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1. INTRODUCTION

The fundamental operator in Kac algebra theory ([4]) or the multiplicative unitary
in C∗-Hopf algebras ([1]) is a unitary operator V : H⊗H → H⊗H satisfying
the pentagon equation V23V12 = V12V13V23 on the three-fold tensor product of
the Hilbert space H. (Here we use the standard notation Vij for the operator
acting as V on the i-th and j-th factor and as the identity on all the others.
V23 = id⊗V , for example.) V encodes information about the structure of a
quantum group A and its dual Â in a symmetric way. If H is finite dimensional
then a multiplicative unitary is the complete information necessary to determine
a unique finite dimensional C∗-Hopf algebra ([1]). In the infinite dimensional case
additional assumptions are necessary: these are the regularity and irreducibility
assumptions in the work of Baaj and Skandalis.

If A is a finite dimensional C∗-Hopf algebra then a multiplicative unitary on
the Hilbert space of the left regular representation can be given by the formula
V (x⊗ y) = x(1)⊗x(2)y where x 7→ ∆(x) ≡ x(1)⊗x(2) denotes the coproduct on
A and x, y ∈ H ≡ A. As it has been noticed in [3], if A is only a weak C∗-Hopf
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algebra then the operator V defined by the same formula still satisfies the pentagon
equation but it is only a partial isometry. The purpose of the present paper is to
give necessary and sufficient conditions for an operator V : H⊗H → H⊗H to
determine a C∗-weak Hopf algebra.

C∗-weak Hopf algebras are finite dimensional “quantum groups” with co-
product, counit, and antipode, but have no 1-dimensional representations in gen-
eral. Thus the counit is not an algebra map and the antipode axioms have to be
weakened accordingly. Different but equivalent set of axioms can be found in [3],
[12] and [2] and for a detailed exposition of these quantum groups we refer to [2].
For the reader’s convenience we give here the definitions needed in this paper:

Definition A weak bialgebra (WBA) is a finite dimensional associative al-
gebra A over C with unit 1l which is also a coalgebra with coproduct ∆ : A →
A⊗A and counit ε : A → C such that the algebra and coalgebra structures
are compatible in the sense of axioms (i)–(ii)–(iii) below. (Sometimes we use
the notation x(1)⊗x(2) for ∆(x) suppressing a summation simbol and also write
x(1)⊗x(2)⊗x(3)⊗ · · · etc for multiple coproducts.)

(i) ∆ is multiplicative, i.e., ∆(xy) = ∆(x)∆(y).
(ii) ε is weakly multiplicative, i.e., for x, y, z ∈ A

(1.1) ε(xy(1))ε(y(2)z) = ε(xyz) = ε(xy(2))ε(y(1)z).

(iii) The unit is weakly comultiplicative, i.e.

(1.2) (∆(1l)⊗ 1l)(1l⊗∆(1l)) = 1l(1)⊗ 1l(2)⊗ 1l(3) = (1l⊗∆(1l))(∆(1l)⊗ 1l).

The WBA (A, 1l,∆, ε) is called a weak Hopf algebra (WHA) if
(iv) there exists a linear map S : A→ A, called the antipode, such that for

all x ∈ A

x(1)S(x(2)) = ε(1l(1)x)1l(2)(1.3)
S(x(1))x(2) = 1l(1)ε(x1l(2))(1.4)
S(x(1))x(2)S(x(3)) = S(x).(1.5)

A weak C∗-Hopf algebra (C∗-WHA) is a WHA A together with a star operation
such that A is a C∗-algebra and ∆ is a ∗-algebra map.

The main advantage of WHA’s in describing, for instance, the symmetry of
the superselection sectors in low dimensional Quantum Field Theory (QFT), is the
flexibility of their representation theory. Given any rigid monoidal C∗-category C
with finitely many irreducible objects one can construct a C∗-weak Hopf algebra A
with representation category equivalent to C. Roughly speaking this means that
C∗-WHA’s exist for arbitrary (finite) set of 6j-symbols. Since the 6j-symbols
do not determine a unique C∗-WHA, one has to supply more data than just a
category. These data are provided for example by a finite index depth 2 inclusion
N ⊂ M of von Neumann algebras with finite dimensional centers ([9]). For II1
factors and weak Kac algebras, see [6] and [7].

In a recent paper ([5]) M. Enock and J.-M. Vallin study the situation of a
general depth 2 inclusion of von Neumann algebras with a regular operator valued
weight and construct a certain isometry called a pseudo-multiplicative unitary
([13]). In the finite index case it is worth to compare their construction with
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ours. In Section 6 we discuss the relation between finite dimensional pseudo-
multiplicative unitaries and multiplicative isometries, and reveal also some con-
nection with Ocneanu’s non-Abelian cohomology ([10]). It will be shown that a
unital multiplicative partial isometry V : H⊗H → H⊗H, introduced in Sec-
tions 2 and 3, always determines a pseudo-multiplicative unitary U : H↙H →
H↖H. By the results of Section 3, this situation corresponds to the case when
the “right leg” and “left leg” of V , the algebras A and Â, respectively, are weak
bialgebras. In Section 4 we put stronger conditions on V and assume that it sat-
isfies a regularity condition, generalizing the one of [1]. Then we show that A and
Â are C∗-weak Hopf algebras in duality.

The way from pseudo-multiplicative unitaries to multiplicative isometries is
not completely understood. Although we show at the end of Section 6 that every
U determines a multiplicative isometry V , unitalness or regularity of this V remain
unsolved.

