [E ⊕ F ]J .

In fact, let [E]J = [E′]J and [F ]J = [F ′]J . Let a ∈ K(E,E′) and b ∈ K(F, F ′)
be invertible. Then a⊕ b is an invertible element of K(E⊕F,E′⊕F ′). Its inverse
is, of course, a−1 ⊕ b−1.

We shall denote the semigroup defined in the last paragraph by MJ . Al-
though it is a plausible target semigroup for a multiplicity theory, we shall, in
fact, employ another semigroup PJ consisting of equivalence classes of idempo-
tents. This we proceed to define.

Let p ∈ K(E,E) and q ∈ K(F, F ) be idempotents. We define an equivalence
relation whereby p ∼ q means that there exist α ∈ K(E,F ) and β ∈ K(F,E) such
that

βα = p and αβ = q.

Let us check transitivity. Let r ∈ K(G,G) and suppose that q ∼ r in addition
to p ∼ q. Then there exist γ ∈ K(F,G) and δ ∈ K(G,F ) such that γδ = r and
δγ = q. Hence we have

(βδ)(γα) = β(δγ)α = βqα = βαβα = p2 = p

and
(γα)(βδ) = γ(αβ)δ = γqδ = γδγδ = r2 = r.

We shall denote the equivalence class of the idempotent p by [p]0. We proceed
to make the equivalence classes into an abelian semigroup. We define

[p]0 + [q]0 = [p⊕ q]0.

Let us check that this is well-defined.

Lemma 2.2. Let p ∼ p′ and q ∼ q′ where p, p′, q and q′ are idempotents.
Then p⊕ q ∼ p′ ⊕ q′.

Proof. Let βα = p, αβ = p′, δγ = q, γδ = q′. Then

(β ⊕ δ)(α⊕ γ) = βα⊕ δγ = p⊕ q

and
(α⊕ γ)(β ⊕ δ) = αβ ⊕ γδ = p′ ⊕ q′.

This shows that addition is well-defined.
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Lemma 2.3. Let p ∈ K(E,E) and q ∈ K(E,E) be idempotents such that
pq = qp = 0. Then p+ q is an idempotent and [p+ q]0 = [p]0 + [q]0.

Proof. We must show that p+ q ∼ p⊕ q. But we have, in terms of matrices

p+ q = [ p q ]
[
p
q

]
and p⊕ q =

[
p 0
0 q

]
=

[
p
q

]
[ p q ] .

Now let t ∈ K(E,E) and let Ω be a bounded open set in C whose boundary
does not meet the spectrum of t. We define

pt,Ω =
1

2πi

∫
Ω′

(ζ1E − t)−1 dζ

where Ω′ is a Cauchy domain enclosing the same part of the spectrum of t as does
Ω. It is, of course, well known that pt,Ω is an idempotent. In fact it is obtained
from the operational calculus as f(t), where f = 1 on Ω and f = 0 outside Ω.

Next, let Ω1 and Ω2 be bounded open subsets of C, disjoint with each other
and such that their boundaries do not meet the spectrum of t. Then, by Lemma 2.3

[pt,Ω1∪Ω2 ]0 = [pt,Ω1 ]0 + [pt,Ω2 ]0.

This says that [pt,Ω]0 is an additive function of the set Ω.
The following lemma will be needed to prove the product theorem (Axiom 3

for multiplicity theories).

Lemma 2.4. Let p ∈ K(E,E) and q ∈ K(F, F ) be idempotents, and let

r ∈ K(F,E) be such that
[
p r
0 q

]
is an idempotent. Then

[
p r
0 q

]
∼ p⊕ q.

Proof. From the fact that
[
p r
0 q

]
is an idempotent we deduce that pr+rq =

r. We let

α =
[

1E r
0 1F

] [
p 0
0 q

]
=

[
p r
0 q

] [
1E −r
0 1F

]
and

β =
[
p 0
0 q

] [
1E r
0 1F

]
=

[
1E −r
0 1F

] [
p r
0 q

]
.

Then we have

βα = β

[
p r
0 q

] [
1E −r
0 1F

]
= β

[
1E −r
0 1F

]
=

[
p 0
0 q

]
and

αβ = α

[
p 0
0 q

] [
1E r
0 1F

]
= α

[
1E r
0 1F

]
=

[
p r
0 q

]
.
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3. EQUIVALENCE AND SUSPENSION

In this section we consider analytic mappings defined on open subsets of C and
taking values in the Banach spaces K(E,F ). We refer to such a mapping as an
analytic K-valued function.

