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Abstract. Several relations on graphs, including primitive equivalence, ex-
plosion equivalence and strong shift equivalence, are examined and shown to
preserve either the graph groupoid, a construction of Kumjian, Pask, Rae-
burn, and Renault, or the groupoid of a pointed version of the graph. Thus
these relations preserve either the isomorphism class or the Morita equiva-
lence class of the graph C∗-algebra, as defined by Kumjian, Pask, and Rae-
burn.
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1. INTRODUCTION

Given any finite square matrix B with nonnegative integer entries and no zero
rows or columns, Cuntz and Krieger defined a C∗-algebra OB , which is generated
by partial isometries satisfying relations associated to B ([2]). Also, given any
square matrix B with nonnegative integer entries, we can build a directed graph
by putting Bij edges from vertex i to vertex j. In [5], Kumjian, Pask, and Raeburn
defined the graph C∗-algebra C∗(E) of any countable row-finite directed graph
E as the universal C∗-algebra generated by a family of projections and partial
isometries which satisfy relations coming from E. Given a graph E with finitely
many vertices and no sources or sinks, the vertex matrix BE associated to the
graph is finite and has no zero rows or columns. In this case it turns out that
C∗(E) coincides with OBE

. The graph thus becomes a useful tool for visualizing
and generalizing the Cuntz-Krieger algebras.
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In [6], Kumjian, Pask, Raeburn, and Renault defined the graph groupoid GE

of any countable row-finite directed graph E with no sinks. In this case, the C∗-
algebra of the groupoid coincides with the C∗-algebra of the graph, so the graph
groupoid is another tool for understanding the Cuntz-Krieger algebras and a large
class of the graph algebras. In this paper, we examine several equivalence relations
on graphs which preserve the graph groupoid or, in some cases, the groupoid of a
pointed version of the graph.

In [3], Enomoto, Fujii, and Watatani defined primitive equivalence of finite
directed graphs with no sources, no sinks, and no multiple edges, and showed
that it is a sufficient condition for isomorphism of the resulting graph algebras.
In Section 3 we generalize their result to countable row-finite graphs. Further,
Enomoto, Fujii, and Watatani showed that primitive equivalence is also a necessary
condition for isomorphism of the graph algebras of strongly connected graphs with
three vertices. In Section 4, we show by counterexample that this does not hold
in the four-vertex case.

Primitive equivalence involves changing the rows of a matrix. In graph-
theoretical terms, this corresponds to changing the outgoing edges at a vertex. In
Section 5, we define an equivalence relation which involves changing the columns
of the matrix (alternatively, the incoming edges at a vertex). We call this reverse
primitive equivalence, and show that it preserves the Morita equivalence class,
though not the isomorphism class, of the graph algebras.

Primitive equivalence and reverse primitive equivalence only make sense for
graphs with the same number of vertices. In Section 6, we define explosion and
reverse explosion, operations which can change the size of the graph. The graph
operation we call reverse explosion was defined and called explosion in [3]. We
show that exploding a graph does not change the graph groupoid, hence does not
change the isomorphism class of its graph C∗-algebra. Reverse exploding a graph
does not preserve the graph groupoid, but the resulting graphs can be pointed in
such a way that their groupoids are isomorphic. Thus, reverse exploding a graph
preserves the Morita equivalence class of its C∗-algebra.

In Section 7, we recall from [1] the notion of elementary strong shift equiv-
alence of graphs, and show that elementary strong shift equivalent graphs can be
pointed in such a way that their groupoids are isomorphic. This is an alternate
proof of a result of Cuntz and Krieger in [2], which states that elementary strong
shift equivalent matrices correspond to Morita equivalent Cuntz-Krieger algebras.
We then examine the relationship between elementary strong shift equivalence and
explosion equivalence.
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2. PRELIMINARIES

In [3], a C∗-algebra was associated to every connected finite directed graph with
no multiple edges, no sources, and no sinks. We review this construction as we
set up the notation. A directed graph E consists of a set E0 of vertices, a set E1

of edges and maps s, r : E1 → E0 describing the source and range of each edge.
Denote by Ej the set of paths in E of length j. Here, zero-length paths (i.e.,
vertices) are allowed. Denote by E∗ the set of all finite paths in E and by E∞ the
infinite one-sided path space of E. We extend s and r to E∗ and s also to E∞.
Associated to every directed graph E is an E0 ×E0 vertex matrix BE , defined by
BE(v, w) = #{e ∈ E1 : s(e) = v, r(e) = w}. That is, the (v, w) entry of BE is the
number of edges in E from v to w. E has no multiple edges if and only if BE is
a 0-1 matrix. E has no sources (respectively sinks) if and only if BE has no zero
columns (respectively rows). A directed graph is said to be strongly connected if
for every pair of vertices v and w, there is a path from v to w and a path from w
to v. A directed graph is said to be connected if between each pair v, w there is
an undirected path from v to w.

In this paper, all graphs are assumed to be countable, directed, connected,
and to have no multiple edges.

Note that in [3], Enomoto, Fujii and Watatani worked with the adjacency
matrix instead of the vertex matrix, whose transpose is the adjacency matrix. We
choose to work with the vertex matrix in order to be consistent with the more
recent graph algebra literature ([6]).

For any row-finite graph E, a Cuntz-Krieger E-family is a set {Pv : v ∈ E0}
of mutually orthogonal projections together with a set {Se : e ∈ E1} of partial
isometries satisfying:

(a) S∗eSe = Pr(e);
(b) Pv =

∑
s(e)=v

SeS
∗
e , for v ∈ s(E1).

Kumjian, Pask, and Raeburn ([5]) defined the C∗-algebra of the graph, de-
noted by C∗(E), to be the C∗-algebra generated by a universal Cuntz-Krieger
E-family.

We now recall the construction of a groupoid from a row-finite graph ([6]).
For x, y ∈ E∞, k ∈ Z, say x ∼k y if and only if xi = yi−k for large i, where xi

denotes the i-th edge of x. We remark that this definition differs slightly from the
one given in [6], but it coincides with the currently accepted convention. Define
GE , the path groupoid of E, by GE = {(x, k, y) : x ∼k y}. The groupoid operations
in GE are

(x, k, y)−1 = (y,−k, x) and (x, k, y) · (y, l, z) = (x, k + l, z).

