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Abstract. The non-commutative analytic Toeplitz algebra is the WOT-
closed algebra generated by the left regular representation of the free semi-
group on n generators. The structure theory of contractions in these algebras
is examined. Each is shown to have an H∞ functional calculus. The isome-
tries defined by words are shown to factor only as the words do over the unit
ball of the algebra. This turns out to be false over the full algebra. The
natural identification of WOT-closed left ideals with invariant subspaces of
the algebra is shown to hold only for a proper subcollection of the subspaces.
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In [2] and [3], the algebraic and invariant subspace structures of the non-commu-
tative analytic Toeplitz algebras were developed extensively. Several analogues of
the analytic Toeplitz algebra were obtained. Many of these results came from a
lucid characterization of the WOT-closed right ideals of these algebras. Although
technical difficulties were encountered, a similar characterization of the left ideals
was expected. In this paper, it is shown that, although it holds for a subcollection,
the analogous characterization of the WOT-closed left ideals fails. The reason for
this failure is a deep factorization problem in these algebras. Typically, when norm
conditions are placed on possible factors of operators in these algebras, reasonable
factorization results can be obtained. Indeed, positive results regarding isometries
in the unit ball are included. However, in the general setting it turns out that
even seemingly obvious unique factorizations do not hold. The examples provided
go toward understanding the fabric of these algebras as well as the pathologies of
factorization involved. Many of these examples rely on an understanding of the
structure theory of contractions in these algebras. The minimal isometric dilation
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of these contractions is determined. Further, each contraction is shown to have

an H∞ functional calculus. The author would like to thank his supervisor, Ken

Davidson, for all of his assistance.

The terminology and notation used in this paper is that of [2] and [3]. The left

regular representation of the unital free semigroup Fn on n generators z1, . . . , zn

acts naturally on `2(Fn) = Hn by λ(w)ξv = ξwv, for v, w in Fn. The non-

commutative analytic Toeplitz algebra Ln is the unital, WOT-closed algebra gen-

erated by the isometries Li = λ(zi) for 1 6 i 6 n. For convenience, given w

in Fn put Lw = λ(w). The case n = 1 is exactly the analytic Toeplitz algebra.

Throughout the paper, n is taken to be a finite positive integer. However, the

results of ([2], [3]) on the structure of Ln which are used here are also valid for

n = ∞. So the results of this paper go through for n = ∞ with only minor

notational changes. For ease of presentation, the paper is written as though n is

finite. The algebra corresponding to the right regular representation is denoted

by Rn. The generating isometries are defined by ρ(w) = Rw′ where Ruξv = ξvu,
and w′ denotes the word w in reverse order. It is unitarily equivalent to Ln and

is precisely the commutant of Ln (see [3] and [6]).

In the first section it is proved that the minimal isometric dilation of each

non-unitary contraction in Ln is a shift. This is accomplished by showing that the

powers of the adjoint of such a contraction converge strongly to 0. All of these

shifts have infinite multiplicity. Further, each of these contractions has an H∞

functional calculus.

The second section contains positive factorization results for isometries over

the unit ball of Ln. The isometries Lw factor exactly as the words w. Hence, such

isometries are irreducible over the unit ball exactly when the length of the word

|w| = 1. A characterization of a broader class of irreducible isometries over the

unit ball is also included. Surprisingly, these isometries are reducible over the full

algebra. Particular factors are constructed using the structure of the orthogonal

complement of their ranges.

The last section contains a discussion of the WOT-closed ideals of these

algebras. Unlike right ideals, the left ideal generated by the isometry L2 is not

WOT-closed. The same is true for the two-sided ideal generated by L2. The

natural identification of subspaces in Lat Rn with the WOT-closed right and two-

sided ideals is shown to only transfer over to a proper subcollection of Lat Ln,

when considering left ideals.
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1. CONTRACTIONS

The inner-outer factorization in Ln (see [1], [3] and [6]) shows that much of the
game in these algebras is played in the world of isometries (inner operators). Thus
it is worthwhile to examine the structure theory of these operators. It turns out
there is much that one can say about such isometries when they are considered in
the more general setting of contractions.

For notational purposes recall from [2] that given k > 1, every X in Ln can
be uniquely written as a sum

(1.1) X =
∑
|w|<k

xwLw +
∑
|w|=k

LwXw,

where xw ∈ C and Xw ∈ Ln (for n = ∞, the first sum belongs to `2 and the
second sum is actually a WOT-limit). The scalars {xw}w∈Fn

are called the Fourier
coefficients of X. This notation is justified since they determine the operator.
Indeed, Xξ1 =

∑
w
xwξw and hence

Xξv = X(Rvξ1) = Rv(Xξ1) =
∑
w

xwξwv.

One writes X ∼
∑
w
xwLw. For the sake of convenience, given a word w = zi1 · · · zik

also let Xi1···ik
(respectively xi1···ik

) denote the operator Xw (respectively the
scalar xw) in the expansion (1.1) of X. Lastly, the scalar x0 is taken to be the
inner product (Xξ1, ξ1).

The starting point is a simple result which is used several times throughout
the paper. In [2] it is shown that the only normal operators belonging to Ln are
the scalars. Thus the only unitaries in Ln are scalar. The proof of the latter fact
is actually quite elementary.

Proposition 1.1. The collection of unitary operators in Ln is exactly the
set {λI : λ ∈ T}.

