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Abstract. Let ΓΛ 6 Γ be free products of countably many cyclic groups
and let C(XΛ) × Γ denote the crossed product related to an action of Γ on
a compact space XΛ constructed from the homogeneous space Γ/ΓΛ and the
boundary ∂Γ. Assuming that either Γ is free or ΓΛ is finite we determine the
K-groups of the crossed products. Among the algebras considered there are
both extensions of some Cuntz-Krieger algebras by the compacts and some
purely infinite simple C∗-algebras (nuclear or not).
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0. INTRODUCTION

This article is a continuation of our investigation of a class of C∗-algebras generated
by the reduced group C∗-algebra C∗Γ and a set of projections PΛ, denoted by
C∗

r (Γ,PΛ), where Γ is a free product of countably many but at least two finite or
infinite cyclic groups (see Section 1 for the construction). This class of C∗-algebras
was considered initially by the second author in [24], [25] and later by both authors
in [20], [21].

The C∗-algebras of the form C∗
r (Γ,PΛ) are either purely infinite, simple

C∗-algebras (nuclear or not) or the extensions of certain Cuntz-Krieger algebras
by the compacts (see 1.2 for references). In [21] we proved that C∗

r (Γ,PΛ) is ∗-
isomorphic to the reduced crossed product C(XΛ) × Γ described as follows. Let
ΓΛ be a suitable subgroup of Γ (see Section 1). The homogeneous space Γ/ΓΛ

has a natural compactification XΛ, obtained by adding some (equivalence classes
of) infinite words in the generators of Γ, i.e. elements of the boundary ∂Γ. The
left action of Γ on Γ/ΓΛ extends to an action on XΛ ([21]). Then one forms the
corresponding reduced crossed product C(XΛ) × Γ. A similar construction from
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a different (graph-theoretical) point of view has been very recently studied by
Kumjian and Pask in [12].

This paper is devoted to calculation of K groups of these C∗-algebras when
either ΓΛ is finite or Γ is free. In the former case the algebra C∗

r (Γ,PΛ) can
be realized as an inductive limit of extensions of suitable Cuntz-Krieger algebras
by the compacts. The calculation of the K groups utilizes the six-term exact
sequence of K-theory. These algebras can be also described as Cuntz-Krieger
algebras related to infinite matrices in the sense of Exel and Laca ([8]). Typically
the rows of the corresponding 0-1 matrices are infinite and, thus, their K groups
cannot be calculated by the method of Pask and Raeburn ([13]). In the latter
case the K groups are calculated with the help of the Pimsner-Voiculescu exact
sequence. If ΓΛ is free non-abelian then these algebras are non-nuclear. We believe
that good understanding of these algebras can be helpful in future attempts of
classification of non-nuclear, purely infinite, simple C∗-algebras.

1. PRELIMINARIES

1.0. Let Γ = Fn ∗ Zm1 ∗ · · · ∗ Zmr
be a free product, where 0 6 n 6 ∞,

0 6 r 6 ∞ with n + r > 2 and mi > 2 (also excluding the case Γ = Z2 ∗ Z2). We
assume that the free group Fn is generated by a1, . . . , an and Zmi

is generated by
bi (we fix these generators throughout). We say that a1, . . . , an are free generators
and b1, . . . , br are torsion generators. We denote G = {ai, bj | i, j}, the collection
of all generators. For ∅ 6= Λ ⊆ G we denote by ΓΛ the subgroup of Γ generated
by G \ Λ.

Let {ξh | h ∈ Γ} be the standard orthonormal basis of the Hilbert space
`2(Γ), where ξh : Γ → C is such that ξh(s) = δh,s. Let L : Γ → L(`2(Γ)) be
the left regular representation, i.e., Lhξs = ξhs. For any s ∈ Γ we denote by Ps

the projection from `2(Γ) onto the closed subspace spanned by all reduced words
which begin with s. We set PΛ = {Ps | s ∈ Λ} and denote by C∗

r (Γ,PΛ) the
C∗-algebra generated by {Ls | s ∈ Γ} and PΛ (cf. [20], [21]).

