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Abstract. It is shown that each finite commuting system of contractions
which possesses a unitary dilation and for which the Harte spectrum is dom-
inating in the open unit polydisc possesses non-trivial joint invariant sub-
spaces. Since by a well-known result of Ando each commuting pair of con-
tractions admits a unitary dilation, we obtain in particular that each com-
muting pair of contractions with dominating Harte spectrum in the bidisc
possesses non-trivial joint invariant subspaces.
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Let T ∈ L(H) be a contraction on a complex Hilbert space. A result of Brown,
Chevreau, and Pearcy ([10]) says that T has a non-trivial invariant subspace if
the spectrum of T is dominating in the open unit disc. In the present paper we
prove the same result for finite commuting systems of contractions that possess
a unitary dilation and for which the Harte spectrum is dominating in the open
unit polydisc in Cn. By a well-known result of Ando ([3]) each commuting pair of
contractions possesses a unitary dilation. Hence, in this case, the richness of the
Harte spectrum is sufficient to guarantee the existence of non-trivial joint invariant
subspaces.

The condition that T possesses a unitary dilation ensures that T satisfies
von Neumann’s inequality over the unit polydisc, or equivalently, that T admits a
contractive functional calculus over the polydisc algebra A(Dn). A classical result
of Sz.-Nagy and Foiaş saying that a Hilbert-space contraction which is neither of
type C0· nor of type C·0, and which is not a scalar multiple of the identity operator,
always has a non-trivial hyperinvariant subspace, allows us to reduce the assertion
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to the case where T is absolutely continuous, that is, the A(Dn)-functional calculus
of T extends to a w∗-continuous algebra homomorphism Φ : H∞(Dn) → L(H).
Finally, results of Apostol from [4] on the existence of invariant subspaces for
suitable polynomially bounded n-tuples of operators can be used to reduce the
assertion to the case that the representation Φ is of type C·0.

To prove the existence of invariant subspaces for single contractions one
may assume that the spectrum of the given contraction T coincides with its right
essential spectrum. Then a standard application of the Scott Brown technique
shows that each operator that admits an H∞-functional calculus of type C·0 over
an open set in C in which the right essential spectrum is dominating possesses an
extremely rich invariant subspace lattice. The main remaining difficulty in proving
the existence of joint invariant subspaces for commuting contractions with rich
Harte spectrum is that the last reduction concerning the type of the spectrum
of T is not available in the multidimensional case.

Let T ∈ L(H)n be a commuting system of Hilbert-space contractions and
let S ∈ L(K)n be a dilation of T on a larger Hilbert space K. In Section 1 we
extend results of Bekken ([5]), Briem, Davie, Øksendal ([8]), and Kosiek ([21])
on Henkin measures over the n-dimensional torus Tn. We use the properties of
Henkin measures and a decomposition theorem of Mlak ([23]) for representations
of function algebras to show that, if S is a minimal dilation of T , then each w∗-
continuous H∞-functional calculus of T over the unit polydisc admits a dilation
to a w∗-continuous H∞-functional calculus of S.

In Section 2 we construct, for each commuting system T ∈ L(H)n with a
unitary dilation U , an extension to a commuting n-tuple C of co-isometries on a
larger Hilbert space such that C admits a Wold-type decomposition

C = S∗ ⊕R ∈ L(S ⊕R)n

into a commuting tuple of unitary operators R ∈ L(R)n and a system S∗ ∈ L(S)n

satisfying a suitable weak C0·-condition. The results of Section 1 imply that, if T
is absolutely continuous, then S∗ and R are absolutely continuous, and that in this
case the H∞-functional calculus of T extends to a w∗-continuous H∞-functional
calculus of C. We extend some one-dimensional methods from [12] to prove that,
if T satisfies a suitable weak C·0-condition and if its H∞-functional calculus allows
the almost factorization of elements in the predual of H∞(Dn), then T satisfies an
actual factorization property strong enough to guarantee that the dual algebra AT

generated by T has property (A1,χ0).
In Section 3 we show that under the above conditions the dual algebra AT

satisfies a strengthened version of property (A1,χ0). In the one-variable case, and
in the case of spherical contractions, this factorization condition can be used to
prove the reflexivity of the dual algebra AT . In the polydisc case corresponding
reflexivity results can at least be proved in the case where the tuple T is in addition
subnormal. These results will be presented elsewhere.

In Section 4 we prove the main invariant-subspace result explained at the
beginning of this introduction. Furthermore, we show that each commuting system
T ∈ L(H)n of contractions with a unitary dilation such that T is of type C0· or
of type C·0, and such that the essential Harte spectrum is dominating in the unit
polydisc Dn, satisfies the factorization property (A1,χ0).

In the one-variable case each absolutely continuous contraction T ∈ L(H)
with isometric H∞-functional calculus allows the almost factorization of elements
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in the predual of H∞(D). This observation of Bercovici lies at the heart of the re-
sults of Bercovici ([6]) and Chevreau ([11]) saying that each contraction of class A
satisfies the factorization property (A1), and also of the result of Brown and
Chevreau ([9]) showing that contractions of class A are reflexive. If the corre-
sponding almost factorization property is true for isometric w∗-continuous rep-
resentations of H∞(Dn), then the methods of this paper immediately yield the
existence of joint invariant subspaces for commuting systems of contractions with
a unitary dilation and isometric w∗-continuous H∞-functional calculus over the
unit polydisc Dn. But at present it seems that additional ideas are necessary to
decide this more general question.

0. PRELIMINARIES

Let H be a complex Hilbert space, and let T = (T1, . . . , Tn) ∈ L(H)n be a tuple
of commuting continuous linear operators on H. We denote by σ(T ) the Taylor
spectrum of T , i.e., the set of all points λ ∈ Cn for which the induced Koszul
complex K•(λ− T,H) is not exact (see [17]). The Harte spectrum σH(T ) of T is
the subset of the Taylor spectrum given by all points λ ∈ Cn for which the map

H → Hn, x 7→
(
(λi − Ti)x

)n

i=1

is not bounded from below or the map

Hn → H, (xi)n
i=1 7→

n∑
i=1

(λi − Ti)xi

is not onto. The left essential spectrum σle(T ) of T consists of those points λ ∈
Cn for which the first of the above two maps has non-closed range or infinite-
dimensional kernel. The right essential spectrum σre(T ) of T is the set of all
points λ ∈ Cn for which the range of the second map has infinite codimension.
The essential Harte spectrum of T is the union σHe (T ) = σle(T ) ∪ σre(T ).

Let λ ∈ Cn. It is well known (see [17]) that λ ∈ σle(T ) if and only if there is
an orthonormal sequence (xk) in H with lim

k→∞
(λi−Ti)xk = 0 for i = 1, . . . , n, and

that λ ∈ σre(T ) if and only if λ ∈ σle(T ∗), where T ∗ = (T ∗1 , . . . , T
∗
n) is the adjoint

tuple.
For T as above and k ∈ Nn (k ∈ N, respectively), we write T k = T k1

1 · · · · ·T kn
n(

T k = (T1 · · · · · Tn)k, respectively
)
. Analogous notations are used for powers of

n-tuples of complex numbers. A unitary dilation of T is by definition a tuple
U ∈ L(K)n of commuting unitary operators on a larger Hilbert space K ⊃ H
with

T k = PUk|H, k ∈ Nn,

where P is the orthogonal projection from K onto the closed subspace H. A
unitary dilation U ∈ L(K)n of T is minimal if the only reducing subspace for U
containing H is the space K itself.

Let H∞(Dn) be the Banach algebra of all bounded analytic functions on the
unit polydisc Dn in Cn equipped with the norm ‖f‖ = sup{|f(z)|; z ∈ Dn}. A
subset σ of Cn is dominating in Dn if ‖f‖ = sup{|f(z)|; z ∈ Dn ∩ σ} for all f ∈
H∞(Dn). The space H∞(Dn) is a w∗-closed subspace of L∞(Dn) relative to the
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duality 〈L1(Dn), L∞(Dn)〉 (formed with respect to the 2n-dimensional Lebesgue
measure). Thus H∞(Dn) is isometrically isomorphic to the norm-dual of the
Banach space Q = L1(Dn)/⊥H∞(Dn). A sequence (fk) in H∞(Dn) is a w∗-zero
sequence if and only if it is norm-bounded and pointwise convergent to zero. For
λ ∈ Dn, the w∗-continuous linear functional

Eλ : H∞(Dn) → C, f 7→ f(λ)

is regarded as an element in Q. The Banach algebra L(H) of all continuous linear
operators on H is regarded as the norm-dual of the Banach space C1(H) of all
trace-class operators via the duality

C1(H)× L(H) → C, (A,B) 7→ Tr(AB).

For a commuting system T ∈ L(H)n, the smallest w∗-closed unital subalgebra AT

of L(H) that contains T1, . . . , Tn is identified with the norm-dual of the Banach
space QT = C1(H)/⊥AT . Both H∞(Dn) and AT are examples of dual algebras,
that is, of Banach algebras A which are isometrically isomorphic to the norm-
dual of a suitable Banach space A∗ such that the multiplication in A is separately
w∗-continuous (we refer to [14] for this terminology).

Suppose that T ∈ L(H)n possesses a unitary dilation. Then T satisfies von
Neumann’s inequality over Dn, that is,

‖p(T )‖ 6 ‖p‖
for all polynomials p ∈ C[z] in n variables. Since the polynomials are dense in
the polydisc algebra A(Dn) = {f ∈ C(Dn

); f |Dn is analytic} equipped with the
supremum norm on Dn, von Neumann’s inequality is equivalent to the existence
of a contractive algebra homomorphism

Φ : A(Dn) → L(H)

which extends the polynomial functional calculus of T . We call T absolutely
continuous if Φ extends to a w∗-continuous algebra homomorphism Φ̂ : H∞(Dn) →
L(H). A continuous algebra homomorphism Φ : H∞(Dn) → L(H) is said to be
of type C0· (C·0, respectively) if (Φ(fk)) ((Φ(fk)∗), respectively) tends to zero
strongly for each w∗-zero sequence (fk) in H∞(Dn).

