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ABSTRACT. For symmetric operators S, we consider differential Schatten
algebras C%'? of compact operators A from C? with SA — AS belonging to
C?. These algebras are analogues of the Sobolev Wpl,q spaces. We study
their approximation property: whether every operator is approximated by
finite rank operators, and the existence of approximate identities. For non-
selfadjoint .S, we show that C%'? have no bounded approximate identities and
the product of any two operators is approximated by finite rank operators.
For selfadjoint S, C%'? have approximate identities consisting of finite rank
operators and hence, have the approximation property. These identities are
bounded only if p = co. The existence of a bounded identity for Cgo’l is
equivalent to 1-semidiagonality of S.
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1. INTRODUCTION AND PRELIMINARIES

Extensive development of non-commutative differential geometry requires elabo-
rating of the theory of differential Banach x-algebras, that is, dense *-subalgebras
of C*-algebras whose properties in many respects are analogous to the proper-
ties of algebras of differentiable functions. In this paper we study the class of
the differential Schatten *-algebra C%?, p,q € [1,00], associated with symmetric
operators S. These algebras consist of operators X from C? with the derivative
ds(X) =i(SX — X S) belonging to C?. In the same way as the Schatten ideals C?
are non-commutative analogous of LP-spaces, the differential Schatten x-algebra
C%? are the analogous of the Sobolev Wz},q—spaces. We investigate the structure
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and various properties of these algebras; in particular, the approximation property
and the existence of approximate identities.

Blackadar and Cuntz ([1]) and the authors ([9]) introduced and studied var-
ious classes of differential Banach *-algebras; the most interesting class consists of
D-subalgebras of C*-algebras (2, || - ||), that is, dense x-subalgebras A of 2 which,
in turn, are Banach *-algebras with respect to another norm || - ||; and the norms
|- 1] and || - || on A satisfy the inequality:

(L.1) eyl < DAl Tyl + izl flyl),  for z,y € A,

for some D > 0. This class contains, for example, the algebras of differentiable
functions, symmetrically normed ideals of C(H) ([5]) and the domains D(¢) of
closed unbounded *-derivations ¢ of C*-algebras with the norm || - ||; defined by
the formula ||z||1 = ||z]| + ||6(x)]|, for z € D(0). In all these cases D = 1; the case
when D > 1 corresponds, roughly speaking, to the higher derivations.

In [11] and [12] the authors studied some D-subalgebras of the algebra of all
compact operators. This paper is a continuation of this study and investigates
various properties of differential Schatten *x-algebras.

Any closed symmetric operator S on a Hilbert space H implements closed
x-derivations of various operator C*-algebras on H; the largest one, §g, whose
domain we denote by Ag is defined as follows:

As={A € B(H): AD(S) C D(S), A*D(S) C D(S),
(1.2) (SA — AS)|D(S) extends to a bounded operator}
and
ds(A) =iClosure(SA — AS), for A € Ag.
The algebra Ag is a unital Banach x-algebra with respect to the norm

[Alls = [[A[l + 05 (A)]]

and contains the domains of all derivations implemented by S.
By C(H) we denote the algebra of all compact operators on H. For Ae C(H),
let {s;(A)}22, be all eigenvalues of the positive compact operator (A*A)Y/2. For

any 0 < p < 00, set )
o) 1/p
A= (L star)

i=1
The Schatten class C? = CP(H) consists of all compact operators A for which
|A|, < co. In particular, C! consists of all trace class operators on H. Set

C*® =C(H), with|A|e =|A4],for A € C(H),
and

C® = B(H), with |A], = ||A|, for A € B(H),

and assume that co < b. For p > 1, (C?,| - |,) is a Banach *-algebra.
Let S be a closed symmetric operator on H. For p,q € [1, o0],

CP?T={AeC?NAs:ds(A) =iClosure(SA — AS) € C}
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are dense #-subalgebras of C'(H) and are the domains of the largest closed x-
derivations from C? into C'? implemented by S. When endowed with the norms

‘A|p7q = |A|p + ‘6S(A)|Qa for A € qu’

they become Banach *-algebras which we call the differential Schatten x-algebras.
By F& we denote the closure with respect to | - |54 of the set of all finite rank
operators in C%7.

The Schatten ideals C? are non-commutative analogous of LP-spaces. Similar
to the classical Sobolev’s construction, for any derivation ¢ from CP into C'?, one
can consider the algebra sz,q which consists of operators X from C? with 6(X)
belonging to C'?. In Section 2 we show that if A is a D-subalgebra of an operator
C*-algebra 2 on H and if C(H) C 2 then any closed derivation ¢ from A into C?,
1 < p, is implemented by a symmetric operator S : § = §g|D(9). Hence any closed
derivation § from CP into C'%, 1 < p, q, is implemented by a symmetric operator S,
so that W . = C%.

The algebras C%? constitute a wide class of symmetric Banach x-algebras
with a rich and interesting structure. The natural problems which arise for these
algebras — the structure of their ideals and representations and the existence of
an approximate identity — are closely linked with important problems of Op-
erator Theory. In particular, the theory developed in this paper relies heavily
on Voiculescu’s theory of quasidiagonalization modulo operator ideals and on the
analogue of Weyl-von Neumann theorem for Schatten ideals.

In Section 3 we show that the algebras F&? and C%? are D-subalgebras of

C(H) and find necessary and sufficient conditions for the algebras C%'? and Cgl’q’
to coincide in the case when S is selfadjoint.

Sections 4 and 5 focus on the investigation of two problems concerning the
algebras C%?. The first one is the approximation property: whether every oper-
ator in C%'? is approximated by finite rank operators. In other words, whether
C%? = FE?. The second one is the existence of a bounded or unbounded approx-
imate identity. The existence of an approximate identity consisting of finite rank
operators implies, clearly, a positive answer to the first problem.

As can be easily predicted, the algebras C%'? fall into two categories. The first
category consists of the algebras corresponding to symmetric but non-selfadjoint
operators S. In Proposition 5.8 we prove that these algebras have no bounded
approximate identities. However, it is unknown whether they have unbounded
approximate identities or the approximation property. Section 4 is devoted to
establishing the fact that any product of two operators from C%? is approximated
by finite rank operators, that is, (C5?)? C F57.

The second category — easier to work with — consists of the differential
Schatten algebras C%? corresponding to selfadjoint operators S. In Theorem 5.4
we show that in this case the algebras C%? have approximate identities consisting
of finite rank operators and, hence, have the approximation property. Moreover,
the approximate identity is bounded only if p = co. For ¢ # 1 and p = o0, a
bounded approximate identity always exists.

The case when (p,q) = (00,1) is more subtle. If S is a bounded selfad-
joint operator of finite multiplicity, the algebra Cgo’l has a bounded approximate
identity. If S has infinite multiplicity or is unbounded, we prove in Theorem 5.9
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that the existence of a bounded approximate identity in C§°71 is equivalent to
1-semidiagonality of S in terms of [15]. Voiculescu ([16]) found an excellent char-
acterization of this condition: the integral of the spectral multiplicity of the abso-
lutely continuous part of S converges (see Theorem 5.6).

In Section 6 we apply the results of Section 5 to describe the dual and
the second dual spaces of the differential Schatten algebras. We show that, for
1 < p,q < o0 and any symmetric S, the algebras F&¢ and C%? are reflexive. If S
is bounded, O™ = C(H) and Cg” = As = B(H), so that C%" is isometrically
isomorphic to the second dual of Cg7%°. In [12] this result was extended to un-
bounded selfadjoint operators S. Making use of the approximation property of the
algebras C%™ and C3 for selfadjoint S, we establish the full analogy with the
bounded case: the algebras Cg’b (respectively Cg’q) are isometrically isomorphic
to the second duals of the algebras C%> (respectively Cg”?). These results will
be used in the subsequent paper on positive functionals and representations of the

algebras C%'? on the Pontryagin II,-spaces.

2. DERIVATIONS OF ALGEBRAS CP

Let (A, || - |la) be a normed x-algebra and (B,] - ||g) be a Banach A-bimodule
with involution * such that ||B*||z = ||B||g, for B € B. A map § from a dense
x-subalgebra D(d) of A (called the domain of §) into B is a x-derivation if

(2.1) S(AB) = AS(B) + 6(A)B and 6(A*) = 3(A)*, for A,B € A

A derivation ¢ is closable if A,, — 0 and §(4,,) — B implies B = 0 and closed if
A,, — A and §(A,) — B implies A € D(6) and §(4) = B.

It was proved in [2] that if A is a C*-subalgebra of B(H) containing the
ideal C'(H) then any closable x-derivation ¢ of A into B(H) is implemented by a
densely defined symmetric operator S on H, that is,

(2.2) AD(S) C D(S) and &(A)|D(S) =i(SA— AS)|D(S), for A€ D(5).

Theorem 2.1 extends this result to D-subalgebras of B(H).

Let A be a x-subalgebra of B(H) and a Banach x-algebra with respect to
a norm || - || 4. By A we denote the uniform closure of A in B(H). Let B be a
symmetric linear manifold in B(H), that is, B € B implies B* € B and assume

that B has a norm || - ||z such that (B,] - ||5) is a Banach space,
(2.3) IB*[ls = |Blls  and ||B|| <||Bllz, for B €B.
The algebra A has two norms || - || and || - ||4. Suppose that (B,| - [|g) is a

(A, || - |)-bimodule, that is,
(24) | 4Blls < 4| |Bls and |BAls < |Bls | Al, if Ac Aand B eB.

THEOREM 2.1. Let 0 be a closed *-derivation from (A,||-||4) into (B,]-]5)
and let formulae (2.3) and (2.4) hold. If A is a D-subalgebra of the C*-algebra
A and C(H) C A then § is a closable derivation from (A, || -||) into B(H) and is
implemented by a symmetric operator.
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Proof. Set ||Alls = ||Alla + [|6(A)||, for A € D(5). Since § is closed,
(D(8), || - |ls) is a Banach space and
[A™[ls = [[A™]l.a + 16(A") [ = [|Alla + [[6(A) (|5 = |Alla + [16(A) ][5 = [|Alls-
It follows from (2.1) and (2.4) that for A, B € D(9),
[AB|ls = [[AB|la + 16(AB)|l5 < [[Alla[|Bll4 + [[A6(B)|5 + [16(A) Bl
< [AllallBlla+[IAIH6(B)s + l6(A) |5 | BI-

Taking into account (2.3), we obtain that ||AB||s < [|A|ls || Blls, so (D(5),] - ||s) is
a Banach x-algebra.

It is well known (see [3], Section 1.3.7) that | A|| < ||Al|.4, for A € A. Since
D(6) is dense in A with respect to || - || 4, it is also dense in A with respect to the

(2.5)

norm ||-||. The algebra D(d) has three norms |- ||, || -||.4 and ||-||s. Since (A, ||-|l.4)
is a D-subalgebra of A, there is D > 0 such that

[ABlla < DAl Blla + [|AlLa lIBI]),  for A, B € D(3).
It follows from (2.5) that
IAB|ls < Al Blls + [|All.a | Bll.a + [|Alls | B]]

and we conclude that D(J) is a differential algebra of order 2. (Differential algebras
of order p € N were introduced in [1] and studied in [1] and [9].)