For s ∈ Γ we denote by Qs the projection from `2(Γ) onto the one-dimensional

subspace 〈ξs〉. For i = 1, . . . , r we denote Ri =
mi−1∑
j=0

Qbj
i
. If Γ is finitely generated

then all these projections are in C∗
r (Γ,PG).

Let AΛ be the smallest unital C∗-subalgebra of L(`2(Γ)) containing {Pg | g ∈
Λ} and invariant under the action Ad L. By [21], Proposition 2.1, AΛ is abelian.
XΛ, the spectrum of AΛ, is a totally disconnected compact Hausdorff space. For
a detailed description of XΛ (which is constructed from the homogeneous space
Γ/ΓΛ and the boundary ∂Γ) we refer the reader to [21]. It is clear from the
construction that AΛ is an AF -algebra.

We now recall some results of [21].

1.1. C∗
r (Γ,PΛ) is isomorphic to the reduced crossed product AΛ ×

Ad L,r
Γ

([21], Theorem 2.8).
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1.2. If Γ is finitely generated and ΓΛ is finite, then C∗
r (Γ,PΛ) is isomorphic

to an extension of a simple Cuntz-Krieger algebra by the compacts. Otherwise,
C∗

r (Γ,PΛ) is purely infinite and simple ([21], Theorem 3.1, [24], [25]).

1.3. C∗
r (Γ,PΛ) is nuclear if and only if ΓΛ is amenable ([21], Theorem 4.5).

1.4. For k ∈ N we denote by Γk the subgroup of Γ generated by the first k

elements of G. We set Λk = Λ ∩ Γk and define C∗
r,k(Γ,PΛ) as the C∗-subalgebra

of C∗
r (Γ,PΛ) generated by {Lh | h ∈ Γk} and {Pg | g ∈ Λk}. By [21], Proposi-

tion 4.4, there exists a C∗-algebra isomorphism C∗
r,k(Γ,PΛ) ∼= C∗

r (Γk,PΛk
) and,

hence, if Γ is infinitely generated, then C∗
r (Γ,PΛ) is isomorphic to an inductive

limit lim
→

C∗
r (Γk,PΛk

). Denoting by ϕk : C∗
r (Γk,PΛk

) → C∗
r (Γk+1,PΛk+1) the cor-

responding imbeddings, we have ϕk(Ls) = Ls for s ∈ Γk and ϕk(Pt) = Pt for
t ∈ Λk.

1.5. We now give a more detailed description of the algebra C∗
r (Γ,PΛ)

when Γ is finitely generated and ΓΛ is finite, i.e. ΓΛ = 〈e〉 or ΓΛ = 〈br〉 ∼= Zmr .
We denote C∗

r (Γ,PΛ) by T0 in the former case and by T1 in the latter. As noted
in 1.2 above, there exist short exact sequences for ν = 0, 1

0 −→ Jν
i−→ Tν

π−→ OAν
−→ 0,

with Jν isomorphic to the compacts K, and OAν a simple Cuntz-Krieger algebra
corresponding to a suitable 0-1 matrix Aν . In fact, J0 coincides with the algebra of
all compact operators on `2(Γ). This is not the case with J1, as Rr is its minimal
projection.

OA0 is generated by {Si = π(Vi)}, the images under π : T0 → OA0 of the
following partial isometries (notice the following construction is quite different
from [19] even restricted to the special case Z2 ∗ Zn+1):

V2i−1 = Lai(I − Pa−1
i

), V2i = La−1
i

(I − Pai), i = 1, . . . , n,

V
2n+

i−1∑
l=1

(ml−1)+j

= Lbj
i
(I − Pbi), i = 1, . . . , r, j = 1, . . . ,mi − 1.

Notice that the partial isometries above are associated with the following decom-
position of the identity:

I =
n∑

i=1

(Pai
+ Pa−1

i
) +

r∑
l=1

( ml−2∑
j=1

(Pbj
l
− Pbj+1

l
) + P

b
ml−1
l

)
+ Qe.