Let Tn = {(z1, . . . , zn) ∈ Cn; |zi| = 1 for i = 1, . . . , n} be the n-torus in Cn,
and let M(Tn) be the Banach space of all complex regular Borel measures on Tn.
We write M+(Tn) (M+

1 (Tn), respectively) for the subsets of M(Tn) consisting
of all positive (respectively, probability) measures on Tn. We denote by B(Tn)
the σ-algebra of all Borel measurable subsets of Tn. A sequence (fk) in A(Dn) is
called a Montel sequence if (fk|Dn) is a w∗-zero sequence in H∞(Dn). A measure
µ ∈M(Tn) is a weak Henkin measure if∫

Tn

fk dµ k−→ 0

for each Montel sequence (fk) in A(Dn). A measure µ ∈ M(Tn) is a Henkin
measure if ∫

Tn

fkg dµ k−→ 0
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for each Montel sequence (fk) in A(Dn) and each function g ∈ L1(|µ|). We write

HM(Tn) for the set of all Henkin measures on Tn, and we denote by M0(Tn) the
set of all measures ρ ∈ M+

1 (Tn) which represent the point evaluation at zero on
A(Dn) in the sense that

f(0) =
∫
Tn

f dρ, f ∈ A(Dn).

The set A(Dn)⊥ consists of all measures µ ∈ M(Tn) with
∫

Tn

f dµ = 0 for all

f ∈ A(Dn).

A closed linear subspace M ⊂ M(Tn) is called a band of measures if each

measure ν ∈M(Tn) for which there is a measure µ ∈M with ν � µ (i.e. ν � |µ|)
belongs to M . The set HM(Tn) of all Henkin measures on Tn is a band. If

M ⊂ M(Tn) is arbitrary, then we write B(M) for the smallest band of measures

in M(Tn) that contains M .
Let µ ∈M(Tn) be a positive measure. We write P 2(µ) for the norm-closure

of the set of all polynomials in L2(µ), and we denote by P∞(µ) the w∗-closure
of C[z] in L∞(µ) with respect to the duality 〈L1(µ), L∞(µ)〉. The space P∞(µ)
becomes a dual algebra with predualQ(µ) = L1(µ)/⊥P∞(µ). If µ is a Henkin mea-

sure, then there is a uniquely determined w∗-continuous algebra homomorphism

r = rµ : H∞(Dn) → P∞(µ) with r(p) = p for each polynomial p.
Let T ∈ L(H)n be a commuting system. For x, y ∈ H, we denote by [x⊗y] ∈

QT the equivalence class of the rank-one operator H → H, ξ 7→ 〈ξ, y〉x. Let p, q be

any cardinal numbers with 1 6 p, q 6 χ0. The dual algebra AT is said to possess

property (Ap,q) if, for each matrix (Lij) of functionals Lij ∈ QT (0 6 i < p,
0 6 j < q), there are vectors (xi)06i<p and (yj)06j<q in H with

Lij = [xi ⊗ yj ], 0 6 i < p, 0 6 j < q.

If p = q, then we write (Ap) instead of (Ap,p).
Suppose that there is a w∗-continuous algebra homomorphism Φ : H∞(Dn) →

L(H) that extends the polynomial functional calculus of T . For x, y ∈ H,

x⊗ y : H∞(Dn) → C, f 7→ 〈Φ(f)x, y〉

defines an element in Q with Φ∗([x ⊗ y]) = x ⊗ y, where Φ∗ : QT → Q is the

predual of Φ : H∞(Dn) → AT . There is an obvious way to define the properties

(Ap,q) (1 6 p, q 6 χ0) for the representation Φ. Since Φ∗ is injective, it follows
that property (Ap,q) for Φ implies property (Ap,q) for the dual algebra AT .
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1. HENKIN MEASURES AND UNITARY DILATIONS

In this section we study the properties of Henkin measures in the unit polydisc
in Cn. We apply our observations to construct dilations of H∞-functional calculi.
In the first part we extend and clarify corresponding two-dimensional results of
Briem, Davie, Øksendal ([8]), Bekken ([5]), and Kosiek ([22]). The n-dimensional
case was also considered by Kosiek in [21].

For completeness sake and for the convenience of the reader, we give full
proofs for all the results that are used in the sequel.

As before we denote by HM(Tn) the set of all Henkin measures on Tn and
by M0(Tn) the set of all probability measures ρ on Tn representing the point
evaluation at zero on A(Dn). We write B

(
M0(Tn)

)
for the band of measures on

Tn generated by M0(Tn). A Borel set N ⊂ Tn is a null set if ρ(N) = 0 for all
measures ρ ∈M0(Tn). A subset E ⊂ Tn is called an (H)-set (Henkin set) if there
is an integer q ∈ {1, . . . , n− 1} and a null set N ⊂ Tq such that, for some indices
1 6 j1 < · · · < jq 6 n, the set E can be written as

E = {(z1, . . . , zn) ∈ Tn; (zj1 , . . . , zjq ) ∈ N}.

Our first aim is to show that

HM(Tn) = B
(
M0(Tn)

)
.

We prove first that the set on the right is contained in the set on the left.

Proposition 1.1. Each measure in B
(
M0(Tn)

)
is a Henkin measure on Tn.

Proof. We prove this result by induction on the dimension n.
For n = 1, it is well known that M0(T) = {m} and that

HM(T) = B
(
M0(T)

)
= {µ ∈M(T); µ� m},

where m is the normalized linear Lebesgue measure on T.

Let us fix a natural number n > 2, and let us suppose that the assertion
has been proved in dimension q = 1, . . . , n− 1. Using the induction hypothesis we
prove the following result on Henkin measures in dimension n.

Lemma 1.2. Let µ ∈M(Tn) be a weak Henkin measure such that |µ|(E) = 0
for all (H)-sets E ⊂ Tn. Then µ is a Henkin measure.

Proof. Let µ be a weak Henkin measure as in the lemma. Let (fk) be a
Montel sequence. We have to show that∫

Tn

fkg dµ k−→ 0, g ∈ L1(|µ|).

Since (fk) is bounded in L∞(|µ|), it suffices to check this condition for all functions
g in a suitable total subset of L1(|µ|). Using the fact that C(T)⊗̂ε · · · ⊗̂εC(T) ⊂
L1(|µ|) is dense and that the rational functions with poles off T are uniformly
dense in C(T), we reduce the assertion to the case where g is of the form g =
u/(z1 − w1) · · · · · (zn − wn), where u ∈ A(Dn) and w = (w1, . . . , wn) ∈ Dn.
Replacing fk by fku we may suppose that u = 1.
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Let us fix a point w ∈ Dn. Note that, for any function h ∈ A(Dn), the
function H ∈ A(Dn) defined by

H(z1, . . . , zn) =
n∑

p=0

(−1)p
∑

16j1<···<jp6n

h(z1, . . . , wj1 , . . . , wjp
, . . . , zn)

vanishes on the set {z ∈ Dn
; zi = wi for some i = 1, . . . , n}. Therefore there is a

function Hw ∈ A(Dn) with

(z1 − w1) · · · · · (zn − wn)Hw(z) = H(z), z ∈ Dn
.

It is elementary to check that the sequence (Fw
k ) arising in this way from the

sequence (fk) is a Montel sequence again.
Since µ is a weak Henkin measure, the numbers∫
Tn

fk(z)
(z1 − w1) · · · (zn − wn)

dµ(z)

+
n∑

p=1

(−1)p
∑

16j1<···<jp6n

∫
Tn

fk(z1, . . . , wj1 , . . . , wjp
, . . . , zn)

(z1 − w1) · · · (zn − wn)
dµ(z)

converge to zero as k tends to infinity. To conclude the proof of the lemma, it
therefore suffices to show that, for each index tuple 1 6 j1 < · · · < jp 6 n
(p = 1, . . . , n−1), the corresponding summand in the above sum converges to zero
as k tends to infinity. Let us fix such an index tuple. Set q = n − p. Denote by
ν ∈M(Tq) the unique measure with∫

Tq

g dν =
∫
Tn

(
g(zi1 , . . . , ziq

)/
p∏

k=1

(zjk
− wjk

)
)
dµ(z1, . . . , zn)

for all functions g ∈ C(Tq). Here 1 6 i1 < · · · < iq 6 n is the unique ordered
index tuple with {j1, . . . , jp} ∪ {i1, . . . , iq} = {1, . . . , n}. It suffices to show that ν
is a Henkin measure.

By the Glicksberg-König-Seever decomposition theorem (Theorem 9.4.4 in
[25]) we have ν = νa + νs, where νa ∈ B

(
M0(Tq)

)
and νs is concentrated on a

null set N ⊂ Tq. By induction hypothesis it suffices to show that |ν|(N) = 0.
Let ε > 0 be arbitrary. Denote by π : Tn → Tq the canonical projection. Since
by hypothesis |µ|

(
{z ∈ Tn; (zi1 , . . . , ziq ) ∈ N}

)
= 0, a regularity argument shows

that there is an open set U ⊂ Tq containing N with |µ|
(
π−1(U)

)
< ε. But then

we obtain, for each function g ∈ Cc(U) with ‖g‖∞,U 6 1,∣∣∣ ∫
U

g dν
∣∣∣ 6 ε/

p∏
k=1

(1− |wjk
|).

Therefore |ν|(N) = inf{|ν|(V ); V ⊃ N open} = 0, and the proof of the lemma is
complete.



420 Jörg Eschmeier

Proof of Proposition 1.1. To conclude the inductive proof of Proposition 1.1
let us fix a measure ρ ∈M0(Tn). Since the Henkin measures form a band, it suffices
to show that ρ ∈ HM(Tn). Obviously, ρ is a weak Henkin measure. To check that
ρ satisfies the hypothesis of the preceding lemma, it suffices to observe that each
(H)-set E ⊂ Tn is a null set. To see this note that, for each measure δ ∈ M0(Tn)
and each projection π : Tn → Tq, z 7→ (zj1 , . . . , zjq

) where 1 6 j1 < · · · < jq 6 n,
the image measure δπ ∈M(Tq) induced by δ belongs to M0(Tq).