Let D be an open subset of C. Let f : D → K(E,E) and g : D → K(F, F )
be analytic. We say that f and g are equivalent if there exist ϕ : D → K(E,F )
and ψ : D → K(E,F ), taking invertible values only, such that

ϕf = gψ.

Let f : D → K(E,E) be analytic and let F be a Banach space. By the F -
suspension of f we mean the analytic mapping f ⊕ 1F : D → K(E ⊕ F,E ⊕ F )
given by

(f ⊕ 1F )(z) = f(z)⊕ 1F .

Often we do not want to mention F explicitly; then we say that f ⊕ 1F is a
suspension of f .

Let f : D → K(E,E) and g : D → K(F, F ). We say that f and g are
suspension-equivalent, s-equivalent for short, if they have equivalent suspensions;
that is, if there exist Banach spaces X and Y such that f ⊕ 1X and g ⊕ 1Y are
equivalent. It is easy to see that suspension-equivalence is an equivalence relation.

Let E be a Banach space and let t ∈ K(E,E). The analytic mapping

C 3 z 7→ z1E − t

will be denoted by Lt.
Let f : D → K(E,E). We define the singular set Σ(f) of f by

Σ(f) = {z ∈ D : f(z) is not invertible}.

An open set Ω ⊂ C is said to be admissible for f if it is bounded, Ω ⊂ D and
∂Ω ∩ Σ(f) = ∅. We denote Ω ∩ Σ(f) by ΣΩ(f) and call it the singular set of f in
Ω. The pair (f,Ω) is called an admissible pair.

Let (f,Ω) be an admissible pair. By a linearization for (f,Ω) we shall mean
a mapping of the form Lt, which is s-equivalent to f on an open neighbourhood
of Ω.

Theorem 3.1. Let f : D → K(E,E) and let Ω be admissible for f . Then
there exists a linearization Lt for the admissible pair (f,Ω).

Proof. We adapt the GKL-process ([3], [5]). Assume that 0 ∈ Ω; when
we have dealt with this case, a simple translation argument then disposes of the
general case. Choose Cauchy domains Ω′ and Ω′′, such that Ω ⊂ Ω′, Ω′ ⊂ Ω′′,
Ω′′ ⊂ D and f(z) is invertible for all z ∈ Ω′′ \ Ω. We set

F = C(∂Ω′, E).

This is the Banach space of all continuous mappings from ∂Ω′ to E equipped with
the norm

‖v‖ = sup
s∈∂Ω′

‖v(s)‖.
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Define the projection P ∈ L(F, F ) by

(Pv)(s) =
1

2πi

∫
∂Ω′

1
ζ
v(ζ) dζ

for each v ∈ F . As in the GKL-process, P projects F onto the subspace of all
constant functions, which we identify with E. Let Z = kerP . We now identify F
with E ⊕ Z. We form the suspension f ⊕ 1Z and view it as a mapping from D
to K(F, F ). Let p = κ(P ). Since K(F, F ) is identified with K(E ⊕ Z,E ⊕ Z), the
idempotent p is identified with 1E ⊕ 0Z . Then 1F − p = 0E ⊕ 1Z .

Let W ∈ L(F, F ) be defined by

(Wv)(s) = sv(s), s ∈ ∂Ω′

for each v ∈ F . Let w = κ(W ). We define t ∈ K(F, F ) by

t = w − 1
2πi

∫
∂Ω′′

(
(1E − f)⊕ 0Z

)
(σ)w(σ1F − w)−1 dσ.

Note that the spectrum of W , and hence also that of w, is a subset of ∂Ω′.

Lemma 3.2.

PW (σIF −W )−1(zIF −W )−1P = −(σ − z)−1P

for all z ∈ Ω′ and σ ∈ ∂Ω′′.

Proof. Let v ∈ F . We compute

PW (σIF −W )−1(zIF −W )−1Pv

=
1

2πi

∫
∂Ω′

1
ζ
ζ(σ − ζ)−1(z − ζ)−1(Pv) dζ = −(σ − z)−1(Pv)

thus proving the lemma.