OA1 is generated by the images under π : T1 → OA1 of the same partial isometries
as above, with the last mr − 1 partial isometries Vi replaced by

V ′

2n+
r−1∑
l=1

(ml−1)+j

= Lbj
r
(I − (Pbr + Qe)), j = 1, . . . ,mr − 1.
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These partial isometries are associated with the following decomposition of the
identity:

I =
n∑

i=1

(Pai + Pa−1
i

) +
r−1∑
l=1

( ml−2∑
j=1

(Pbj
l
− Pbj+1

l
) + P

b
ml−1
l

)

+
mr−2∑
j=1

(Pbj
r
− Pbj+1

r
−Qbj

r
) + (Pbmr−1

r
−Qbmr−1

r
) + Rr.

Also notice, as a subtle matter, that neither Pbj
r

nor Qbj
r

for j = 0, . . . ,mr − 1
are in T1, but the projections Pbr

+ Qe, Pbj
r
− Pbj+1

r
− Qbj

r
, j = 1, . . . ,mr − 2,

Pbmr−1
r

−Qbmr−1
r

, and Rr are in T1, because Pai , Pa−1
i

, Pb1 , . . . , Pbr−1 ∈ T1, and the
following equalities hold:

Pbr
+ Qe = I −

mr−1∑
j=0

Lbj
r

( n∑
i=1

(Pai
+ Pa−1

i
) +

r−1∑
l=1

Pbl

)
L∗br

,

Pbj
r
− Pbj+1

r
−Qbj

r
= Lbj

r

( n∑
i=1

(Pai
+ Pa−1

i
) +

r−1∑
l=1

Pbl

)
L∗

bj
r
, j = 1, . . . ,mr − 2,

Pbmr−1
r

−Qbmr−1
r

= Lbmr−1
r

( n∑
i=1

(Pai
+ Pa−1

i
) +

r−1∑
l=1

Pbl

)
L∗

bmr−1
r

.

Thus, some caution is needed on this subtle point in dealing with T1.

Let k = 2n+
r∑

i=1

(mi−1). Then A0 = A1 is a symmetric matrix in Mk({0, 1})

of the form

A =
[

B C
Ct D

]
.

Here B is a 2n × 2n matrix with n diagonal blocks equal to the 2 × 2 identity
matrix, and all other entries 1. C is a 2n× (k − 2n) matrix with all entries 1. D
is a (k− 2n)× (k− 2n) matrix with r diagonal blocks Di, i = 1, . . . , r, each equal
to the zero matrix of the corresponding size (mi − 1) × (mi − 1), and all other
entries 1. Thus the matrix A is irreducible and hence the C∗-algebra OA is simple
and purely infinite by [6], Theorem 2.14.

1.6. In what follows we will often use matrix forms of elements of Tν .
Namely, if I = F1 + · · · + Fl, with Fi’s projections, and X ∈ Tν , then we iden-
tify X with an l × l matrix [FiXFj ]li,j=1. We refer to this as to the matrix form
of X with respect to the decomposition of the identity I = F1 + · · · + Fl. In
particular, we consider the matrix form of Lai with respect to the decomposition

I = Pa1 + Pa−1
1

+ Pa2 + · · · + Pa−1
n

+ F (where F = I −
n∑

j=1

(Paj
+ Pa−1

j
)). We

observe that the only non-zero entries of this (2n + 1)× (2n + 1) matrix lie in the
(2i− 1)th row and (2i)th column. Moreover, the (2i− 1, 2i) entry is zero. Indeed,
Pai

Lai
Pa−1

i
= 0, and Lai

(I − Pa−1
i

)L∗ai
= Pai

implies (I − Pai
)Lai

(I − Pa−1
i

) = 0.
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2. K1-GROUPS — ΓΛ FINITE

This section is entirely devoted to proving Theorem 2.0 below, which describes the
K1-groups of algebras C∗

r (Γ,PG) and C∗
r (Γ,PG\{b1}). We denote by Zn the direct

sum of n copies of Z. This includes the case Z0 = 〈0〉 and Z∞ — the direct sum
of countably many copies of Z.