Alternatively, one can define

GE = {(α, x, β) ∈ E∗ × E∞ × E∗ : r(α) = r(β) = s(x)}/ ∼,

where ∼ denotes the equivalence relation (α, γx, β) ∼ (αγ, x, βγ). To see that the
two definitions coincide, the reader may check that the map [α, x, β] 7→ (αx, |α| −
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|β|, βx) is a groupoid isomorphism. With this definition, we find that [α, x, β]−1 =
[β, x, α] , that [α, x, β] and [γ, y, δ] are composable if and only if βx = γy, and that

[α, x, β][γ, y, δ] =
{

[α, x, δε] if γε = β and y = εx;
[αε, y, δ] if βε = γ and x = εy.

With the topology generated by the sets Z(α, β) := {[α, x, β] : s(x) = r(α)},
GE is a locally compact Hausdorff r-discrete groupoid with Haar system. If E
has no sinks, then C∗(E), the C∗-algebra of E constructed in [5], coincides with
C∗(GE).

We now seek to remove the restriction on sinks. First, recall from [6] that a
pair (E,S), where E is a row-finite graph with no sinks and S is a set of vertices
of E, is called a pointed graph. If (E,S) is a pointed graph, then S determines a
clopen subset {x ∈ E∞ : s(x) ∈ S} of the unit space of GE , which we also denote
by S. If S is cofinal, meaning that given any x ∈ E∞ there exists v ∈ S and
a finite path from v to s(xi) for some i, then C∗(G(E,S)) is Morita equivalent to
C∗(GE), where G(E,S) denotes GE restricted to S ([6]).

Given a row-finite graph E with sinks at {vi}i∈I , define a pointed graph Ẽ as
follows: the vertices of Ẽ are the vertices of E, along with the additional vertices
{wj

i } for i ∈ I, j = 1, 2, . . .. The edges in Ẽ are the edges in E along with an
edge from vi to w1

i for every i ∈ I, and an edge from wj
i to wj+1

i for every i ∈ I,
j = 1, 2, . . .. We have simply added a distinct infinite tail to each sink in E. Define
the pointing set of Ẽ to be the original set of vertices of E. The reader may verify
that C∗(G

Ẽ
) ∼= C∗(E) by checking that both are generated by the same family of

projections and partial isometries.

3. PRIMITIVE EQUIVALENCE

The following definition is due to Enomoto, Fujii, and Watatani. Let B be an
n× n, 0-1 matrix. For 1 6 p 6 n, denote the p-th row of B by Bp and denote the
row (0, . . . , 0, 1, 0, . . . , 0), where the 1 is in the ith position, by Ei. We apologize
for any confusion caused by this multiple use of the letter E, but we are using
standard conventions of [3] for primitive transfer and standard conventions of [5]
for graphs.

Now suppose that there is a p such that Bp is not a zero row and

Bp = Ek1 + · · ·+ Ekr
+ Bm1 + · · ·+ Bms

for some distinct k1, . . . , kr, m1, . . . ,ms such that p 6∈ {m1, . . . ,ms} and Bmi
is

not a zero row for any i. Define a new matrix C by

Cij =

{
Bij if i 6= p;
1 if i = p and j ∈ {k1, . . . , kr,m1, . . . ,ms};
0 otherwise.

That is, start with B, zero out the p-th row, and then put back 1’s in positions
k1, . . . , kr, m1, . . . ,ms. C is called a primitive transfer of B at p. Note that this
notion does not depend on finiteness of the matrix B.
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Definition 3.1. If B and C are 0-1, square matrices of the same (possibly
infinite) size, we say B is primitively equivalent to C if and only if there exist
matrices D1, . . . , Dq such that D1 = B, Dq = C, and for every 1 6 i 6 q − 1, one
of the following holds:

(i) Di is a primitive transfer of Di+1;
(ii) Di+1 is a primitive transfer of Di;
(iii) Di = PDi+1P

−1 for some permutation matrix P .

We say that two matrices, which satisfy the third condition above, are per-
mutations of each other. Matrices which are permutations of each other should be
primitively equivalent because we would like the vertex matrices of isormorphic
graphs to be primitively equivalent. This is implicit but never stated in [3]. There
are matrices which cannot be primitively transferred in any number of steps into
a permutation of the same matrix. For example,

A =

(
1 1 1
1 0 1
1 0 0

)
and B =

(
0 1 1
1 1 1
0 1 0

)
,

are permuations of each other, but the reader may check that they would not be
primitively equivalent if condition (iii) were removed from the definition.

Franks ([4], Corollary 2.2) defined a similar matrix operation. His operation
applies to graph with multiple edges and it involves only two rows or columns.
He used this move in finding a canonical form for the flow equivalence class of a
matrix.

The primitive transfer has the following graph-theoretical interpretation:
suppose vertex p points to the same vertices which are pointed to by vertices
m1, . . . ,ms (and only one of the vertices m1, . . . ,ms points to each of those ver-
tices) and, in addition, vertex p points to vertices k1, . . . , kr. Then a primitively
transferred graph can be obtained by erasing all the edges emanating from vertex
p, except those pointing to vertices k1, . . . , kr, and adding an edge from vertex p
to each of the vertices m1, . . . ,ms. Note that this procedure is only allowed if we
do not create any multiple edges. The following example shows that we may first
erase and then redraw the same edge.

Example 3.2. Consider the following graph E and its primitive transfer F :

.
Vertex p points to vertices p, v, w, m3 and k1. Together, vertices m1,m2 and

m3 point to vertices p, v, w and m3. This means that, if B is the vertex matrix of
E, then Bp = Ek1 + Bm1 + Bm2 + Bm3 . So row p of the vertex matrix of F has
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1’s in positions k1,m1,m2 and m3. Thus F has edges from vertex p to vertices
k1,m1,m2 and m3.

Definition 3.3. Two graphs with no multiple edges are said to be primi-
tively equivalent if and only if their vertex matrices are primitively equivalent.

We will show that if F is a primitive transfer of E, then GE and GF are
isomorphic. But first we need the following definitions, notation and lemmas.

Let E and F be row-finite graphs with no sinks. To simplify notation,
we denote their vertex matrices by B and C, respectively. Suppose that F is
a primitive tranfer of E. Without loss of generality, assume that 1 ∈ E0 and
B1 = Ek1 + · · · + Ekr + Bm1 + · · · + Bms . We identify E0 and F 0. Define
K := {k1, . . . , kr} and M := {m1, . . . ,mr}. Note that K ∩M = ∅. Since E and
F have no multiple edges we can use the notation eij to denote the unique edge
in E with source vi and range vj , if there is one; that is, if Bij = 1. Likewise, we
will denote edges in F by f ij .