Continuing the proof of Theorem 3.1 we deduce from the lemma that

pw(σ1F − w)−1(z1F − w)−1p = −(σ − z)−1p

for all z ∈ Ω′ and σ ∈ ∂Ω′′. Now we compute, for z ∈ Ω′,

(z1F − t)(z1F − w)−1

= 1F +
1

2πi

∫
∂Ω′′

(
(1E − f)⊕ 0Z

)
(σ)w(σ1F − w)−1(z1F − w)−1 dσ,

whence, recalling that p = 1E ⊕ 0Z , we have

p(z1F − t)(z1F − w)−1p

= p+
1

2πi

∫
∂Ω′′

(
(1E − f)⊕ 0Z

)
(σ)pw(σ1F − w)−1(z1F − w)−1pdσ

= p− 1
2πi

∫
∂Ω′′

(
(1E − f)⊕ 0Z

)
(σ)(σ − z)−1pdσ

= p−
(
(1E − f)⊕ 0Z

)
(z) = (f ⊕ 0Z)(z).
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Again we have

(1F − p)(z1F − t)(z1F − w)−1 = 1F − p = 0E ⊕ 1Z .

Assembling the results we find

(z1F − t)(z1F − w)−1 = (f ⊕ 0Z)(z) + (0E ⊕ 1Z) + pk(z)(1F − p)

where k(z) = (z1F − t)(z1F − w)−1. So in matrix terms we have

(z1F − t)(z1F − w)−1 =
[
f(z) h(z)

0 1Z

]
where h : D → K(Z,E) is analytic. Hence

Lt(z)(z1F − w)−1 =
[

1E h(z)
0 1Z

]
(f(z)⊕ 1Z)

and so Lt is equivalent to f⊕1Z on Ω′. This concludes the proof of Theorem 3.1.

4. A MULTIPLICITY THEORY

In this section we consider the concept of a multiplicity theory for analytic K-
valued functions. It will be convenient to adopt the following notation. If f : D →
K(E,E) is analytic, we will sometimes denote the domain D by D(f) and the
space E by E(f).

A multiplicity theory for analytic K-valued functions assigns to each admis-
sible pair (f,Ω) an element m(f,Ω) of a fixed abelian semigroup M such that the
following axioms are satisfied:

(1) If f : D → K(E,E) and α ∈ K(E,F ) is invertible then

m(αfα−1,Ω) = m(f,Ω).

(2) If ΣΩ(f) = ∅ then m(f,Ω) = 0.
(3) (The product theorem) If E(f) = E(g), D(f) = D(g) and Ω is admissible

for f and g then
m(fg,Ω) = m(f,Ω) +m(g,Ω).

(4) If D(f) = D(g) and Ω is admissible for f and g then

m(f ⊕ g,Ω) = m(f,Ω) +m(g,Ω).

(5) If Ω1 and Ω2 are admissible for f and Ω1 ∩ Ω2 = ∅ then

m(f,Ω1 ∪ Ω2) = m(f,Ω1) +m(f,Ω2).

(6) m(f,Ω) depends only on f |Ω and Ω.
(7) m(f,Ω) depends only on f and ΣΩ(f).
We shall now construct a multiplicity theory for analytic K-valued functions.
Let f : D → K(E,E) be analytic and let Ω ⊂ C be admissible for f . Let

Lt be a linearization for (f,Ω), where t ∈ K(F, F ) for some Banach space F . We
define the multiplicity

m(f,Ω) = [pt,Ω]0 ∈ PJ .
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The existence of a linearization was dealt with in the last section. However we are
not assuming that Lt is the linearization which was constructed in Theorem 3.1;
in fact, it is intended to be any linearization whatsoever. We therefore have to
show that m(f,Ω) is well-defined.

It suffices to solve the following general problem. Let E and F be Banach
spaces. Let s ∈ K(E,E) and t ∈ K(F, F ). Let Ω be admissible for both Ls and Lt.
Suppose that there exist Banach spaces X and Y such that Ls ⊕ 1X is equivalent
to Lt⊕1Y on a neighbourhood Ω′ of Ω. Then we must show that [ps,Ω]0 = [pt,Ω]0.

First we simplify the problem. Let ϕ : Ω′ → K(E,F ) and ψ : Ω′ → K(E,F )
be analytic mappings, taking invertible values only, such that

ϕ(z)
(
(z1E − s)⊕ 1X

)
=

(
(z1F − t)⊕ 1Y

)
ψ(z)

for all z ∈ Ω′. Choose z0 6∈ Ω′. We have

ϕ(z)
(
1E ⊕ (z − z0)−11X

)(
z1E⊕X − (s⊕ z01X)

)
=

(
z1F⊕Y − (t⊕ z01Y )

)(
1F ⊕ (z − z0)−11Y

)
ψ(z).

Moreover, it is easy to check that

ps⊕z01X ,Ω = ps,Ω ⊕ 0X ∼ ps,Ω.