2. MULTIPLICATIVE PARTIAL ISOMETRIES

Let H be a Hilbert space and V : H⊗H → H⊗H be a partial isometry, i.e.
V V ∗V = V . We shall say that V is a multiplicative partial isometry (MPI) if the
following equations hold on the 3-fold tensor product H⊗H⊗H:

V23V12 = V12V13V23(2.1)
V13V23V

∗
23 = V ∗

12V12V13(2.2)
V12V

∗
12V23 = V23V12V

∗
12(2.3)

V12V
∗
23V23 = V ∗

23V23V12.(2.4)

The new equations (2.2)–(2.4) serve to fix the basic properties of the left and
right legs of the operators V ∗V and V V ∗ which become later the right and left
subalgebras of the WBA’s A and Â. For a geometrical interpretation of these
equations see Section 6. The following equations are immediate consequences:

V ∗
12V23V12 = V13V23(2.5)
V23V12V

∗
23 = V12V13(2.6)

V12V
∗
23 = V ∗

23V12V13(2.7)
V ∗

12V23 = V13V23V
∗
12(2.8)

V12V13V
∗
13 = V23V

∗
23V12(2.9)

V ∗
13V13V23 = V23V

∗
12V12.(2.10)

For example, in order to obtain (2.5) multiply (2.1) by V ∗
12 and then use (2.2).

The reader may easily prove the remaining equations in order of appearence.
In this note we restrict ourselves to MPI’s on finite dimensional H. Let L(H)

denote the space of linear operators on H and L(H)∗ the space of linear functionals
on L(H). Let V be any operator V ∈ L(H)⊗L(H) and construct the linear maps

λ : L(H)∗ → L(H) λ(ω) := (ω⊗ id)(V )(2.11)
ρ : L(H)∗ → L(H) ρ(ω) := (id⊗ω)(V ).(2.12)
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Their images A := λ(L(H)∗) and Â := ρ(L(H)∗), called the right leg and left leg
of V , respectively, are subspaces of L(H) that are in duality with respect to the
non-degenerate bilinear form

(2.13) 〈λ(ω), ρ(ω′)〉 := (ω⊗ω′)(V ) ≡ ω(ρ(ω′)) ≡ ω′(λ(ω)).

One obtains directly that V ∈ Â⊗A.
Let us introduce the following two binary operations on L(H)∗:

(2.14) (ω ? ω′)(X) := (ω⊗ω′)(V ∗(1⊗X)V )
(ω � ω′)(X) := (ω⊗ω′)(V (X ⊗1)V ∗) , X ∈ L(H).

If V is an MPI then we obtain

λ(ω)λ(ω′) = (ω⊗ω′⊗ id)(V13V23)
(2.5)
= λ(ω ? ω′)(2.15)

ρ(ω)ρ(ω′) = (id⊗ω⊗ω′)(V12V13)
(2.6)
= ρ(ω � ω′)(2.16)

showing that A and Â are subalgebras of L(H).
The next step is to introduce the would-be coproducts ∆ and ∆̂, at first as

linear maps L(H) → L(H)⊗L(H):

(2.17) ∆(X) := V (X ⊗1)V ∗, ∆̂(X) := V ∗(1⊗X)V, X ∈ L(H).

Lemma ∆ and ∆̂ restrict to algebra maps ∆ : A → A⊗A and ∆̂ : Â →
Â⊗ Â.

Proof. The identities

∆(λ(ω)) = (ω⊗ id⊗ id)(V23V12V
∗
23)

(2.6)
= (ω⊗ id⊗ id)(V12V13) ∈ A⊗A

∆̂(ρ(ω)) = (id⊗ id⊗ω)(V ∗
12V23V12)

(2.5)
= (id⊗ id⊗ω)(V13V23) ∈ Â⊗ Â

show that ∆(A) ⊂ A⊗A and ∆̂(Â) ⊂ Â⊗ Â, so we have the required restrictions.
It remains to show multiplicativity of these restrictions:

∆(λ(ω))∆(λ(ω′)) = (ω⊗ω′⊗ id⊗ id)(V13V14V23V24)
(2.5)
= (ω⊗ω′⊗ id⊗ id)(V ∗

12V23V12V
∗
12V24V12)

(2.3)
= (ω⊗ω′⊗ id⊗ id)(V ∗

12V23V24V12)

= ((ω ? ω′)⊗ id⊗ id)(V12V13)
(2.6)
= ∆(λ(ω)λ(ω′));

∆̂(ρ(ω))∆̂(ρ(ω′)) = (id⊗ id⊗ω⊗ω′)(V13V23V14V24)
(2.6)
= (id⊗ id⊗ω⊗ω′)(V34V13V

∗
34V34V23V

∗
34)

(2.4)
= (id⊗ id⊗ω⊗ω′)(V34V13V23V

∗
34)

= (id⊗ id⊗(ω � ω′))(V13V23)
(2.5)
= ∆̂(ρ(ω)ρ(ω′)).

From now on ∆ and ∆̂ will denote these restrictions of the original maps (2.17).
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Lemma Under the pairing 〈 · , · 〉 the comultiplication maps ∆ and ∆̂ are the
transposes of the multiplications on Â and A, respectively. In particular, ∆ and
∆̂ are coassociative.

Proof. We need to show that for ω, ω′, ω′′ ∈ L(H)∗:

〈λ(ω), ρ(ω′)ρ(ω′′)〉 = 〈∆(λ(ω)), ρ(ω′)⊗ ρ(ω′′)〉

〈λ(ω)λ(ω′), ρ(ω′′)〉 = 〈λ(ω)⊗λ(ω′), ∆̂(ρ(ω′′))〉

or, equivalently
(ω′ � ω′′)(λ(ω)) = (ω⊗ω′⊗ω′′)(V12V13)

(ω ? ω′)(ρ(ω′′)) = (ω⊗ω′⊗ω′′)(V13V23)

which, up to an application of (2.6) or (2.5), are precisely the definitions of the
convolution products (2.14).

In this way, we have shown that a multiplicative partial isometry determines
a pair (A, Â) of algebras in duality such that the induced comultiplications are
algebra maps. It is not clear, however, if these algebras have units or if they are
closed under the ∗-operation. So we need further assumptions.

3. UNITAL MPI’S AND WEAK BIALGEBRAS

First, we will seek for the conditions on the finite dimensional MPI V that ensure
that A and Â are weak bialgebras in the sense of Definition 1.1. Obviously it is
necessary that both of them should be unital algebras (hence counital coalgebras).
We claim that this condition, called unitalness, is not only necessary but also
sufficient. It is also shown that under this condition the elements of A and Â re-
alize a (not necessarily faithful) representation of the Weyl algebra (or Heisenberg
double) Ao Â ([3] and [2]).