The following lemma is an immediate consequence of the definition of the
primitive transfer.

Lemma 3.4. If f1j exists, then j ∈ K ∪M.

If f ∈ F 1 is of the form f1m for some m ∈ M , then we will call f a new (or
newly introduced) edge.

Lemma 3.5. If f ij is not new, then eij exists.

Proof. Cij = 1 because f ij exists. Now, if f ij is not new, then either i 6= 1
or j 6∈ M . If i 6= 1, then the primitive transfer does not change row i, so Bij =
Cij = 1. If, on the other hand, i = 1 and j 6∈ M , then j ∈ K by Lemma 3.4. So
Bi = · · ·+ Ej + · · · and thus Bij = 1. In either case, Bij = 1, so eij exists.

Lemma 3.6. If f and f ′ are consecutive edges in F (that is, r(f) = s(f ′)),
then f and f ′ cannot both be new.

Proof. This follows from the definition of new and the fact that 1 6∈ M .

Lemma 3.7. If f1mfmj ∈ F 2 for some m ∈ M , then e1j exists, and j 6∈ K.

Proof. Since fmj is not new, emj exists by Lemma 3.5, and so Bmj = 1.
Hence we have B1j = 1, since B1 = · · ·+ Bm + · · ·. Thus e1j exists.

Now suppose j ∈ K. Then we have B1 = · · ·+ Ej + · · ·+ Bm + · · ·. But we
know that Bmj = 1, and thus B1j > 1, a contradiction.

Proposition 3.8. If E is a row-finite graph and F is a primitive transfer
of E, then GE

∼= GF .

Proof. The strategy of the proof is as follows: We use the properties of the
primitive transfer to construct an s, r-preserving injective map ϕ from the edges
in E to paths of length one or two in F . This will induce injective maps from
finite paths in E to finite paths in F , from infinite paths in E to infinite paths in
F , and from GE to GF . The injective map between the groupoids will turn out to
be a surjective homomorphism.

We use the same notation as above and assume, without loss of generality,
that B1 = Ek1 + · · ·+ Ekr + Bm1 + · · ·+ Bms .
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Note that if E has an edge from vertex 1 to vertex j for some j 6∈ K, then
there is a unique m ∈ M such that Bmj = 1. Since C1m = 1, we can define
ϕ : E1 → F 1 ∪ F 2 by

ϕ(eij) =
{

f1mfmj if i = 1 and j 6∈ K;
f ij else.

For instance, in Example 3.2, ϕ(epp) = fpm1fm1p, ϕ(epv) = fpm1fm1v,
ϕ(epw) = fpm3fm3w and ϕ(epm3) = fpm2fm2m3 . All the other edges would be
mapped to their corresponding edges.

The function ϕ induces a map, which we also denote by ϕ, from E∗ → F ∗

by
ϕ(α1α2 · · ·α|α|) = ϕ(α1)ϕ(α2) · · ·ϕ(α|α|).

The function ϕ : E∞ → F∞ is defined similarly, and ϕ : GE → GF is defined by

ϕ[α, x, β] = [ϕ(α), ϕ(x), ϕ(β)].

It is easily seen that ϕ : GE → GF is a well-defined homomorphism.
In order to show that ϕ : GE → GF is injective, we need to know that

ϕ : E∗ → F ∗ and ϕ : E∞ → F∞ are injective.
First note that K and M are disjoint. Hence if ϕ(e)1 = ϕ(e′)1 for some

e, e′ ∈ E1 then |ϕ(e)| = |ϕ(e′)|. Now suppose that ϕ(α) = ϕ(β) for some finite
or infinite paths α and β. It follows by induction that ϕ(αi) = ϕ(βi) for all i.
Since ϕ : E1 → F 1 ∪ F 2 is clearly injective, we have that ϕ : E∗ → F ∗ and
ϕ : E∞ → F∞ are injective.

We are now in position to show that ϕ : GE → GF is injective. Suppose
ϕ[α, x, β] = ϕ[γ, y, δ]. Then we can assume, without loss of generality, that ϕ(α) =
ϕ(γ)η, ϕ(β) = ϕ(δ)η, and ϕ(y) = ηϕ(x). We claim that η ∈ ϕ(E∗). If |ϕ(α)| 6 1
then either η = ϕ(α) or η = r(ϕ(α)) = ϕ(r(α)), so we can suppose that |ϕ(α)| > 1.
Since ϕ(γ)η = ϕ(α1) · · ·ϕ(α|α|) and ϕ(αi) has length one or two for every i, it
follows that for some k, either ϕ(γ) = ϕ(α1) · · ·ϕ(αk) or ϕ(γ) = ϕ(α1) · · ·ϕ(αk)f ,
where ϕ(αk+1) = fg (f, g ∈ F 1). However, the latter case is not possible since,
by definition of ϕ, the last edge of ϕ(γ) cannot be a new edge, but f must be
a new edge. In the former case, η = ϕ(αk+1 · · ·α|α|). Thus there exists µ ∈ E∗

such that η = ϕ(µ). So ϕ(α) = ϕ(γ)ϕ(µ) = ϕ(γµ). Similarly, ϕ(β) = ϕ(δµ), and
ϕ(y) = ϕ(µx). By injectivity of ϕ : E∗ → F ∗ and ϕ : E∞ → F∞, we have α = γµ,
β = δµ, and y = µx, and hence [α, x, β] = [γ, y, δ]. Thus ϕ : GE → GF is injective.

We now show that ϕ : GE → GF is onto. Since elements of the form
[f, y, r(f)], where f ∈ F 1, and y ∈ F∞ with r(f) = s(y), generate GF , it suf-
fices to show that each of them is in the range of ϕ.

Use the following procedure to find an inverse image for y. Note that every
new edge is followed by an edge which is not new (Lemma 3.6). Lemma 3.7 says
that we can find an inverse image for these new-not new pairs. The remaining
edges are not new, and by Lemma 3.5 these edges can be pulled back individually.
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Now we fix an edge f = f ij ∈ F 1 and a path y ∈ F∞ with s(y) = r(f). If f
is not new, then clearly ϕ[eij , ϕ−1(y), r(eij)] = [f, y, r(f)]. If, on the other hand,
f = f1m is a new edge, then there must be an edge e′ ∈ E1 such that ϕ(e′) = fy1.