Adding if necessary the identity 1 to A and setting 6(1) = 0, we may assume
that 1 € D(6). Since C(H) C A, it follows from Lemma 6 and Theorem 13 of [9]
that C(H) N D(9) is dense in C(H).

Let A* = A € C(H)ND(), let 0 £ X € Sp(A) and H) be the finite-
dimensional subspace of all eigenvectors of A corresponding to A\. Choose a neigh-
bourhood U of A such that UNSp(A4) = A and let f(t) be an infinitely differentiable
function on R vanishing outside U and f(A) = 1. Then f(A) is the projection
on Hy and, by Theorem 12 of [9], it belongs to D(0).

Since C(H)ND(0) is dense in C(H ), Hy is a cyclic set for A: linear combina-
tions of vectors Ax, A € A, x € Hy, are dense in H. Making use of Corollary 27.18
of [10], we obtain that there exists a densely defined symmetric operator S which
implements 0.

To show that ¢ is closable with respect to the norm || - || on A and B, we
assume that operators A,, from D(d) converge to 0 and §(A,,) converge to B with
respect to || - ||. Then for any x € D(S), it follows from (2.2) that

Bz =lim§(A,)x =1limi(SA, — A,5)z =ilimSA,z —ilim A, Sz = ilim SA,z.

Since A,z — 0 and S is closable, Bz = 0. Thus B = 0 and 0 is closable in || - ||. 1
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For p,q € (0,00), let C? and C? be the Schatten classes of operators. It is
well known (see [4] and [5]) that,

(2.6) CP CC? and |A], > |Al > [|4]], ifp<gand AeCP.

For any A € CP, the operator A* belongs to CP and

(2.7) [A%[p = |Alp-

Let Ac CP, B€ C9and 5+ ; = ;. Then AB € C". If 7 > 1 then

(2.8) |AB[1 < |AB|» < [Al, |Blg:

In particular, if A € C? and B € C® = B(H) then AB, BA € C? and

(2.9) |AB|, < |Alp |B| < |Alp |Bl, and  |BA[, < |A], [|B]| < |Alp |Blp.
For p > 1, (C?,|-|,) is a Banach x-algebra.

COROLLARY 2.2. Let 2 be a C*-subalgebra of B(H) containing C(H) and
let (A, ]l - |la) be a D-subalgebra of A. Any closed x-derivation from (A,] - ||4)
into (CP,|-1p), for p = 1, is a closable derivation from (.| -||) into B(H) and
is implemented by a symmetric operator.

Proof. We obtain from (2.6) and (2.9) that formulae (2.3) and (2.4), linking
the norms || - || and | - |,, hold. Hence, the result follows from Theorem 2.1. 1

The algebras C? are dense in C'(H) and it follows from (2.9) and (1.1) that
(C?,]| - |p) are D-subalgebras of (C(H),| - ).

COROLLARY 2.3. Any closed *-derivation from (C?,|-|,) into (CY,]|-|4), for
p,q = 1, is a closable derivation from (C(H), || -||) into B(H) and is implemented

by a symmetric operator T such that either T is selfadjoint or the deficiency
indices of T are (0,00) or (00,0) or (co,00).

Proof. By Corollary 2.2, any closed *-derivation d from C? into C?, p,q > 1,
is a closable derivation from C(H) into B(H) and is implemented by a sym-
metric operator S, that is, (2.2) holds for all A € D(d). It follows from Theo-
rem 3.11 (iii) (b) of [8] that there exists a symmetric extension T of S implement-
ing § with the deficiency indices which satisfy the conditions of the corollary. 1

REMARK 2.4. The results of Corollaries 2.2 and 2.3 hold if the algebras CP
are replaced by any symmetrically normable ideal of C(H) (see [5]).
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3. DIFFERENTIAL ALGEBRAS C¢¢

Set T'= [1,00] U {b} and let S be a closed densely defined symmetric operator on

H. For p,qeT, set
(3.1) CP*={AeC?NAg:ds(A) =iClosure(SA — AS) € C?} and
. |Alpg = [Alp +105(A)]g, for A€ CE7.

Since C?,C? and Ag (see (1.2)) are x-algebras and since dg is a closed *-derivation
on B(H) with domain Ag, it follows from (2.6) that the restriction of dg to C%*?
is a closed x-derivation from C? into C?. It also follows from (2.6) and (2.9) that
formulae (2.3) and (2.4) hold for all norms | - |,. Hence, from this and from the
discussion at the beginning of the proof of Theorem 2.1, we obtain the following
result.

PROPOSITION 3.1. For any p,q € T, (C%?,|-|p.q) is a Banach *-algebra and
the domain of the largest x-derivation from CP into C? implemented by S.

It is easy to see that (Co°, |- [5) = (As, | - |Is),

cra C C’g’t and |Al,, > |Alpg, ifp <o, qofotO and A € C%;
|A]oc,00 = [Alsop = = |Afpp = || Alls, for Ae Cg™.
For x,y € H, the rank one operator z ® y on H is defined by the formula
(3.2) (z @)z = (z,2)y.
It is easy to check that
(3.3) [z @yl =zl lyll, (z@y)" =yoz, (@FY)(udv)=(v,z)(vdy),
. R(x®y)=2z® Ry, and (z®y)R extends to (R*z)®y,

if R is a densely defined operator, y € D(R) and « € D(R*).
Let {e;}32, be a basis in H and z,y € H. Then

o0
(3.4) Tr(z©y) = Y (x@y)ej,e5) Z ej, )y, ¢5) = (y,x)-

j=1 j=1
The operator A = z ®y belongs to CP, for all p > 0. By (3.3), A*A = |y||*(z @)
and (A*A)Y/? = %( ® z) has only one non-zero eigenvalue A = ||x|\ lly|l. Hence
(3.5) [z @yly = A= llzlllyll = llz @yl

Let S be a closed symmetric operator. It follows from Lemma 3.1 of [11]
that any finite rank operator in Ag has the form

(3.6) A= th ®y; where x;,y; € D(5).

=1

By ®5 we denote the set of all finite rank operators in .A4g. We obtain from (3.3)
that, for any A € ®g, the operator ds(A) also has a finite rank. Hence

Pg CCY?TCCP, foranyp,qeT.
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For z,y € H and z,u € D(S), the operator A = z ® y — z ® u has rank less or
equal to two. Hence (A*A)'/2? has not more than two non-zero eigenvalues and
they are less than ||(A*A)Y/2| = ||A||. Therefore |A|, < 2||A|| and, by (3.3),

Al = [le@y—z@ul| < t@y—r@ul+lz@u—28ull = || ly—ul + [z — 2| ull

Since D(S) is dense in H, we have that ®g is dense in the set of all finite rank
operators with respect to all norms |- |,, 0 < p < co. It is well known that finite
rank operators are dense in the algebra C(H) and in all algebras C?, 1 < p < o0
(see [4], Lemma XI.9.11). This yields the following result.

LEMMA 3.2. For any p € T\ {b} and q € T, the algebras &g and C%? are
dense in the algebra (C?,] - |p).

We denote by F5'? the closure of ®g with respect to the norm |- |, 4. Clearly,
FE4 are closed *-subalgebras of C%Y,

, it :
FEICFS', ifp<randg<t,
f-oo,q _ fb,q fp,oo _ fp,b 00,00 __ go00o,b _ gbyoo _ bbb
ot =F, g =Fg and Fg T =Fg  =Fg T =Fg.

PROPOSITION 3.3. (i) The algebras F5'* and C%?, p,q € T, are semisimple.
The algebras F&'? have no closed two-sided ideals and F&? C I for any closed two-
sided non-trivial ideal I of C%9.

(ii) Let B be a bounded selfadjoint operator and R =S + B. If p < q then
F&i=Fp9 and CY* = CP1.

Proof. Let I be a closed two-sided ideal of (F§9,|-|,4). Let A € I and
x € D(S) be such that A*x # 0. For any y € D(S), z®@y € &g C F5'?. Hence,
by (3.3), (A*2) @ y = (x ® y)A € I Since A € Ag, we have that A*z € D(9).
Therefore, for any z € D(S), the operator z ® A*z belongs to ®5. Hence, by (3.3),

(A"2) @ y)(z ® (A"2)) = | A"z [*(z @ y) € I.

Thus &g C I, so FE? C 1.

Similarly, F&? C I if I is a closed two-sided ideal of (C%?, |- [,,q)-

If R is the radical of C%? or F5'? and R # 0 then F5'? C R. For z € D(S)
and ||zl = 1, 2@z € F5? and (z ® )" = ¢ ® . Hence z ® x ¢ R. This
contradiction shows that Ct'? and F£ are semisimple. Part (i) is proved.

Since B is bounded, D(R) = D(S). If A € Ag then

(3.7) 51(A)[D(R) = 55(A)|D(S) +i(BA - AB)|D(S)

is a bounded operator. Hence Ag = Ag.

Let A € C5% Then A € CPNAg = CP N Ag and dg(A) € C9. Since, by
(2.9), BA—AB € C? C (', it follows from (3.7) that 6g(A) € C?. Thus A € C17,
so C&9 C C%Y. Similarly, C%? C CE?, so that CR? = C51.

It follows from (2.9), (3.1) and (3.7) that the norms | - |, ; generated by S
and R are equivalent. Since 757 and F&? are the closures of ®g in these norms,
they coincide. 1

By 2% we denote the uniform closures of the algebras C’g’q. Since g C C’g’q
and since ®g is dense in C'(H), AL are C*-algebras containing C'(H).
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PROPOSITION 3.4. The algebras (CT9,| - |p.q), p # b, and (F&, |- |p.q)
are D-subalebras of C(H) with constant D = 1. The algebras (C’g’q,| “|b,q) are
D-subalgebras of AL.

Proof. For any A, B € C% it follows from (2.9) and (3.1) that

|AB|p’q = |AB|p + |6S(AB)|q < 4]l ‘Blp + |A53(B)|q + |6S(A)B|q
< [A[Blp + [|Al[0s(B)lg + 105 (A)lq 1Bl < Al [Blp.g + [Alp.q IBI-
Thus (C29, |- |4) are D-subalgebras of 2A%. Since &g C F54 C C%9 C C(H), for

p # b, and since ®g is dense in C(H), it follows that (C%?, |- |,4), p # b, and
(FE9,]+|p,q) are D-subalgebras of C(H). 1

If S is bounded, the operator dg(A) = i(SA — AS) belongs to C? for any
A € CP, so that C%? = C%”, for all ¢ > p. If S is unbounded then all algebras
C%? are distinct. To establish this we need the following lemma.