2.0. Theorem. Let E be either C∗
r (Γ,PG) or C∗

r (Γ,PG\{b1}). Then:
(i) K1(E) ∼= Zn, where n denotes the number of free generators of Γ.
(ii) K1(E) is generated by {[Lai

] | i = 1, . . . , n}, i.e. the free generators.
(iii) If Γ is finitely generated, then the Fredholm index of any Fredholm op-

erator in E is zero.

The essential part of the theorem is to establish it when Γ is finitely gener-
ated, in which case E = T0 or E = T1, and there exists a short exact sequence as
in 1.5. The standard six-term exact sequence of K-theory then yields (cf. [1]) for
ν = 0, 1

0 −→ K1(Tν) −→ K1(OA) δ−→ Z −→ K0(Tν) −→ K0(OA) −→ 0.

The main step in the proof is to show that the index map δ is trivial. If ν = 0
then δ is just the usual Fredholm index, as in this case the ideal J0 coincides with
the algebra of all compact operators on `2(Γ).

At first we determine K1(OA), which by [4] is isomorphic to ker(I − A) on
Zk (note that A = At).

2.1. Lemma. Let Γ be finitely generated and vi = (0, . . . , 0, 1,−1, 0, . . . , 0)t

with 1 in the (2i − 1)th place, for i = 1, . . . , n, where n is the number of free
generators of Γ. Then ker(I −A) ∼= Zn with a basis {vi | i = 1, . . . n}.

Proof. We use the description of the matrix A given in 1.5. Clearly, {vi |
i = 1, . . . , n} are independent elements of ker(I − A). So it suffices to show that
rank(I−A) = n. For this we eliminate from I−A rows and columns 1, 3, . . . , 2n−1
and show that the resulting matrix M (of size (k − n)× (k − n)) is invertible.

We have M = T − Q, where Q is a matrix whose all entries are 1 and T is
block-diagonal. The diagonal blocks of T are T0, T1, . . . , Tr, where T0 is the n× n
identity matrix, and Ti, i = 1, . . . , r, is an (mi − 1) × (mi − 1) matrix with 2 on
the diagonal and 1 elsewhere. Clearly, T > I is invertible, and Q is of rank one
with the range spanned by ζ = (1, . . . , 1)t.

If ξ ∈ ker(T − Q) then ξ = T−1Qξ, i.e. ξ is a multiple of T−1ζ. That is
ker(T −Q) ⊆ 〈T−1ζ〉. Since T−1ζ = (1, . . . , 1,m−1

1 , . . . ,m−1
1 , . . . ,m−1

r , . . . ,m−1
r )t

(where 1 is repeated n times and each m−1
i is repeated mi−1 times, respectively),

T−1ζ is in the kernel of T −Q if and only if

n +
m1 − 1

m1
+ · · ·+ mr − 1

mr
= 1.

In view of our assumptions (n + r > 2 and if n = 0, r = 2, then at least one
mi 6= 2) this is impossible.
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2.2. Lemma. Assume that Γ is finitely generated. Then:

(i) The index map δ is trivial.

(ii) Every Fredholm operator in Tν , ν = 0, 1, has Fredholm index 0.

(iii) K1(Tν) ∼= Zn, ν = 0, 1, where n is the number of free generators of Γ.

Furthermore, {[Lai
] | i = 1, . . . , n} is a basis of the K1 group.

Proof. To show (i) it suffices to find a collection of generators of K1(OA) each

of which has a lift to a unitary element in Tν , ν = 0, 1. Let {vi | i = 1, . . . , n} be

the basis of ker(I−A) in Lemma 2.1. Then to each i = 1, . . . , n there corresponds

a unitary Ui = Ti + Wi in M2(OA), where

Ti =
[

S2i−1 0

0 S∗2i

]
and Wi =

[
π(Pa−1

i
) π(I − (Pai

+ Pa−1
i

))

0 π(Pai
)

]
.

Wi is a partial isometry in M2(Σ) such that W ∗
i Wi = I − T ∗

i Ti and WiW
∗
i =

I − TiT
∗
i . Here Σ denotes the vector space spanned by the range projections of

the partial isometries generating OA. It follows from Lemma 2.1 and [5], Propo-

sition 3.1 (cf. also [16]) that [Ui], i = 1, . . . , n, generate K1(OA). We define

Xi =

[
V2i−1 + Pa−1

i
I − (Pai

+ Pa−1
i

)

0 V ∗
2i + Pai

]
.