Definition A finite dimensional MPI V on the Hilbert space H is unital if
there exist functionals L(H)∗ 3 ε and ε̂ such that A 3 λ(ε̂) ≡ 1l and Â 3 ρ(ε) ≡ 1̂l
are two-sided units for A and Â, respectively.

In order to illustrate that, in contrast to multiplicative unitaries, finite di-
mensional MPI’s are not always unital, let stand here a non-unital example. Let
H = C2 and define V = e11⊗ e12 + e22⊗ e22 with a chosen set of ∗-matrix units
{eij}i,j∈{1,2}. Then one can see by inspection that V is an MPI, its left leg con-
tains 1l, but its right leg does not.

Although the functionals ε and ε̂ in the above definition are not unique,
they have a unique restriction onto A and Â, respectively. These restrictions (also
denoted as ε and ε̂) are then counits of A and Â, respectively.

If V is unital then A and Â are WBA’s provided the counits are weakly
multiplicative or, equivalently, if the units 1̂l and 1l are weakly comultiplicative.
We show this latter property using
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Lemma Let V be a finite dimensional unital MPI on the Hilbert space H
with unit elements 1l ∈ A and 1̂l ∈ Â. Then

∆(1l) = V V ∗(3.1)

∆̂(1̂l) = V ∗V.(3.2)
Proof. By (2.17) we have for any ω ∈ L(H)∗

(1⊗λ(ω))∆(1l) = (ω⊗ id⊗ id)(V13V23(1⊗ 1l⊗1)V ∗
23)

(2.5)
= (ω⊗ id⊗ id)(V ∗

12V23V12(1⊗ 1l⊗1)V ∗
23).

By the assumption that 1l is a (right) unit for A, V (1⊗ 1l) = V and
(1⊗λ(ω))∆(1l) = (ω⊗ id⊗ id)(V13V23V

∗
23) = (1⊗λ(ω))V V ∗.

Setting ω = ε̂ and using the assumption that 1l is a (left) unit for A, (3.1) is proven.
A similar argument shows that
(3.3) ∆̂(1̂l)(ρ(ω)⊗1) = V ∗V (ρ(ω)⊗1)
for any ω ∈ L(H)∗, hence the substitution ω = ε proves (3.2).

As a consequence of Lemma 3.2

(3.4) (∆(1l)⊗ 1l)(1l⊗∆(1l)) = V12V
∗
12V23V

∗
23

(2.3)
= V23V

∗
23V12V

∗
12

= (1l⊗∆(1l))(∆(1l)⊗ 1l)
which, by (2.9), equals to
(3.5) 1l(1)⊗ 1l(2)⊗ 1l(3) = V12V13V

∗
13V

∗
12.

Similarly,

(3.6)
(∆̂(1̂l)⊗ 1̂l)(1̂l⊗ ∆̂(1̂l)) = V ∗

12V12V
∗
23V23

(2.4)
= V ∗

23V23V
∗
12V12

= (1̂l⊗ ∆̂(1̂l))(∆̂(1̂l)⊗ 1̂l),
which, by (2.10), equals to

(3.7) 1̂l(1)⊗ 1̂l(2)⊗ 1̂l(3) = V ∗
23V

∗
13V13V23.

This proves that if V is unital then the resulting algebras A and Â are WBA’s in
duality.

A further consequence of the above lemma is that the subalgebras AL and AR

of A, that were originally defined as the right leg and left leg, respectively of ∆(1l)
([2]), appear now in the form

AL = {(ω⊗ id)(V V ∗) | ω ∈ L(H)∗}(3.8)

AR = {(id⊗ω)(V V ∗) | ω ∈ L(H)∗}.(3.9)
Therefore they are selfadjoint subalgebras in L(H) even if we do not know whetherA
is selfadjoint. Similar conclusion holds for the subalgebras ÂL and ÂR of Â.

As far as the relative position of A and Â in L(H) is concerned, we want to
show that A and Â generate a representation of the Weyl algebra Ao Â on H. As
a matter of fact the pentagon equation (2.1) implies the commutation relation

(3.10)
ρ(ω)λ(ω′) = (ω′⊗ id⊗ω)(V23V12) = (ω′⊗ id⊗ω)(V12V13V23)

= (id⊗ω)(∆(λ(ω′))V ) = λ(ω′)(1)〈λ(ω′)(2), ρ(ω)(1)〉ρ(ω)(2).

The only missing Weyl algebra relation is 1l = 1̂l.
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Proposition Let V be a finite dimensional unital MPI on the Hilbert space
H with unit elements 1l ≡ λ(ε̂) ∈ A and 1̂l ≡ ρ(ε) ∈ Â. Then

(3.11) 1l = 1̂l

as elements of L(H).

Proof. We recall [2] that a projection from Â onto ÂL is provided by ûL(ϕ) :=
ε̂
(
1̂l(1)ϕ

)
1̂l(2). Hence for arbitrary ω ∈ L(H)∗

(3.12) ûL(ρ(ω)) = (ε̂⊗ id⊗ω)(V ∗
12V12V13)

(2.2)
= (ε̂⊗ id⊗ω)(V13V23V

∗
23) =

= (id⊗ω)((1⊗ 1l)V V ∗) = (id⊗ω)(∆(1l)).

Setting ω = ε we obtain (3.11).

As a byproduct equation (3.12) tells us that the subalgebras AR ⊂ A and
ÂL ⊂ Â coincide as subalgebras of Ao Â and therefore of L(H). As a counterpart
of this relation, one can also show that

(3.13) uR(λ(ω)) ≡ 1l(1)ε(λ(ω)1l(2)) = (ω⊗ id)(V ∗V ) =
〈
λ(ω), 1̂l(1)

〉
1̂l(2),

hence AR = ÂL and the identification is given by AR 3 xR 7→
(
1̂l ↼ xR

)
∈ ÂL.

This relation is called the amalgamation relation.