LEMMA 3.5. Let S be a selfadjoint operator on H.

(i) For any p € T, there exists A € CP N Ag such that §s(A) € C' and
A ¢ CP~¢ for any € > 0.

(i) If S is unbounded then, for any p € T, there exists B € C' N Ag such
that 05(B) € CP and 6s(B) ¢ CP~¢ for any € > 0.

o0

Proof. There is a decomposition H = @) H(n) such that all H(n) reduce
S and S|H(n) = A\ lg(n) + T, where ||Tn||7< 1 and 0 € Sp(7},). Therefore, in
every H(n) we can choose z,, such that ||z,|| =1 and ||T,z,| < n™2
o0
Letp <oo. Set A= Y an(2,®2,), where oy, = (|n]In® |n|)~1/?. Clearly,

n=—oo

A belongs to CP and does not belong to CP~¢ for any ¢ > 0.
Ify= > yn€ D(S), where y, € H(n), then > || Auyn + Thynll? < co.

n=—oo n=—oo
o0 oo
Hence > |[Anl?||ynl|? < co. We have that Ay = > ay(yn, 70 )T, and
n=-—oo n=-—oo
o0 o0
ISAYI® = > anl@ns ) [Antn + Townl* < D alllyal®(Aal® + 1) < o0,
n=-—00 n=-—00

so that AD(S) C D(S). It follows from (3.3) and (3.5) that

o0
05(A)l1 = [SA—AS|y = ) anlan @ Tozy — Tty @ 2y
< Z o 2|z || | Thzn] < 2 Z ann? < oo,
n=-—oo n=—oo

Therefore A € CP N Ag and §g(A) € C.

If p = oo, set a, = (In|n|)~t. Then A € C° but it does not belong to
any C%, g < oo. Similar to the case p < oo, we obtain that ds(A4) € C! and
AeC>*®NAg.
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If p=b, set A= 1p. Part (i) is proved.
Let S be unbounded. Then we can assume that |A,| > n, in the decomposi-
tion of S. Choose {nj}72 , such that A — An,, =28, Let p < co. Set

MNk+1
oo

B=Y Bu(xn, ®n,,,), where S = (A, — An,) ' (kIn® k)~/7.
k=1

Then sx(B) = B < 27%, so that B € C'. As above, it is easy to check that
BD(S) C D(S), so B € C* N Ag. We also have that

5s(B) =i(SB — BS)

:iz ﬁk (xnk ® ()‘nk+1$nk+1+Tnk+1xnk+1 )) _iz ﬁk(()\nk‘xnk+Tnk xnk)® xnk+1)
k=1 k=1

8

=i Z ﬁk()\nk+l _)\nk)xnk @ Ty gy +IZ ﬁk(xﬂk ® Tnk+1mnk+1 — T, %n, ® mle+1)
k=1

k=1
oo oo
=i (k2 k)P (2, @ 2y, )+ Z Br(ny @ T o1 Tp o= T g @ Ty )-
k=1 =1

The second term belongs to C''. The first term belongs to C? and does not belong
to CP~¢ for any € > 0.

If p = oo, set B = (Anpys — M) “(Ink)™'. Then B € C' N Ag and
ds(B) belongs to C*° but does not belong to any C?, ¢ < oo. If p = b, set
Be = (Angys — M)~ Then B € C' N Ag and 65(B) is a bounded but not
compact operator. 1

The next theorem describes the cases when C%? = Cg’t for selfadjoint S.

THEOREM 3.6. Let S be a selfadjoint operator on H.

(i) If S is unbounded and (p,q) # (h,t) then C%* # Cg’t.

(ii) Let S be bounded. Then C%? = Cg’t if and only if p = h and there exist
A€R and r > 1 such that S — Ay € C" and % +1> max(é, 1). In this case

Chl=Cpt =P,

Proof. Part (i) follows from Lemma 3.5.

Let S be bounded and S = Ay + T, where T € C", r € [1,00] U {b}. We
obtain from (2.9) that, for any A in C?, 05(A) = i(SA— AS) belongs to C* where
1 =141 Hence C§* =CP. If s < g and s <t then 57 = CF' = C§* = CP.

Conversely, let C%% = C'. Tt follows from Lemma 3.5 (i) that p = h. Since
S is bounded, we have that C%9 = C%P = CP, for all ¢ > p. Therefore, we only
have to consider the case when ¢ < p and t < p. Suppose that ¢t < ¢ < p.

It was shown in [7] that if SA— AS € C*, for all A € C?, then S = Ay +T
where A € R, T € C" and % + 1 = 1. Therefore, to finish the proof it suffices to
show that C5? = C5' = CP.

Since S is bounded, C? = C¥? C CE7. Set

u = sup{y : C¥ C C§}.
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Then ¢ < u < p. We shall show now that uw = p. Let d be such that % + é = %

Choose y such that ¢ <y < u and % — % < % Then CY C C%? = Cg’t, so that

SA—AS € Ctfor all A € CY. It follows from the mentioned above result obtained
in [7] that in this case S = Ay + T where T € C" and % ++=1

Let z be such that  + % = i Then z > y and it follows from (2.9) that for
all A e C? SA—AS=TA— AT € C*, where % + % = % We have that
1 11 1 1 1 1

and

< - < —.
z y d y 2d u
Hence u < z and = = ¢, so that SA — AS € C4, for all A € C?. If u < p, we have
a contradiction. Thus u = p and p < z, so that C? = C%7 = C%*.

Although, as we have seen above, the algebras C§'? and Cg’t do not coincide

if p # h, in some cases they may only differ by “diagonal parts”.
By Z% we denote the subalgebra of all operators in C? commuting with S:

Zi=0rns.

Since the commutant S’ is a weakly closed *-subalgebra of B(H), Z% is a closed
s-subalgebra of CP. If ¢ < p then CT? + Z% C C%?. We consider below necessary
and sufficient conditions on the selfadjoint operator S under which

Chl=Ct"+ 7%, forall ¢ <p,

but first we need some results about Schur multipliers.
Let {e;}$°_ . be an orthogonal basis in a Hilbert space ). Every T € B($))
has a matrix representation T' = (¢;;) where t;; = (T'ej,e;). A matrix M = (m;;)
is called a Schur multiplier, it M oT = (m;;t;;) is a matrix representation of a
bounded operator for any 7' € B($). In this case the map T'— M o T of B($))
into itself is bounded; it will also be denoted by M and its norm by ||M||.
A matrix M is a Schur CP-multiplier, 1 < p < oo, if M o T € CP for any
T € CP. The map T'— M o T of CP into itself is bounded; by ||M]||, we denote
its norm. For example, since T = (t;;) € C? if and only if 3 [t;;|> < oo, it follows
4,9
that M = (m;;) is a Schur C?-multiplier if and only if max|m;;| < co. In this
s
case !
(3.8) | M2 = max |m;].

For any matrix M set

1/2
1Ml 1y = sup (Z |mm-|2> .
J i

If [|[M]]; ;) < oo then (see [13]) M is a Schur multiplier on B(f)) as well as a
Schur CP-multiplier for any 1 < p < co and

(3.9) 1M ]lp < 1M < 1M1 12)-
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Let H= €& H; be the orthogonal sum of Hilbert spaces H;. Every operator T'

i=—00
in B(H) has a block-matrix representation (7;;) where T;; are bounded operators
from H; into H;. For M = (m;;) set

MXT: (mijTij), fOI‘TGB(H)
IfMxT e B(H) for any T' € B(H), we denote by HMH the norm of the map
T—MxT. If M xT € C? for any T € CP, we denote by ||M]|, the norm of the
map T — M xT.

oo

PROPOSITION 3.7. Let H = @ H; and M = my;. If || M|, q,) < o
1=—00

then, for any 1< p < 00, M x CP € C? and | M|l < [|M] = M| < [ M li.q,)-
Proof. It was shown in [12] that if M is a Schur multiplier on B($)) then
M x B(H) € B(H) and ||[M|| = ||M|. If ||M];_q,) < oo, we obtain from (3.9)

that M is a Schur multiplier on B($), so that M x B(H) C B(H).
It is well known (see, for example, [13]) that any Schur multiplier is also a

Schur C*°-multiplier and the norms coincide. Therefore M x C(H) C C(H) and
1M ||oo = ||M]]. Making use of complex interpolation (see [6], Theorem 3.5.2), one
can derive that M x C? C CP, for any 1 < p < oo, and ||M||, < [|[M].

We say that a selfadjoint operator S has uniformly discrete spectrum if
d=inf{|\ — p|: A\, p€Sp(S), A # u} > 0.
THEOREM 3.8. If S has uniformly discrete spectrum then
(3.10) C%? =0y + Z§,

for all ¢ < p. Conversely, if (3.10) holds for some q¢ < p then S has uniformly
discrete spectrum.

Proof. Suppose that S has uniformly discrete spectrum. Then Sp(S) = {s,}
where s,, are eigenvalues of S. Let H, be the corresponding eigenspaces. We can
renumber them, if necessary, in such a way that s,4+1 — s, > d, so that

[$n, — sk| = |n — k|d.

Let P, be the projections on the subspaces H,. For any A € C%, the operator
Ay = Y. P,AP, is bounded and commutes with S, the operator A’ = A — Ag

belongs to Ag and B = §g(A) = ds(A’). With respect to the decomposition H =
@ H,, the operators A and B have the block-matrix representation A = (A,x),

B = (B,)- Since B|D(S) =i(SA — AS)|D(S), we have
(3.11) B, =0 and Bpr =1i(sn — k) Ank.

Consider the matrix M = m,,;, where m,,;, = —i(s, — s)~! and my,, = 0. Then

1/2 1/2
M) = Sup (Z Imnkl2> <d? < 3o - k|2> < 0.

n#k
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We obtain from (3.11) that A’ = M X B = (muxBnk). It follows from Propo-
sition 3.7 that M x C? C C9. Since B € CY9, we have that A’ € C?. Hence
Ay = A — A’ belongs to C? and commutes with S, so that Ay € Zg. Thus
Cg?=C% + Zg.

Let now (3.10) hold for some ¢ < p. Suppose that K = H o @ H,, # {0}.

Then K reduces S and the restriction Sk of S to K is selfadjoint and has no
eigenvalues. If a compact operator commutes with Sk, its adjoint also commutes
with Sk, so there is a selfadjoint compact operator A # 0 commuting with Sk.
Hence, every eigenspace of A is invariant under Sk and, since all of them are
finite-dimensional, Sk has eigenvalues. This contradiction shows that there is no
compact operator commuting with Sk, that is, ZSK = {0} for 1 < p < 0.

By Lemma 3.5 (i), there exists an operator B on K such that B € C¢? and
B ¢ CP~¢(K), for any € > 0. Let @ be the projection on K. It commutes with S.
We can consider B as an operator on H. Then B € C%? and QB = BQ = B.