Further, if f is a new edge, then y1 cannot be new, so there must be an edge
e′′ ∈ E1 with ϕ(e′′) = y1. In this case,

ϕ[e′, ϕ−1(y2y3 · · ·), e′′] = [fy1, y2y3 · · · , y1] = [f, y, r(f)].

Thus ϕ is onto.

All that remains to show is that ϕ is continuous and open. To see that

ϕ is open, the reader may check that ϕ(Z(α, β)) = Z(ϕ(α), ϕ(β)) for any finite
paths α and β. Likewise, ϕ−1(Z(γ, δ)) = Z(ϕ−1(γ), ϕ−1(δ)) for any γ, δ, so ϕ is

continuous.

The proposition immediately yields the following corollary, which was proved

in [3] for the case where E and F are finite graphs which satisfy (L) and have no

sources or sinks:

Corollary 3.9. If E is a row-finite graph with no sinks and F is primitively

equivalent to E, then GE
∼= GF and hence C∗(E) ∼= C∗(F ).

Recall that if E has sinks, we can build a graph Ẽ with no sinks by affixing
a distinct infinite tail to each sink. By pointing Ẽ at all the original vertices of E,

we obtain a pointed graph whose groupoid C∗-algebra coincides with C∗(E).

Lemma 3.10. Let E be a row-finite graph, possibly with sinks, and let F be
a primitive transfer of E. Then F̃ is a primitive transfer of Ẽ.

Proof. Let B,C, B̃, and C̃ denote the vertex matrices of E,F, Ẽ, and F̃ ,

respectively. Assume that Bp = Ek1 + · · · + Ekr + Bm1 + · · · + Bms , so that

Cp = Ek1 +· · ·+Ekr
+Em1 +· · ·+Ems

. Since for each i, the vertex mi is not a sink
in E, Bmij = 1 if and only if B̃mij = 1. Similarly, since the vertex p is not a sink
in E, Bpj = 1 if and only if B̃pj = 1, Thus B̃p = Ek1 + · · ·+Ekr

+B̃m1 + · · ·+B̃ms
,

and C̃p = Ek1 + · · ·+Ekr
+Em1 + · · ·+Ems

. Thus F̃ is a primitive transfer of Ẽ.

Theorem 3.11. If F is primitively equivalent to the row-finite graph E, then

C∗(E) ∼= C∗(F ).

Proof. By Lemma 3.10 and Corollary 3.9 we have C∗(G
Ẽ

) ∼= C∗(G
F̃
), and

hence C∗(E) ∼= C∗(F ).
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4. CLASSIFICATION

A matrix B is said to be irreducible if for every i, j, there exists an N ∈ N such
that BN (i, j) > 0. In [3] a computer, along with some K-theory, was used to
show that for all 3 × 3 irreducible matrices which are not permutation matrices,
primitive equivalence is a necessary as well as sufficient condition for isomorphism
of the Cuntz-Krieger algebras.

We used a similar method to see whether this result is true for irreducible
4× 4 matrices. It is not. The following counterexample is one of many:

A =

 1 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 and B =

 0 1 1 1
1 0 1 1
1 1 0 1
1 1 0 0

 .

By [8], K0(OA) is the abelian group generated by {[PA
i ] : i = 1, . . . , 4} subject to

the relations [PA
i ] =

∑
j

A(i, j)[PA
j ], and similarly for OB . One may check that

[PA
1 ] 7→ (0, 2), [PA

2 ] 7→ (0, 1), [PA
3 ] 7→ (1, 4), [PA

4 ] 7→ (1, 1)
is a faithful representation of K0(OA) as Z2 ⊕ Z6, and that

[PB
1 ] 7→ (0, 1), [PB

2 ] 7→ (1, 1), [PB
3 ] 7→ (0, 4), [PB

4 ] 7→ (1, 2)
is a faithful representation of K0(OB) as Z2 ⊕ Z6. Further, notice that [1OA

] =
4∑
1

[PA
i ] 7→ (0, 2), and [1OB

] 7→ (0, 2), as well. Thus, since A and B are irreducible

and there is an isomorphism between the K0 groups which preserves the class of
the identity, OA

∼= OB by [9].
However, it is easy to check by hand using the definition of the primitive

transfer that each of these matrices is primitively equivalent only to its permuta-
tions, and that A and B are not permutations of each other.

5. REVERSE PRIMITIVE EQUIVALENCE

In this section, we define a modified version of primitive equivalence using column
operations instead of row operations. Recall that a cofinal vertex is one from which
any infinite path can be intercepted.

Definition 5.1. Suppose that B and C are 0-1 (possibly infinite) square
matrices. We say C is a reverse primitive transfer of B if CT is a primitive transfer
of BT at a cofinal vertex. We say that B and C are reverse primitively equivalent
if there is a sequence B = D1, D2, . . . , Dq = C such that for each i < q, Di+1 is
a permutation of Di, Di+1 is a reverse primitive transfer of Di, or Di is a reverse
primitive transfer of Di+1.

Two graphs E and F are reverse graphs if the vertex matrices BE and BF are
transposes of each other, that is, E and F have the same vertices and their edges
have opposite directions. Disregarding cofinality, two graphs are reverse primitive
equivalent if their reverse graphs are primitively equivalent. The following example
shows that reverse primitive equivalence of graphs E and F does not imply that
C∗(E) ∼= C∗(F ).
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Example 5.2. If

B =

 0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

 and C =

 0 1 0 1
1 0 1 0
1 0 0 0
1 0 0 0

 ,

then CT is a primitive transfer of BT (via BT
3 = BT

2 ). However, OC
∼= O3 and

OB
∼= O3 ⊗M2, so they are not isomorphic ([7]).

Suppose that E and F are row-finite graphs and that F is a reverse primitive
transfer of E at vertex 1. That is, BT

1 = Ek1 + · · ·+Ekr +BT
m1

+ · · ·+BT
ms

. Where
appropriate, we use the notation established prior to Proposition 3.4.

We have analogues of some of the preliminary lemmas for Proposition 3.8,
and their proofs are similar:

Lemma 5.3. If f i1 exists, then i ∈ K ∪M.