To prove that, conversely, each Henkin measure belongs to the band gen-
erated by the measures in M0(Tn), we use the abstract Glicksberg-König-Seever
decomposition theorem (Theorem 9.4.4 in [25]) and a Forelli-type lemma.

Lemma 1.3. Let µ ∈ M(Tn) be a weak Henkin measure. Then there is a
unique decomposition

µ = µa + µs,

where µa ∈ M(Tn) is absolutely continuous with respect to some measure ρ in
M0(Tn) and µs ∈ M(Tn) is concentrated on a null set of type Fσ. The measure
µs in this decomposition belongs to A(Dn)⊥.

Proof. By the Glicksberg-König-Seever theorem (Theorem 9.4.4 in [25]) there
is a unique decomposition µ = µa +µs such that µa ∈M(Tn) is absolutely contin-
uous with respect to some measure ρ ∈ M0(Tn) and µs is concentrated on a null
set E of type Fσ. We only have to show that µs ∈ A(Dn)⊥.

As an application of Forelli’s lemma (Lemma 9.5.5 in [25]) we obtain a se-
quence (gk) in A(Dn) with ‖gk‖ 6 1 for all k such that lim

k→∞
gk(x) = 0 for every

x ∈ E and lim
k→∞

gk(x) = 1 ρ-almost everywhere for every measure ρ ∈ M0(Tn).

The last property implies that lim
k→∞

gk(0) = 1. A normal family argument together

with the maximum modulus principle shows that (fk) = (1 − gk) is a Montel se-
quence in A(Dn). Since µs is concentrated on E, and since µs is a weak Henkin
measure by Proposition 1.1, it follows that∫

Tn

f dµs = lim
k→∞

∫
Tn

f fk dµs = 0, f ∈ A(Dn).

As an elementary application we obtain the converse of Proposition 1.1.

Theorem 1.4. For each natural number n > 1, we have the equality

HM(Tn) = B
(
M0(Tn)

)
.

Proof. Since the Henkin measures form a band, all that is left to prove is that
each positive Henkin measure belongs to B

(
M0(Tn)

)
. But if µ is such a measure,

then both parts in the decomposition µ = µa + µs explained in Lemma 1.3 are
positive measures, and hence

‖µs‖ = µs(Tn) =
∫
Tn

1 dµs = 0.

Thus we obtain that µ = µa ∈ B
(
M0(Tn)

)
.
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On the Euclidean unit ball B in Cn weak Henkin measures and Henkin
measures are the same. On the polydisc we obtain the same result for positive
measures.

Corollary 1.5. Let µ ∈ M(Tn) be a positive measure. Suppose that µ is
a weak Henkin measure. Then µ is a Henkin measure.

Proof. Again the measure µs in the decomposition of µ given by Lemma 1.3
is the zero measure. Hence the assertion follows from Theorem 1.4.

In the following we apply the above measure theoretic results to study
Hilbert-space representations of the polydisc algebra A(Dn). The methods that
we use go back to Mlak ([23]) and subsequent papers of Kosiek ([21], [22]). We
start with an elementary observation that can be proved in exactly the same way
as in the case of the unit ball (see Lemma 1.1 in [15]).

Lemma 1.6. Let Φ : A(Dn) → L(H) be a norm-continuous algebra homo-
morphism. Then Φ can be extended to a w∗-continuous algebra homomorphism
Φ̂ : H∞(Dn) → L(H) if and only if w∗-lim

k→∞
Φ(fk) = 0 for each Montel sequence

(fk) in A(Dn).

Let Φ : A(Dn) → L(H) be a norm-continuous algebra homomorphism. A
collection of measures µ(x, y) ∈ M(Tn) (x, y ∈ H) is a family of representing
measures for Φ if

〈Φ(f)x, y〉 =
∫
Tn

f dµ(x, y), f ∈ A(Dn), x, y ∈ H.

By the theorem of Hahn-Banach there is always a family of representing measures
µ(x, y) (x, y ∈ H) with ‖µ(x, y)‖ 6 ‖Φ‖ ‖x‖ ‖y‖ for all x, y ∈ H.

Let us call a measure µ ∈ M(Tn) absolutely continuous if it is absolutely
continuous with respect to some measure ρ ∈ M0(Tn). A measure µ ∈ M(Tn) is
said to be singular if it is concentrated on a null set N ⊂ Tn of type Fσ. Following
Mlak ([23]) we call Φ absolutely continuous (singular) if Φ possesses a family of
representing measures µ(x, y) (x, y ∈ H) that are absolutely continuous (singular).

The following result is a version of a decomposition theorem of Mlak ([23])
adapted to the case of the unit polydisc. The proof is based on the Glicksberg-
König-Seever decomposition theorem (Theorem 9.4.4 in [25]) and the Glicksberg-
König-Seever generalization of the classical F. and M. Riesz theorem (Theorem 9.5.6
in [25]).

Theorem 1.7. Let Φ : A(Dn) → L(H) be a unital norm-continuous algebra
homomorphism. Then there are unique norm-continuous algebra homomorphisms
Φa,Φs : A(Dn) → L(H) such that:

(i) Φ = Φa + Φs;
(ii) Φa is absolutely continuous and Φs is singular.

In this case, ‖Φa‖ 6 ‖Φ‖, ‖Φs‖ 6 ‖Φ‖, and
(iii) Φa(f)Φs(g) = 0 = Φs(g)Φa(f) for all f, g ∈ A(Dn).

Again the proof of the ball case given in detail in [15] (Theorem 1.5) carries
over to the case of the polydisc. For further use, we only sketch the main idea. Let
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µ(x, y) (x, y ∈ H) be a family of representing measures for Φ such that ‖µ(x, y)‖ 6
‖Φ‖ ‖x‖ ‖y‖ (x, y ∈ H). For each pair of vectors x, y ∈ H, let

µ(x, y) = µa(x, y) + µs(x, y)

be the Glicksberg-König-Seever decomposition of µ(x, y) into an absolutely con-
tinuous measure µa(x, y) and a singular measure µs(x, y). Then Φa,Φs : A(Dn) →
L(H) are the unique norm-continuous algebra homomorphisms defined by

〈Φa(f)x, y〉 =
∫
Tn

f dµa(x, y), 〈Φs(f)x, y〉 =
∫
Tn

f dµs(x, y)

for f ∈ A(Dn) and x, y ∈ H. Thus Φa and Φs possess families of representing
measures

(
µa(x, y)

)
x,y∈H

and
(
µs(x, y)

)
x,y∈H

, respectively. For details we refer
the reader to [15].

As an application we obtain a useful characterization of those representations
of A(Dn) that can be extended to a w∗-continuous representation of H∞(Dn).

Corollary 1.8. Let Φ : A(Dn) → L(H) be a norm-continuous unital alge-
bra homomorphism. Then the following are equivalent:

(i) Φ extends to a w∗-continuous algebra homomorphism Φ̂ : H∞(Dn) →
L(H);

(ii) Φ possesses a family of representing measures µ(x, y) (x, y ∈ H) that
are weak Henkin measures;

(iii) Φ is absolutely continuous.

Proof. The equivalence of (i) and (ii) follows directly from Lemma 1.6. By
Lemma 1.3 condition (ii) implies condition (iii), while the converse of this impli-
cation is obvious.

The next result gives sufficient conditions for the existence of dilations of
H∞-functional calculi. A particular case of this result is contained in [22].

Let T ∈ L(H)n and S ∈ L(K)n be commuting systems of contractions on
Hilbert spaces H and K such that S is a dilation of T , that is, H ⊂ K and

T k = PSk|H, k ∈ Nn,

where P is the orthogonal projection from K onto H. Let S, and hence also T ,
satisfy von Neumann’s inequality over Dn. We denote by Φ : A(Dn) → L(H) and
Ψ : A(Dn) → L(K) the unique contractive A(Dn)-functional calculi of T and S.
Then Φ(f) = PΨ(f)|H for all f ∈ A(Dn), or equivalently,

〈Φ(f)x, y〉 = 〈Ψ(f)x, y〉, f ∈ A(Dn), x, y ∈ H.

Let Φ = Φa + Φs and Ψ = Ψa + Ψs be the decompositions of Φ and Ψ into
their absolutely continuous and singular parts according to Theorem 1.7, and let
H = Ha +Hs and K = Ka +Ks be the corresponding orthogonal decompositions
of the underlying spaces.

We call a dilation S of T as above minimal if K is the only reducing subspace
for S that contains H.
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Corollary 1.9. Under the above assumptions we have:
(i) Ha ⊂ Ka, Hs ⊂ Ks, and Ψa|Ka, Ψs|Ks are dilations of Φa|Ha and Φs|Hs;
(ii) if Φ is absolutely continuous and if S is a minimal dilation of T , then Ψ

is absolutely continuous.

Proof. The construction of the representations Φa,Φs, and Ψa,Ψs described
in the sketch of the proof of Theorem 1.7 shows that

〈Φa(f)x, y〉 = 〈Ψa(f)x, y〉 and 〈Φs(f)x, y〉 = 〈Ψs(f)x, y〉

for f ∈ A(Dn) and x, y ∈ H. In particular, we have

‖x‖2 = 〈Φa(1)x, x〉 = 〈Ψa(1)x, x〉 = ‖Ψa(1)x‖2,

‖y‖2 = 〈Φs(1)y, y〉 = 〈Ψs(1)y, y〉 = ‖Ψs(1)y‖2

for x ∈ Ha and y ∈ Hs. Hence Ha ⊂ Ka, Hs ⊂ Ks, and Ψa|Ka, Ψs|Ks are dilations
of Φa|Ha and Φs|Hs, respectively.