Since (3.10) holds, B = A+ C, where A € C¥? and C € Z%. We have that
B = QBQ = QAQ + QCQ. Since Q commutes with S, QCQ € Zg . By the
above argument, QCQ = 0, so B = QAQ. Since A € C%, B also belongs to C1.
This contradiction shows that K = {0}, so H = @ H,,.

n
Assume now that d = 0. We can choose pairs (n;, k;), 2 < j < 0o, such that
nj > kj, all numbers ny, k1, ng, ko, ... are distinct and [s,,; — sp,| < 277, Consider
an operator A = (A,) such that A, = 0 if (n, k) does not coincide with any of
the pairs (n;, k;) and A, is a rank one operator with || A, || = j /7 In~%/7(j).
Due to the choice of the pairs (n;, k;), the operator R = A*A = R, is block-
diagonal such that the only non-zero elements are

Rkjkj = (Anjkj)*A’ﬂjkj and ”Rkjkj H = HAnjkj ||2 = j_z/p 1n74/p(j)'

It follows from (3.3) and (3.5) that all Ry, are rank one positive operators with
eigenvalues p; = ||Ry,,|. Hence the eigenvalues of the operator R'/2 are \; =
(14;)1/% = || Rk, |1*/?. Therefore

1/p ) 1/p ) 1/p

Al = (ZA?) = (Z[j—”p In~ “’(jﬂp) = (Zj—lln (j)) < oc,
J J J

so that A € CP N Ag and A ¢ CP~¢, for any € > 0.

Let D = (Dy) € Z%. Then D is block-diagonal and D+ A € C? N Ag. One
can check that, due to the choice of the pairs (n;, k;), among the eigenvalues of
the operator (D + A)*(D + A) there are distinct eigenvalues \,,,; such that

Ay = 1(Diiey ) Dieyiey + (i) by, || = (A, ) Asyn, | = 5722 I 42 (5).
Therefore, the eigenvalues (A, )!/2 of [(D + A)*(D + A)]'/? are not smaller than
§71/PIn"2/P(5). From this it follows that D 4+ A ¢ CP~¢ for any ¢ > 0.

We obtain from (3.11) that B,; = 0 if (n, k) does not coincide with any of
the pairs (nj, k;) and B, ; is a rank one operator with

1Bos ks || = [$ny = 1| [[Angi, | < 2775717 In=2/7(j).
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It is easy to see that B € C'! and, therefore, it belongs to any €9, 1 < ¢ < p. From
this we conclude that A € C%? and A ¢ CL? + Z%, so O # C&? + ZE. Thus,
we have shown that C%? = C%? + Z%, for some ¢ < p, implies that the spectrum
of S is uniformly discrete. 1

4. APPROXIMATION PROPERTY OF ALGEBRAS C%'?

An operator algebra A4 containing finite rank operators is said to possess the ap-
proximation property if any operator in A is approximated by finite rank operators.
For the algebras C%? this means that Cg? = F&9. By Proposition 3.3, C%? has
approximation property if and only if it is simple.

The subalgebras Fgo™, Cg™ and Cg" of Ag were studied in [11] and
[12]. Tt was shown that if S is selfadjoint, the algebra C'g° has approximation
property. In Corollary 5.5 we extend this result and prove that all algebras C%9,
p,q € T\ {b}, have approximation property.

For non-selfadjoint S, we do not know whether the algebras C%? have ap-
proximation property. However, making use of the results about the structure of
D-algebras established in [11], we show in this section that the closures of (C%7)?
with respect to | - |, have this property, that is, they coincide with F&?. Thus,
the approximation problem is equivalent to the problem of the density of (C’g’q)2
in C%?. We start with the following lemma.

LEMMA 4.1. Let %—1—% =1 %—l—i =1 141 =21 and a =max(s,t). Then

T 57 q t
bg C FRICTY C Fo“.
Proof. We obtain easily from (3.3) that (®g)? = ®g. Since all algebras F&?
and C%?, p,q € T, contain ®g, we obtain that &g C FLICHY.
Let X € FE? and Y € C¢Y. Let {X,,}52, be elements of ®g converging to
X in |-|p,q, that is, | X — X, |, +|0s(X — X,,)|q — 0, as n — oo. Since Y preserves
D(S), we have that X,,Y € ®g. Then, by (2.6) and (2.8),
XY — XnY|7',a = [(X-Xu)Y], + ‘55((X_Xn)y)|a
<X =Xalp Yo + 05 (X =Xn)Y o + [(X =X0n)ds(Y)]a
X =Xalp [Y]e + 165 (X = X))V + [(X = X0n)ds(Y)]s
< |X_Xn|p Y]z + |6S(X_Xn)|q Yo + ‘X_Xn‘p |5S(Y)|y —0
so that XY € F&*.

DEFINITION 4.2. Let ¢ be an injective bounded linear map from a normed
space (X,] - ||x) into a normed space (2, | - [|y). A sequence {z,} in X is called
(~)-converging to x € X with respect to i if

lli(z) —i(zn)|lg = 0 and sup |z, ||x < .

A subset M in X is (~)-closed if it contains all (~)-limits of its elements.
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Let ¢ be a closed linear map from a normed space (2), || - [|g) into a normed
space (3, - ||3). The domain X of ¢ is a Banach space with respect to the norm
llzl|x = ||z|ly + ||¢(z)]/3. By i we denote the identity map of X into Q).

Let 3* be the dual space of 3. By €2, we denote the set of all F' € 3* such
that the functional F, on X : F,(z) = F(¢(z)), is bounded with respect to || - [|g.
The following lemma was proved in [11] for subspaces but the proof easily extends
to closed convex subsets.

LeEMMA 4.3. If Qg is norm dense in 3* then any closed convex subset in
(X, - l|lx) is (~)-closed with respect to i.

For any p € [1,00], let p’ be the conjugate exponent of p

1 1
(4.1) §+E:1,if1<p<oo, and p =bifp=1.

We denote by jp,q the identity maps of C%? into CP.

LEMMA 4.4. For p#b and q¢ > 1, any closed convex subset in (CZ’? | Ip.q)
is (~)-closed with respect to jp. q.

Proof. Replacing ) by CP, 3 by C? and ¢ by dg in Lemma 3.7, we obtain
that in order to prove our lemma it suffices to show that the set {25 is norm dense
in the dual space (C7)*.

Since 1 < ¢, ¢’ € [1,00) and the algebra (C?', |-|,) is isometrically isomorphic
to (C?)*: any bounded linear functional on C? has the form Fr(A) = Tr(AT)
where T € C7. It follows from (3.4) that, for any T = 2 ® vy, x,y € D(S), the
functional (Fr)s:

(Fr)s(A) = Fr(ds(A)) = Tr(0s(A)T) = iTr(z ® ((SA — AS)y))
extends to a bounded functional on C?. Thus Fr € Q5. By Lemma 3.2, the set

of all linear combinations of such operators 7" is norm dense in C’ql, so that Qs is
norm dense in (C9)*. 1

We denote by i, , the identity maps of C%? into C>° = C(H).

LEMMA 4.5. If 1 < p < 00 and 1 < q, then any closed convexr subset in
(C%, |- 1p,q) is (~)-closed with respect to ip.q.

Proof. If p = oo then iy ¢ = joo,q, 50 the result follows from Lemma 3.8.

Let 1 < p < 0o and M be a closed convex subset in (C%?, ||, ). Let X,, from
M (~)-converge to X with respect to ip4 : [|X — X,|| — 0 and sup | X,|p,q < K;
we have to show that X € M. !

Clearly, | X, |, < K for all n. Since C? is isomorphic to the dual space of cr',
where % + i = 1, the ball of C? of radius K is compact in the weak o(CP, Cp,)
topology on CP. Hence the sequence {X,,}>° ; has a cluster point Y.
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Since 1 < p, cr' s isomorphic to the dual space of CP and it follows from
Hahn-Banach Theorem that, for any m, ¥ belongs to the closed, in | - |,, convex

set generated by X,,,m < n. Hence, there are positive ozgn ), ceey af/f&) such that
m m 1
ol 4 +all) =1 and Y = Yulp < —,

where Y,,, = am )Xm 4. g at™ Xy(my- Then Yy, € M, [Y = Yy,|, — 0, as

#(m)
m — 0o, and

sup |Ym|p,q = Sup (0‘7(72”)|Xm‘p,q +- Qe |X

)pa) < K.

Thus Y;, (~)-converge to Y with respect to j, 4. By Lemma 4.4, M is (~)-closed
with respect to jp 4. Hence Y € M.
We also have that

IX = Y| < |X = Y| + [V — Y|
<al™|X = X + -+ IX = Xy || + [Yin = Y], — 0

Xra(m)
as m — oco. Hence X =Y, s0 X € M and M is (~)-closed with respect to i, 4. 1
LEMMA 4.6. Let A, B belong to C;O’l and let them be (~)-limits of operators
from ®g with respect to io1. Then AB € ]-'go’l.
Proof. Let A, from ®g(~)-converge to A with respect t0 ico 1:
|[A—A,|| =0 and sup|ds(An) < oc.

Then sup |6s(A4,)]2 < sup|ds(An)|1 < oo. Since C? is a Hilbert space, the unit
n n

ball of C? is weakly compact. Hence the set {5s(A4,)}3%; has a weak cluster
point Z € C%. By Hahn-Banach Theorem, for any m, Z belongs to the closed in
| - |2 convex set spanned by dg(A,), m < n. Hence there exist convex finite linear
combinations A, of the operators {4y}, >, such that dg(A;,) converge to ds(A)
in |- |2. Then

|A= ALl =0 and [|Z —ds(A,)] <|Z = ds(A7,)|2 — 0,

as m — oo, where A/, € ®g. Since dg is closed, Z = Jg(A). Therefore, replacing
A, by Al if necessary, we may assume that

(4.2) |A— A, =0, [0s(A)—0ds5(An)]2—0 and suplds(A,)|1 < oo.

The unit ball of C! is o(C*,C°)-compact. Since sup |0g(A,)|[1 < oo, the set

{05(A,)}5; has a cluster point Y € C! in the o(C, C*°) topology. Since dg(A) €
C1, we obtain from (2.8) and (4.2) that, for any T € C?,

I Tr((Y = 05(A)T)| < |Tr((Y = 05(An)T) | + |Tr((6s(An) — 05(A))T)|
<Tr((Y = 8s(A))T) | + [(65(An) — 6s(A)T,
<Te((Y = 95(An))T) | + 105(An) = 35(A) |2 [T|> — 0,
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as n — o0o. Therefore, Tr((Y — §5(A))T) = 0. Since C? is dense in (C*°,| - |),
Tr((Y — 65(A))T) =0 for all T € C*°. Hence Y = dg5(A).