Proof. Let U be unitary in Ln. Then there is a unit vector η in Hn with
Uη = ξ1. The scalar λ = (η, ξ1) satisfies |λ| 6 1. Consider the Fourier expansion,
U ∼

∑
w
awLw. Evidently then,

1 = ‖Uξ1‖2 =
∑
w

|aw|2 > |a0|2.

However, it is also true that

1 = |(Uη, ξ1)| = |a0 λ|.

Whence |a0| = |λ| = 1. Thus η = λ ξ1, so that

λ ξ1 = λUη = Uξ1.

Therefore U = λ I, and the proof is finished.



178 David W. Kribs

In the seminal text [9], it is shown that understanding the behaviour of the
powers of the adjoint of a contraction is a key issue. In particular, strong conver-
gence to 0 yields information on the minimal isometric dilation of the operator,
as well as an H∞ functional calculus. This condition holds for every non-unitary
contraction in Ln.

Lemma 1.2. If L is a non-unitary contraction in Ln, then

lim
k→∞

‖(L∗)kξ‖ = 0,

for all ξ in Hn.

Proof. The key is the unique decomposition of L. Using (1.1), write

L = λ I +
n∑

i=1

LiAi,

with each Ai in Ln. Then by the previous proposition, |λ| < 1 since L is not

unitary. Hence if A =
n∑

i=1

LiAi, then ‖A‖ < 2.

The lemma will be proved for basis vectors corresponding to words. Suppose
that w is a word of length l. For k > l,

(L∗)kξw = (λ I +A∗)kξw

=
(
λ

k
I +

(
k
1

)
λ

k−1
A∗ + · · ·+

(
k
l

)
λ

k−l
(A∗)l

)
ξw + 0.

For 0 6 j 6 l define polynomials pj by pj(x) = 1
j! x(x − 1) · · · (x − j + 1). Then

one has

(L∗)kξw =
l∑

j=0

pj(k)λ
k−j

(A∗)jξw.

However, the limit lim
k→∞

km

αk = 0 holds for any real number m and α > 1 (see [8],

p. 57). It follows that for 0 6 j 6 l,

lim
k→∞

pj(k)|λ|k−j = 0.

Now given ε > 0, choose K > l such that k > K implies that

pj(k)|λ|k−j < ε

for 0 6 j 6 l. Then for all sufficiently large k one has

‖(L∗)kξw‖ 6
l∑

j=0

pj(k)|λ|k−j‖(A∗)jξw‖ <
l∑

j=0

ε 2j = (2l+1 − 1)ε.

Hence, lim
k→∞

‖(L∗)kξw‖ = 0 for all words w.

That it is true in full generality follows from the boundedness of the sequence
{(L∗)k}. Indeed, any uniformly bounded sequence of operators {Ak} on Hn which
satisfies lim

k→∞
‖Akξw‖ = 0 for all words w, must converge in the strong operator

topology to 0. This completes the proof.
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As a direct consequence of the lemma, one obtains the intuitive result that
the powers of every non-unitary contraction in Ln converge in the weak operator
topology to 0. The lemma also yields deeper information on the structure theory
of contractions.

Theorem 1.3. The minimal isometric dilation of any non-unitary contrac-
tion in Ln is a shift.

Proof. In [9] it is shown that every contraction has a minimal isometric dila-
tion. By the Wold decomposition for isometries, every isometry is the orthogonal
direct sum of a unitary and copies of the unilateral shift. It is further shown in [9]
that the powers of the adjoint of the contraction converging strongly to 0 (in other
words, belonging to the class C·0) is equivalent to the unitary part of its minimal
isometric dilation being vacuous. Hence the lemma yields the result.

Remark 1.4. This appears to be new for n = 1. The author could find no
references, but it is probably known in this case.

Recall that a contraction is called completely non-unitary provided its re-
striction to any non-zero reducing subspace is never unitary.

Corollary 1.5. Every non-unitary contraction L in Ln is completely non-
unitary.

Proof. Any non-zero reducing subspace for which the restriction of L to it is
unitary would be contained in the unitary summand of the Wold decomposition
for the minimal isometric dilation of L. However, by the theorem this space is
vacuous.

Another important result which comes out of the Sz.-Nagy and Foiaş machin-
ery is that every completely non-unitary contraction possesses an H∞ functional
calculus.

Corollary 1.6. Every non-unitary contraction in Ln has an H∞ func-
tional calculus.

Given a non-unitary contraction L in Ln, the collection of operators defined
by this H∞ functional calculus is denoted H∞(L).

The cardinality of the shift in the Wold decomposition of an isometry V

in B(H) is given by the dimension of H 	 VH. For isometries in the analytic
Toeplitz algebra this cardinality can be both finite and infinite. In fact, if ϕ
belongs to H∞, the dimension of H2 	 ϕH2 is finite exactly when the analytic
inner symbol is continuous. That is, when ϕ belongs to the disk algebra (see [4]).
For the non-commutative algebras there is in general more room in the orthogonal
complement, and this cardinality turns out to always be infinite. To prove this,
first note the following result, the proof of which is actually contained in the proof
of Theorem 1.7 from [3].
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Theorem 1.7. For n > 2, if A in Ln has proper closed range, then Ran(A)
has infinite codimension.

Remark 1.8. For isometries L in Ln, the infinite cardinality of Hn 	 LHn

is actually easy to see when (Lξ1, ξ1) = 0. Indeed, let Pk be the projection of Hn

onto span{ξw : |w| = k}. Then,

PkHn ⊇ Pk(Ran(L)) = Pk

( k−1∑
i=0

L(PiHn)
)
.