If Φ is absolutely continuous, then Φ = Φa and therefore H = Ha ⊂ Ka.
Since Ka is reducing for S, the assertion of part (ii) follows.

2. CO-ISOMETRIC EXTENSIONS

Let T = (T1, . . . , Tn) ∈ L(H)n be a commuting tuple of contractions on a Hilbert
space H. We call T unitary if all components Ti of T are unitary operators, and
we say T is completely non-unitary if there is no non-zero reducing subspace M
for T such that T |M is unitary.

Lemma 2.1. Let T = (T1, . . . , Tn) ∈ L(H)n be a tuple of commuting con-
tractions on a Hilbert space H. Then T is completely non-unitary if and only if
the product T1 · · · · · Tn is a completely non-unitary contraction.

Proof. Let T be completely non-unitary. It suffices to show that the unitary
part

Hu = {x ∈ H; ‖T kx‖ = ‖x‖ = ‖T ∗kx‖ for all k ∈ N}

of the product T1 · · · · · Tn is the zero space (see [26]). Since Hu is contained in
the unitary part of each component Ti (i = 1, . . . , n), it suffices to show that the
space Hu is reducing for the tuple T . To check this we only need to observe that

TiT
∗
i x = x = T ∗i Tix, x ∈ Hu, i = 1, . . . , n.

Thus we have shown that the product T1 · · · · · Tn is a completely non-unitary
contraction. The reverse implication obviously holds.

If S = (S1, . . . , Sn) ∈ L(H)n is a subnormal tuple of commuting contractions
and if S is completely non-unitary, then as an application of Lemma 2.1 we obtain
that

‖S∗kx‖ k−→ 0, x ∈ H.

This observation follows as a particular application of the next result.
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Lemma 2.2. Let T ∈ L(H)n be a commuting tuple of contractions. Then
there is a unique orthogonal decomposition H = S ⊕ R with reducing spaces S
and R for T such that T |S is completely non-unitary and T |R is unitary. If T is
subnormal, then

S =
{
x ∈ H; inf

k∈Nn
‖T ∗kx‖ = 0

}
.

Proof. The space

R =
∨

(M ; M is a reducing subspace for T such that T |M is unitary)

reduces T and T |R is unitary while T restricted to S = H 	 R is completely
non-unitary. Obviously such a decomposition is unique.

Suppose that T is subnormal. By Lemma 2.1 the subnormal contraction
(T1 · · · · · Tn)|S is completely non-unitary. Hence (see, e.g., Corollary 2.4 in [15])

inf
k∈Nn

‖T ∗kx‖ = inf
k∈N

‖T ∗kx‖ = lim
k→∞

‖T ∗kx‖ = 0

for all x ∈ S. Conversely, if x ∈ H is any vector for which the above infimum is
zero, then writing x = y + z with y ∈ S and z ∈ R one obtains that

0 = lim
k→∞

‖T ∗kx‖2 = lim
k→∞

(‖T ∗ky‖2 + ‖T ∗kz‖2) = ‖z‖2.

This observation completes the proof.

Let T ∈ L(H)n be a commuting tuple of contractions such that T has a
unitary dilation. Fix a unitary dilation U ∈ L(K)n of the adjoint tuple T ∗ on a
Hilbert space K ⊃ H. Let

K+ =
∨

(UkH; k ∈ Nn) ∈ Lat(U)

be the smallest invariant subspace for U that contains H. Then the restriction
V = U |K+ ∈ L(K+)n is a commuting tuple of isometries. As in the one-variable
case, the tuple V ∗ yields a co-isometric extension of T .

Lemma 2.3. The tuple V ∗ leaves the space H invariant and T = V ∗|H. The
space K+ decomposes into an orthogonal sum K+ = S ⊕ R such that S and R
reduce V , V |S is completely non-unitary, and V |R is unitary. This decomposition
is unique and

S = {x ∈ K+; inf
k∈Nn

‖V ∗kx‖ = 0}.

Proof. Since V is subnormal, we only have to prove the first part of the
assertion. Obviously the space

K+ 	H =
∨(

(Uk − T ∗k)H; k ∈ Nn
)

is invariant under V , and hence H ∈ Lat(V ∗). Since

〈V ∗i h, k〉 = 〈h, Uik〉 = 〈h, T ∗i k〉 = 〈Tih, k〉, h, k ∈ H, i = 1, . . . , n,

it follows that V ∗|H = T .
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Suppose in addition that U ∈ L(K)n is a minimal unitary dilation of T ∗.
Using the notations from Lemma 2.3 we define

S = V |S, R = (V |R)∗, C = V ∗.

Then T possesses the co-isometric extension C = S∗ ⊕ R ∈ L(S ⊕ R)n, where R
is unitary and S∗ ∈ L(S)n satisfies the weak C0·-condition

inf{‖S∗kx‖; k ∈ Nn} = 0, x ∈ S.
Let us denote by A : K+ → K+ and Q : K+ → K+ the orthogonal projections
from K+ onto R and S, respectively.

Lemma 2.4. Suppose that R 6= {0}. Then there is a measure µ ∈ M+
1 (Tn)

such that R contains a reducing subspace R0 for R with:
(i) R0 = R|R0 is unitarily equivalent to the tuple Mz given by the multipli-

cation with the coordinate functions on L2(µ);
(ii) the subspace R+

0 of R0 corresponding to P 2(µ) under the unitary equiv-
alence in part (i) satisfies R+

0 ⊂ AH.
If T is absolutely continuous, then µ is necessarily a Henkin measure.

Proof. Since Ri(Ah) = ATih (h ∈ H and i = 1, . . . , n), it follows that
AH ∈ Lat(R). We claim that R is the minimal normal extension of R|AH. Note
first that, since U |R is unitary, the space R reduces U . Let M be a reducing
subspace for R that contains AH. Then M ⊕ (K 	R) is a reducing subspace for
U containing H. The minimality of U (as a unitary dilation of T ∗) implies that
K = M ⊕ (K 	R), and hence that M = R.

Since R 6= {0}, we obtain in particular that AH 6= {0}. By the multidimen-
sional version of Proposition V.17.14 from [14] (which can be proved in exactly the
same way as the one-dimensional case) there is a separating vector e for W ∗(R)
in AH. Denote by µ ∈ M+

1 (Tn) the scalar spectral measure for R given by the
separating vector e, that is,

µ(A) = 〈E
(
A ∩ σ(R)

)
e, e〉, A ∈ B(Tn),

where E is the projection-valued spectral measure of R.
The space R0 =

∨
(RkR∗me; k,m ∈ Nn) is reducing for R, and the (unique)

unitary operator W : L2(µ) → R0 with

W p(z, z) = p(R,R∗)e

for all polynomials p in (2n) variables intertwines Mz ∈ L
(
L2(µ)

)n and R0 =
R|R0 componentwise. Since e was chosen in AH, it follows that the space R+

0 =
W P 2(µ) is contained in AH.

Suppose that T is absolutely continuous. Then by Corollary 1.9 the tuple R
is absolutely continuous, and hence the same is true for the multiplication tuple
Mz on L2(µ). Let (fk) be a Montel sequence in A(B), and let g ∈ L1(µ). Then
g = uv with suitable functions u, v ∈ L2(µ) and by Lemma 1.6∫

Tn

fkg dµ = 〈fku, v〉L2(µ)
k−→ 0.

Thus we have shown that µ is a Henkin measure.
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Let us fix a probability measure µ ∈ M+
1 (Tn) as in the preceding proof.

For any pair of vectors x, y ∈ R, we write x · y ∈ L1(µ) for the Radon-Nikodym
derivative of the measure

µx,y : B(Tn) → C, µx,y(A) = 〈E
(
A ∩ σ(R)

)
x, y〉

with respect to µ. We denote by x � y = [x · y] the induced equivalence class in
Q(µ) = L1(µ)/⊥P∞(µ). We write

ΨR : L∞(µ) →W ∗(R)

for the isomorphism of von Neumann algebras associated with the unitary tuple R.
Let W : L2(µ) → R0 be the unitary operator chosen in the proof of Lem-

ma 2.4. For x ∈ R0, we write {x} for the function in L2(µ) corresponding to x
under the operator W . Let x, y ∈ R0. Since∫

A

{x}{y}dµ = 〈χA{x}, {y}〉L2(µ) = 〈W (χA{x}),W{y}〉R0 = µx,y(A)

for all Borel sets A ⊂ Tn, it follows that x · y = {x}{y} in L1(µ).
Suppose that the tuple T is absolutely continuous, that is, T has a w∗-

continuous H∞-functional calculus Φ : H∞(Dn) → L(H). Then the same is true
for T ∗, for the minimal unitary dilation U of T ∗ (Corollary 1.9), and for the parts
S∗ and R of the co-isometric extension C of T obtained above. Furthermore,

Φ(f) = ΦC(f)|H = [ΦS∗(f)⊕ ΦR(f)]|H, f ∈ H∞(Dn),

where ΦC ,ΦS∗ , and ΦR denote the w∗-continuous H∞-functional calculi of C,S∗,
and R, respectively. For x, y ∈ K+, we regard the w∗-continuous linear functional

x⊗ y : H∞(Dn) → C, f 7→ 〈ΦC(f)x, y〉

as an element in the predual Q = L1(Dn)/⊥H∞(Dn) of H∞(Dn).

Definition 2.5. Let ρ > 0 and let 0 6 θ < γ be real numbers.
(i) The tuple T has the ρ-almost factorization property if, for each L ∈ Q

and each ε > 0, there are vectors x, y ∈ H with ‖x‖, ‖y‖ 6 ρ‖L‖1/2 and

‖L− x⊗ y‖ < ε.

If this condition holds with ρ = 1, then T is said to possess the almost factorization
property.

(ii) We write Er
θ(T ) for the set of all L ∈ Q such that there are sequences

(xk)k>1 and (yk)k>1 in the closed unit ball of H and K+, respectively, with

lim
k→∞

‖L−xk⊗yk‖ 6 θ, (xk⊗z)
k−→ 0 for all z ∈ H, (z⊗yk) k−→ 0 for all z ∈ S.