Let now B € Cgo’l be the (~)-limit with respect to i 1 of a sequence of
operators B, from ®g. As above, dg(B) is a cluster point of {dg(B,)} in the
a(C*t,C*>) topology. We will show now that ds(AB) is a cluster point of the set
{05(AnBy,)}e, in the o(Ct, B(H)) topology on C*. Indeed,

5S(AB) - 5S(Aan) = A(SS(B) =+ 5S(A)B - An5s(3n) - 5S(An)Bn = Un + Vm

where U, = Ads(B) — A,0s(B,) and V,, = ds(A)B — ds(A,)Bn. By (2.9), for
R e B(H),

ITr(UnR)| < [Tr(A(65(B) — d5(Bn))R)| + [Tr((A — An)ds(Ba)R)|
< [Te((0s(B) = 05(Bn)) RA)| + [(A — An)ds(Bn) Ry
< [Tr((0s(B) = 05(Bn))RA)| + [[A = Anl[ |05 (Bn)|1 || B]|

and, similarly,
eV R)| < [Te((8s(4) — 85(An)) BR)| + |B — Bl 5(An)l1 |1 R].
It follows from (4.2) that |4 — A,|| — 0 and ||B — B,|| — 0, as n — oo, and
sup|ds(An)[1 <oo and  sup|ds(Bn)|1 < cc.

Since A and B are compact, RA and BR belong to C(H). Since ds(A) and d5(B)
are cluster points of {dg(A,)}%; and {§5(B,)}2% ,, respectively, in the o(Ct, C*)
topology on C1, we obtain that §s(AB) is a cluster point of {dg(A,B,)}3; in
the o(C*t, B(H)) topology on C*.

By the Hahn-Banach Theorem, for any m, ds(AB) belongs to the closed, in
|- |1, convex set spanned by ds(A,B,), m < n. Hence, there are positive numbers

ozg,T), .., o™ such that as,T) —|—~--+ag(n)) =1 and [0s(AB) —d5(Zm)|1 — 0, as

’ T k(m) m

m — 00, where Z,, = aS?)AmBm 4+ afﬁTTZL)AH(m)BN(m). Then Z,, € &5 and
IAB = Zpn|| < @i ([ AB = A Bu|| + -+ + 00 | AB = Apn) B |
<sup [|[AB — A, By || < sup [[A[| | B=Buy|l+ sup A= Au|| | Bull — 0

m<n m<n m<n
. 1
as m — oo. Hence, Z,, converge to AB in |- |1, so that AB € Fg . 1

By Z we denote the set of all functions in C*°(R) that vanish in a neigh-
bourhood of 0. To prove the main theorem of this section we need the following
results obtained in Theorems 2.2, 2.5, 2.8 and Corollary 2.9 (iii) of [11].

THEOREM 4.7. ([11]) Let (A, ||-]l1) be a D-subalgebra of a C*-algebra (2, ||-|).
(i) Let M be a subspace of A such that p(x) € M for any x = z* € A and

p € 2. If M is (~)-closed in A with respect to the injection of A into A, then
A% C M.

(ii) A2 = A" for n > 2.

(iii) Let A4 be the set of all positive elements in A. For any A € Ay, there
exist o, € E such that ¢, (A) (~)-converge to A with respect to the injection of A
into A : ||A — pn(A)]| — 0 and sup ||p,(A)|1 < co.

We are now ready to prove the main theorem of this section.



320 EDWARD KISSIN AND VICTOR S. SHULMAN

THEOREM 4.8. For p # b, the closure of (C%%)? with respect to | - |pq
coincides with F&9.

Proof. Case 1. Let 1 < p and 1 < q. The algebra FP? is closed in (CP1,
| - |p.q). Hence, by Lemma 4.5, it is (~)-closed in (CP9,]- |, ,) with respect to the
map i,,4 of CP7 in C'(H).

Let A = A* € C%? and ¢ € E. Since, by Proposition 3.4, (C%, |- |5,4) is a
D-subalgebra of C(H) and ¢ € C*(R), it follows from Proposition 6.4 of [1] (see
also Theorem 12 of [9]) that ¢(A) € C%Y. Since p # b, A is compact. Hence ¢(A)
is a finite rank operator and thus, it belongs to F5'?. Applying Lemma 4.1 and
Theorem 4.7 (i), we obtain that ®g C (C%?)? C F£?, which completes the proof.

Case 2. Let p=1and 1 < q. Then C’é’q - Cé’q. It follows from Case 1 that
(C’é’q)2 - (C’g’q)2 C fg’q. Hence, by Lemma, 4.1, (C’é’q)3 - fé’qCé’q - fé’q, SO
the closure of (C§9)3 in | - |1, coincides with F&?. By Theorem 4.7 (i),

(OéVQ)Q — (Cé’q)?’ _ fé@

Case 3. Let p < oo and g = 1. Choose r > 1 such that ]%Jr% > 1. Then
CPl C 0", Tt follows from Case 1 that (C%')% C (C5")? C F%". Hence, by
Lemma 4.1, (C%')? C FE"CE' C F2', so the closure of (C5")3 in ||, coincides
with .Fg’l. Using, as in Case 2, Theorem 4.7 (ii), we have that

(C§")? = (05" = 75"

Case 4. Let p = oo and ¢ = 1. We have C’go’l C C;O’Q. It follows from
Case 1 that (C2")? C (0%)? C F2. Hence (C2')? C F&Pnog .

If A is a positive operator in C’go’l, it follows from Theorem 4.7 (iii) that there

are ¢, in = such that A is a (~)-limit of ¢, (A) with respect to i 1, that means,
|[A — ¢n(A)|]| — 0 and sup ||¢n(A)|1 < oo. Since A is compact, the operators

©n(A) belong to ®g. Thus, A is a (~)-limit, with respect to i1, of operators
from Pg.
Let A, B € C2>'. Then A2 B2, (A+ B)? and (A+iB)(A+iB)* are positive

operators in (Cg>")? and
AB = %((AJF B)? — A2 — B2 +i(A+iB)(A+iB)" —iA? —iB?).

Hence, every operator in (Cgo’l)2 is a linear combination of positive operators
from (C’;o’l)2 and, by the above argument, is a (~)-limit, with respect to ioc,1, of
operators from ®g. Applying now Lemma 4.6, we obtain that (Cgo’l)4 - fgo’l.
Therefore, it follows from Theorem 4.7 (ii) that (Cg™") = (Cgo’l)4 = .7-";0’1. 1

COROLLARY 4.9. Let r < p, t < q,p#b and q # 1. Then the closures of
(CEH? and CZ'CL? with respect to | - |, coincide with F51.

Proof. Since &5 C C%' C C%, it follows from Theorem 4.8 that

s = (®s)* C (Cg")* C Cg'CH C (CE")? € FE°.

Taking the closure with respect to | - |, 4, we obtain the result. &
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5. APPROXIMATE IDENTITIES AND THE APPROXIMATION PROPERTY
OF THE ALGEBRAS C%'? FOR SELFADJOINT S

In this section we study mainly the case when S is a selfadjoint operator; this
case is easier to deal with, since we can now employ the Spectral Theorem. The
section is primarily devoted to the establishing of the existence of approximate
identities in the algebras C%?, for selfadjoint S. Since these identities consist of
finite rank operators, this provides an affirmative answer to the approximation
problem. We also show that, for non-selfadjoint S, the algebras C%? have no
bounded approximate identities and that, for selfadjoint S, they have bounded
approximate identities only if p = oc.

First we observe that the algebras C?, 1 < p < oo, have two-sided approxi-
mate identities which are bounded if and only if p = co. Indeed, by Theorem I11.6.3
of [5], any sequence {E,}52 , of operators from C? strongly converging to 1y is a
two-sided approximate identity. If p = oo and all F,, are projections, the identity
is bounded. Let p # oo and suppose that there exists a bounded approximate
identity {E,}52; in CP : sup{|E.|,} = C < oo. Let Q be an m-dimensional

n

projection. Then |Q|, = m!/? and, by (2.9),
(5.1) QEn|p < QI Enlp = [Enlp < €, for all n.

On the other hand, ||Q[, — [QE.|,| < |Q — QEnl, — 0 as n — oo, so that
|QE,|, — m!/P. Comparing this with (5.1), we obtain a contradiction which
shows that the algebras CP, 1 < p < 0o, have no bounded approximate identity.
A closed subspace L of H reduces an operator S if D(S) = Dy (S)® Dy (S)
where
Dp(S)=D(S)NL, Dy.(S)=D(S)nL*,

and if SD1(S) C L and SDy.(S) C L. We start by establishing the existence
of approximate identities in the algebras C%'¢ in the following simplest cases.

PROPOSITION 5.1. Let S be a selfadjoint operator on H.
(i) If H = @ H(j), where all subspaces H(j) reduce S and S|H(j) =
j=1

silp(j), then, for p,q € T\ {b}, the algebra C%? has a countable two-sided ap-
prozimate identity which consists of finite-dimensional projections converging to
1y in the strong operator topology. If p = oo, the approximate identity is bounded.

(i) If 1 < p < ¢ < oo, the algebra C%? has a countable two-sided approwxi-
mate identity which consists of finite-dimensional projections converging to 1y in
the strong operator topology. If p = oo, the approximate identity is bounded.

Proof. In every H(j) choose an increasing sequence of finite-dimensional pro-
jections Q? converging to ;) in the strong operator topology as n — oo. The

n
finite-dimensional projections @, = Q7 belong to ®g, converge to 1y in
j=-n

the strong operator topology and commute with S. Therefore ds(Q,) = 0 and
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05(QnA) = Q,05(A) for A € C%?. Since {Q,}52, is a two-sided approximate
identity in C” for any r < co (see Theorem II1.6.3 of [5]), it follows that

|A - QnA|p,q = |A - QnA|p + |5S(A - QTLA)|q
=|A—-QnA|, +10s(A) — Qnis(A)|;, — 0, asn — occ.

Similarly, |A — @, Alp,q — 0 so {Qn} is a two-sided approximate identity in C%7.

If p = oo then |Qnloc,g = @nloc + [05(Qn)lg = [[@nll = 1, so that {Qn}72,
is a bounded approximate identity in Cg 7. Part (i) is proved.

Let Eg(\) be the spectral measure of S. For every n € Z, set
Ps(n) =Es(n+1)— Eg(n) and [S]= ZnPs(n).
—o00

The operator [S] is selfadjoint and Sp([S]) C Z. By (i), the algebra C[’;’? has a two-
sided approximate identity {@,} which consists of finite-dimensional projections
strongly converging to 1. Since the operator S — [S] is bounded and p < g, it
follows from Proposition 3.3 (i) that C'¢? = Cfgf and the norms are equivalent.

Hence {Q,}52, is a two-sided approximate identity in C%?. 1

To prove the existence of an approximate identity in the general case, we need
the following extension of the result due to Voiculescu ([17]) about the existence
of quasicentral approximate units relative to C9.