Hence we may simplify our problem by dropping the suspensions, and repose it as
follows. Let s ∈ K(E,E), t ∈ K(F, F ), and suppose that Ls and Lt are equivalent
on their common admissible set Ω. Then we must show that [ps,Ω]0 = [pt,Ω]0.
This is a consequence of the following theorem, which generalizes a theorem of
Kaashoek, van der Mee and Rodman ([4]).

Theorem 4.1. Let s ∈ K(E,E), t ∈ K(F, F ) and let Ω be admissible for
both Ls and Lt. Let ϕ : Ω → K(E,F ) and ψ : Ω → K(E,F ) be analytic mappings,
taking invertible values only, and assume that

ϕLs = Ltψ

on a neighbourhood of Ω. Then there exist α ∈ K(E,F ) and β ∈ K(F,E) such
that

tα = αs, βt = sβ,

βα = ps,Ω, αβ = pt,Ω.

Proof. Choose a Cauchy domain Ω′ such that Ω′ ⊂ Ω and all points in Ω\Ω′
belong to the resolvent sets of s and t. Then

ps,Ω =
1

2πi

∫
∂Ω′

(ζ1E − s)−1 dζ and pt,Ω =
1

2πi

∫
∂Ω′

(ζ1F − t)−1 dζ.

Choose a Cauchy domain Ω′′ such that Ω′ ⊂ Ω′′ and Ω′′ ⊂ Ω. For each function
f , locally analytic on the union of the spectra of s and t, and scalar-valued , we
define

αf =
1

2πi

∫
∂Ω′

f(ζ)ψ(ζ)(ζ1E − s)−1 dζ =
1

2πi

∫
∂Ω′

f(ζ)(ζ1F − t)−1ϕ(ζ) dζ
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and

βf =
1

2πi

∫
∂Ω′

f(ζ)(ζ1E − s)−1ϕ(ζ)−1 dζ =
1

2πi

∫
∂Ω′

f(ζ)ψ(ζ)−1(ζ1F − t)−1 dζ.

We define α = α1 and β = β1 (that is, α and β correspond to using the function
f = 1). Recall the operational calculus, which enables us to define the algebra
elements f(s) and f(t) for each such f . Note that f(t) commutes with pt,Ω and
f(s) with ps,Ω. Now we have

αf =
(

1
2πi

)2 ∫
∂Ω′

f(ζ)(ζ1F − t)−1

( ∫
∂Ω′′

ϕ(σ)
σ − ζ

dσ
)

dζ

=
(

1
2πi

)2 ∫
∂Ω′′

( ∫
∂Ω′

f(ζ)
σ − ζ

(ζ1F − t)−1 dζ
)
ϕ(σ) dσ

=
1

2πi

∫
∂Ω′′

f(t)pt,Ω(σ1F − t)−1ϕ(σ) dσ = f(t)pt,Ωα.

Again we have

αf =
(

1
2πi

)2 ∫
∂Ω′

( ∫
∂Ω′′

ψ(σ)
σ − ζ

dσ
)
f(ζ)(ζ1E − s)−1 dζ

=
(

1
2πi

)2 ∫
∂Ω′′

ψ(σ)
( ∫

∂Ω′

f(ζ)
σ − ζ

(ζ1E − s)−1 dζ
)

dσ

=
1

2πi

∫
∂Ω′′

ψ(σ)f(s)(σ1E − s)−1ps,Ω dσ = αf(s)ps,Ω.

Similarly we deduce the formulas

βf = ps,Ωf(s)β = βpt,Ωf(t).

For each σ not in the union of the spectra of s and t, let gσ be defined by gσ(z) =
(σ − z)−1. Now we have

αgσ = αgσ(s)ps,Ω = α(σ1E − s)−1ps,Ω = (σ1F − t)−1pt,Ωα.

Again we compute

ps,Ω =
1

2πi

∫
∂Ω′

(ζ1E − s)−1 dζ =
1

2πi

∫
∂Ω′

ψ(ζ)−1ψ(ζ)(ζ1E − s)−1 dζ

=
(

1
2πi

)2 ∫
∂Ω′

∫
∂Ω′′

(σ − ζ)−1ψ(σ)−1ψ(ζ)(ζ1E − s)−1 dσ dζ

=
1

2πi

∫
∂Ω′′

ψ(σ)−1αgσ dσ =
1

2πi

∫
∂Ω′′

ψ(σ)−1(σ1F − t)−1pt,Ωα dσ = βpt,Ωα.
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Similarly we find that
pt,Ω = αps,Ωβ.