(iii) We say that the tuple T has property Er
θ,γ if

{L ∈ Q; ‖L‖ 6 γ} ⊂ Γ
(
Er

θ(T )
)
.

For λ ∈ D, consider the conformal map of the unit disc defined by

ϕλ : D → D, z 7→ z − λ

1− λz
.
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For λ = (λ1, . . . , λn) ∈ Dn, the biholomorphic map

ϕλ : Dn → Dn, (z1, . . . , zn) 7→
(
ϕλ1(z1), . . . , ϕλn

(zn)
)

extends to a holomorphic Cn-valued map on a neighbourhood of Dn
which in-

duces a homeomorphism Dn → Dn
. For any commuting tuple A ∈ L(H)n of

contractions on a Hilbert space, the tuple Aλ = ϕλ(A) =
(
ϕλ1(A1), . . . , ϕλn

(An)
)

is again a commuting tuple of contractions. We write A∗λ for the tuple (Aλ)∗ =(
ϕλ1(A1)∗, . . . , ϕλn(An)∗

)
.

Proposition 2.6. Suppose that T has the ρ-almost factorization property
and that

inf
k∈N

‖T ∗kλ x‖ = 0,

for each x ∈ H and λ ∈ Dn. Then T satisfies property Er
0,γ with γ = 1/ρ2.

Proof. We show that γEλ ∈ Er
0(T ) for all λ ∈ Dn.

Let λ = 0. The functionals

Lk : H∞(Dn) → C, f 7→ (∂2k
1 · · · ∂2k

n f)(0)/
(
(2k)!

)n
, k ∈ N

are w∗-continuous with ‖Lk‖ 6 1 (Theorem 2.2.7 in [20]). By hypothesis there are
sequences (uk)k>1, (vk)k>1 in H with (Lk − uk ⊗ vk) k−→ 0 and ‖uk‖, ‖vk‖ 6 ρ,
k > 1. Define xk = T kuk ∈ H and yk = (Sk ⊕ R∗k)vk ∈ K+ for k > 1. Then
‖xk‖, ‖yk‖ 6 ρ and, for each z ∈ H,

〈Φ(f)xk, z〉 = 〈Φ(f)uk, T
∗kz〉 k−→ 0

uniformly for f in the closed unit ball of H∞(Dn). For each z ∈ S,

〈ΦS∗(f)z, yk〉 = 〈ΦS∗(f)S∗kz, vk〉
k−→ 0

uniformly for f in the closed unit ball of H∞(Dn). Thus (xk ⊗ z) k−→ 0 for all
z ∈ H and (z ⊗ yk) k−→ 0 for all z ∈ S. For each k > 1, choose a function hk in
the closed unit ball of H∞(Dn) with ‖L0 − xk ⊗ yk‖ = 〈L0 − xk ⊗ yk, hk〉. Then

‖L0 − xk ⊗ yk‖ 6 |〈L0, hk〉 − 〈Lk, z
2khk〉|+ |〈Lk − uk ⊗ vk, z

2khk〉|

6 ‖Lk − uk ⊗ vk‖
k−→ 0.

Let λ ∈ Dn. Write γ∗ : Q → Q for the predual of the dual algebra isomor-
phism

γ = γλ : H∞(Dn) → H∞(Dn), f 7→ f ◦ ϕλ.

The composition Φλ = Φ ◦ γλ is a w∗-continuous H∞-functional calculus of the
tuple Tλ. Define ψλ = ϕλ, that is, ψλ(z) = ϕλ(z). Note that Tλ is the restriction
of Cλ = (S∗)λ ⊕ Rλ onto H. The tuple Rλ is unitary and (S∗)λ is the adjoint of
the completely non-unitary subnormal tuple ψλ(S) = ψλ(U)|S. By Lemma 2.2

inf
k∈Nn

‖(S∗)k
λx‖ = 0, x ∈ S.
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The functional calculus Φλ of Tλ extends to the w∗-continuous H∞-functional
calculus of Cλ, that is,

Φλ(f) = ΦCλ
(f)|H, f ∈ H∞(Dn).

For x, y ∈ K+, we define

x⊗λ y : H∞(Dn) → C, f 7→ 〈ΦCλ
(f)x, y〉.

Using the fact that γ∗ : Q → Q is an isometric isomorphism with γ∗(x ⊗ y) =
x⊗λ y for x, y ∈ K+, one easily obtains that Tλ satisfies the ρ-almost factorization
property.

Now the first part of the proof applied to Tλ allows us to choose sequences
(xk)k>1 in H and (yk)k>1 in K+ with ‖xk‖, ‖yk‖ 6 ρ for all k and

E0 = lim
k→∞

xk⊗λyk, (xk⊗λz)
k−→ 0 for all z ∈ H, (z⊗λyk) k−→ 0 for all z ∈ S.

But then xk ⊗ z = γ−1
∗ (xk ⊗λ z)

k−→ 0 for all z ∈ H, z ⊗ yk = γ−1
∗ (z ⊗λ yk) k−→ 0

for all z ∈ S, and

‖Eλ − xk ⊗ yk‖ = ‖γ−1
∗ (E0 − xk ⊗λ yk)‖ k−→ 0.

Thus the proof is complete.

To prove factorization results for the unitary part R of C we need the fol-
lowing measure-theoretic result proved in [18], Lemma 1.3.

Lemma 2.7. Let ν ∈ M+
1 (X) be a probability measure on a compact set

X ⊂ Cn. For each L ∈ Q(ν) and each ε > 0, there are functions f, g ∈ P 2(ν) with
‖f‖, ‖g‖ 6 ‖L‖1/2 and

‖L− [fg]‖ < ε.

Secondly, we recall a well-known result on the boundary values of functions
in A(Dn).

Lemma 2.8. Let κ : Tn → R be a Borel measurable function such that c 6
κ 6 d, where c, d > 0 are given real numbers. Then, for any finite positive Borel
measure ν on Tn and any real numbers ε, δ > 0, there is a function f ∈ A(Dn)
with |f | 6 d on Tn and

ν
(
{z ∈ Tn; |κ(z)− |f(z)|| > δ}

)
< ε.

Proof. Set η = δ/2. By Lusin’s theorem (p. 227 in [13]) there is a continuous
function r : Tn → R with c 6 r 6 d and

ν
(
{z ∈ Tn; r(z) 6= κ(z)}

)
< ε.

Since each positive continuous function on Tn can uniformly be approximated by
moduli of polynomials ([19]), there is a polynomial p such that

∣∣|p| − r
∣∣ < η on

Tn. Then f = p/(1 + η/d) is a polynomial with |f | 6 d and
∣∣|p| − |f |

∣∣ 6 η on Tn.
Clearly, f has all needed properties.



Invariant subspaces for commuting contractions 429

In the remainder of Section 2 we suppose that the unitary part R of the
co-isometric extension C = S∗⊕R of T is non-trivial. We apply the preceding two
results to the scalar spectral measure µ ∈ M+

1 (Tn) of the unitary tuple R chosen
before. With the notation from Lemma 2.4, we write A0 ∈ L(K+) and A1 ∈ L(K+)
for the orthogonal projections from K+ onto R0 and R	R0, respectively.

Proposition 2.9. Let L ∈ Q(µ) and let 0 < ρ < 1 be a real number. For
given vectors a ∈ H, b ∈ R, and any real number ε > 0, there are vectors x ∈ H,
c ∈ R, and a Borel set Z ⊂ Tn with µ(Z) < ε, c− b ∈ R0, and

‖L−A(a+ x)� c‖ < ε,

‖x‖ 6 2‖L−Aa� b‖1/2, ‖Qx‖ < ε, ‖A1x‖ < ε,

‖c‖ 6
1
ρ

(
‖b‖+ ‖L−Aa� b‖1/2

)
,

|{A0(a+ x)}| > ρ|{A0a}| on Tn \ Z.

Proof. Fix a positive real number δ < ρ. Set d = ‖L − Aa � b‖1/2. By
Lemma 2.7 there are vectors α, β ∈ R+

0 with ‖α‖, ‖β‖ 6 d and

‖L−Aa� b− α� β‖ < δ.

By Lemma 2.4 there is a vector x′ ∈ H with ‖α−Ax′‖ < δ. Note that

Rkα ·Rkβ = |zk|2{α}{β} = α · β, k ∈ N.

Choose k ∈ N such that ‖QT kx′‖ = ‖S∗kQx′‖ < δ/2. Then the vectors defined by

u = Rkα ∈ R+
0 , v = Rkβ ∈ R+

0 , x̃ = T kx′ ∈ H
satisfy the estimates ‖u‖, ‖v‖ 6 d, ‖Qx̃‖ < δ/2, ‖u−Ax̃‖ < δ, and

‖L−Aa� b− u� v‖ < δ.

Choose a constant η > 0 such that∫
Z

(|{A0a}{A0b}|+ |{A0x̃}{v}|) dµ < δ

for each Borel set Z ⊂ Tn with µ(Z) < η. Define a measurable function κ : Tn → R
by

κ(z) =
{

1 + ρ |{A0a}(z)| 6 |{A0x̃}(z)|;
1− ρ otherwise.

Here as in the following we write {A0a}, {A0x̃}, . . . , when we really mean some
fixed representatives of the corresponding equivalence classes in L2(µ). Lemma 2.8
allows us to choose a function f ∈ A(Dn) with |f | 6 1 + ρ on Tn and such that

Z = {z ∈ Tn;
∣∣κ(z)− |f(z)|

∣∣ > δ}

is a Borel set of measure µ(Z) < η.
Define x = Φ(f)x̃ ∈ H. Then ‖Qx‖ < δ, ‖x‖ 6 (1 + ρ)‖x̃‖, and

{A0x} = {ΦR(f)A0x̃} = f{A0x̃},
‖A1x‖ = ‖ΦR(f)A1x̃‖ 6 (1 + ρ)‖A1(Ax̃− u)‖ < 2δ.
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For z ∈ Tn \ Z with |{A0a}(z)| 6 |{A0x̃}(z)|, we have

|{A0(a+ x)}(z)| > (|f(z)| − 1)|{A0x̃}(z)| > (ρ− δ)|{A0x̃}(z)|.
For the remaining points z in Tn \ Z, we have

|{A0(a+ x)}(z)| >
(
1− |f(z)|

)
|{A0a}(z)| > (ρ− δ)|{A0a}(z)|.