PrOPOSITION 5.2. Let H be a subspace of a Hilbert space $ and S be a
bounded selfadjoint operator on H of finite multiplicity. Let q € (1,00] and let
X1,..., Xk € C(9). There exist positive finite rank operators B, on H strongly
converging to 1y such that |Bp,|| = 1, sup |ds(Bp)|1 < oo and

k
1
0s(Bm 0s(Bm)Xi —.
195 ( )|q+;|s( )Xili < —

Proof. Let S have multiplicity N < oo. Then there exist z1,...,zxy € H
such that the linear span of Skx; 1 <i< Nand0 <k < oo, isdense in H. Let H,,
be the subspaces spanned by S*z;, 1 <i < N and 0 < k < n. The projections P,
on H,, strongly converge to 1y, P,_1 < P, and, foralln > 1, P,SP,_1 = SP,_1.
Hence P,_1SP, = P,,_15. Using this and setting A,, = SP, — P,S, we obtain
that
AnPn,1 =0 and AnPn+1 = An

Taking into account that A} = —A,,, we have P,_1A, =0 and P,{1 A, = A,, so
An = (Pn+1 - Pn—l)An = An(Pn+l - Pn—1)~

Thus A,, act on the r-dimensional subspaces H,+19H,_1, 7 < 2N, and, therefore,
there exists K > 0 such that |A,]1 < K||A,|| < 2K||S||, for all n.
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Let @ be the projection on H. By Theorem I11.6.3 of [5], {P,}52; is a two-
sided approximate identity in C'(H). For any X € C(9), QXQ € C(H). Since
A, = QA,Q, it follows from (2.9) that

Tr(AnX)| = [Tr(QAQX)| = [Tr(4,QX Q)| < |4, QXQlx
(52) |An( n+1 — n—l)QXQ‘ |An| ||( n+1 — n—l)QXQ”
2K [S[([|1Pa+1@XQ-QXQ+[QXQ~Pm1QXQ|) — 0, as n—oo.

The dual space of C'*($) is isomorphic to B($)) and the dual space of C(9) is
isomorphic to ce () where % + % = 1. Hence, the dual space of the direct sum

Gy or—gli et
—_——
k
is isomorphic to the direct sum of k copies of B($)) and one copy of C7 (£): any

bounded linear functional on C (1k) + ('Y has the form

(5.3) Fr..1or(Ri+ -+ Re + R) = Te(RyTh) + - - - + Tr(R T),) + Tr(RT),

for Ry,..., R, € C*($) and R € C1(§), where Ty, ..., Ty € B(H) and T € C7(§).
If Xq,...,Xk € C(9), all X;T; belong to C($). Therefore, by (5.2) and
(5.3),
Fr, .1, 7(An Xy o A Xy + Ap)

= Te(A, X1 T1) + -+ + Tr(A, XiTh) + Tr(A,T) — 0,

as n — oo, hence Y,, = A, X, T -—i—AnXk —i—An weakly converge to 0 in C(lk) 10,
By the Hahn-Banach Theorem, 0 belongs to the closed convex set generated by
{Ya}n>m, for any m. Hence, there are positive numbers a( ) ey aff(?n) such that

a4 4+ a™ =1 and the norm of a{ Yy, + -+ a7 ) Yo(m) in C(lk;) +C°

w(m) w(m)
is less than L -+ Therefore,

| A + - ) Awim)| 4 +Z| ) A+ -+ a0 Auem) X, <

w(m)

Set B,, —asn)P + - +O‘£;()

m)

P(m)- Then
85(Bun) = (B — BS) = i(a A+ + al7) Ay

w(m
so that
1
|0s(B |q+2|5s m)Xilt < —.
w(m)—
Since the projections P, increase, By, = P, + Z ﬁ ( P;11—P;) where ﬁ](.m) =
w(m)
> a < 1. Hence

J=i+1

(54) P, < By < Pw(m)v
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so the finite rank operators B, strongly converge to 1y and ||B,,| = 1. We also
have that

sup|ds(Bm )1 < sup (oAl + -+ 0l | Aumh) < 2KS]. u

n n
Suppose that H = @@ H; and A = @ A;, where the operators A; belong to
i= i=1

i=1
the class CP(H;) for some p. Then A € CP(H) and

n

(5:5) (1Al =D (| Aily)?-

i=1

COROLLARY 5.3. Let S be a selfadjoint operator on H. If q € (1,00] then
there exist positive finite rank operators B, strongly converging to Ny such that
|1Bw|l =1, BmD(S) € D(S) and |6s(Bm)|q — 0.

Proof. There is a decomposition H = € H(i) such that all H(i) reduce S
i=1
and S; = S|H (i) are bounded operators with finite multiplicity.
By Proposition 5.2, for any ¢, there are positive finite 1":emk‘0perators{Bfn}f,f:1
on H (i), strongly converging to 1 ;), as m — oo, such that || B}, || = 1, B;, < 1)
and |dg,(B!,)], < 270+™. The finite rank operators B,, = @ B!, strongly
i=1

converge to 1y, B,,D(S) C D(S), ||[Bn|| = 1 and 0 < B, < ly. Since
85(Bm) = @ ds,(B:,), it follows from (5.5) that
i=1

m 1/q

05(Bm)|q < <Z(5Si(33n)q)q)l/q . (§2—q(i+m)> <o 1

i=1

Making use of Proposition 5.2 and Corollary 5.3, we will prove now that, if
S is selfadjoint then all algebras C'%'? have approximate identities.

THEOREM 5.4. Let S be selfadjoint. For 1 < p,q < oo, the algebra C%? has
a two-sided approzimate identity {Bx}aea which consists of positive, finite rank
operators such that ||Bx|| = 1. If (p,q) # (00,1), the approzimative identity can
be chosen countable.

Proof. Step 1. Let ¢ # 1 and let {B,,}2°_; be the set of finite rank operators
constructed in Corollary 5.3. Since they strongly converge to 1y, it follows from
Theorem 111.6.3 of [5] that {B,,}>°_; is a two-sided approximate identity in C?
and C9. We obtain from Corollary 5.3 that, for any X € C%¥,
| X = BpXlpg =X = BnX|p + |65(X — B X)lq

<X = BpnXlp +[05(X) — Bmds(X)|q + [65(Bm)X|g — 0

as m — oo, since |0s(Bm)X|q < [0s(Bm)|¢l| X||. Similarly, | X — X B,
Hence {B,,}2_, is a two-sided approximate identity for C%%.

(5.6)

— 0.

p,q
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Step 2. Let ¢ = 1. The case p = 1 was proved in Proposition 5.1. Let
1 <p<ooand %‘Fi = 1. Then p’ € (1,00). By Corollary 5.3, there exist positive
finite rank operators {B,,}5°_; strongly converging to 1y such that ||B,,|| = 1,
By < 1y, B,,D(S) € D(S) and |65(By)|,r — 0. For X € C%', we obtain from
(2.8) that

|05(Bm) X1 < [05(Bm)lp [ X|p — 0, asm — oo.

Combining this with (5.6) yields that {B,, }5°_; is a two-sided approximate identity
for Cg’l.

Step 3. Let (p, q) = (00, 1). There is a decomposition H = é () such that

i=1
all H(i) reduce S and the operators S|H (i) are bounded with finite multiplicity.
k

The projections Qx on H = P H (i) commute with S and S, = Q.S are bounded
i=1

selfadjoint operators of finite multiplicity. Since @y strongly converge to lp,
it follows from Theorem III.6.3 of [5] that {Q}72, is a two-sided approximate
identity in all CP, p € [1, o0].
Fixe > 0andlet X4,...,X, € Cgo’l. Choose k such that foralli =1,...,n,
|Xi — Qe XiQrloo <&, [Xi— XiQkleo <e,
0s(Xi) — Qds(Xi)Qxl1 <e  and  [65(X;) — 65(X;)Qrl1 <e.

Since the operator S = QS is bounded with finite multiplicity, it follows from
Proposition 5.2 that there exist positive finite rank operators B,, on $j strongly
converging to 1y, such that B,, < 1g,, ||Bw| = 1 and |ds, (Bm)Xil1 < L, for
i=1,...,n. We have

|Xi — BnXiloon = |Xi — BnXiloo + |0s(Xi — B Xi)|1.
Since B,, = Q1B = BnQk,
| X — B Xiloo
= |Xi — QrXiQk|oo + |QxXiQk — BmQrXiQk|oo + |BmnQiXiQk — BmXiloo
< e+ |QrXiQk — BnQrXiQxloo + | Bm |l 1 XiQk — Xiloo
< 26 + |QrXiQr — BmQrXiQk oo
Similarly,
105 (Xi) — Bmds(Xi)|1 < 26 + |Qrds(Xi)Qr — BmQrds(Xi)Qxl1-
Since ds(By,) = s, (Bm ), we obtain, therefore, that
|05(Xi — BmXi)|1 < |05(X3) = Bmds(Xi)l1 + |08, (Bm) Xi|1

< 26 + |Qr0s(X;)Qr — BmQrds(X;)Qul1 + %

Thus
| X — B Xiloon

e + |QeXiQr — BnQrXiQkloo + |Qrds(Xi)Qr — BrnQrds(Xi)Qrlr + %
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Since B, strongly converge to 1, , by Theorem I11.6.3 of [5], {B,,}5°_; is a two-
sided approximate identity in C*°($;) and C1($;). Since QrX;Qr € C®(9Hy),
Qrds(X;)Qk € C1(Hy), we can find By, such that |X; — B, X;|oo,1 < 5e.

Let A be the set of all finite subsets of Cg.o’l. By the above argument, for any
A € A, there exists a positive finite rank operator By on H such that B) < lg,
[Ball =1 and |X — BxX|e,1 < %, for any X € A, where n is the number of
elements in A. Since |X — X Bj|oo,1 = |X* — BaX"|c0,1, we obtain that {Bx}aea
is a two-sided approximate identity for C;O’l. 1

COROLLARY 5.5. If S is a selfadjoint operator on H then C%* = F&9 for
1<p,qg<o0.

Proof. By Theorem 5.4, the algebras C%'? have two-sided approximate iden-
tities { Bx}area which consist of finite rank operators. For A € C%?, By A are finite
rank operators. Since |A — ByAlp 4 — 0, we have that C%? = FE. 1

Let 1 < p < co. We call an operator S on H p-semidiagonal if there exists
a sequence of positive finite rank operators {Q,}52; which preserve the domain
D(S), strongly converge to 1y and

(5.7) sup |SQn — QnS|, < .
Clearly, if S is p-semidiagonal, it is g-semidiagonal for p < q.

THEOREM 5.6. (i) Any selfadjoint operator S is p-semidiagonal for p > 1.
Moreover, there are {Q,}52, such that lim [SQ, — Q,S|, = 0.
(ii) A selfadjoint operator S is 1-semidiagonal if and only if

(5.8) / ks (£) dt < oo,

R

where kg(t) is the spectral multiplicity of the absolutely continuous part of S. In
particular, S is 1-semidiagonal if it is bounded and has finite multiplicity.

(iii) Closed non-selfadjoint symmetric operators are not p-semidiagonal for
any 1 < p < oo.