The definition of new must be altered slightly. The edge f ∈ F 1 is said to
be new if it is of the form fm1 for some m ∈ M .

Lemma 5.4. If f imfm1 ∈ F 2 for some m ∈ M , then ei1 exists.

Note that, with the modified definition of new, Lemma 3.5 and Lemma 3.6
are true exactly as stated.

Proposition 5.5. If the row finite graph F is a reverse primitive transfer
of E at v, then G(E,{v}) ∼= G(F,{v}).

Proof. Let B be the vertex matrix of E and C the vertex matrix of F .
Without loss of generality, assume BT

1 = Ek1 + · · ·+ Ekr
+ BT

m1
+ · · ·+ BT

ms
.

We again define a map ϕ : E1 → F 1 ∪ F 2 by

ϕ(eij) =
{

f imfm1 if j = 1 and i 6∈ K;
f ij else;

and extend it to a map ϕ : GE → GF . By arguments similar to those in the proof of
Proposition 3.8, ϕ is an injective groupoid homomorphism. In this case, however,
it fails to be onto, and this is because of the difference between Lemma 3.7 and
Lemma 5.4. Thus it is necessary to point.

It is not hard to see that ϕ restricts to an injective groupoid homomorphism
from G(E,{v}) to G(F,{v}) which, of course, we also denote by ϕ.

We claim that any finite or infinite path whose first edge is not new can
be pulled back through ϕ. First, find all the new edges in the path. These are
preceded by edges which are not new, and these (not new)-new pairs can be pulled
back. The remaining edges are all not new and can be pulled back individually.

Now, fix any [α, x, β] with s(α) = s(β) = 1. Since α and β start at 1, their
first edge cannot be new (because 1 6∈ M). Hence they can be pulled back through
ϕ. Now, if x1 is not new, x can be pulled back as well, so [α, x, β] has an inverse
image. Since ϕ preserves source and range, this inverse image will be in G(E,{v}).
If, on the other hand, x1 is new, then we know x2 is not new, so we pull back the
triple [αx1, x2x3 · · · , βx1]. This shows that ϕ : G(E,{v}) → G(F,{v}) is onto.

It is not hard to check that ϕ is continuous. We show that it is open. Clearly,
ϕ(Z(α, β)) ⊆ Z(ϕ(α), ϕ(β)). We show the reverse inclusion: let [ϕ(α), y, ϕ(β)] ∈
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Z(ϕ(α), ϕ(β)). If y1 is not new, then y has an inverse image and hence [ϕ(α), y,
ϕ(β)] ∈ ϕ(Z(α, β)). If, on the other hand, y1 is a new edge, then note that y2 is
not new, so the path y2y3 · · · has an inverse image. Since

Z(ϕ(α), ϕ(β)) =
⋃

s(f)=r(α)

Z(ϕ(α)f, ϕ(β)f),

[ϕ(α), y, ϕ(β)] ∈ ϕ(Z(α, β)). Thus ϕ(Z(α, β)) = Z(ϕ(α), ϕ(β)), which shows that
ϕ is open.

Corollary 5.6. If E is a graph with no sinks and F is reverse primitively
equivalent to E, then C∗(E) is Morita equivalent to C∗(F ).

Proof. If F is a reverse primitive transfer of E, then the result follows easily
from the previous proposition and the fact that pointing a graph at a cofinal
vertex does not change the Morita equivalence class of its C∗-algebra ([6]). Since
reverse primitive equivalence is generated by the reverse primitive transfer and
permutation, the result follows.

6. EXPLOSIONS

Given a graph E, its edge matrix AE is an E1 × E1 matrix defined by

AE(e, f) =
{

1 if r(e) = s(f);
0 otherwise.

The adjoint graph of E is the graph whose vertex matrix is the edge matrix of
E. In [3] the explosion of a graph was defined as a generalization of the adjoint
graph, and it was shown that exploding a graph does not change its C∗-algebra.
Since we work with the vertex matrix instead of the adjacency matrix, our edges
are backwards. To be consistent with our earlier terminology, we shall call reverse
explosion what Enomoto, Fujii, and Watatani called explosion, and we develop a
very similar notion, which we shall call explosion.

Let E be a graph. Let v ∈ E0 satisfy |s−1(v)| > 1, and fix an edge e whose
source is v. First assume that e is not a loop, that is, v 6= r(e). Denote the set
of non-loop edges pointing to v by K = {k1, k2, . . .} and the set of non-loop edges
different from e starting at v by M = {m1,m2, . . .}. The edge explosion F of E
at the edge e is defined as follows. Split the vertex v into two vertices v′ and v′′.
The source of e is replaced by v′. The source of each edge in M is replaced by v′′.
Every edge in K is replaced by a pair of edges k′, k′′ having the same source as
k and pointing to v′ and v′′ respectively. If there is a loop edge f at v, then it is
replaced by a loop f ′′ at v′′ and an edge f ′ pointing from v′′ to v′. The following
picture shows an example of E and its explosion at e.
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Next assume that e is a loop. To get the explosion at e, split the vertex v
into v′ and v′′ and change the edges in M and K as before. Also, replace e by a
loop e′ at v′ and an edge e′′ pointing from v′ to v′′. The following picture shows
an example of E and its explosion at a loop e.

Definition 6.1. Two graphs G and E are said to be explosion equivalent if
there is a finite sequence E = F0, F1, . . . , Fn = G of graphs such that for every i,
either Fi is an edge explosion of Fi+1 or Fi+1 is an edge explosion of Fi.

Consider the following more general notion of explosion, which we call vertex
explosion. Fix v ∈ E0 with |s−1(v)| > 1. Instead of exploding at an edge whose
source is v, we explode at a subset of edges whose source is v. Write s−1(v) =
M1 ∪M2, where M1 and M2 are disjoint and nonempty. Again we split the vertex
v into two vertices v′ and v′′ and put an edge from every vertex in s(r−1(v)) to
both v′ and v′′. Also, put an edge from v′ to every vertex in r(M1) and from v′′

to every vertex in r(M2). If there is a loop edge in M1, we add an edge from v′

to v′′. If there is a loop edge in M2, we add an edge from v′′ to v′. If F is an
explosion of E at v, we always identify E0 \ {v} with F 0 \ {v′, v′′}.

The following lemma gives a characterization of vertex explosion in terms of
the vertex matrix. The proof follows immediately from the definition.