4. REGULAR MPI’S AND WEAK HOPF ALGEBRAS

Given a finite dimensional unital MPI V and the associated WBA’s A and Â one
may look for the extra conditions on V that ensure one of the following special
cases to occur:

(i) There exist antipodes S and Ŝ making A and Â weak Hopf algebras.
(ii) A and Â are closed under the ∗-operation.
(iii) A and Â are C∗-WHA’s in duality.
It turns out that these cases occur at the same time. In this section we give

a necessary and sufficient condition for this to happen that is reminiscent to the
regularity condition of [1].

Remark Problems like whether A and Â are selfadjoint are treated differ-
ently in the papers [1] and [5]. In their approach, the Hopf algebra (Hopf bimodule)
is defined to be the selfadjoint closure of the right or left leg of the (pseudo-) mul-
tiplicative unitary. In our finite dimensional approach, the WBA or WHA A is
the right leg of the MPI V and not larger. On the one hand, this is very natural in
view of the duality of A and Â under the pairing (2.13) but on the other hand this
will cause difficulties if one wants to compare MPI’s with pseudo-multiplicative
unitaries (see Section 6).
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Proposition Let V be a finite dimensional MPI on the Hilbert space H such
that the resulting algebras A and Â are WHA’s with coproducts given in (2.17) and
with (the unique) antipodes S : A→ A and Ŝ : Â→ Â. Then we have the relation

(4.1) V ∗ = (Ŝ⊗ id)(V ) ≡ (id⊗S)(V )

and therefore A and Â are ∗-subalgebras of L(H).

Proof. (2.13) implies that V =
∑
i

βi⊗ bi with any basis {bi} of A and its

dual basis {βi} of Â. Let V ′ :=
∑
i

Ŝ(βi)⊗ bi ≡
∑
i

βi⊗S(bi). We claim that

V ′ = V ∗. In the next computation we use the Sweedler-arrow notation x ⇀

ϕ := ϕ(1)〈ϕ(2), x〉, ϕ ↼ x := 〈ϕ(1), x〉ϕ(2) for x ∈ A and ϕ ∈ Â. Interchanging
the roles of A and Â, the Sweedler-arrows ϕ ⇀ x and x ↼ ϕ are also defined.
Furthermore we have projections uL : A → AL and uR : A → AR defined on
x ∈ A by either sides of axioms (1.3) and (1.4), respectively. The analogue objects
for Â are denoted by ûL and ûR. Using the assumption that A and Â are WHA’s
in duality, we obtain

V V ′ =
∑
i,j

βiŜ(βj)⊗ bibj =
∑
k

ûL(βk)⊗ bk

= 1̂l(2)⊗ 1l ↼ 1̂l(1) = 1̂l ↼ 1l(1)⊗ 1l(2) = 1l(1)⊗ 1l(2) = V V ∗,

V ′V =
∑
i,j

Ŝ(βi)βj ⊗ bibj =
∑
k

ûR(βk)⊗ bk

= 1̂l(1)⊗ 1̂l(2) ⇀ 1l = 1̂l(1)⊗ 1̂l(2) = V ∗V

where in the last step of both cases we used the amalgamation relations (3.12)–
(3.13). Now

V ∗ = V ∗V V ∗ = V ′V V ∗ = V ′∆(1l) =
∑
i

βi1l(1)⊗S(bi)1l(2)

=
∑
i

βi ↼ 1l(1)⊗S(bi)1l(2) = βi⊗S(bi)S(1l(1))1l(2) = V ′;

therefore

(4.2) S(λ(ω)) = (ω⊗ id)(V ∗), Ŝ(ρ(ω)) = (id⊗ω)(V ∗)

implying that S(A) ⊂ A∗ and Ŝ(Â) ⊂ Â∗. This is possible for the bijections
S : A→ A and Ŝ : Â→ Â only if A and Â are ∗-subalgebras of L(H).

The next proposition proves a converse result plus something more.

Proposition Suppose that the MPI V on the Hilbert space H is such that
its right and left legs, A and Â, are ∗-subalgebras of L(H). Then V is unital and
the expressions (4.2) define antipodes that make A and Â C∗-WHA’s in duality.

Proof. Since ∗-subalgebras of L(H) are semisimple, A and Â have units.
Furthermore, being in duality by the pairing (2.13), they possess functionals ε and
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ε̂ required in Definition 3.1. Thus V is unital and A and Â are WBA’s in duality
by the results of Section 3.

In order to construct antipodes, notice that if λ(ω) = 0 then ω(Â∗) = ω(Â) =
0, therefore S in (4.2) is a well defined map A→ A. Similarly, (4.2) defines a map
Ŝ : Â → Â. These maps are the transpose of each other with respect to the
canonical pairing (2.13),

〈Ŝ(ρ(ω)), λ(ω′)〉 = (ω′⊗ω)(V ∗) = 〈ρ(ω), S(λ(ω′))〉

for all ω, ω′ ∈ L(H)∗. It remained to show that the C∗-WHA axioms are satisfied.
Define the antilinear involution ∗ : L(H)∗ → L(H)∗ by ω∗(X) := ω(X∗) for

X ∈ L(H). Then (4.2) can be rewritten as

S(λ(ω)) = λ(ω∗)∗, Ŝ(ρ(ω)) = ρ(ω∗)∗.

By showing that ∗ preserves both convolution products (2.14),

(ω ? ω′)∗ = ω∗ ? ω
′
∗, (ω � ω′)∗ = ω∗ � ω′∗,

we find that both S and Ŝ are anti-multiplicative and anti-comultiplicative. Fi-
nally,

λ(ω)(1)⊗λ(ω)(2)S(λ(ω)(3)) = (ω⊗ id⊗ id)(V12V13V
∗
13)

(2.9)
=

= (ω⊗ id⊗ id)(V23V
∗
23V12) = ∆(1l)(λ(ω)⊗1),

ρ(ω)(1)⊗ ρ(ω)(2)Ŝ(ρ(ω)(3)) = (id⊗ id⊗ω)(V13V23V
∗
23)

(2.2)
=

= (id⊗ id⊗ω)(V ∗
12V12V13) = ∆̂(1̂l)(ρ(ω)⊗1)

prove that the WHA axioms of [12] hold both in A and Â. Since the coprod-
ucts (2.17) are manifestly ∗-algebra maps, A and Â are ∗-WHA’s. Furthermore,
the defining representations of A and Â on H are faithful ∗-representations by
construction, therefore A and Â are C∗-WHA’s.