Let us summarize our findings in a box:

ps,Ω = βpt,Ωα

pt,Ω = αps,Ωβ

αf = f(t)pt,Ωα = αf(s)ps,Ω

βf = ps,Ωf(s)β = βpt,Ωf(t).

We deduce, putting f = 1, α = pt,Ωα = αps,Ω, β = ps,Ωβ = βpt,Ω, whence
ps,Ω = βα, pt,Ω = αβ. Finally, putting f(z) = z we deduce tα = αs, sβ = βt. This
concludes the proof.

Theorem 4.1 is much more than is needed to prove that the multiplicity
theory m is well-defined. In fact it can be used to define a universal multiplicity
theory for analytic K-valued functions, using a procedure that was carried out in
the authors’ paper ([1]) for the case of operator-valued functions. It is also clear
that the theorem holds for the case where s and t are elements of an arbitrary
Banach algebra Y , and the equivalence of Ls and Lt is realized by a pair of
analytic mappings ϕ,ψ : Ω → Y . Then α and β turn out to be elements of Y .

The definition of m guarantees that m(f,Ω) is an invariant of the s-equiva-
lence class of f . It is also plain that m(f,Ω) = 0 if and only if ΣΩ(f) = ∅, for
it is well known that pt,Ω = 0 if and only if the intersection of the spectrum of t
with Ω is empty, and this intersection coincides with ΣΩ(f). Additivity on sets
(Axiom 5) is a straightforward consequence of the argument following Lemma 2.3.
Axioms 6 and 7 are obvious. Once we have Axiom 3, Axiom 4 follows from
f⊕g = (f⊕1E(g))(1E(f)⊕g). Thus the verification of the axioms can be completed
by verifying Axiom 3, the product theorem.

Theorem 4.2. (Product Theorem) Let f : D → K(E,E) and g : D →
K(E,E) be analytic and let Ω be admissible for both. Then

m(fg,Ω) = m(f,Ω) +m(g,Ω).

Proof. The matrix equation[
0E −1E

1E f

] [
fg 0E

0E 1E

] [
1E 0E

−g 1E

]
=

[
g −1E

0E f

]
shows that fg is s-equivalent to h =

[
g −1E

0E f

]
. We shall apply the linearization

procedure of Theorem 3.1 (the GKL-process) to h. Let F = C(∂Ω′, E) and G =
C(∂Ω′, E ⊕ E). We identify G with F ⊕ F . Hence K(G,G) is identified with
K(F ⊕F, F ⊕F ), the elements of which are written as 2× 2-matrices with entries
in K(F, F ). Now F is the space in which the linearizations of f and g are defined
(see Theorem 3.1), and we may also identify K(F, F ) with K(E⊕Z,E⊕Z), using
here the notation of the proof of Theorem 3.1.
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Let the linearizations of f and g be Ls and Lt respectively. By Theorem 3.1
we can construct a linearization Lu for h where u is an element of the Banach
algebra K(F ⊕ F, F ⊕ F ), given by

u = w ⊕ w−
1

2πi

∫
∂Ω′′

[
(1E − g)⊕ 0Z 1E ⊕ 0Z

0E⊕Z (1E − f)⊕ 0Z

]
(σ)

(
w(σ1F − w)−1 ⊕ w(σ1F − w)−1

)
dσ

=
[
t v
0 s

]
for some v ∈ K(F, F ). It follows that pu,Ω =

[
pt,Ω r
0 ps,Ω

]
for some r ∈ K(F, F ).

By Lemma 2.4, pu,Ω ∼ pt,Ω ⊕ ps,Ω whence we obtain m(fg,Ω) = m(f,Ω) +
m(g,Ω).

5. THE LIFTING POSTULATE

Up to now we have imposed no condition on the operator ideal J other than that it
should be closed. To give some idea of the scope of this we list some closed operator
ideals, taken from [6], which the reader should consult for the definitions (we use
calligraphic type instead of Pietsch’s gothic for typographical convenience):

L arbitrary operators

G approximable operators

K compact operators (not to be confused with K = L/J
in the rest of this paper)

W weakly compact operators

V completely continuous operators

R inessential operators

U unconditionally summing operators

X separable operators

S strictly singular operators

T strictly cosingular operators.

Moreover, given any operator ideal one may produce a closed operator ideal merely
by passing to the closure.