Lemma 6.2. Let F be an explosion of E at vertex v with respect to the
decomposition s−1(v) = M1 ∪ M2. Let B and C respectively denote the vertex
matrices of E and F . Then we have the following:

(i) Buw = Cuw for every u ∈ E0 \ {v} and every w ∈ F 0 \ {v′, v′′};
(ii) Cwv′ = Cwv′′ for every w ∈ F 0;
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(iii) Cv′′w = 1 ⇔ evw ∈ M2 and Cv′w = 1 ⇔ evw ∈ M1 for every w ∈
F 0 \ {v′, v′′}.

Further, if B and C are 0-1 matrices satisfying (i)–(iii), then the graph of C

(i.e. the graph whose vertex matrix is C) is an explosion at vertex v of the graph
of B.

Definition 6.3. Let E be a graph and suppose that v ∈ E0 satisfies
|s−1(v)| = k > 1. Order the vertices of E so that v is vertex 1, and let B(1)

denote the vertex matrix of E. Now, for m = 1, 2, . . . , k−1, perform the following
procedure. First find the largest j such that B

(m)
1j = 1. Next, insert the row Ej

between rows 1 and 2 of B(m). Then duplicate the first column of the resulting
matrix. Finally, change the 1 in the (1, j) position to a 0. Name this new ma-
trix B(m+1). The complete explosion of E at v is defined to be the graph of the
matrix B(k).

Note that, by the previous lemma, each of the k − 1 steps in the above
procedure corresponds to an explosion at an edge. We now offer the following
example to guide the reader through the definition of complete explosion.

Example 6.4. The graph on the left can be completely exploded in two
steps by exploding at the dotted edge each time. The dotted edge becomes the
dashed edge in the exploded graph at each stage. In the matrices, ∗ denotes the
unaffected parts of the matrix.

B(1) =

(
1 1 1
0 ∗ ∗
1 ∗ ∗

)
, B(2) =

 1 1 1 0
0 0 0 1
0 0 ∗ ∗
1 1 ∗ ∗

 , B(3) =


1 1 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 ∗ ∗
1 1 1 ∗ ∗

 .

The reader may check that if E is a graph with no sinks, the complete
explosion of E at every vertex with more than one edge emanating from it yields
the adjoint graph of E.
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Lemma 6.5. Edge explosion and vertex explosion generate the same equiva-
lence relation.

Proof. Since edge explosion is a special case of vertex explosion, it suffices
to show that an arbitrary graph E and any vertex explosion F of E can be edge
exploded into a common graph.

Now if E is any graph and F is a vertex explosion of E at v, the reader may
verify by examining the vertex matrices that the complete explosion of E at vertex
v coincides with the graph obtained by performing a complete explosion of F at
v′ and v′′.

The following is closely related to the notion of explosion defined in [3].

Definition 6.6. A graph F is a reverse explosion of the graph E at a vertex
v if the reverse graph of F is the explosion of the reverse graph of E at v and v is
cofinal. Two graphs are said to be reverse explosion equivalent if there is a finite
sequence of reverse explosions connecting them.

Proposition 6.7. If E is a row-finite graph and F is an explosion of E,
then the groupoids of E and F are isomorphic.

Proof. By Lemma 6.5, it suffices to prove the case when F is the explosion of
E at an edge e. First we assume that e is not a loop edge and we use the notation
f,M and K as in the definition of explosion. We define a map ϕ : E∞ → F∞

as follows. If x ∈ E∞ then ϕ makes the following replacements on path segments
of x:

ϕ(· · · ke · · ·) = · · · k′e · · ·

ϕ(· · · k
n+1︷ ︸︸ ︷

f · · · ff e · · ·) = · · · k′′
n︷ ︸︸ ︷

f ′′ · · · f ′′ f ′e · · ·

ϕ(· · · k
n︷ ︸︸ ︷

f · · · f m · · ·) = · · · k′′
n︷ ︸︸ ︷

f ′′ · · · f ′′ m · · ·

ϕ(

n+1︷ ︸︸ ︷
f · · · ff e · · ·) =

n︷ ︸︸ ︷
f ′′ · · · f ′′ f ′e · · ·

ϕ(

n︷ ︸︸ ︷
f · · · f m · · ·) =

n︷ ︸︸ ︷
f ′′ · · · f ′′ m · · ·

ϕ(· · · k
all f︷ ︸︸ ︷

fff · · ·) = · · · k′′
all f ′′︷ ︸︸ ︷

f ′′f ′′f ′′ · · ·

ϕ(

all f︷ ︸︸ ︷
fff · · ·) =

all f ′′︷ ︸︸ ︷
f ′′f ′′f ′′ · · ·

where k ∈ K, m ∈ M and n is a non-negative integer. It is easy but tedious
to check that ϕ : GE → GF defined by ϕ(x, k, y) = (ϕ(x), k, ϕ(y)) is a bijective
homomorphism.

It remains to check that it is open and continuous. First we extend ϕ to a
subset of E∗. If α ∈ E∗ and r(α) 6= v, then we define ϕ(α) similarly to the above.
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To show that ϕ is open it suffices to check that ϕ(Z(α, β)) is open. First suppose
that r(α) = r(β) 6= v. In this case,

ϕ(Z(α, β)) = {(ϕ(αx, |α| − |β|, βx) : x ∈ E∞, s(x) = r(α)}
= {(ϕ(α)ϕ(x), |ϕ(α)| − |ϕ(β)|, ϕ(β)ϕ(x)) : x ∈ E∞, s(x) = r(α)}
= {(ϕ(α)y, |ϕ(α)| − |ϕ(β)|, ϕ(β)y) : y ∈ F∞, s(y) = r(ϕ(α))}
= Z(ϕ(α), ϕ(β)).

Now, if r(α) = r(β) = v, we have three cases. If α = α′k and β = β′l for some
k, l ∈ K, then ϕ(Z(α, β)) = Z(ϕ(α′)k′, ϕ(β′)l′) ∪ Z(ϕ(α′)k′′, ϕ(β′)l′′). If α = α′k
and β = β′lff · · · f , then ϕ(Z(α, β)) = Z(ϕ(α′)k′′, ϕ(β′)l′′f ′′f ′′ · · · f ′′). Finally,
in the case where α = α′kff · · · f and β = β′lff · · · f , we have ϕ(Z(α, β)) =
Z(ϕ(α′)k′′f ′′f ′′ · · · f ′′, ϕ(β′)l′′f ′′f ′′ · · · f ′′). Continuity of ϕ follows from a similar
argument.