It remains to characterize the situation of A and Â being selfadjoint in “more
algebraic” terms, i.e. using only the relative positions of A and Â in L(H) with-
out referring to their ∗-structure. This will be the regularity condition on the
multiplicative isometry V .

In analogy with [1], we define the subspace C(V ) :=
∑
i

V i2L(H)V i1 in L(H),

where
∑
i

V i1 ⊗V i2 stands for V , and verify we using the pentagon equation (2.6)

that C(V ) is a subalgebra of L(H).

Lemma Let V be a unital MPI on the Hilbert space H. If C(V ) is a ∗-
subalgebra of L(H) then so are A and Â.

Proof. The proof generalizes the one of Proposition 3.5 in [1]. First we show
that

(4.3) A∗ = {(ω⊗ω′⊗ id)(Σ12V
∗
23V12V13) | ω, ω′ ∈ L(H)∗},
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where Σ : H⊗H → H⊗H is the flip map. This follows from the computations

(ω⊗ω′⊗ id)(Σ12V
∗
23V12V13)

(2.7)
= (ω⊗ω′⊗ id)(Σ12V12V

∗
23)

= (ω′⊗ id)(((ω⊗ id)(ΣV )⊗1)V ∗) ∈ A∗

and
(ω⊗ id)(V ∗) = (ω1⊗ω2⊗ id)(Σ12V

∗
23V12V13)

where we introduced ω1⊗ω2 ∈ L(H)∗⊗L(H)∗ by setting (ω1⊗ω2)(X) := (ε̂⊗ω)
·(ΣX). Thus (4.3) is proven. The next identity

(ω⊗ω′⊗ id)(Σ12V
∗
23V12V13) = (ω⊗ω′⊗ id)(V ∗

13Σ12V12V13)

= (ω⊗ id)(V ∗((id⊗ω′)(ΣV )⊗1)V )

shows that if C(V ) ≡ {(id⊗ω)(ΣV ) | ω ∈ L(H)∗} is closed under the ∗-operation
then so is A∗, hence A.

In the case of Â, repeat the above argument using the fact that in passing
from the MPI V to the MPI ΣV ∗Σ, the left leg Â(V ) becomes the adjoint of the
right leg A(ΣV ∗Σ) and also C(ΣV ∗Σ) = C(V )∗.

AR is the subalgebra of L(H) spanned by the elements {(ω⊗ id)(V ∗V ) | ω ∈
L(H)∗ }. It is obviously a ∗-subalgebra and for aR = (ω⊗ id)(V ∗V )

(1⊗ aR)V = (ω⊗ id⊗ id)(V ∗
13V13V23)

(2.10)
= (ω⊗ id⊗ id)(V23V

∗
12V12) = V (aR⊗1)

hence AR commutes with C(V ). Let us make the following

Definition A finite dimensional unital MPI V on the Hilbert space H is
called regular if

(4.4) C(V ) = (AR)′ ∩ 1lL(H)1l.

In the special case of V being a multiplicative unitary, AR consists only of
the scalars therefore (AR)′ ∩1lL(H)1l = L(H) and our regularity condition reduces
to the regularity [1]. Although in finite dimensions all multiplicative unitaries are
regular by Theorem 4.10 of [1], we do not know any generalization of this result
to multiplicative isometries.

Theorem The algebras A and Â obtained from a finite dimensional MPI
(V,H) are ∗-subalgebras of L(H) if and only if V is unital and regular.

Proof. Since AR is a ∗-subalgebra of L(H) so is its commutant. This implies
that if V is unital and regular then C(V ) is a ∗-subalgebra of L(H) and using
Lemma 4.4 the if part follows.

To prove the converse statement, suppose that A and Â are ∗-subalgebras
of L(H) so they are C∗-WHA’s in duality by Proposition 4.3. Then V is neces-
sarily unital. In this case AR is the right subalgebra of A coinciding with the left
subalgebra of Â (see (3.12)).
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Knowing already that C(V ) ⊂ (AR)′ ∩ 1lL(H)1l, it remains to show that also
(AR)′ ∩ 1lL(H)1l ⊂ C(V ). For that purpose, let X ∈ (AR)′ ∩ 1lL(H)1l. Then

X = X1l = X1l(1)S(1l(2)) = X1l(1)Ŝ−1(1l(2) ⇀ 1̂l) = X
∑
k

uR(bk)Ŝ−1(βk)

=
∑
k

uR(bk)XŜ−1(βk) =
∑
k

S(bk(1))bk(2)XŜ−1(βk)

=
∑
i,j

S(bi)bjXŜ−1(βiβj) =
∑
i,j

bibjXŜ
−1(βj)βi ∈ C(V )

which finishes the proof.

With the above theorem we have characterized the class of MPI’s that lead
to C∗-WHA’s. The question arises whether all C∗-WHA’s can be obtained in this
way. The answer is in fact very easy. Let A be a C∗-weak Hopf algebra and let
π : Ao Â→ L(H) be a ∗-representation such that the restrictions π|A and π|Â are
faithful. Choose a basis {bi} of A and construct the dual basis {βi}, 〈bi, βj〉 = δij
of Â. Then

V :=
∑
i

π(βi)⊗ π(bi)

is a multiplicative partial isometry in the sense of (2.1), (2.2), (2.3), and (2.4)
and furthermore, it is unital and regular in the sense of Definitions 3.1 and 4.5.
The proof of this statement is an elementary weak Hopf calculus which we omit.
Notice that as a special case we obtain the “classical” example when H is the left
regular representation of a C∗-WHA A with the scalar product provided by the
Haar measure, (x, y) = 〈x∗y, ĥ〉, for x, y ∈ A. In this case, the action of V is given
by V (x⊗ y) = x(1)⊗x(2)y.