The former space has dimension nk, the latter has dimension at most nk−1
n−1 . Sum-

ming over k > 1 proves the claim.

In any event, it follows that the range of any non-outer operator has infinite
codimension. Recall that A in Ln is inner if it is an isometry and outer if Ran(A)
is dense in Hn.

Corollary 1.9. For n > 2, if A in Ln is not outer, then Ran(A) has
infinite codimension.

Proof. Since A is not outer, by the unique inner-outer factorization it can be
written as A = LB for some non-scalar isometry L and outer operator B, both in
Ln. But then,

AHn = LBHn = L(BHn) = LHn.

The latter space has infinite codimension by the theorem.

The general result can now be proved. The proof makes use of Fredholm
theory in Ln.

Theorem 1.10. Let L be a non-unitary contraction in Ln, for n > 2. If V
in B(K) is its minimal isometric dilation, then

dim(K 	 VK) = ∞.

Proof. The multiplicity of V is given by the rank of I − V V ∗. From the
construction of the minimal isometric dilation, this is at least the rank of the
operator I − LL∗. Suppose this number is finite. Then L∗ has an essential left
inverse, and hence kerL∗ = (RanL)⊥ is finite dimensional. Thus by the previous
corollary, L must in fact be outer.

It now follows that the operators L∗L and LL∗ are unitarily equivalent. For,
the partial isometry in the polar decomposition of L is really invertible and acts
as the intertwining unitary. Therefore,

rank(I − L∗L) = rank(I − LL∗) <∞,

so that L is an essential unitary.
As a Fredholm operator, L has closed range and is thus surjective since it is

outer. From [3], every operator in Ln is injective. Hence L is invertible. However,
it was also shown in [3] that the essential norm of every operator in Ln is the same
as its original norm. Since Ln is inverse closed ([3]), this implies that

‖L−1‖ = ‖L−1‖e = ‖L∗‖e = 1.

As an invertible isometry in Ln, L must be scalar. This contradiction completes
the proof.
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The investigation of the structure of Hn	LHn will be revisited next section
in the context of factoring.

In many ways, contractions satisfying (Lξ1, ξ1) = 0 are easier to deal with.
It is thus helpful to finish off this section by observing that there is a large class of
contractions in Ln for which this inner product is non-zero, however these operators
are unitarily equivalent to contractions in Ln which have no scalar part. Observe
that for any operator L in Ln, the space Hn 	 LHn belongs to LatR∗

n.

Theorem 1.11. Suppose L is a contraction in Ln for which Hn	LHn con-
tains an eigenvector of R∗

n. Then L is unitarily equivalent to a contraction in Ln

which has no scalar part. In addition, this unitary implements an automorphism
of Ln.

Proof. In [3] the eigenvectors of R∗
n are identified. Each scalar λ in the

unit ball of n-dimensional Hilbert space defines an eigenvector vλ. Further, for
each such vector there is a unitary Uλ on Hn for which AdUλ determines an
automorphism of Ln with

Uλvλ = ξ1.

Thus, suppose some vλ belongs to Hn 	 LHn. Then the operator UλLU
∗
λ is

a contraction in Ln and

(UλLU
∗
λξ1, ξ1) = (Lvλ, vλ) = 0,

which proves the result.

2. FACTORING

In the analytic Toeplitz algebra L1 = R1 = T (H∞), the associated function
theory yields a good factorization theory over the full algebra (see [4] and [5] for
example). When moving to several non-commutative variables, the strong link
to the function theory is lost and factorization becomes much more difficult to
deal with. Nonetheless, positive results such as inner-outer factorization can be
obtained. Other factorization results can be obtained when norm restrictions are
placed on possible factors.

Theorem 2.1. Let w ∈ Fn. Over the unit ball of Ln, the isometry Lw

factors only in the same way as the word w, modulo scalars in T.

Proof. Suppose Lw = BC with B and C belonging to b1(Ln). It is clear that
C must in fact be an isometry. For each k > 1, consider the corresponding form
of (1.1) for B and C. Let {bv} be the scalars and let {Bv} be the operators for B
in this decomposition. Use similar notation for C.

If w = 1, then I = b0c0I. Whence, |b0| = |c0| = 1 and the operators B and
C are scalar unitaries. Otherwise, put w = zi1 · · · zik

, and note that b0c0 = 0.

First suppose that b0 = 0. Then B =
n∑

i=1

LiBi and equating factorizations

yields,
Li1 (Bi1C) = Li1 (Li2 · · ·Lik

)
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and
Lj (BjC) = 0 for j 6= i1.

In particular, BjC = 0 for j 6= i1. But every non-zero element of Ln is injective
([3]), so that Bj = 0 for j 6= i1. Further, Bi1 is a contraction and Bi1C =
Li2 · · ·Lik

. Hence, by induction one has Bi1 = λLu and C = λ̄Lv where uv =
zi2 · · · zik

and λ belongs to T. Thus, B = λLi1Lu and C = λ̄Lv.
Next suppose b0 6= 0, so that c0 = 0. Note first that

(ξw, ξzik
) = (BCξ1, ξzik

) =
∑
v,u

bucv(ξuv, ξzik
) = b0cik

+ bik
c0 = b0cik

.