Clearly, Xi is a unitary lift of Ui to M2(T1) ⊂ M2(T0). Thus, part (i) of the lemma

is proved. We now show that [Xi] = [Lai
] in K1(Tν), ν = 0, 1, i = 1, . . . , n. To this

end we consider matrix forms of elements of T1, as explained in 1.6. According

to 1.6, Lai
has the form

0 . . . 0 d1 0 . . . 0
...

...
...

...
...

...
...

0 . . . 0 d2i−2 0 . . . 0

c1 . . . c2i−1 0 c2i+1 . . . c2n+1

0 . . . 0 d2i 0 . . . 0
...

...
...

... . . .
...

...
0 . . . 0 d2n+1 0 . . . 0


,

with non-zero entries cl in the (2i−1)th row and dl in the (2i)th column. Similarly,
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Xi can be written in the matrix form



0 . . . 0 0 0 . . . 0 Pa1

...
...

...
...

...
...

...
. . .

0 . . . 0 0 0 . . . 0 Pa−1
i−1

c1 . . . c2i−1 0 c2i+1 . . . c2n+1 0

0 . . . 0 Pa−1
i

0 . . . 0 0

...
...

... 0
...

...
...

... Pai+1

0 . . . 0 0 0 . . . 0 . . . . . . . . . 0
. . .

d1
...

d2i−2

Pai 0
d2i
...

d2n+1



.

We define a unitary Yi ∈ M2(T1) as the following elementary matrix



0 Pa1

. . . . . .
0 Pai−1

Pa−1
i

0

0 Pai

. . . . . .
0 F

Pa1 0
. . . . . .

Pai−1 0
0 Pa−1

i

Pai
0

. . . . . .
F 0


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and a unitary Zi ∈ M2(T1) as another elementary matrix

Pa1

. . .
Pa−1

i−1

0 Pa−1
i

Pai

. . .
F

Pa1

. . .
Pai−1

Pa−1
i

0
Pai

. . .
F



.

We have I ⊕ Lai
= YiXiZi; to see this equality one needs to think of the effects

on the matrix Xi under the elementary row operations caused by Zi and the

elementary column operations caused by Yi. Since two elementary matrices Yi

and Zi are homotopic to the identity, it follows that Xi is homotopic to I ⊕ Lai
,

as desired. Thus, part (iii) of the lemma is proved. To see that part (ii) holds

consider T , a Fredholm operator in Tν . Then π(T ) is invertible in OA. Since Lai
’s

are generators of both K1(T0) and K1(T1) as just shown, the path component

[π(T )] of π(T ) can be written as a product of the form

[π(La1)]
k1 [π(La2)]

k2 · · · [π(Lan
)]kn

for some ki ∈ Z (see [3], [5], and [6]). But Lk1
a1
· · ·Lkn

an
is a unitary whose Fredholm

index is zero. Therefore, the Fredholm index of T is also zero, for the index is a

homotopy invariant.

2.3. Proof of Theorem 2.0. If Γ is finitely generated, Theorem 2.0 follows

from the six-term exact sequence and Lemmas 2.1 and 2.2. If Γ is infinitely

generated the theorem follows from continuity of the K-functors and the inductive

limit described in 1.4.
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3. K0-GROUPS — ΓΛ FINITE

As an immediate consequence of Lemma 2.2 (and the six-term exact sequence) we
obtain the following.

3.0. Proposition. If Γ is finitely generated and ΓΛ = 〈b1〉 is finite, then
there exists a short exact sequence

0 −→ Z i∗−→ K0(Tν) π∗−→ K0(OA) −→ 0

for ν = 0, 1, where i∗(1) = [Qe] for ν = 0 and i∗(1) = [R1] for ν = 1.