5. THE RELATIVE TENSOR PRODUCT IN FINITE DIMENSIONS

In order to discuss the relation of MPI’s to the pseudo-multiplicative unitaries
([13] and [5]), we specialize their definition to the case when the Hilbert space
in the game is finite dimensional. First we exhibit the Connes-Sauvageot relative
tensor product ([11]) of finite dimensional modules as a subspace in the ordinary
tensor product. Then, the pseudo-multiplicative unitary U will be obtained by
restricting the domain and range of the MPI V to its initial and final support. It
should be emphasized, however, that the pseudo-multiplicative unitary has to be
supplied with an a priori knowledge of the algebra AL and a faithful state on it,
while this information is implicitely stored in the structure of V .

Let B be a finite dimensional C∗-algebra, H and K finite dimensional Hilbert
spaces, H carrying a right and K a left B-module structure, i.e. there are given
∗-homomorphisms β : Bo → L(H) and γ : B → L(K). If ψ : B → C is a faithful
positive linear functional the relative tensor product of Hβ and γK over ψ is defined
to be the subspace in H⊗K obtained as the image of a projection Eψ ∈ L(H⊗K)
constructed below.

Let {ai} be a basis of B and {bi} the dual basis with respect to ψ, i.e.
ψ(biaj) = δi,j . Then x =

∑
i

aiψ(bix) for all x ∈ B, i.e. {ai, bi} is a quasibasis
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of ψ in the sense of [14]. The index of ψ, that is λ :=
∑
i

aibi, is a positive

invertible element of CenterB. The modular automorphism of ψ is the (non-∗)
automorphism θψ of B satisfying ψ(xy) = ψ(yθψ(x)) for all x, y ∈ B. In terms of
these data we can define an element eψ ∈ Bo⊗B by the formula

(5.1) eψ ≡
∑
i

ui⊗ vi :=
∑
i

λ−1ai⊗ θ1/2ψ (bi).

Checking that eψ is a Hermitean idempotent we have Eψ := (β⊗ γ)(eψ) as the
projection defining the relative tensor product H

⊗
ψ

K := Eψ(H⊗K). The image

of ξ⊗ η ∈ H⊗K in the relative tensor product will be denoted by ξ
⊗
ψ

η. Using

the property
∑
i

ai⊗ bix =
∑
i

xai⊗ bi, x ∈ B, of the quasibasis we immediately

obtain the amalgamation relation

(5.2) ξ
⊗
ψ

γ(x)η = β ◦ θ−1/2
ψ (x)ξ

⊗
ψ

η

for all ξ
⊗
ψ

η ∈ H
⊗
ψ

K .

The above definition of the relative tensor product applies also to K
⊗
ψo
H

if we replace B with Bo and call the resulting functional ψo. The identities∑
i

biψ(xai) = x and ψ(yx) = ψ(θψ−1(x)y) show that
∑
i

ao
i ⊗ boi :=

∑
i

bi⊗ ai is the

quasi-basis of ψo and θψo = θ−1
ψ . Therefore

∑
i

uo
i ⊗ vo

i =
∑
i

ui⊗ vi and K
⊗
ψo
H

is defined by the projection Eψo = (γ⊗β)(eψ). Denoting the image of η⊗ ξ in
K

⊗
ψo
H by η

⊗
ψo
ξ, we obtain the amalgamation

(5.3) η
⊗
ψo
β(x)ξ = γ ◦ θ1/2ψ (x)η

⊗
ψo
ξ

for all η
⊗
ψo
ξ ∈ K

⊗
ψo
H .

Some caution is in order with equations (5.2) and (5.3). They must not
be considered as “the operator 1⊗β(x)”, . . . etc, acting on η

⊗
ψo
ξ. Rather, the

vectors η⊗β(x)ξ ∈ K⊗H, . . . etc, are mapped into the subspace K
⊗
ψo
H . Only the

operators X ∈ L(K) commuting with γ(B) and Y ∈ L(H) commuting with β(B)
can be restricted to operators (1H

⊗
ψ

X), (Y
⊗
ψ

1K) ∈ L(H
⊗
ψ

K ) and (1K
⊗
ψo
Y ),

(X
⊗
ψo

1H) ∈ L(K
⊗
ψo
H ).

For later convenience, we supress the letters β and γ and write ξ · b and b · η
for β(b)ξ and γ(b)η, respectively. In this spirit we may think

⊗
ψ

as the symbol

·ui⊗ vi · (with the i summed over).
The usual flip operator Σ : H⊗K → K⊗H determines an isomorphism

Σψ : H
⊗
ψ

K → K
⊗
ψo
H by restriction since Σ intertwines the projections Eψ and
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Eψo , or in other words, because
∑
i

ui⊗ vi =
∑
i

vi⊗ui. This follows using the

fact that the modular automorphism is necessarily inner on a finite dimensional
C∗-algebra. As a matter of fact, let gψ ∈ B be a positive element implementing
θψ, i.e. gψxg−1

ψ = θψ(x) for all x ∈ B. Then∑
i

vi⊗ui = λ−1
∑
i

g
1/2
ψ big

−1/2
ψ ⊗ ai = λ−1

∑
i

g
−1/2
ψ θψ(bi)g

1/2
ψ ⊗ ai

= λ−1
∑
i

g
−1/2
ψ aig

1/2
ψ ⊗ bi =

∑
i

ui⊗ vi.

With the above method one can construct also multiple relative tensor prod-
ucts of modules over (different) finite dimensional C∗-algebras. Let A and B be
finite dimensional C∗-algebras, H,K and M Hilbert spaces with the following
module structures: H is a right A-module, M an A-B bimodule, and K a left
B-module. Let φ : A → C and ψ : B → C be faithful positive linear functionals.
Then there are two threefold relative tensor products defined respectively by the
formulae

H
⊗
φ

(M
⊗
ψ

K) : =
∑
i,j

H · uφi ⊗ v
φ
i · (M · uψj ⊗ v

ψ
j · K)

(H
⊗
φ

M)
⊗
ψ

K : =
∑
i,j

(H · uφi ⊗ v
φ
i · M) · uψj ⊗ v

ψ
j · K,

which, as subspaces of H⊗M⊗K, coincide up to the associativity natural iso-
morphism in the category of Hilbert spaces. Supressing this natural isomorphism
we can denote this Hilbert space by H

⊗
φ

M
⊗
ψ

K.