Proof. Part (i) follows from Corollary 5.3.

If S is a bounded selfadjoint operator with finite multiplicity, it follows from
Proposition 5.2 that S is 1-semidiagonal.

Let S be selfadjoint and 1-semidiagonal and let {Q,,}22; be positive finite
rank operators which preserve the domain D(S), strongly converge to 1y and
sup |SQn — QrnS|p = C < co. Let S be bounded. It follows from Proposition 1.5

of [17] and Remark 2.3 of [17] that there exists a universal constant « such that
ISl
(5.9) / ks(t)dt < aC.
=Sl
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Let S be unbounded. For any 0 < A < oo, let Py = Pg[—\, ] be the spectral
projection of S. Then Sy = P,S is a bounded selfadjoint operator on Hy = P\H,
finite rank operators P\@Q, P, strongly converge to Py, as n — oo, and

|SAP)\QnP)\7P)\QnPAS)\‘1 = |P)\(SQn*QnS)P)\‘1 < HP>\|| |SQn*QnS|1 ”P)\” <C

Hence S is 1-semidiagonal and, by (5.9),

A A
/ ks (£) dt — / ks, (1) dt < aC.
A A

Therefore

/ ks(t)dt = aC < co.
Conversely, let (5.8) hold. Set
m—+1
Ay = / ks(t)dt, P, =Pslm,m+1], S,=PF,S and H, =P,H.

Since ay, < 00, it follows from Remark 2.3 of [17] and the definition on page 5 in
[17] that there exists an increasing sequence {R,,(m)}5%; of positive finite rank
contractions on H,, strongly converging to P,,, as n — oo, such that

lim [Sp, Ry (m) — Ry (m) S |1 = a—m, for all m.
n s

For every m, we choose a subsequence A,.(m) = R, (m) such that

r

Qm 1
‘SmAr(m) - Ar(m)smh < 7 + W

n

Set Qn, = @ An(m). Since ||Qn| = sup ||An(m)| < 1, Q, are positive finite
m=—n m

rank contractions preserving D(S). For « € Hy,, Qnx = An(m)z — x, as n — oo.

Since linear combinations of elements from all H,,, —oco < m < oo, are dense in

H and since the sequence {@,} is bounded, it follows that @,, strongly converge

to . Moreover,

n

Qo 1
<D <7+2n(\m\+1)>

15Q0 — QuSh = ‘ S @ (SmAn(m) — An(m)Sn)

m=—n 1 m=—n
1/ 17

< f/k:s(t)dt+22‘”< = / ks(t) dt + 4.
™ e

Hence S is 1-semidiagonal. Part (ii) is proved.
Part (iii) follows from the lemma below.
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LEMMA 5.7. Let S be a closed non-selfadjoint symmetric operator on H
and {A,}>2, be a sequence of operators in Ag (see (1.2)) weakly converging to
1. If A,D(S*) C D(S), for all n, then ||SA, — AnS|| — o0, asn — oo. In
particular, if A, are finite rank operators in Ag weakly converging to lg then
ISA,, — A, S| — .

Proof. By (1.2), the operators SA,, — A, S extend to bounded operators R,,.
For x € D(S) and y € D(5*),

(S.’I?,A:;y) = (AnSx,y) = (SAnxay) - (Rn'ray) = (l‘,AZS*y) - (l‘,R:;y),
so that A%y € D(S*) and R} |D(S*) = A%S* — S*A%. Hence R!|D(S) = A%S —
SAY.

Making use of this, we obtain that

(Sz, Any) = (A, 52,y) = (SALz,y) + (Roz,y) = (2, AnS7y) + (2, Ruy),
so that Ap,y € D(S*) and R, |D(S*) = S*A,, — A,S*.

Since A,, weakly converge to 1y, we have that, for ,y € D(S),

(Rnz,y) = (SAn,y)—(4,S2,y) = (Anz, Sy)—(AnSz,y) — (2, Sy)—(Sz,9) =0,
asm — o0o. If sup | Ry, || = sup [|SA, —A,S|| < o0, it follows from the above formula

that (R,u,z) — 0, as n — oo, for all u,z € H, so R, weakly converge to 0.

Let z € D(S*). Since A,,D(S*) C D(S), we have that, for any z € H,

(SApz,2) = (S Anx, 2) = (AnS™z, 2) + (Rpz, 2) — (S™x, 2),

as n — o0o. Hence A x @ SA,x weakly converges to x @ S*z in H & H. Since S
is closed, the subspace L = {u® Su : u € D(S)} is closed in H & H and, hence,
weakly closed. Since all A,z belong to D(S), we have that A,z ® SA,z € L.
Therefore © @ S*x € L, so that x € D(S) and Sz = S*z. Thus, S is selfadjoint
and this contradicts the assumption of the lemma.

If, in particular, all A, are finite rank operators in Ag then A, D(S) C D(S)
implies that A, H C D(S). Hence ||SA, — A,S|| — c0. 1

The problem of the existence of bounded approximate identities in the alge-
bras C%? and F5? can be now solved in full generality.

PROPOSITION 5.8. If S is a non-selfadjoint operator, the algebras C%? and
F&9, 1< p,q< 00, have no bounded approzimate identities.

Proof. Suppose that {E,} is a bounded approximate identity in F5'?. Then
there exist @, € ®g such that |E, — Qnlp,q < % Clearly, {Q,} is a bounded
approximate identity in F£9, so [|05(Qn)| < |@nlp,q < C < 0.

On the other hand, by (3.5), for any x,y € D(S),

[z |@ny—yll = [2@(Qny—y)lp = |@n(z@y) —2Qy|, < |Qn(r@y) —2Ylp 4 — 0,
as n — oo. Hence ||Qny —y|| — 0, as n — oo. Since [|Qn]] < [@nlpq < 00, it
follows easily that |@Q,z — z|| — 0, as n — oo, for any z € H, so @, strongly
converge to 1y. Therefore, by Lemma 5.7, ||05(Qx)|| = [|1SQn — @nS|| — o0, as
n — oo. This contradiction proves the proposition for the algebras F5.

Assume now that {F,} is a bounded approximate identity in C5'?. By The-
orem 4.8, all E2? belong to 57 and, for any A € F57,

|A_E721A|p7q < |A_EnA|p,q+|EnA_E721A|p,q < |A_EnA|p7q+|En|p,q ‘A_EnA|p,q~

Hence, {E?} is a bounded approximate identity in F%? and this contradicts the
discussion at the beginning of the proof. &
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THEOREM 5.9. Let S be a selfadjoint operator on H and let ks(t) be the
spectral multiplicity of the absolutely continuous part of S.
(i) If p # oo, then the algebra C%? has no bounded approzimate identities.
(ii) If q # 1, then the algebra C3? has a bounded approzimate identity.
(iii) The algebra Cgo’l has a bounded approximate identity if and only if

oo

(5.10) / ks(t) dt < oo.

—00

Proof. Let p < co and {E,}72; be a bounded approximate identity in C§%.
Then |E,|, < |Eylpq < K, for some K > 1, and, for any A € C%7,

|[A—E,Al, <|A—E,A|,q — 0, asn— oo.

Let B € C? and € > 0. Since the algebra C%? is dense in CP, choose A € C%*?
and n. such that |B — A, < 3% and |A — E, A, < § for n > n.. By (2.9),

2
B E,Bl, < |B=Aly+|A~ B Al + |E, A= E,Bl, < +|Eal, |4~ Bl, <e,

so {E,}52, is a bounded approximate identity in C?. This contradiction shows
that C'%'? has no bounded approximate identity if p < co. Part (i) is proved.

If ¢ # 1, it follows from Corollary 5.3 and Theorem 5.4 that there is an
approximate identity {B,}s2; in Cg? which consists of finite rank operators
such that ||B,|| =1 and |6s(B,)|q — 0, as n — co. The idenity is bounded, since

|Bn|oo,q = || Ball + |5S(Bn)|q =1+ |§S(Bn)|q —1 asn—oo.

Assume that {E,} is a bounded approximate identity in Cg>'. As in Proposi-
tion 5.8, we obtain that there exists a bounded approximate identity {Q,} in
Cgo’l which consists of finite rank operators strongly converging to ly. Since
[SQn — QnShh = 105(Qn)1 < |Qnloo1 < C, the operator S is 1-semidiagonal. It
follows from Theorem 5.6 (ii) that (5.10) holds.

Conversely, let (5.10) hold. Set P,, = Pg[m,m + 1], Sy, = PpS and H,, =
P, H. Tt follows from the proof of Theorem 5.6 (ii) that, for every m, there exists
an increasing sequence {R,,(m)}52; of positive finite rank contractions on H,,

n
strongly convering to P, as n — oo, such that the operators Q, = & R,(m)
m=—n
are positive finite rank contractions, preserving D(S) and strongly converging to
1y, and, for all n,

o0

105(Qu)l1 = 19Qn — @uSls <§ / Fa(£) df + 4.

—00
Hence sup |Qnoo,1 < sup ||Qnll + sup|ds(Qn)|1 < oo.
n n n

If y € Hy then Sy R, (k)y — Sy = Sy, as n — oo, since Sy is bounded.
Hence

5S(Qn)y = i(SQny - Qnsy) = i(SkRn(k)y - Qnsy) - i(Sy - Sy) =0,
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as n — 00. Since linear combinations of elements from Hy, —oco < k < oo, are
dense in H and since sup ||ds(Qn)| < sup|ds(@n)]1 < oo, the operators d5(Qy)
n n

strongly converge to 0.

The sequence {Q,}22; is bounded in |- |1 and, for A € O3,

|A = QnAlsc,1 = [|A — QnAll +[05(A — QnA)x
<A = QuA[l + [65(A) = Quds(A)|1 + [05(Qn) Al

Since {Q,}5°, strongly converges to 1y, it is an approximate identity in C(H)
and in C'. Hence, to prove that {Q,}>; is a bounded approximate identity in
C’;O’l, it suffices to show that [05(Qn)Al1 — 0, as n — co.

By Theorem 5.5, O3> = Fg'' 50 @ is dense in Cg>". Since sup |65(Qn)]1 <

00, it follows from (2.9) that, in order to prove that [ds(Q,)A|1 — 0 for A € C;O’l,
it only suffices to show this for all A € ®g. Since (see (3.6)) ®g is the linear span
of rank one operators x ® y, for x,y € D(S), it is only sufficient to show that
|0s(Qn)(z @y)|l1 — 0, as n — oo, for z,y € D(S). Making use of (3.5) and taking
into account that dg(@,,) strongly converge to 0, we obtain that

105(Qn)(z @ y)lr = [z ®0s(Qn)yh = [|2[| [0s(Qn)yll — 0, asn —oco. &

6. DUAL AND SECOND DUAL SPACES OF THE ALGEBRAS Cg,q

Let p’ be the conjugate exponent of p, 1 < p < oo (see (4.1)). The dual space of
the algebra CP is isometrically isomorphic to C*': for any T € cr',
Fr(A) =Tr(AT), AeCP,

is a bounded linear functional on C? and |Fr| = |T|y (see [5]). Therefore,
the algebras CP, 1 < p < oo, are reflexive and the second dual of the algebra
C> = C(H) is isometrically isomorphic to the algebra C* = B(H).