The case when e is a loop edge is handled similarly, using a slightly different
definition for ϕ. It now makes the following replacements on x ∈ E∞:

ϕ(· · · km · · ·) = · · · k′′m · · ·

ϕ(· · · k
n+1︷ ︸︸ ︷

e · · · eem · · ·) = · · · k′
n︷ ︸︸ ︷

e′ · · · e′ e′′m · · ·

ϕ(
n+1︷ ︸︸ ︷

e · · · eem · · ·) =

n︷ ︸︸ ︷
e′ · · · e′ e′′m · · ·

ϕ(· · · k
all e︷ ︸︸ ︷

ee · · ·) = · · · k

all e′︷ ︸︸ ︷
e′e′ · · ·

ϕ(
all e︷ ︸︸ ︷

ee · · ·) =

all e′︷ ︸︸ ︷
e′e′ · · ·

where k ∈ K, m ∈ M and n is a non-negative integer.

Corollary 6.8. If E is a graph and F is explosion equivalent to E, then
C∗(E) ∼= C∗(F ).

Proof. If E has no sinks, this follows immediately from the proposition. If
E has sinks, then one can readily verify that F̃ is an explosion of Ẽ and so
C∗(E) ∼= C∗(G

Ẽ
) ∼= C∗(G

F̃
) ∼= C∗(F ).

The following two results are proven similarly to Proposition 6.7 and Corol-
lary 6.8.

Proposition 6.9. If E is a row-finite graph and F is the reverse explosion
of E at an edge whose source is v, then the groupoid of E pointed at v and the
groupoid of F pointed at v′′ are isomorphic.

Corollary 6.10. If E is a row-finite graph with no sinks and F is a reverse
explosion of E then C∗(E) and C∗(F ) are Morita equivalent.
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7. ELEMENTARY STRONG SHIFT EQUIVALENCE

A matrix A is elementary strong shift equivalent to a matrix B if there are matrices
R and S such that A = RS and B = SR ([10]). Note that, for any permutation
matrix P , PBP−1 and B are elementary strong shift equivalent via R = PB,
S = P−1. Thus, any two vertex matrices of the same graph are elementary
strong shift equivalent. Two graphs E and F are said to be elementary strong
shift equivalent if their vertex matrices BE and BF are elementary strong shift
equivalent.

Note that elementary strong shift equivalence is not an equivalence relation.
The equivalence relation generated by elementary strong shift equivalence is called
strong shift equivalence.

Note that if BE = RS and BF = SR then the rows and columns of R can be
indexed by E0 and F 0 respectively. Also the rows and columns of S can be indexed
by F 0 and E0 respectively. Using this property we define a bipartite imprimitivity
graph X as follows: the set of vertices of X is the disjoint union of E0 and F 0 and
the vertex matrix of X is

BX =
(

0 R
S 0

)
.

The construction of X is due to Ashton ([1]).

Example 7.1. Using R =
(

1 1 0
0 0 1

)
and S =

(
1 0
0 1
0 1

)
we have E,X

and F

with vertex matrices

BE =
(

1 1
0 1

)
, BX =


0 0 1 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 1 0 0 0

 , BF =

(
1 1 0
0 0 1
0 0 1

)
.

Proposition 7.2. If E and F are elementary strong shift equivalent, row-
finite graphs and X is the imprimitivity graph, then the groupoid of X pointed at
E0 is isomorphic to GE and the groupoid of X pointed at F 0 is isomorphic to GF .

Proof. First note that E0 and F 0 are automatically cofinal pointing sets. By
symmetry it suffices to show that G(X,E0)

∼= GE . By the construction of X we have
a unique bijection ϕ : E1 → X2 such that s = s ◦ ϕ and r = r ◦ ϕ. We extend ϕ
to E∗ ∪ E∞. It is easy to check that ϕ : GE → G(X,E0) defined by

ϕ[α, x, β] = [ϕ(α), ϕ(x), ϕ(β)]

is an isomorphism.
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The C∗-algebras of strong shift equivalent graphs are not necessarily isomor-
phic (see Example 8.1), but we have:

Corollary 7.3. If E and F are strong shift equivalent, row-finite graphs
with no sinks then C∗(E) and C∗(F ) are Morita equivalent.

Following Ashton ([1]), we say a 0-1 matrix is column subdivision if each of its
columns contains at most one 1. Two matrices A and B are said to be elementary
strong shift equivalent with column subdivision if A = RS, B = SR, and either R
or S is column subdivision. Likewise, two graphs are said to be elementary strong
shift equivalent with column subdivision if their vertex matrices are. It was shown
in both [1] and [3] that if two finite 0-1 matrices A and B are elementary strong
shift equivalent with column subdivision, then OA

∼= OB . The following result,
combined with Corollary 6.8, provides an alternate proof of a special case of this
fact:

Proposition 7.4. Let E and F be graphs with no sinks. Suppose that E
and F have n and n+1 vertices respectively. Then E and F are elementary strong
shift equivalent with column subdivision if and only if F is an explosion of E.

Proof. Denote the vertex matrix of E by B and the vertex matrix of F by C.
Now suppose that F is an explosion of E, with vertex v splitting into v′ and v′′.
Without loss of generality, we may assume that v is vertex 1 in E and v′ and v′′

are the first two vertices of F . That is, the first row and column of B corresponds
to v and the first two rows and columns of C correspond to v′ and v′′. Define S
to be C with the first column deleted. That is, Sij = Cij for i = 1, . . . , n + 1,
j = 1, . . . , n. If R is the following n× (n + 1) column subdivision matrix

R =


1 1 0 0 0
0 0 1 0 0

. . .
0 0 0 0 1


then B = RS and C = SR.

Now suppose that E and F are elementary strong shift equivalent with col-
umn subdivision. That is, for any choices B and C of vertex matrices of E and
F , there exist R,S such that B = RS, C = SR, and either S or R is column
subdivision. Now, S is an (n + 1) × n matrix, so in order for it to be column
subdivision, it must have a zero row. But a zero row in S would yield a zero row
in C, and hence a sink in F . Thus it must be R which is column subdivision.