Considering the A-actions onH andM as Ao-actions we have also the Hilbert
space (M

⊗
ψ

K)
⊗
φo
H. Similarly, one can define K

⊗
ψo

(H
⊗
φ

M) and K
⊗
ψo
M

⊗
φo
H.

They are all naturally isomorphic under the flip maps:
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6. THE RELATION OF U AND V

In this section we will present two constructions. At first we show how a finite di-
mensional unital multiplicative isometry (V,H) determines a pseudo-multiplicative
unitary U . After that, starting from a finite dimensional pseudo-multiplicative
unitary U , we construct a MPI V .

Let V be a unital MPI on the finite dimensional Hilbert space H, and A, Â
the associated WBA’s in duality, both acting on H. By Lemma 3.2 the left and
right subalgebras of A and of Â are selfadjoint subalgebras of L(H). In particular
AL is a C∗-algebra and the counit ε restricts to a faithful positive functional on
AL.

We need the following facts from the theory of weak bialgebras ([8] and [2]).
Although an antipode may not exist on A, we can define a would-be-antipode S on
the subalgebra ALAR by setting S(xLxR) := uL(xR) uR (xL) ≡ (1̂l ↼ xL) ⇀ 1l ↼
(xR ⇀ 1̂l). Then the element S(1l(1))⊗ 1l(2) = 1l(2)⊗S−1(1l(1)) ∈ AL⊗AL provides
a quasibasis of ε : AL → C, hence ε|AL has index 1l. The modular automorphism of
ε|AL is θ = S2|AL and it is implemented by a positive element gL ∈ AL. Although
gL is not unique, the formulae θ1/2(xL) = g

1/2
L xLg

−1/2
L and So := S ◦ θ−1/2 do not

depend on this ambiguity. Here So is a “unitary antipode” satisfying So◦∗ = ∗◦So

and S2
o = id. By means of these definitions we can construct

(6.1) eε := 1l(2)⊗ θ1/2(S−1(1l(1)))

which is precisely the Hermitean idempotent (5.1) needed in relative tensor prod-
ucts of AL-modules over ε or εo.

Corresponding to the three C∗-subalgebras AL, AR ≡ ÂL, and ÂR of L(H)
there are three mutually commuting actions of AL on H:

(6.2) α01(xL)ξ := xLξ α02(xL)ξ := So(xL)ξ α12(xL)ξ := (xL ⇀ 1̂l)ξ;

α01 and α12 are left actions, while α02 is a right action. It is tempting to visualize
this trimodule structure of H by drawing a triangle (012) for the Hilbert space

(6.3)

and say that the edge (ij) is a left or right action of AL according to whether the
relative orientation of (ij) to the 2-simplex (012) is positive or negative.

Now we want to exhibit the source and target spaces of the partial isometry
V as relative tensor products of H with itself. For that purpose we compute

V ∗V = ∆̂(1̂l) = 1̂l(1)⊗ 1̂l(2) ⇀ 1l = 1l(2) ⇀ 1̂l⊗ 1l(1)

= 1l(2) ⇀ 1̂l⊗So(g
1/2
L S−1(1l(1))g

−1/2
L ) = (α12⊗α02)(eε),

V V ∗ = ∆(1l) = So(g
1/2
L S−1(1l(1))g

−1/2
L )⊗ 1l(2) = (α02⊗α01)(eε).
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This means that we may identify the source and the target spaces of V with the
following relative tensor products:

V ∗V (H⊗H) = Hα12

⊗
εo

α02H(6.4)

V V ∗(H⊗H) = Hα02

⊗
ε

α01H.(6.5)

As a graphical representation of these relative tensor products one draws two
triangles glued together along the edges corresponding to the amalgamated actions:

(6.6)

(6.7)

The numbering of the faces refer to their order in the tensor product. An
other suggestive notation would be to denote the domain of V by H↙H and
its range by H↖H. We can now define the operator U : H↙H → H↖H as
the restriction of V to its domain and range. The natural representation of this
operator is then the tetrahedron

(6.8)

or, better to say, this projection of the tetrahedron. Namely, the “equator”
{(01), (12), (23), (30)} is distinguished by dividing the surface into a “Northern
hemisphere” {(012), (023)} and a “Southern hemisphere” {(013), (123)} corre-
sponding to the range and domain of U , respectively.

Both the range and domain of U are quadrimodules, i.e. AL acts on them
via 3 left actions α01, α12, α23 and one right action α03, and these four perimeter
actions commute with each other. For example α12 acts on H↙H as id⊗α01

and on H↖H as α12⊗ id. Now U can be shown to intertwine these four actions,
αij(xL)U = Uαij(xL), xL ∈ AL, (ij) = (01), (12), (23), (03). The intertwining
relations are consequences of the following identities for V :

V (xL⊗1)
(01)
= (xL⊗1)V xL ∈ AL(6.9 (a))

V (1⊗xL)
(12)
= (ϕR⊗1)V ϕR = xL ⇀ 1̂l, xL ∈ AL(6.9 (b))

V (1⊗ϕR)
(23)
= (1⊗ϕR)V ϕR ∈ ÂR(6.9 (c))

V (xR⊗1)
(03)
= (1⊗xR)V xR ∈ AR.(6.9 (d))

(Here
(ij)
= refers to the edge (ij) of the tetrahedron (0123) and not to an equation

number as before.) The intertwining relations for U are precisely the four equations
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in Definition 5.6.i of [5]. Thus, in order to see that our U is a pseudo-multiplicative
unitary, we are left with showing that U satisfies the pentagon equation of Figure 1.