In [12] it was shown that if S is a unbounded selfadjoint operator then
the second dual of the algebra Cg”™ is isometrically isomorphic to the algebra

Cg’b = Ag. In this section we show that, for any symmetric S, the algebras C%9,
1 < p,q < o0, are reflexive, and that for selfadjoint S, the second duals of the
algebras C%'™ and C™*, 1 < p < oo, are isometrically isomorphic to the algebras
Cgl’b and C’g’p l respectively.

Let X,Y be Banach spaces. Their direct sum X ®Y will be considered with
two equivalent norms:
lz@yll = =[x +llylly and [[z®y||™ = max([lz]lx, |lylly), forze X andyeY.
For clarity, we will write in the second case X@®Y instead of X @Y.

If X* and Y* are their dual spaces then

(X@Y)" =X*dY* and (XQY)'=X"@Y*

Clearly, if X and Y are reflexive, X @Y is also reflexive.

Let Z be a linear subspace of X. The annihilator

Zt={FeX*:F(2)=0, forall z € Z}

of Z in X* is a closed subspace of X* and from the general theory of Banach
spaces (see [4], I1.4.18 and [14], IIT, Problem 30) we have the following lemma.
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LEMMA 6.1. The dual space Z* of a closed subspace Z of X is isometri-
cally isomorphic to the quotient space X*/Z*+ and the second dual Z** of Z is
isometrically isomorphic to Z+1 where

ZrE={0e X :0(F)=0, for all F € Z}.

Let 1 < p,g < oo and p’ and ¢’ be their conjugate exponents (see (4.1)).

From the above discussion it follows that the space CP'&CY can be identified
with the dual space of the Banach space C? & C? by the formula:

(6.1) Frar(A® B) = Te(AR) + Tx(BT), for A® B e CP @ (Y,
and || Frer|| = [|[R®T||,, . This yields

LEMMA 6.2. (i) If 1 <p,q < oo, then the space CP @ C1 is reflexive.
(i) If 1 < g < oo, then the second dual space of C* & C? is isometrically

isomorphic to C* & C1.

(iii) The second dual space of C*™ @ C™ is isometrically isomorphic to
C* & CP.

Let p,q € T and S be a symmetric operator on H. The linear manifolds

FPU—{A@®b5(A): Ac FBU} and C%9={Aads(A): AeCl?}
in C? @ C17 are, clearly, isometrically isomorphic to the algebras (F5, |- | 4) and
(C%9,] - |p.,q), respectively. Hence they are closed subspaces of C? & C1.

PROPOSITION 6.3. For 1 < p,q < oo, the algebras (FE,| - |,4) and
(C%9,| - |p.q) are reflexive.

Proof. 1t is well known that any closed subspace of a reflexive space is also
reflexive. Since F5'? and C%? are closed subspaces of the reflexive space C? & C4,
we obtain that 57 and C? are reflexive. Since (F§9,|-|,4) and (C%7, |- ,.4)

are, respectively, isometrically isomorphic to (]?g’qH “|lp,q) and (équu “|lp,q), they
are reflexive. 1

For p,q € T, set
1 ={T e C?: TD(S) C D(S*), T*D(S) C D(S*) and i(S*T — T'S)|D(S)
extends to a bounded operator Tg from the class C9}.

It follows that C%9 C 7. If S is selfadjoint, T's = dg(T') for any T € T,
so T? = C%?. Clearly, %7 is a linear subspace in C?.
For T € %% and z,u € D(S),

((Ts)*z,u) = (2, Tsu) = (2,i(S*T — TS)u) = I(S*T* — T*S)z,u),
so that
(6.2) (Ts)"|D(S) =i(S™T" = T75)|D(S) = (T7)s|D(S).
From this and from (2.7) it follows that (T*)s = (Ts)* € C?. Hence T* € T%1.
By T%7 we denote the following linear manifold in CIGCP:
= {Ts®T: T €Ty}

LEMMA 6.4. For any p,q €T, ‘Eg’q is a closed subspace in CIGCP.
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Proof. Let T,, € ¥%% and suppose that T;, — T in C? and (T},)s — R in C%.
By (2.6), T,, converge to T and (T},)s converge to R with respect to the norm || - ||
in B(H). Let z,y € D(S). Since S*T,,|D(S) = T,,S|D(S) —i(Ty)s|p(s), we have
that

(Tz,Sy) = lim(T,z, Sy) = im(S*T,x,y) = im(T,, Sz, y) — iim((T,) sz, y)
= (T'Sz,y) — i(Rx,y).

Therefore Tz € D(S*) and S*Tx = TSz — iRx. Thus, TD(S) C D(S*) and
R="Ts.

It follows from (6.2) that (T5,)* € T4 and ((T5,)s)* = ((T,)*)s. Hence, we

obtain from (2.7) that (T},)* — T* in C’p and ((Tn)*)s — R* in C9. Repeating
the above argument, we obtain that 7*D(S) C D(S*), so that T € T%?. Thus,

%g’q is a closed subspace in C4GCP. 1
Let z,y € D(S*) and T =2 ® y. By (3.2) and (3.3), for z € H,
Tz=(z,x)y € D(S*), T'2=(y®x)z=(z,9)xr € D(S*), and
Ts =i[S*T —TS] =iz @ S*y — (S*z) @ ],
so T € T for any p > 0 and ¢ > 0.

Let 1 < p,q < oo and let p’ and ¢’ be their conjugate exponents. Since
C%9 C CP @ 04, the annihilator (C%?)* is a closed subspace of CP &CY.

(6.3)

PROPOSITION 6.5. For 1 < p,q < 00, (]?g’q)L = ‘E‘g”".

Proof. Let Ts ® T € %qS/J’/ and A = x®y, for z,y € D(S). By (3.3) and
(6.2),

05(A) = i[S(z ®y) — (r@y)S] = i[z ® Sy — (Sz) ® ],
(6.4) ds(A)T =i(z @ Sy)T —i((Sz) @ y)T =i(T*r) ® Sy — i(T*Sz) @y,
ATs = (x @ y)Ts = (Ts)"x) @y = i((T™S = S"T")z) ©y
It follows from (3.4), (6.1) and (6.4) that
Froer(A® ds(A)) = Tr(ATs) + Tr(6s(A)T)
=i(y,(T*S — S*T™)z) +i(Sy, T"z) —i(y,T"Sx) = 0.

Hence Frogr(A @ Ag) =0 for any A € ®g.
Since ®g is dense in Fg'? and (F&9,| - |,,q) is isometrically isomorphic to

(ﬁg’q, Il - llp.q), the operators A & dg(A), where A € ®g, are dense in ﬁg’q. Since
Ts®T € CPaCT, Frygr is a continuous functional on C? @ C9. Therefore,
Froer(A®8s(A)) =0, for A € F59. Thus Freer € (F59)*, so %qsl’p/ C (FH9)L.
Conversely, let R® T € (]?g’q)l CCPECY and A = 2@y € Bg, where
x,y € D(S). From (3.3), (3.4), (6.1) and (6.4) it follows that
0= Frar(A®ds(A)) = Tr(AR) + Tr(ds(A)T)
=Tr((R*r) ®y) + Tr[i(T*z) @ Sy — (T*Sz) ® 9]
= (y,R"z) +i(Sy, T"xz) —i(y, T*Sx).
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Hence
(Sy, T*x) = (y,(T*S —iR")x), for z,y € D(S).
Therefore T*x € D(S*) and S*T*x = (T*S —iR*)z. Thus T*D(S) C D(S*) and
(Sz,Ty) = (T"Sz,y) = (S*T*z,y) +i(R*z,y) = (x,TSy) — (x,iRy).
From this it follows that Ty € D(S*) and S*Ty = T'Sy — iRy. Hence
TD(S) C D(S*) and R|D(S)=i[S*T —TS]|D(S).
Hence T € T4% and R = Ts. Thus (F2N)L C TLY so (FRO)L =347 g
Since the Banach spaces (F57,| - |,4) and (F57 | - |l,.q) are isometrically
isomorphic, Lemma 6.1 and Proposition 6.5 yield

COROLLARY 6.6. Let 1 < p,q < oo and p’ and ¢ be their conjugate ex-
ponents. The dual space of the Banach x-algebra (FE5?,| - |,q) is isometrically
isomorphic to the quotient space (CP &CY)/TLP .

By ¢ we denote the isomorphism of C? & C? on C? & CP:

p(A®pB)=B®A, AcCP?and Be(C%.
If S is selfadjoint then %7 = C%?, so %g’q = <p(6g"Z). Combining this with
Proposition 6.5 and Corollaries 5.5 and 6.6, we obtain the following result.

COROLLARY 6.7. Let S be a selfadjoint operator and 1 < p,q < co. Then
(CENE = (CLP) and the dual space of the algebra (C%?,| -, 4) is isometrically
isomorphic to the quotient space (CP,GNBC‘?/)/@(@% .

In Proposition 6.3 it was shown that, for 1 < p,¢q < oo, the algebras C%*
are reflexive for any symmetric operator S. Below we consider the case when S is
selfadjoint and either p = co or ¢ = cc.

THEOREM 6.8. Let S be a selfadjoint operator on H.

(i) If 1 < p < oo then (CE)tE = C’g’b, so that the second dual space of
the algebra C%™ is isometrically isomorphic to Cg’b.

(i) (12]) (C™=)tt = CY®, so that the second dual space of the algebra
C3™ is isometrically isomorphic to Cg’b = As.

(iii) Let 1 < ¢ < oo then (CZT)LE = 9, so that the second dual space of
the algebra Cg? is isometrically isomorphic to C’g’q.

Proof. First observe that <p(6g"f)L = gp((équ)L). Since oo’ = 1, it follows
from Corollary 6.7 that (CZ>)L = @(aé’pl). If 1 < p<oothenl<p < oo
Since 1’ = b, we obtain from Corollary 6.7 that (ég’P')L = go(ag’b). Hence

(G50 =05 = o((Cs™)*) = w(p(CE™) = C5"
and it follows from Lemma 6.1 that the second dual space of (C%*, | - [|p.c0) i
isometrically isomorphic to (ég’b, | lp,b)- Taking into account that C%> is iso-

metrically isomorphic to (6 2% llp,0c) and that Cg’b is isometrically isomorphic

o (ég’b7 I - |p,b), we obtain the proof of part (i). In the same way we prove parts
(i) and (ii). ®
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REMARK. In Example 3.4 of [12] a non-selfadjoint operator S was considered

such that the second dual space of Cg”™ is a proper subspace of Cg’b. 1
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