Combining these two estimates we obtain on Tn \ Z the inequality

|{A0(a+ x)}| > (ρ− δ)|max(|{A0x̃}|, |{A0a}|).

Set h0 = (A0a) · (A0b) + (A0x̃) · v ∈ L1(µ). Define h : Tn → C by setting

h = h0/{A0(a+ x)}

on Tn \ Z (with t/0 = 0 for all t ∈ C) and h|Z = 0. Then h ∈ L2(µ), and we can
choose a vector c0 ∈ R0 with h = {c0} and ‖c0‖ 6 (‖A0b‖ + ‖v‖)/(ρ − δ). Our
choices guarantee that

‖A0(a+ x) · c0 − h0‖L1(µ) 6 δ.

Define c = c0 + A1b ∈ R. Since r · s = 0 for r ∈ R0 and s ∈ R 	 R0, we obtain
that

‖L−A(a+ x)� c‖ 6 ‖L−Aa� b−A0x̃� v‖
+ ‖Aa� b+A0x̃� v −A0(a+ x)� c0 −A1(a+ x)�A1b‖.

We abbreviate the first term on the right by r and the second by r′. Then

r 6 ‖L−Aa� b− u� v‖+ ‖(u−A0x̃)� v‖ 6 δ(1 + d),

r′ 6 ‖[h0]−A0(a+ x)� c0‖+ ‖(A1x)� (A1b)‖ 6 δ(1 + 2‖A1b‖).

We have c− b = c0 − b+A1b = c0 −A0b ∈ R0 and

‖x‖ 6 (1 + ρ)‖x̃‖ = (1 + ρ)‖u− (u−Ax̃) +Qx̃‖ 6 (1 + ρ)(d+ 2δ).

Note that the norm of c can be estimated by

‖c‖2 = ‖c0‖2 + ‖A1b‖2 6 (‖b‖+ d)2/(ρ− δ)2.

This observation completes the proof.

In the next step we obtain almost factorizations for finite systems in Q(µ).

Proposition 2.10. Let N > 1 be an integer, let L1, . . . , LN ∈ Q(µ), and let
ε > 0, µ1, . . . , µN > 0 be given real numbers. Suppose that a ∈ H, b1, . . . , bN ∈ R
are vectors such that

‖Lk −Aa� bk‖ < µk, k = 1, . . . , N.

Then there are vectors x ∈ H and y1, . . . , yN ∈ R with yk − bk ∈ R0 and

‖Lk −A(a+ x)� yk‖ < ε,

‖Qx‖ < ε, ‖A1x‖ < ε, ‖x‖ < 2
N∑

i=1

µ
1/2
i ,

‖yk‖ < ‖bk‖+ µ
1/2
k
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for k = 1, . . . , N .

Proof. Fix positive real numbers η < ε and ρ < 1. By Proposition 2.9 there
are vectors x1 ∈ H, c1 ∈ R, and a Borel set Z1 ⊂ Tn with µ(Z1) < η and

‖L1 −A(a+ x1)� c1‖ < ε,

‖x1‖ < 2µ1/2
1 , ‖Qx1‖ < ε, c1 − b1 ∈ R0,

‖c1‖ < ‖b1‖+ µ
1/2
1 , ‖A1x1‖ < η,

|{A0(a+ x1)}| > ρ|{A0a}| on Tn \ Z1.

Define f1 ∈ L∞(Tn, µ) by setting

f1 = {A0a}/{A0(a+ x1)}

on Tn \ Z1 (with t/0 = 0 for all t ∈ C) and f1|Z1 = 0. Set

bk(1) = A1bk + ΨR(f1)A0bk ∈ R, k = 1, . . . , N.

If η is chosen small enough, then one obtains the estimates

‖Lk −A(a+ x1)� bk(1)‖
6 ‖Lk −A1a�A1bk −A0(a+ x1)�ΨR(f1)A0bk‖+ η‖bk‖

6 ‖Lk −Aa� bk‖+
∫
Z1

|{A0a}{A0bk}|dµ+ η‖bk‖ < µk

for k = 1, . . . , N .
In the next step we repeat the above constructions, but this time with

L1, a, b1 replaced by L2, a+ x1, b2(1), and b1, . . . , bN replaced by b1(1), . . . , bN (1).
Inductively we obtain vectors x1, . . . , xN ∈ H, c1, . . . , cN ∈ R, and Borel sets
Z1, . . . , ZN ⊂ Tn with∥∥∥Lk −A

(
a+

k∑
i=1

xi

)
� ck

∥∥∥ < ε,

‖xk‖ < 2µ1/2
k , ‖Qxk‖ < ε, ck − bk(k − 1) ∈ R0,

‖ck‖ < ‖bk(k − 1)‖+ µ
1/2
k , ‖A1xk‖ < ε,∣∣∣{A0

(
a+

k∑
i=1

xi

)}∣∣∣ > ρ
∣∣∣{A0

(
a+

k−1∑
i=1

xi

)}∣∣∣ on Tn \ Zk

for k = 1, . . . , N . Here

bk(k − 1) = A1bk + ΨR(fk−1 · · · · · f1)A0bk (= b1 for k = 1),

where f1, . . . , fN ∈ L∞(Tn, µ) are defined by

fk =
{
A0

(
a+

k−1∑
i=1

xi

)}
/
{
A0

(
a+

k∑
i=1

xi

)}
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on Tn \ Zk and fk = 0 on Zk. The sets Z1, . . . , ZN can be chosen in such a way

that in addition ∫
Zk

∣∣∣{A0

(
a+

j∑
i=1

xi

)}
{A0cj}

∣∣∣ dµ <
ε

N

for k = 2, . . . , N and j = 1, . . . , k − 1.

Let us define x =
N∑

i=1

xi ∈ H, yN = cN ∈ R, and

yk = A1ck + ΨR(fk+1 · · · · · fN )A0ck ∈ R, 1 6 k < N.

Then we obtain the estimates

‖yk‖ 6 (1/ρ)N−1
(
‖bk‖+ µ

1/2
k

)
for k = 1, . . . , N . For k = 1, . . . , N − 1, it follows that

‖Lk −A(a+ x)� yk‖

=
∥∥∥Lk −A1

(
a+

k∑
i=1

xi

)
�A1ck −A1

( N∑
i=k+1

xi

)
�A1ck

−A0(a+ x)�ΨR(fk+1 · · · · · fN )A0ck

∥∥∥
6

∥∥∥Lk −A1

(
a+

k∑
i=1

xi

)
�A1ck −A0

(
a+

k∑
i=1

xi

)
�A0ck

∥∥∥
+

N∑
i=k+1

‖A1xi‖ ‖A1ck‖+
N∑

j=k+1

∫
Zj

∣∣∣{A0

(
a+

k∑
i=1

xi

)}
{A0ck}

∣∣∣ dµ

< ε(2 +N‖bk‖),

while for k = N , we obtain the inequality

‖LN −A(a+ x)� yN‖ < ε.

Furthermore, our choices guarantee that yk − bk ∈ R0 for k = 1, . . . , N .

By starting the proof with ε replaced by a sufficiently small number ε′ > 0,

with µi replaced by suitable numbers µ′i < µi, and by choosing ρ appropriately, one

easily obtains vectors x ∈ H and y1, . . . , yN ∈ R satisfying precisely the estimates

stated in Proposition 2.10.
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3. FACTORIZATIONS OF TYPE (A1,ℵ0 )

In this section we prove that the dual algebra generated by a commuting tuple
T ∈ L(H)n with a unitary dilation such that T is absolutely continuous and
possesses property Er

θ,γ for some 0 6 θ < γ 6 1 has the factorization property
(A1,χ0). This observation will be used later to deduce concrete invariant-subspace
results.

Let T ∈ L(H)n be a commuting system of contractions with a unitary di-
lation. As explained in Section 2 we use a minimal unitary dilation of T ∗ to
construct a co-isometric extension

C = S∗ ⊕R ∈ L(S ⊕R)n

of T . Let us suppose that T is absolutely continuous, that is, T possesses a
w∗-continuous H∞-functional calculus Φ : H∞(Dn) → L(H). By the results of
Section 1 the systems C,S∗, and R are absolutely continuous. The H∞-functional
calculi of C,S∗, and R satisfy

Φ(f) = ΦC(f)|H = [ΦS∗(f)⊕ ΦR(f)]|H, f ∈ H∞(Dn).

For x, y ∈ S ⊕R, we regard the functional

x⊗ y : H∞(Dn) → C, f 7→ 〈ΦC(f)x, y〉

as an element in the predual Q = L1(Dn)/⊥H∞(Dn) of H∞(Dn).
In the case when R 6= {0}, we fix a Henkin probability measure µ ∈M+

1 (Tn)
as explained in Lemma 2.4, and we denote by r∗ : Q(µ) → Q the predual of the
canonical w∗-continuous algebra homomophism (cf. the preliminaries)

r : H∞(Dn) → P∞(µ)

associated with µ. For x, y ∈ R, let x�y ∈ Q(µ) be defined as in the considerations
following Lemma 2.4. An elementary exercise shows that r∗(x� y) = x⊗ y for all
x, y ∈ R. If R = {0}, then we set Q(µ) = {0} = P∞(µ).

Definition 3.1. Let 0 6 θ < γ 6 1 be real numbers. We say that the tuple
T possesses property F r

θ,γ if there is a co-isometric extension C of T as above such
that the set

Γ
(
Er

θ(T ) ∪ r∗{L ∈ Q(µ); ‖L‖ 6 1}
)

contains the closed ball {L ∈ Q; ‖L‖ 6 γ}.