It appears impractical to try to determine K0-groups resulting from all possi-
ble pairs (Γ,Λ) as above, due to their enormous variety and combinatorial difficul-
ties involved. In this section we describe K0-groups related to a relatively simple
case when Γ has only one torsion generator, i.e. r = 1, which nevertheless provides
a number of interesting examples. The inductive limit process described in 1.4 al-
lows us to include infinitely generated groups Γ as well. To simplify notations in
what follows we denote m = m1, b = b1, and R = R1. We use the convention that
Z0 = Z1 = 〈0〉, and Pb = 0 if m = 1.

3.1. Theorem. Let Γ = Fn ∗ Zm, where 1 6 n 6 ∞, 1 6 m < ∞, and
either n > 2 or m > 2. Then

K0(C∗
r (Γ,PG)) ∼= Zn+1 ∼= K0(C∗

r (Γ,PG\{b})).

[I − Pb], [Pai
], i = 1, . . . , n, are generators of K0(C∗

r (Γ,PG)), while [I], [Pai
],

i = 1, . . . , n, are generators of K0(C∗
r (Γ,PG\{b})).

The proof requires two lemmas.

3.2. Lemma. With the same assumptions as in Theorem 3.1, but n finite,
we have

K0(OA) ∼= Zn ⊕ Znm−1,

with the free part generated by [π(Pai)], i = 1, . . . , n, and the torsion part generated
by [π(I)].

Proof. As in 1.5, A is a symmetric k×k (k = 2n+m−1) matrix of the form

A =
[

B C
Ct 0

]
.

Notice that D = 0 in the present case. For i = 1, . . . , n we define wi ∈ Zk as

wi = (0, . . . , 0, 1, 0, . . . , 0)t,

with 1 in the (2i− 1)th place. We also set

wn+1 = (1, . . . , 1)t ∈ Zk.

By virtue of [4] we have K0(OA) ∼= Zk/(I − A)Zk. Since in our case [π(Pai
)]

corresponds to wi and [π(I)] corresponds to wn+1, it suffices to prove the following:
(i) Zk is spanned (over Z) by {w1, . . . , wn+1} and (I −A)Zk.
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(ii) If xi ∈ Z, i = 1, . . . , n + 1, and
n+1∑
i=1

xiwi ∈ (I − A)Zk, then x1 = · · · =

xn = 0 and xn+1 ∈ (nm− 1)Z.
(iii) (nm− 1)wn+1 belongs to (I −A)Zk.
At first, we observe that (I − A)Zk is spanned by {ui ∈ Zk | i = 1, . . . , n +

m− 1}, where
ui = (1, . . . , 1, 0, 0, 1, . . . , 1)t, i = 1, . . . , n,

with 0’s in the 2i− 1 and (2i)th places, and

ui = (1, . . . , 1, 0, . . . , 0,−1, 0, . . . , 0)t, i = n + 1, . . . , n + m− 1,

with 1 in the first 2n places and −1 in the (n + i)th place.

Proof of (i). Clearly, the vectors {wi, ui−wn+1 | i = 1, . . . , n} span (over Z)
the space {(t1, . . . , t2n, 0, . . . , 0)t | tj ∈ Z}. Thus, together with {ui | i = n +
1, . . . , n + m− 1} they span all of Zk.

Proof of (ii). Let xi, yj ∈ Z, i = 1, . . . , n + 1, j = 1, . . . , n + m − 1, and

suppose that
n+1∑
i=1

xiwi =
n+m−1∑

j=1

yjuj . This is equivalent to the following system of

equations: 

(a) xi + xn+1 =
n+m−1∑

j=1

yj − yi, i = 1, . . . , n

(b) xn+1 =
n+m−1∑

j=1

yj − yi, i = 1, . . . , n

(c) xn+1 =
n∑

j=1

yj − yn+i, i = 1, . . . ,m− 1.

(a) and (b) imply xi = 0 for i = 1, . . . , n, and (c) implies yn+1 = · · · = yn+m−1

(= y). Then (a) and (b) imply y1 = · · · = yn (= z). Thus, the whole system is
equivalent to {

xn+1 = (n− 1)z + (m− 1)y
xn+1 = nz − y.

This implies my = z and, hence, xn+1 = (nm− 1)y, as desired.