Hence if w = zik
, one would have b0cik

= 1. As B and C are contractions, it would
follow that |b0| = |cik

| = 1, and that B is a scalar unitary. Otherwise suppose
|w| > 1. Inductively, one can show that

0 = c0 = cik
= · · · = ci2···ik

.

To see this, observe that 0 = (ξw, ξzik
) = b0cik

, and hence cik
= 0. Then suppose

0 = c0 = cik
= · · · = cij ···ik

for some j, 2 < j 6 k. Equating Fourier coefficients of
Lw = BC shows that

0 = (ξw, ξzj−1···zk
) = (BCξ1, ξzj−1···zk

)

= b0cij−1···ik
+ bij−1cij ···ik

+ · · ·+ bij−1···ik
c0 = b0cij−1···ik

.

Whence, cij−1···ik
= 0 as claimed. But then,

1 = (ξw, ξw) = (BCξ1, ξw) = b0cw + bi1ci2···ik
+ · · ·+ bwc0 = b0cw.

Thus, |b0| = |cw| = 1 and B is a scalar unitary.

It is immediate that the generating isometries are irreducible over the unit
ball.

Corollary 2.2. For n > 2, each Li is irreducible over the unit ball of Ln.

In fact, many more isometries are irreducible over the unit ball of Ln. Indeed,
one can work harder to obtain the next result which includes a large collection of
isometries. For example, the isometries L = 1√

2
(L1 +L2) and L = 1√

2
L1 + 1

2L
2
2 +

1
2L

3
3 are irreducible.

Theorem 2.3. Suppose L ∼
∑

w 6=1

awLw is an isometry in Ln for which there

is an i with azi
6= 0 and RiR

∗
i (Lξ1) = azi

ξzi
. Then L is irreducible over the unit

ball of Ln, modulo scalars in T.

Proof. Suppose L = BC with B and C in b1(Ln). The operator C must be
an isometry. As in the proof of the previous theorem, consider the expansions of
B and C determined by (1.1). Recall that

B = b0I +
n∑

j=1

LjBj and C = c0I +
n∑

j=1

LjCj .
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By equating unique factorizations of L = BC one obtains, b0c0 = 0. It is also
clear that

Li (b0Ci +BiC) = Li (azi
I) .

First suppose b0 = 0. Then, BiC = azi
I 6= 0. Thus by the injectivity of all

elements in Ln, the operator Bi must be invertible. Hence C is also invertible.
Therefore, as an invertible isometry in Ln, C must be a scalar unitary.

Next suppose b0 6= 0 and so c0 = 0. This corresponds to the case when B is
a scalar unitary. Indeed, note first from the Fourier expansions,

azi
= (Lξ1, ξzi

) = (BCξ1, ξzi
) = b0czi

+ bzi
c0 = b0czi

.

As B is a contraction, |czi
| > |azi

|. Now by hypotheses one has

(L− azi
Li)ξ1 =

n∑
j=1

RjR
∗
j (L− azi

Li)ξ1 =
∑
j 6=i

RjR
∗
j (Lξ1).

Further since L = BC,

B(C−czi
Li)ξ1 =

n∑
j=1

RjR
∗
j (L−czi

BLi)ξ1 =
∑
j 6=i

RjR
∗
j (Lξ1)+RiR

∗
i (L−czi

BLi)ξ1.

Evidently then,
‖B(C − cziLi)ξ1‖ > ‖(L− aziLi)ξ1‖.

Thus the following is true:

1 = ‖Cξ1‖2 = ‖(C − cziLi)ξ1‖2 + |czi |2 > ‖B(C − cziLi)ξ1‖2 + |czi |2

> ‖(L− aziLi)ξ1‖2 + |azi |2 = ‖Lξ1‖2 = 1.

Therefore, |azi | = |czi | and |b0| = 1, which shows that B is a scalar unitary.

Remark 2.4. This proof can be perturbed to include broader classes of
isometries. For example, any isometry L which satisfies

RiR
∗
i (Lξ1) = awzi

ξwzi
,

for some i and word w is irreducible over the unit ball of Ln.

As it turns out, the unique factorizations over the unit ball of Ln discussed
above do not hold over the full algebra. Remarkably, even the operator L2 has
proper factorizations in Ln. This comes out of an interesting result from the
function theory.

Lemma 2.5. The function f(z) =
∑
k>0

zk

k+1 belongs to H2 \H∞. However, 1
f

defines a function which lies in H∞.

Proof. Since f is analytic on the unit disk and the Fourier coefficients of f
are `2-summable, the function belongs to H2 with

‖f‖2 =
( ∑

k>0

1
(k + 1)2

) 1
2

.
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For |z| < 1, f(z) is defined by the formula

(2.1) zf(z) = − log(1− z)

for the principal branch of the logarithm. Given r such that 0 < r < 1, let fr be
the function on T defined by fr(eiθ) = f(r eiθ). Then the identity

lim
r→1−

f(r) = lim
r→1−

− log(1− r)
r

= ∞,

together with the continuity of f on the disk, shows that

‖f‖H∞ := lim
r→1

‖fr‖∞ = ∞.

Hence the function f is not in H∞.
To prove that 1

f defines a function in H∞, it is required to show that 1
f

defines an analytic function on the unit disk with ‖ 1
f ‖∞ <∞. Now, 1

f is analytic
on the unit disk by (2.1). To see that f is bounded below first observe the identity
1− eiθ = (2 sin θ

2 )e
θ−π

2 i. Hence for |θ| 6 π with θ 6= 0,

|f(eiθ)|2 =
∣∣∣∣− log(1− eiθ)

eiθ

∣∣∣∣2 =

∣∣∣∣∣ log |2 sin θ
2 |+ i

(
θ−π

2

)
eiθ

∣∣∣∣∣
2

=
(

log
∣∣∣2 sin

θ

2

∣∣∣)2

+
(
θ − π

2

)2

.