Our aim is to show that property F r
θ,γ implies the factorization property

(A1,χ0) for the dual algebra generated by T .
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Proposition 3.2. Suppose that T has property F r
θ,γ for some 0 < θ < γ 6

1. Let L1, . . . , LN ∈ Q and µ1, . . . , µN > 0 be given. For any vectors a ∈ H,
w1, . . . , wN ∈ S and b1, . . . , bN ∈ R with

‖Lj − a⊗ (wj + bj)‖ < µj , j = 1, . . . , N,

there are a′ ∈ H, w′1, . . . , w
′
N ∈ S, and b′1, . . . , b

′
N ∈ R such that, for j = 1, . . . , N ,

‖Lj − a′ ⊗ (w′j + b′j)‖ < (θ/γ)µj ,

‖a′ − a‖ < (3/γ1/2)
N∑

i=1

µ
1/2
i ,

‖w′j − wj‖ < (µj/γ)1/2, ‖b′j‖ < ‖bj‖+ (µj/γ)1/2.

Proof. For j = 1, . . . , N , define

L′j = Lj − a⊗ (wj + bj) ∈ Q, dj = max
(
‖L′j‖,

µj

2

)
.

Choose ε > 0 such that (θ/γ)dj + 5ε < (θ/γ)µj for all j. Define sj = (θ/γ)dj + ε.
Arguing exactly as in the proof of Proposition 3.4 from [12] one can choose integers
0 = k0 < k1 < · · · < kN , elements Ki ∈ Er

θ(T ), αi ∈ C (i = 1, . . . , kN ), functions
fj ∈ L1(µ) (j = 1, . . . , N) with

‖L′j − r∗([fj ])−
∑
i∈Ij

αiKi‖ <
ε

2

and
‖fj‖L1(µ) +

∑
i∈Ij

|αi| <
dj

γ

for j = 1, . . . , N where Ij = {kj−1 + 1, . . . , kj}.
Since Ki ∈ Er

θ(T ), we can choose sequences (xi
k)k>1 and (yi

k)k>1 (i =

1, . . . , kN ) in the closed unit ball ofH andK+, respectively, with (xi
k⊗z)

k−→ 0, for

z ∈ H, (z⊗ yi
k) k−→ 0, for z ∈ S and such that, for each tuple ν = (n1, . . . , nkN

) ∈
NkN , ∥∥∥L′j − r∗([fj ])−

∑
i∈Ij

αix
i
ni
⊗ yi

ni

∥∥∥ < sj , j = 1, . . . , N.

Following closely [12] we define, for ν as above and j = 1, . . . , N ,

Aj(ν) = a⊗ bj + r∗([fj ]) +
∑
i∈Ij

αiAx
i
ni
⊗ yi

ni
,

Qj(ν) = a⊗ wj +
∑
i∈Ij

αiQx
i
ni
⊗ yi

ni
,

and we observe that ‖Lj −Qj(ν)−Aj(ν)‖ < sj .
Choose complex numbers βi (i = 1, . . . , kN ) with β2

i = αi and define

uν =
kN∑
i=1

βix
i
ni
, vν,j =

∑
i∈Ij

βiQy
i
ni
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for j = 1, . . . , N and ν arbitrary.
Let η > 0 be arbitrary. Inductively one can choose, for each index i =

1, . . . , kN , a natural number ni > 1 such that

‖Qxi
ni
⊗ y`

n`
‖ < η, ‖Qa⊗ yi

ni
‖ < η, |〈xi

ni
, x`

n`
〉| < η,

‖xi
ni
⊗ wj‖ < η, ‖xi

ni
⊗ bj‖ < η, |〈Qyi

ni
, y`

n`
〉| < η

for i, ` = 1, . . . , kN with i 6= ` and each j = 1, . . . , N . If η is small enough and

if ν = (n1, . . . , nkN
) is chosen as above, then ‖uν‖2 <

N∑
i=1

µi/γ, ‖vν,j‖2 < µj/γ,

‖uν ⊗ bj‖ < ε, and

‖Q(j)(ν)− (a+ uν)⊗ (wj + vν,j)‖ < ε, j = 1, . . . , N.

We fix ν = (n1, . . . , nkN
) such that the above estimates hold and define

a1 = a+ uν ∈ H, w′j = wj + vν,j ∈ S,
xi = xi

ni
∈ H, yi = yi

ni
∈ K+,

hj = fj +
∑
i∈Ij

αiAx
i ·Ayi ∈ L1(µ)

for j = 1, . . . , N and i = 1, . . . , kN .
Since ‖hj‖ < dj/γ, Proposition 2.10 allows us to choose x ∈ H, b′1, . . . , b

′
N ∈

R with
‖Aa1 � bj + [hj ]−A(a1 + x)� b′j‖ < ε,

‖Qx‖ < ε/(‖w′j‖+ 1), ‖x‖ < 2
N∑

i=1

(di/γ)1/2,

‖b′j‖ < ‖bj‖+ (dj/γ)1/2

for j = 1, . . . , N . By comparing the definitions of Aj(ν) and hj , we obtain that

‖(a1 + x)⊗ b′j −Aj(ν) + (uν ⊗ bj)‖ < ε.

Gathering all estimates prepared up to now, we obtain that

‖Lj − (a1 + x)⊗ (w′j + b′j)‖
= ‖Lj − (a+ uν)⊗ (wj + vν,j)− (a1 + x)⊗ b′j − x⊗ w′j‖
< ‖Lj − (a+ uν)⊗ (wj + vν,j)− (a1 + x)⊗ b′j + uν ⊗ bj‖+ 2ε

< ‖Lj −Qj(ν)−Aj(ν)‖+ 4ε < sj + 4ε < (θ/γ)µj .

To complete the proof it suffices to define a′ = a1 + x = a+ uν + x and to observe
that with this definition all claimed estimates hold.

In the case when R = {0} the whole proof remains valid with µ = 0 if one
forgets everywhere the terms coming fromR or L1(µ). In this case Proposition 2.10
is not needed for the proof of Proposition 3.2.

Before we prove property (A1,χ0), we show how to replace the almost factor-
ization obtained in Proposition 3.2 by an actual factorization.
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Corollary 3.3. Suppose that T has property F r
θ,γ for some 0 6 θ < γ 6 1.

Let L1, . . . , LN ∈ Q and let µ1, . . . , µN > 0 be given real numbers. Then, for any
vectors a ∈ H, w1, . . . , wN ∈ S, and b1, . . . , bN ∈ R with

‖Lj − a⊗ (wj + bj)‖ < µj , j = 1, . . . , N,

there are a′ ∈ H, w′1, . . . , w
′
N ∈ S, and b′1, . . . , b

′
N ∈ R such that

Lj = a′ ⊗ (w′j + b′j),

‖a′ − a‖ < 3α
N∑

i=1

µ
1/2
i , ‖w′j − wj‖ < αµ

1/2
j ,

‖b′j‖ < ‖bj‖+ αµ
1/2
j

for j = 1, . . . , N , where α = 1/(γ1/2 − θ1/2).

Proof. Without loss of generality we may suppose that θ > 0. Otherwise,
one can replace µj and θ = 0 by suitable numbers µ′j < µj and θ′ > 0.

An inductive application of Proposition 3.2 allows us to choose sequences
(ak)k>1 in H, (wkj)k>1 in S, and (bkj)k>1 in R for j = 1, . . . , N such that (with
a0 = a, w0j = wj , and b0j = bj)

‖Lj − ak ⊗ (wkj + bkj)‖ < (θ/γ)kµj ,

‖ak − ak−1‖ < (3/γ1/2)
( N∑

i=1

µ
1/2
i

)
(θ/γ)(k−1)/2,

‖wkj − wk−1,j‖ < (µj/γ)1/2(θ/γ)(k−1)/2,

‖bkj‖ < ‖bk−1,j‖+ (µj/γ)1/2(θ/γ)(k−1)/2

for j = 1, . . . , N and k > 1.
Obviously the sequences (ak)k>1 and (wkj)k>1 (j = 1, . . . , N) are Cauchy

sequences and their limits a′ and w′j satisfy the right estimates. Since

‖bkj‖ < ‖bj‖+ (µj/γ)1/2
k−1∑
i=0

(θ/γ)i/2

for k > 1 and j = 1, . . . , N , we may suppose, after dropping to suitable subse-
quences, that the weak limits

b′j = w-lim
k→∞

bkj , j = 1, . . . , N

exist. Then ‖b′j‖ 6 ‖bj‖+ αµ
1/2
j and Lj = a′ ⊗ (w′j + b′j) for j = 1, . . . , N .

Our next result shows that the dual algebra generated by a commuting tuple
T of contractions satisfying property F r

θ,γ for some real numbers 0 6 θ < γ 6 1
has the factorization property (A1,χ0).
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Theorem 3.4. Suppose that T satisfies the property F r
θ,γ for some 0 6 θ <

γ 6 1. Let (Lk)k>1 be a sequence in Q and let δk > ‖Lk‖ be real numbers with

δ =
∞∑

k=1

δ
1/2
k < ∞. Then, for any given vector a ∈ H, there are vectors x ∈ H,

yk ∈ S, and zk ∈ R such that ‖x− a‖ < 3αδ and such that

Lk = x⊗ (yk + zk), ‖yk‖ < αδ
1/2
k , ‖zk‖ < αδ

1/2
k

for all k > 1. Here, as before, α = 1/(γ1/2 − θ1/2).

Proof. Choose real numbers µk with ‖Lk‖ < µk < δk for k > 1. Define a
sequence of positive real numbers ck (k > 1) by

c
1/2
k = min

( 1
2k
, δ

1/2
k − µ

1/2
k

)
and set εkj = ckcj , k > j > 1. Then the real numbers εkj satisfy the conditions

∞∑
k=j+1

ε
1/2
kj < δ

1/2
j − µ

1/2
j for j > 1,

k−1∑
j=1

ε
1/2
kj < δ

1/2
k − µ

1/2
k for k > 1.