Proof of (iii). With the notation from the proof of part (ii) we have

(nm− 1)wn+1 = m
n∑

j=1

ui +
n+m−1∑
j=n+1

uj

and hence (nm− 1)wn+1 ∈ (I −A)Zk.

3.3. Lemma. With the same assumptions as in Lemma 3.2 we have:
(i) K0(T0) ∼= Zn+1 with generators [I − Pb], [Pai ], i = 1, . . . , n;
(ii) K0(T1) ∼= Zn+1 with generators [I], [Pai

], i = 1, . . . , n.
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Proof. Part (i). It follows from Proposition 3.0 and Lemma 3.2 that K0(T0)
is generated by [Qe], [I], and [Pai

], i = 1, . . . , n. Since Pai
= Lai

(I −Pa−1
i

)L∗ai
, we

have [Pai
] + [Pa−1

i
] = [I]. Thus,

I =
m−1∑
i=0

Lbi

(
Qe +

n∑
j=1

(Paj
+ Pa−1

j
)
)

L∗bi

implies that [I] = m([Qe] + n[I]), i.e. m[Qe] = (1 − nm)[I]. Since I − Pb =

Qe +
n∑

i=1

(Pai
+ Pa−1

i
), we have [I − Pb] = [Qe] + n[I]. It follows that [Qe] =

(1−nm)[I−Pb] and [I] = m[I−Pb]. Consequently, K0(T0) is generated by [I−Pb]
and [Pai

], i = 1, . . . , n. It remains to show that these generators are independent.
Notice that [Qe] = (1 − nm)[I − Pb] and Proposition 3.0 imply that [I − Pb] has

infinite order. Let xi ∈ Z, i = 1, . . . , n + 1, and
n∑

i=1

xi[Pai
] + xn+1[I − Pb] = [0].

Then
n∑

i=1

xi[π(Pai
)] + xn+1[π(I − Pb)] = [0] in K0(OA). As [π(I − Pb)] = n[π(I)],

Lemma 3.2 implies that x1 = · · · = xn = 0 and, hence, xn+1 = 0 as well.
Part (ii). Proposition 3.0 and Lemma 3.2 imply that K0(T1) is generated by

[R], [I], and [Pai
], i = 1, . . . , n. Since

I = R +
m−1∑
i=0

Lbi

( n∑
j=1

(Pai
+ Pa−1

i
)
)

L∗bi ,

we have [I] = [R] + nm[I], i.e. [R] = (1 − nm)[I]. The rest of the proof is as
above.

3.4. Proof of Theorem 3.1. It follows from 1.4 and Lemma 3.3.

4. K-GROUPS — Γ FREE

As in [21], we denote by ΓΛ the set of all reduced words in Γ ending with either g
or g−1 for some g ∈ Λ.

4.0. Lemma. K0(AΛ) is generated by [I] and {[Ps] | s ∈ ΓΛ}.

Proof. Since AΛ is an AF -algebra, K0(AΛ) is generated by the projections
in AΛ. But we observed in [21], Section 2 that any such projection can be approx-
imated in norm by a combination of [I] and {[Ps] | s ∈ ΓΛ}.

We now let Γ = Fn, 2 6 n 6 ∞, with free generators a1, a2, . . .. Let Λ
be a non-empty subset of {a1, a2, . . .} and let ΓΛ be the corresponding subgroup
of Γ. We have ΓΛ

∼= Fm for some m, depending on n and Λ. We denote Fn,m =
C∗

r (Γ,PΛ). Let |Λ| be the cardinality of Λ. We agree that ∞+1 = ∞. We denote
by Z∞ the free abelian group on countably many generators.
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4.1. Theorem. We have K0(Fn,m) ∼= Z|Λ|+1, with generators [I], [Pai
],

ai ∈ Λ, and K1(Fn,m) ∼= Zn, with generators [Lai
], i = 1, . . . , n.