Since R is an n × (n + 1) matrix which is column subdivision and has no
zero rows, there exist an n × n permutation matrix P and an (n + 1) × (n + 1)
permutation matrix Q such that

PRQ =


1 1 0 0 0
0 0 1 0 0

. . .
0 0 0 0 1

 .

So by replacing B with PBP−1 and C with QCQ−1, we may assume that R has
this form.
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Now, if we index the rows of R and the columns of S by {1, 2, . . . , n} and
the columns of R and the rows of S by {0, 1, . . . , n}, then we have the following:

(i) Bij = Cij for i = 2, . . . , n, j = 1, . . . , n;
(ii) Ci0 = Ci1 for i = 0, . . . , n;
(iii) C0j + C1j 6 1 for j = 0, . . . , n.

(i) and (ii) are easy to check. To see (iii), suppose that for some j, C0j and C1j

are both 1. If j > 1, then

2 = C0j + C1j =
∑

k

S0kRkj +
∑

l

S1lRlj = S0j + S1j =
∑
m

R1mSmj = B1j ,

which is a contradiction. If, on the other hand, j 6 1, then similar calculations
show that B11 = 2.

These three facts imply that B and C satisfy the three conditions of Lem-
ma 6.2 for some suitable choice of v,M1 and M2. Thus E is an explosion of F .

Remark 7.5. Note that the restriction on sinks is necessary in the preceding
proposition, since if

B =
(

1 1
0 0

)
and C =

(
1 1 1
0 0 0
0 0 0

)
,

then B and C are elementary strong shift equivalent with column subdivision via

R =
(

1 1 1
0 0 0

)
and S =

(
1 0
0 1
0 0

)
,

but the graph of C is not an explosion of the graph of B.

8. COUNTEREXAMPLES

In this section we collect several examples which show that neither primitive equiv-
alence nor reverse primitive equivalence is implied by any of the other equivalence
relations discussed in this paper.

Example 8.1. Elementary strong shift equivalence does not imply primitive
equivalence. This is trivially true because two matrices which are primitively
equivalent must be the same size, while elementary strong shift equivalence may
change the size. But this example, taken from [3], shows that elementary strong
shift equivalent matrices need not be primitively equivalent, even if they have the
same size: if

R =

(
1 0 0
1 0 0
0 1 1

)
and S =

(
0 0 1
1 0 0
0 1 1

)
,

then ORS
∼= O3 and OSR

∼= O3 ⊗M2 are not isomorphic ([7]). Hence the graph
corresponding to RS cannot be primitively equivalent to the graph corresponding
to SR. This example also answers negatively a question posed in [1], namely, do
elementary strong shift equivalent graphs always yield isomorphic algebras?
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Example 8.2. Elementary strong shift equivalence does not imply reverse
primitive equivalence. Using R and S from the previous example, STRT = (RS)T

and RTST = (SR)T are not primitively equivalent. This can be verified from the
table on page 450 of [3]. We remark in passing that the second graph in the final
row of that table is misprinted. There should not be a loop on the top vertex, and
there should be a loop added to the lower left vertex.

Example 8.3. Reverse primitive equivalence does not imply primitive equiv-
alence. Example 5.2 shows two matrices which are reverse primitively equivalent,
but whose Cuntz-Krieger algebras are not isomorphic. Hence they are not primi-
tively equivalent.

Example 8.4. Explosion equivalence does not imply primitive equivalence
and reverse explosion equivalence does not imply reverse primitive equivalence.
Consider the matrices

B =

 1 1 0 1
0 0 1 0
1 1 1 0
1 1 0 1

 and C =

 1 1 0 0
0 0 1 1
1 1 1 0
1 1 0 1

 .

Both are explosions of A =

(
1 1 1
1 1 0
1 0 1

)
so they are explosion equivalent. But

they are not primitively equivalent. The reader with a spare afternoon may verify
this by checking that there are 60 elements in the primitive equivalence class of
C, and B is not one of them. Also note that, since A is irreducible, every vertex
is cofinal. Thus BT and CT are reverse explosion equivalent, but not reverse
primitively equivalent.

Example 8.5. Reverse explosion equivalence does not imply primitive equiv-
alence and explosion equivalence does not imply reverse primitive equivalence. If

B =


0 0 0 1 0
0 1 1 0 0
1 0 0 0 1
0 1 0 0 0
0 1 0 0 0

 and C =


0 0 0 0 1
0 1 0 1 0
0 1 0 1 0
1 0 0 0 1
0 0 1 0 0

 ,

B and C are reverse explosion equivalent because their transposes are explosions

of A =

 0 0 0 1
0 1 0 1
0 1 0 0
1 0 1 0

 but they are not primitively equivalent. Unfortunately, it

requires a computer program to verify this (the primitive equivalence class of C
has 183,204 elements), and we could not find a more manageable example.

Example 8.6. Primitive equivalence does not imply reverse primitive equiv-
alence. It can be verified using Section 4 of [3] that

B =

(
1 1 1
1 0 0
1 0 0

)
and C =

(
1 1 0
1 0 1
0 1 0

)
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are primitively equivalent, but not reverse primitively equivalent.

It is an open question whether or not primitive equivalence and explosion
equivalence together are enough to characterize graph groupoid isomorphism.
That is, given two graphs with isomorphic groupoids, are they explosion-primitive
equivalent? There are difficulties on both ends. In particular, given two graphs,
determining whether or not their groupoids are isomorphic is highly non-trivial.
Also, we currently do not have an efficient algorithm for determining whether or
not two graphs are explosion-primitive equivalent. There are two difficulties here.
First, even in the 5×5 case, some matrices have primitive equivalence classes with
an unmanageable number of elements, so the computer time required to check
whether two matrices are primitively equivalent becomes an issue. Second, we
cannot say with certainty that two matrices are not explosion equivalent. For ex-
ample, consider the matrices A and B from Section 4. We have checked that no
explosion of A to a 5× 5 matrix is primitively equivalent to any explosion of B to
a 5 × 5 matrix. However, it may be possible, for example, that A and B can be
exploded into 6× 6 (or larger) matrices which are primitively equivalent.

It would be desirable to have more graph transformations that preserve the
isomorphism class of the groupoid or the C∗-algebra, or the Morita equivalence
class of the C∗-algebra, of the graph. Having more operations would increase our
chances of finding a canonical form.

Acknowledgements. The authors would like to thank Alex Kumjian, David Pask,
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