But
(

θ−π
2

)2
> π2

16 for −π 6 θ 6 π
2 and |2 sin θ

2 | >
√

2 for π
2 6 θ 6 π. Thus,

|f(eiθ)|2 > min
{

(log 2)2

4
,
π2

16

}
=

(log 2)2

4

for θ 6= 0. It now follows that ‖ 1
f ‖∞ <∞, and the proof is finished.

This unusual function theoretic result allows one to construct explicit factor-
izations which are exclusive to the non-commutative setting.

Theorem 2.6. Suppose L is an isometry in Ln for which Hn	LHn contains
the range of an isometry X in Ln. Then L has proper factorizations in Ln.

Proof. As the ranges of the isometriesXkL are pairwise orthogonal for k > 0,
the operator A =

∑
k>0

1
k+1X

kL belongs to Ln with

‖A‖ =
( ∑

k>0

1
(k + 1)2

) 1
2

.

Let g = 1
f be the H∞ function obtained in the previous lemma. By the H∞

functional calculus for X (Corollary 1.6), g(X) defines an operator in Ln. The
claim is that g(X)A = L. This comes as a result of a more general fact.

Note that given h in H2, an operator h(X)L can be naturally defined in Ln.
Indeed, one can set

h(X)L =
∑
k>0

ĥ(k)XkL



Non-commutative analytic Toeplitz algebras 185

where the ĥ(k) are the Fourier coefficients for h. Clearly, the map from H2 to
B(Hn) which sends h to h(X)L is isometric. The key is that this map is also
continuous from the topology of weak vector convergence in H2 to the WOT
in Ln. To see this, suppose hm converges weakly to h in H2. Without loss of
generality assume h = 0. Then ĥm(k) converges to 0 for each k and

sup
m
‖hm‖2 = c <∞,

for some constant c. Let x and y be unit vectors inHn and let Sk be the orthogonal
projection onto Ran(XkL). Then∑

k>0

|(XkLx, y)|2 =
∑
k>0

|(XkLx, Sky)|2 6
∑
k>0

‖Sky‖2 6 ‖y‖2 = 1.

Thus, given ε > 0 one can choose N = N(ε) for which the Nth `2 tail of the above
series is smaller than ε. Then, for each m, the Cauchy-Schwarz inequality shows
that

|(hm(X)Lx, y)| =
∣∣∣∣ ∑

k>0

ĥm(k)(XkLx, y)
∣∣∣∣

6
∑

06k6N

|ĥm(k)|+
( ∑

k>N

|ĥm(k)|2
) 1

2

ε

6
∑

06k6N

|ĥm(k)|+ cε.

As ĥm(k) converges to 0 for each k, it follows that hm(X)L converges WOT to 0.
Recall that the analytic trigonometric polynomials are weak* dense in H∞

([4]). Let gm be such a sequence converging weak* to g. From the definition of this
weak* topology, the sequence gm converges weakly to g in H∞. Thus, the sequence
gmf converges weakly to gf = 1 in H2. Hence, since each gm is a polynomial,

gm(X)A = gm(X) (f(X)L) = (gmf)(X)L WOT−→ (gf)(X)L = L.

Further, by the H∞ functional calculus for X, gm(X) converges WOT to g(X)
([9]). Therefore,

gm(X)A WOT−→ g(X)A.
Whence g(X)A = L.

It remains to observe that g(X) and A are both not invertible. The invert-
ibility of g(X) in Ln would imply the invertibility of g in H∞, contradicting the
previous lemma. If A was invertible, it would be the scalar multiple of an in-
vertible isometry in Ln, hence scalar itself by Proposition 1.1. The proof is now
complete.

Remark 2.7. The theorem really is exclusive to the non-commutative set-
ting. The hypothesis of the theorem cannot be satisfied when n = 1. For if ϕ
and ψ are inner functions in H∞, then the function ϕψ = ψϕ belongs to ϕH2

and ψH2.

As a surprising consequence of the theorem, the reducibility of the generating
isometries is revealed in the non-commutative setting.
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Corollary 2.8. For n > 2, each Li has proper factorizations over Ln.

Proof. The isometry X can be taken to be Lj for j 6= i.

In fact, there is a large collection of isometries which can be seen to be
reducible in this manner. Note that by unique factorization, every operator L in
Ln with (Lξ1, ξ1) = 0 can be written as

L =
∑
|w|=k

LwAw,

for some k > 1 and Aw in Ln.

Corollary 2.9. Let L be an isometry in Ln with L =
∑

|w|=k

LwAw, for

some k > 1 and Aw in Ln. Suppose either one of the following conditions holds:
(i) there is an Aw for which there exists a B 6= 0 in Ln with the range of B

orthogonal to that of Aw, or
(ii) some Aw is a scalar multiple of an isometry.

Then L properly factors in Ln.

Proof. Let ξ and η be vectors belonging to Hn throughout the proof. To
prove (i), set A = LwB. Write the inner-outer factorization for A as A = LAC.
Since C is outer, there are vectors ζm such that η = lim

m→∞
Cζm. It follows that

(Lξ, LAη) = lim
m→∞

(Lξ, LACζm) = lim
m→∞

(Lξ, LwBζm)

= lim
m→∞

(LwAwξ, LwBζm) = lim
m→∞

(Awξ,Bζm) = 0.