Proof. It suffices to prove the theorem for Γ finitely generated, as the other
case follows from the inductive limit in 1.4. So we assume that n < ∞ and
choose ΓΛ generated by {a1, . . . , am}. At first, we look at the case m = 0, that
is Λ = {a1, . . . , an}. In this case we denote AΛ simply by A. The K-groups of
Fn,0 were already determined in Theorems 2.0 and 3.1 as Zn+1 ∼= K0(Fn,0) =
〈[I], [Pai ], i = 1, . . . , n〉 and Zn ∼= K1(Fn,0) = 〈[Pai ], i = 1, . . . , n〉. Nevertheless,
remembering that Fn,0

∼= A×
α

Fn (α = Ad L) as in 1.1, we can apply the Pimsner-

Voiculescu sequence ([15], Theorem 3.5) to this crossed product. Since A is an
AF -algebra (1.0), we have K1(A) = 0 and, hence, there is an exact sequence

0 −→ K1(Fn,0)
δ−→ K0(A)n β−→ K0(A)

(id⊗I)∗−→ K0(Fn,0) −→ 0,

where β(γ1, . . . , γn) =
n∑

i=1

(γi − (α−1
ai

)∗(γi)). Therefore, ker(β) ∼= K1(Fn,0) ∼= Zn is

generated by di = (0, . . . , 0, [I], 0, . . . , 0), i = 1, . . . , n, (di has [I] in the ith place)
and coker(β) ∼= K0(Fn,0) ∼= Zn+1 is generated by [I], [Pai

], i = 1, . . . , n.
After this preparation we now consider the case when 2 6 n < ∞ and

1 6 m < n. We have Fn,m
∼= AΛ×

α
Fn, with the same action α as above, and AΛ

an α-invariant subalgebra of A. Again we consider the Pimsner-Voiculescu exact
sequence

0 −→ K1(Fn,m) δ−→ K0(AΛ)n β−→ K0(AΛ)
(id⊗I)∗−→ K0(Fn,m) −→ 0.

Since i : AΛ → A is an inclusion of abelian AF -algebras, the induced map i∗ :
K0(AΛ) → K0(A) is injective. Thus, we can identify K0(AΛ) with an appropriate
subgroup of K0(A). Considering the natural inclusion i : Fn,m → Fn,0 we get a
commuting diagram with rows and columns exact:

0 −→ K1(Fn,0)
δ−→ K0(A)n β−→ K0(A)

(id⊗I)∗−→ K0(Fn,0) −→ 0xi∗

xi∗

xi∗

xi∗

0 −→ K1(Fn,m) δ−→ K0(AΛ)n β−→ K0(AΛ)
(id⊗I)∗−→ K0(Fn,m) −→ 0

↑ ↑
0 0

An easy diagram chase shows that the map i∗ : K1(Fn,m) → K1(Fn,0) is injective.
As K1(Fn,m) contains [Lai

], i = 1, . . . , n, the generators of K1(Fn,0), we have
K1(Fn,m) ∼= K1(Fn,0) ∼= Zn.

Lemma 4.0 and the above diagram imply that K0(Fn,m) is generated by
[I], [Ps], with s ∈ Fn which in reduced form end with either ai or a−1

i for i ∈
{m + 1, . . . , n}. However, if s, t ∈ Fn, g a word of length 1, and s = tg as a
reduced word, then Ps = LtPgL

∗
t and, hence, [Ps] = [Pg] in K0(Fn,m). Thus,

K0(Fn,m) is generated by [I], [Pai ], i = m + 1, . . . , n. Therefore, in order to
complete the proof of the theorem it suffices to show that the map i∗ : K0(Fn,m) →
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K0(Fn,0) is injective. To this end we consider an element c0[I] +
n∑

i=m+1

ci[Pai
]

of K0(Fn,m), where c0, cm+1, . . . , cn ∈ Z. Commutativity of the third square

in the above diagram shows that c0[I] +
n∑

i=m+1

ci[Pai
] = 0 in K0(Fn,m) implies

c0[I] +
n∑

i=m+1

ci[Pai ] = 0 in K0(Fn,0). Since [I] and [Pai ], i = m + 1, . . . , n, belong

to the set of free generators of K0(Fn,0) (as we have already shown), it follows

that c0[I] +
n∑

i=m+1

ci[Pai ] = 0 implies c0 = cm+1 = · · · = cn and, hence, the map

i∗ : K0(Fn,m) → K0(Fn,0) is injective, as required.
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