Figure 1. The “pentagon” equation for the pseudo-multiplicative unitary U .
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Before doing that, we remark that on the remaining two edges of the tetra-
hedron we have the amalgamation relations (5.3) and (5.2),

ξ
⊗
εo
α02(xL)η = α12(g

1/2
L xLg

−1/2
L )ξ

⊗
εo
η(6.10)

ξ
⊗
ε
α01(xL)η = α02(g

−1/2
L xLg

1/2
L )ξ

⊗
ε
η,(6.11)

which have their origin in the V -identities

V (ϕR⊗1) = V (1⊗xR) ϕR = xR ⇀ 1̂l(6.12)

(ϕL⊗1)V = (1⊗xL)V ϕL = 1̂l ↼ xL.(6.13)

As for the pentagon equation is concerned, we need a more concise notation
for multiple relative tensor products. Therefore we use the symbol (ikj ) to denote a
copy ofH associated to the triangle (ijk). The symbol

⊗
ij

will stand for the relative

tensor product of the two triangle modules that contain the edge (ij). Whether it
is a tensor product with respect to ε or εo can be unambiguously recovered from
the order of the modules in the tensor product. This is because each internal edge
(ij) (of a planar 2-complex) has opposite relative orientation to its two neighbour
faces. For example

(021 )
⊗
02

(042 )
⊗
24

(243 ) = Hα02

⊗
ε

α01Hα12

⊗
εo

α02H.

Sometimes it is unavoidable to use brackets because
⊗
ij

refers to two triangles that

are not consecutive ones in the tensor product. For example in

[(031 )
⊗
13

(132 )]
⊗
03

(043 ) = [Hα12

⊗
εo

α02H]α03

⊗
ε

α01H.

These brackets therefore have nothing to do with associativity of the tensor prod-
uct. They reflect rather the poor capability of our one dimensional writing to
express two dimensional facts.

Now we are ready to formulate the pentagon equation. In our notation
the equation of Definition 5.6 (ii) of [5] takes the form in Figure 1. The boldface
numbers in the argument of the flip map refer to factors of the tensor product that
forms the domain of Σ. E.g. Σ(12,3) maps ξ⊗ η⊗ ζ to ζ ⊗ ξ⊗ η. Up to the flip
maps, which serve only for permuting the tensor product factors in linear writing,
the above commutative diagram is a pentagon rather than an octagon. The reader
may find it amusing to draw the eight pentagonal figures corresponding to the
eight vertices of Figure 1, each of them having vertices numbered (01234), have two
diagonals one for each

⊗
ij

symbol, and have triangular faces numbered according to
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their order in the tensor product. Let stand here one edge of Figure 1 for example:

After acquainting the equation, we have to show that it is a consequence
of the V -pentagon (2.1). First, we identify the eight corners in Figure 1 with
subspaces of H⊗H⊗H. With the notation E = V V ∗, Ê = V ∗V we can write

(041 )
⊗
14

(142 )
⊗
24

(243 ) = Ê12Ê23(H⊗H⊗H)

(041 )
⊗
14

[(132 )
⊗
13

(143 )] = Ê13E23(H⊗H⊗H)

(041 )
⊗
14

(143 )
⊗
13

(132 ) = Ê12E32(H⊗H⊗H)

(132 )
⊗
13

[(041 )
⊗
14

(143 )] = E13Ê23(H⊗H⊗H)

(132 )
⊗
13

(031 )
⊗
03

(043 ) = Ê21E23(H⊗H⊗H)

[(031 )
⊗
13

(132 )]
⊗
03

(043 ) = E13Ê12(H⊗H⊗H)

(021 )
⊗
02

(042 )
⊗
24

(243 ) = E12Ê23(H⊗H⊗H)

(021 )
⊗
02

(032 )
⊗
03

(043 ) = E12E23(H⊗H⊗H).

Inserting V = V V ∗V = EV Ê into the V -pentagon (2.1) we obtain

E23V23(Ê23E12)V12Ê12 = E12V12(Ê12E13)V13(Ê13E23)V23Ê23.

Multiplying with projections from the left and right and inserting appropriate flip
maps

(6.14)
(E12E23)V23(Ê23E12)V12(Ê12Ê23) = (E12E23)V12(Ê12E13)Σ1,2

· (Ê21E23)V23(Ê23E13)Σ12,3(Ê12E32)Σ2,3(Ê13E23)V23(Ê12Ê23).

The eight different projections in the parentheses correspond precisely to the eight
corners of the diagram in Figure 1. The V and Σ operators, together with their
neighbour projections, produce in turn precisely the eight maps of the diagram.
In order to see this, one should check correspondences like

U(0412)
⊗
24

1(243 ) ≡ Ê23V12Ê23 = (E12Ê23)V12(Ê12Ê23)

1(021 )
⊗
02
U(0423) ≡ E12V23E12 = (E12E23)V23(E12Ê23)

1(041 )
⊗
14

Σ((132 ), (143 )) ≡ (Ê12E32)Σ23(E23Ê13)
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and five other ones. This finishes the proof of that every unital MPI V deter-
mines a pseudo-multiplicative unitary U by restriction to range and domain. As a
byproduct, we obtained a geometric interpretation of the equations in terms of tri-
modules, or 2-simplex modules, H over AL in which U plays the role of Ocneanu’s
3-cocycle.

Now we turn to the opposite construction, when we are given a pseudo-
multiplicative unitary U and want to construct a multiplicative partial isometry
V that reproduces U by restriction. This task will be a simple one mainly because
we can prove only that the resulting V is an MPI and we leave it open whether V
is unital.

Let N be a finite dimensional C∗-algebra with a faithful positive linear func-
tional ν : N → C of index 1. Let β, α, β̂ be actions of N,No, and N , respectively
on a finite dimensional Hilbert space H that commute with each other. Finally,
let U : H

β̂

⊗
νo

αH → Hα

⊗
ν

βH be a pseudo-multiplicative isometry.

Since the relative tensor products can be identified as subspaces in H⊗H
via the projections (5.1), we can immediately define a partial isometry

(6.15) V := EUÊ, where E = (α⊗β)(eν), Ê = (β̂⊗α)(eν).

Then V V ∗ = E and V ∗V = Ê. Defining the algebras AL := β(N), AR := α(N),
and ÂR := β̂(N) the four intertwining relations for U become the intertwining
relations (6.9 (a)–(d)). These in turn are equivalent to the equations (2.3), (2.2),
(2.4), and (2.9), respectively. The pentagon equation (2.1) can now be obtained
by arguing backwards with equation (6.14). This proves that V is a multiplicative
isometry.
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