Thus, LA is an isometry with range orthogonal to the range of L.
Lastly, suppose that Aw is a scalar multiple of an isometry. Write L as

L = LwAw +A. Let A = LAB be the inner-outer factorization of A. Since

AHn = LABHn = LAHn,

the ranges of Lw and LA are orthogonal. Further, one has

A∗wAw +B∗B = I.

So B is also a scalar multiple of an isometry, and it is therefore scalar since it is
outer. Suppose that A∗wAw = a2I and B = βI. Let c = a2|β|−2, and let X be the
operator

X = LwAw − cβLA.

Then X is an operator with range orthogonal to the range of L. Indeed,

(Lξ,Xη) = (LwAwξ, LwAwη)− (Aξ, cβLAη) = a2(ξ, η)− c|β|2(ξ, η) = 0.

As in the proof of (i), using the inner part of X yields a desired isometry.

It is worthwhile to point out a striking special case of the first condition in
the corollary.
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Corollary 2.10. Let L be an isometry in Ln with L =
∑

|w|=k

LwAw, for

some k > 1 and Aw in Ln. If any Aw = 0, then L properly factors in Ln.

Remark 2.11. Obviously there are many isometries which satisfy the first
condition. Further, all of the isometries shown to be irreducible over the unit ball
of the algebra in Theorem 2.3 and Remark 2.4 are reducible over the full algebra
since they satisfy the second condition. Other isometries which satisfy the second
condition include the collection of all operators which are the sum of pairwise
orthogonal words. For, in this case every non-zero Aw would necessarily be a
scalar multiple of an isometry.

There are also other more specialized classes of isometries which can be
factored using this method. As an example, let f and g belong to H∞ with

|f |2 + |g|2 = 1

on T. Such functions can be found by using the logmodularity of H∞ ([5]). Then

L = L1f(L1) + L2g(L1)

is an isometry in L2 which apparently does not satisfy the conditions in the corol-
lary. Let α = f(0) and β = g(0) and choose λ in T such that

λ(αβ) = αβ.

Then L and the isometry

X =
1

|α|2 + |β|2
(
βL1L2 − λαL2

2

)
have orthogonal ranges. Indeed, for ξ and η in Hn one has

(|α|2 + |β|2) (Lξ,Xη) = (f(L1)ξ, βL2η)− (g(L1)ξ, λαL2η)

= αβ (ξ, L2η)− βαλ (ξ, L2η) = 0.

The reducibility of this large collection of isometries, together with the fact
that the orthogonal complement of the range is always infinite dimensional (The-
orem 1.7), leads one to believe that perhaps the theorem can be applied to every
isometry L with (Lξ1, ξ1) = 0. However, this is not the case. The trouble is that
difficulties arise when the space Hn 	 LHn is too “thin” at each level of the Hn

tree. That is, the dimension of Pk(Hn	LHn) remains small as k increases (recall
Remark 1.8).

Theorem 2.12. There are isometries L in Ln with (Lξ1, ξ1) = 0 for which
Hn 	 LHn does not contain the range of an isometry in Ln.

Proof. For k > 0, put xk = Rk
1R2

∑
|w|=k

Rwξw, and let x be the unit vector

x =
∑
k>0

2
−k−1

2 ‖xk‖−1xk.
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Suppose y is in Hn with (R∗ux, y) = 0 for all words u in Fn. Now given k > 0,
choose a word u with |u| = k. Then

0 =
(
2

k+1
2 ‖xk‖1R∗uR∗2(Rk

1)∗x, y
)

=
(
R∗u

( ∑
|w|=k

Rwξw

)
, y

)
= (ξu, y).

Therefore, y = 0.
Next, write x as x = Lη, where L is an isometry in Ln and η is an Rn cyclic

vector (every vector in Hn can be written in this form ([2])). The claim is that
L is the desired isometry. As (η, ξ1) 6= 0 and (x, ξ1) = 0, one has (Lξ1, ξ1) = 0.
Suppose X is an isometry in Ln with range contained in Hn 	 LHn. Then the
vectors Xξu = X(Ruξ1) = Ru(Xξ1) are orthogonal to Lη = x for every u in Fn.

In other words, (Xξ1, R∗ux) = 0 for every word u. Thus, by the above
argument one would have Xξ1 = 0, whence X = 0. This contradiction completes
the proof.

So, this method cannot be applied to all isometries in Ln. Nevertheless, with
the large body of examples, it is still reasonable to make the guess that every
isometry L in Ln with (Lξ1, ξ1) = 0 properly factors over the full algebra.

3. IDEALS AND INVARIANT SUBSPACES

The characterization of the WOT-closed right and two sided ideals (Idr(Ln) and
Id(Ln)) in [2] and [3] is complete. The main theorem from [2] is stated as follows.

Theorem 3.1. Let µ : Idr(Ln) → Lat(Rn) be given by µ(I) = Iξ1. Then
µ is a complete lattice isomorphism. The restriction of µ to the set Id(Ln) is a
complete lattice isomorphism onto Lat(Ln)∩Lat(Rn). The inverse map i sends a
subspace M to

i(M) = {J ∈ Ln : Jξ1 ∈M}.