We have already introduced the semigroup MJ of J -isomorphism classes of
Banach spaces. We can imbed MJ into PJ by means of the mapping γ : [E]J 7→
[1E ]0. This is an injective semigroup homomorphism. It seems unlikely that it is
surjective in general.

An idempotent p ∈ K(E,E) is said to possess a lifting if there exists a
projection P ∈ L(E,E) such that κ(P ) = p.
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Lemma 5.1. If an idempotent p has a lifting then [p]0 is in the range of γ.

Proof. Let P ∈ L(E,E) be a projection such that κ(P ) = p. Define S ∈
L(E, ranP ) by Sx = Px ∈ ranP and let T ∈ L(ranP,E) be the inclusion. Let
s = κ(S) and t = κ(T ). Then ST = Iran P and TS = P , whence, st = 1ran P and
ts = p. We conclude that p ∼ 1ran P and so [p]0 = γ([ranP ]J ).

We now introduce two postulates as possible restrictions on the operator
ideal J . Note that we only impose these postulates where explicitly stated.

(L) The lifting postulate: every idempotent has a lifting.
(S) The spectral postulate: for every Banach space E, and T ∈ J (E,E),

the only accumulation point of the spectrum of T , if it has an accumulation point,
is 0.
The following is now obvious.

Lemma 5.2. Under the lifting postulate, γ is an isomorphism of semigroups.

It follows that under the lifting postulate we may view the multiplicity
m(f,Ω) as a J -isomorphism class of Banach spaces, thus generalizing in a natural
way the multiplicity theory treated in [5], [2].

Lemma 5.3. The spectral postulate implies the lifting postulate.

Proof. Assume the spectral postulate. Let p be an idempotent in K(E,E).
Let T ∈ L(E,E) satisfy κ(T ) = p. Of course T need not be a projection, but it
is our task to replace it by a projection. We know that T 2 − T ∈ J (E,E). Let
S = T 2−T . By the spectral postulate and the spectral mapping theorem, the only
possible accumulation points of the spectrum of T are 0 and 1. We can therefore
find a bounded open set Ω ⊂ C such that the boundary of Ω is disjoint with the
spectrum of T , 1 ∈ Ω, but 0 6∈ Ω. (Here we only need: 0 and 1 are not in the same
connected component of the spectrum of T .) Let P be the projection associated
with T and Ω. By the operational calculus, P = f(T ) where

f(z) =
{ 1, if z ∈ Ω

0, if z 6∈ Ω.
Define

g(z) =
{
z − 1, if z ∈ Ω
z, if z 6∈ Ω and h(z) =


1
z
, if z ∈ Ω

1
z − 1 , if z 6∈ Ω.

Both g and h are locally analytic on the spectrum of T . Moreover,

z − f(z) = g(z) = (z2 − z)h(z),

and applying the operational calculus we obtain

T − P = (T 2 − T )h(T ) = Sh(T ) ∈ J (E,E)

and so κ(P ) = κ(T ) = p. This concludes the proof.

According to [6], the following operator ideals, among those listed before, are
known to satisfy the spectral postulate: G,K,S, T ,R. Therefore they also satisfy
the lifting postulate.

For the rest of this section we have no need of the lifting postulate.
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Lemma 5.4. Let p ∈ K(E,E) be an idempotent. There exists ε > 0 such
that any idempotent q ∈ K(E,E) which satisfies ‖p− q‖ < ε also satisfies p ∼ q.

Proof. Let tq = pq + (1E − p)(1E − q). Since tp = 1E it follows that there
exists ε > 0 such that tq is invertible if ‖p − q‖ < ε. If, in addition, q is an
idempotent, we have ptq = tqq, whence p ∼ q.

Corollary 5.5. The set of liftable idempotents in K(E,E) is open in the
set of all idempotents in K(E,E).

A multiplicity theory is homotopy invariant if, whenever the continuous map-
ping f : [0, 1] × D → K(E,E) is analytic in its second argument, and the set Ω
is admissible for fλ for each λ ∈ [0, 1] (where fλ(z) = f(λ, z)), then m(fλ,Ω) is
independent of λ.

Corollary 5.6. The multiplicity theory m defined in Section 3 is homotopy
invariant.

Proof. By the GKL-process (proof of Theorem 3.1), we can find a Banach
space F and an element tλ, depending continuously on λ, such that fλ is s-
equivalent to z 7→ z1F − tλ on a neighbourhood of Ω for each λ. Then ptλ,Ω

depends continuously on λ; and so, by Lemma 5.4, the class m(fλ,Ω) = [ptλ,Ω]0
is independent of λ.
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