The maps µ and i are still well defined when considering Idl(Ln) and Lat(Ln).
Although technical difficulties were encountered by the authors, but a similar
characterization was expected for left ideals. The key observation for right and
two-sided ideals is that the subspace µ(I) is the full range of the ideal I. Indeed,
Iξ1 = ILnξ1 = IHn. This is not true for left ideals, and is why the methods of
the authors cannot be applied in this setting.

Towards the identification of right ideals it is first proved that µi = id. It is
then shown that this leads to the conclusion that Iξ = iµ(I)ξ for every vector ξ
in Hn. The proof that iµ = id exploits this fact together with the following more
general result about ideals in Ln.
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Proposition 3.2. Let I1 and I2 both be WOT-closed right, left or two-sided
ideals in Ln. If I1ξ = I2ξ for all ξ in Hn , then I1 = I2.

Proof. In [3] it was shown that the weak* and weak operator topologies on Ln

coincide. Suppose that ϕ is a WOT-continuous functional on Ln which annihilates
I1. Then again from [3], there are vectors ξ and η in Hn such that

ϕ(J) = (Jξ, η)

for J in Ln. But then η is orthogonal to I1ξ = I2ξ, and hence ϕ annihilates I2

as well. Repeating the argument by exchanging the rôles of I1 and I2 shows that
the two ideals are identical.

Remark 3.3. Now, let I1 and I2 be WOT-closed left ideals of Ln. Notice
that, I1ξ1 = I2ξ1 implies I1ξ = I2ξ when ξ = Rξ1 for some isometry R in Rn.
Indeed, one would have

I1ξ = I1Rξ1 = RI1ξ1 = RI2ξ1 = I2Rξ1 = I2ξ.

These vectors form a dense collection of vectors in Hn. Whether this implies the
same is true for all vectors in Hn is unclear. As Remark 3.3 points out, this
requires an understanding of unbounded WOT-convergence. Thus, it becomes
apparent that there are difficulties encountered when considering left ideals.

Upon further investigation, concrete differences become evident. In particu-
lar, the WOT-closed right ideal generated by a finite collection of isometries with
pairwise orthogonal ranges is exactly the algebraic right ideal they generate. For
left and two-sided ideals the corresponding result turns out to be false even for
one isometry with norm closure.

Theorem 3.4. The algebraic two-sided ideal in Ln generated by L2 is not
norm closed.

Proof. The operator

A =
∑
k>0

1
k + 1

Lk
1L2

clearly belongs to the norm closure of the algebraic two-sided (in fact left) ideal
generated by L2. Suppose that A could be written as

A =
p∑

i=1

BiL2Ci

with each Bi and Ci in Ln. Put Bi ∼
∑
w
biwLw and Ci ∼

∑
w
ciwLw. Then the

unique factorization in Ln shows for each k > 0,

1
k + 1

= (Aξ1, ξzk
1 z2

) =
p∑

i=1

(BiL2Ciξ1, ξzk
1 z2

) =
p∑

i=1

bizk
1
ci0.

By compressing the operators Bi to the subspace span{ξzk
1

: k > 0}, one sees that
each of the operators

hi(L1) =
∑
k>0

bizk
1
Lk

1 for 1 6 i 6 p
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must be in H∞(L1)
∼= H∞. Hence the function∑

k>0

zk

k + 1
=

p∑
i=1

ci0hi

would belong to H∞, a contradiction (see Lemma 2.5). Therefore A does not
belong to the algebraic two-sided ideal generated by L2.

As an immediate corollary of the proof, the corresponding fact about left
ideals is proved.

Corollary 3.5. The algebraic left ideal LnL2 is not norm closed.
Proof. Consider the same operator A. Simply use the proof of the theorem

with p = 1 and C1 = I.
Remark 3.6. It seems reasonable to expect that the norm and WOT clo-

sures of the preceding ideals are distinct. It also becomes apparent that proving
this would be quite subtle. Indeed, it is difficult to construct a bounded operator
belonging to the weak closure of LnL2 without being in the norm closure of LnL2.

Even with these differences, it is still surprising that the analogous identifi-
cation of left ideals does not hold. It turns out that the subspaces M in Lat(Ln)
for which µi(M) = M do not fill out the entire subspace lattice.

Theorem 3.7. There exists M 6= {0} in Lat(Ln) for which the associated
left ideal i(M) is trivial.

Proof. Define an isometry R in Rn by

R =
∑
k>0

λkR
k
1R2,

where the scalars λk satisfy
∑
k>0

|λk|2 = 1 but
∑
k>0

λkz
k is not in H∞. For example,

λk =
c

k + 1
where c =

( ∑
k>1

1
k2

)− 1
2

.

Let M be the subspace in Lat(Ln) given by M = RHn. Actually, every cyclic
Ln-invariant subspace is of this form for some isometry in Rn (see [1], [2], [6] and
[7]). Now,

i(M) = {J ∈ Ln : Jξ1 ∈ RHn}.
Suppose there is a non-zero J in Ln and ξ in Hn for which Jξ1 = Rξ. Put
ξ =

∑
w
awξw and let v be a word of minimal length such that av 6= 0. Since

Rξ =
∑
w
awLw(Rξ1) one has

J ∼
∑

|w|>|v|, k>0

awλkLwL2L
k
1 .

Let Q be the projection onto the subspace span{ξzk
1

: k > 0}. Evidently then,

QL∗2L
∗
vJQ = av

∑
k>0

λkL
k
1Q,

incorrectly implying that J would be unbounded. Therefore, it follows that
i(M) = 0.
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There is still a strong relation between Idl(Ln) and Lat(Ln). Essentially, it
is determined by those isometries in Rn which do not have the qualities of those
used in the proof of the theorem.

Definition 3.8. An isometry R in Rn is called a flip if there is a non-zero
vector ξ in Hn and an operator J in Ln with

Rξ = Jξ1.

Call R a cyclic flip if there are operators Jα in Ln such that Jαξ1 ∈ RHn and

Rξ1 = lim
α
Jαξ1.

The motivation for these definitions is when Rξ1 = Jξ1, for some J in Ln.
This means that the Fourier coefficients of R can be flipped into an element of Ln.

Proposition 3.9. Let R be an isometry in Rn with M = RHn. The fol-
lowing are equivalent:

(i) R is a flip;
(ii) i(M) 6= 0.

Proof. This is straight from the definitions of i(M) and flip isometries.

Remark 3.10. It should be noted that when R is a flip, the subspace µi(M)
is large. Indeed, suppose J 6= 0 belongs to i(M). Then there is a vector ξ in Hn

with Rξ = Jξ1. Write ξ as ξ = Sη, where S is an isometry in Rn and η is an Ln-
cyclic vector (this can be done for any vector in Hn ([3])). Note that the set LnJ
is contained in i(M). Thus,

RSHn = LnRSη = LnRξ = LnJξ1 ⊆ µi(M),

which shows that µi(M) contains the range of the isometry RS.

Proposition 3.11. Let R be an isometry in Rn with M = RHn. The
following are equivalent:

(i) R is a cyclic flip;
(ii) µi(M) = M.

Proof. It is always true that µi(M) ⊆ M. Suppose that R is a cyclic flip,
so that Rξ1 = lim

α
Jαξ1 with each Jαξ1 ∈M∩Lnξ1. Then Rξ1 lies in µi(M), and

hence
M = RHn = LnRξ1 ⊆ µi(M).

If this latter inclusion holds, then Rξ1 is such a limit since

Rξ1 ∈M = µi(M) = {J ∈ Ln : Jξ1 ∈ RHn}ξ1.

This gives a good one vector characterization of cyclic subspaces M in
Lat(Ln) for which µi(M) = M. The following corollary shows that the above
condition is satisfied for a wealth of examples. For instance, consider the situation
below even for ξ = ξ1.
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Corollary 3.12. Let M = RHn, where R is an isometry in Rn. If there
is an Ln-cyclic vector ξ such that Rξ = Jξ1 for some J in Ln, then µi(M) = M.
Further, if J = Lw for some word w, then i(M) is exactly the WOT-closed left
ideal generated by Lw.

Proof. The condition in the previous proposition is satisfied since,

Rξ1 ∈ RHn = LnRξ = LnJξ1,

which shows that R is a cyclic flip.
In general, given A in Ln,

AJξ1 = ARξ = RAξ ∈ RHn = M.

Thus, the WOT-closed left ideal generated by J is contained in i(M). The other
inclusion is true for the words J = Lw. Indeed, in this case it is easy to see that
every A in i(M) has a Fourier expansion of the form

A ∼
∑

v∈Fn

avwLvw.

Actually, an analogous claim can be made for the right and two-sided WOT-closed
ideals generated by Lw. However, in [3] it was shown that the Cesàro sums for A,

Σk(A) =
∑
|v|<k

(
1− |v|

k

)
avLv ∈ LnLw

converge in the strong* topology to A. Hence i(M) is contained in the WOT-
closed left ideal generated by Lw.

It has been mentioned that every vector Jξ1 with J in Ln factors as Jξ1 = Rξ
for some isometry R in Rn and Ln-cyclic vector ξ. As the corollary observes, one
has that i(RHn) always contains the WOT-closed left ideal generated by J . The
other inclusion holds for words J = Lw. Proving the other inclusion holds in
full generality would require an understanding of unbounded WOT-convergence
in these algebras. This is discussed further below.

Remark 3.13. The corollary shows that the image in Idl(Ln) contains the
left ideals generated by the words Lw. It is not clear whether the image in Idl(Ln)
is surjective. Given a WOT-closed left ideal I, it is always true that I ⊆ iµ(I).
In general, the other inclusion requires an understanding of unbounded WOT-
convergence. For example, suppose I belongs to Idl(Ln) with µ(I) = Hn. It is
not even known if one must have I = Ln. For, one would like to say that the
identity I belongs to I, but all that can be said is ξ1 = lim

α
Jαξ1 for some Jα

in I. For bounded nets, WOT-convergence amounts to strong convergence on
the vector ξ1 ([2]). However, this is not true for unbounded nets. Indeed, as an
example consider the sequence Jm of operators in Ln given by

Jm =
m∑

k=0

1
k + 1

Lm
1 .
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It is clear that
lim

m→∞
Jmξ1 =

∑
k>0

1
k + 1

ξzk
1
,

but the latter vector does not represent the Fourier coefficients of any operator
in Ln.

Nonetheless, it has been shown that the maps µ and i define a bijective
correspondence between the cyclic subspaces of Lat(Ln) determined by cyclic flips
on the one hand, and the image under i in Idl(Ln) of these subspaces on the other.
Concerning the lattice properties of these maps, it is not hard to show that µ
sends closed spans to WOT-closed sums and i sends intersections to intersections.
However, the behaviour of µ on intersections and i on sums again comes back to
requiring an understanding of unbounded WOT-convergence.
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