An iterative application of Corollary 3.3 allows us to choose vectors ak ∈ H,
wkj ∈ S, and bkj ∈ R (k > j > 1) with

Lj = ak ⊗ (wkj + bkj), k > j > 1,

and such that (with a0 = a)

‖ak − ak−1‖ < 3α
(
µ

1/2
k +

k−1∑
j=1

ε
1/2
kj

)
, k > 1,

‖wkj − wk−1,j‖ < αε
1/2
kj , k > j > 1,

‖wjj‖ < αµ
1/2
j , j > 1,

‖bkj‖ < ‖bk−1,j‖+ α ε
1/2
kj , k > j > 1,

‖bjj‖ < αµ
1/2
j , j > 1.

Note that the sequences (ak)k>1 and (wkj)k>j (j > 1) converge and that their
limits x ∈ H and yj ∈ S satisfy

‖x− a‖ < 3α
∞∑

k=1

δ
1/2
k = 3αδ, ‖yj‖ < αδ

1/2
j , j > 1.

Since

‖bkj‖ < α
(
µ

1/2
j +

k∑
i=j+1

ε
1/2
ij

)
< αδ

1/2
j

for k > j > 1, we can choose, for each j > 1, a weakly convergent subsequence
of the sequence (bkj)k>j . The limits zj ∈ R of these subsequences satisfy ‖zj‖ <
αδ

1/2
j and Lj = x⊗ (yj + zj). Thus all conditions in Theorem 3.4 are satisfied.
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The following is the version of Theorem 3.4 that will be used in the applica-
tions.

Corollary 3.5. Suppose that T satisfies the property F r
θ,γ for some 0 6

θ < γ 6 1. For each ε > 0, there is a constant C = C(ε, θ, γ) > 0 such that, for
each sequence (Lk)k>1 in Q and each vector a ∈ H, there are elements x, yk ∈ H
(k > 1) with ‖x− a‖ < ε and

Lk = x⊗ yk, ‖yk‖ 6 Ck2‖Lk‖, k > 1.

Proof. Define dk = ‖Lk‖ if Lk 6= 0 and dk = 1 otherwise. Set

β = 3α
∞∑

j=1

1
j2

(where α = 1/(γ1/2 − θ1/2)) and

δk = ε2/β2k4, Mk = δk(Lk/2dk), k > 1.

By Theorem 3.4 we can choose x ∈ H, wk ∈ S, and bk ∈ R with ‖x− a‖ < ε and

Mk = x⊗ (wk + bk), ‖wk‖ < αδ
1/2
k , ‖bk‖ < αδ

1/2
k

for all k > 1. Then Lk = x⊗ yk with yk = (2dk/δk) (wk + bk). Because

‖yk‖ 6

(
1
ε

)
β2k2dk, k > 1,

one can choose
C(ε, θ, γ) = C/

(
ε(γ1/2 − θ1/2)2

)
with a suitable universal constant C > 0.

4. INVARIANT SUBSPACES

Let T ∈ L(H)n be a commuting tuple of contractions on a Hilbert space H such
that T possesses a unitary dilation. In this section we show that, if the Harte
spectrum σH(T ) of T is dominating in Dn, then T possesses non-trivial joint
invariant subspaces. In the one-dimensional case this result specializes to a well-
known theorem of Brown, Chevreau, and Pearcy saying that each contraction
on a Hilbert space with dominating spectrum in the open unit disc has non-
trivial invariant subspaces. For spherical contractions the corresponding result
was obtained in [15].

The existence of a unitary dilation implies that T satisfies von Neumann’s
inequality over the unit polydisc, or equivalently, that T possesses a contractive
A(Dn)-functional calculus. Since by a classical result of Sz.-Nagy and Foiaş (The-
orem II.5.4 in [26]) each single contraction that is neither of type C0· nor of type
C·0 either possesses a non-trivial hyperinvariant subspace or is a scalar multiple of
the identity operator, we may suppose that each component Ti (i = 1, . . . , n) of T
is of type C0· or C·0. But then results of Apostol (Theorem 1.7 and Proposition 1.8
in [4]) imply that T is absolutely continuous, that is, T possesses a w∗-continuous
contractive H∞-functional calculus.
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In [16] (Theorem 2.11) it is shown that the dual algebra generated by a com-
muting tuple of contractions with dominating Harte spectrum and w∗-continuous
contractive H∞-functional calculus such that, for some indices i, j ∈ {1, . . . , n},
T ∗i and Tj are of type C0·, has property (Aχ0). Thus to prove the existence of joint
invariant subspaces for our tuple T ∈ L(H)n we may suppose that all components
of T are of type C·0. Again a result of Apostol [4] (Proposition 1.8) shows that
in this case the H∞-functional calculus Φ of T is of class C·0. Finally, it is useful

to observe that, if there is a point λ ∈ σH(T ) \ σHe (T ), then
n⋂

i=1

Ker(λi − Ti) or
n∑

i=1

(λi − Ti)H is a non-trivial joint invariant subspace for T .

Our invariant-subspace construction is based on the results of the preceding
sections and on the following lemma.

Lemma 4.1. Let T ∈ L(H)n be a commuting tuple with a contractive w∗-
continuous H∞-functional calculus Φ : H∞(Dn) → L(H). Suppose that Φ is of type
C·0 and that σHe (T ) is dominating in Dn. Then T satisfies the almost factorization
property.

Proof. It suffices to show that, for each functional L ∈ Q with ‖L‖ 6 1 and
each ε > 0, there are vectors x, y ∈ H with max(‖x‖, ‖y‖) 6 1 and ‖L−x⊗y‖ < ε.
Since σHe (T ) is dominating in Dn, we only need to consider functionals L of the
form

L =
r∑

j=1

cjEλj ,

where λ1, . . . , λr ∈ σHe (T ) and c1, . . . , cr are complex numbers with
r∑

j=1

|cj | 6 1. By

changing the order, if necessary, we may of course assume that λ1, . . . , λs ∈ σle(T )
and λs+1, . . . , λr ∈ σre(T ) for some natural number s ∈ {0, . . . , r}.

Let ε > 0 be arbitrary. We choose pairwise orthogonal unit vectors xj
k

(j = 1, . . . , r and k ∈ N) such that (cf. Lemma 6.5.2 in [17])

max
16i6n

‖(λj
i − Ti)x

j
k‖

k−→ 0, j = 1, . . . , s,

and
max

16i6n
‖(λj

i − T ∗i )xj
k‖

k−→ 0, j = s+ 1, . . . , r.

By the open mapping principle there is a constant C > 0 such that, for each
function f ∈ H∞(Dn) with ‖f‖ 6 1 and each j = 1, . . . , r, there are functions
f1, . . . , fn ∈ H∞(Dn) (depending on j) with ‖fi‖ 6 C and

f(z)− f(λj) =
n∑

i=1

(zi − λj
i )fi(z), z ∈ Dn.
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Let f ∈ H∞(Dn) be a function with ‖f‖ 6 1. For λ ∈ {λ1, . . . , λr}, f1, . . . , fn

as above, and each unit vector x ∈ H, we obtain

|〈x⊗ x− Eλ, f〉| 6
n∑

i=1

|〈Φ(fi)(λi − Ti)x, x〉|

6 C
n∑

i=1

min
(
‖(λi − Ti)x‖, ‖(λi − T ∗i )x‖

)
.

Similarly, one obtains for λ, f1, . . . , fn as above, and any unit vectors x, y ∈ H,

|〈x⊗ y, f〉| 6 |〈x, y〉|+
n∑

i=1

|〈Φ(fi)(λi − Ti)x, y〉|

6 |〈x, y〉|+ C
n∑

i=1

min
(
‖(λi − Ti)x‖, ‖(λi − T ∗i )y‖

)
.

After cancelling finitely many terms in each of the sequences (xj
k)k∈N (j = 1, . . . , r),

we may therefore suppose that

‖Eλj − xj
k ⊗ xj

k‖ <
ε

2
for all j = 1, . . . , r and k ∈ N, and that

‖xp
k ⊗ xq

l ‖ <
ε

2r2
, k, l ∈ N,

for p, q ∈ {1, . . . , r} with p 6= q and such that p 6 s or q > s.
Define xj = xj

0 for j = 1, . . . , s. Since Φ is of type C·0, there is a natural
number k ∈ N such that with xj = xj

k (j = s+ 1, . . . , r) the inequalities

‖xp ⊗ xq‖ < ε

2r2
, p = s+ 1, . . . , r, q = 1, . . . , s

hold. We fix complex numbers d1, . . . , dr with d2
j = cj for all j, and we define

x =
r∑

j=1

djx
j and y =

r∑
j=1

djx
j .

Then ‖x‖, ‖y‖ 6 1 and

‖L− x⊗ y‖ 6
r∑

j=1

|cj | ‖Eλj − xj ⊗ xj‖+
r∑

p,q=1
p6=q

‖xp ⊗ xq‖ < ε.

Now we have gathered all pieces that we need to prove our main invariant-
subspace result for commuting contractions.

Theorem 4.2. Let T ∈ L(H)n be a commuting tuple of contractions that
possesses a unitary dilation. Suppose that the Harte spectrum σH(T ) of T is
dominating in Dn. Then Lat(T ) is non-trivial.
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Proof. As explained at the beginning of this section, we are allowed to assume
that σH(T ) = σHe (T ) and that T possesses a contractive H∞-functional calculus

Φ : H∞(Dn) → L(H)

of type C·0. By Lemma 4.1 the tuple T possesses the almost factorization property.
Since, for each λ ∈ Dn, the tuple Tλ = ϕλ(T ) (see Section 2 for the notation)
possesses the H∞(Dn)-functional calculus

Φλ : H∞(Dn) → L(H), f 7→ Φ(f ◦ ϕλ),

which is again of type C·0, it follows from Proposition 2.6 that T satisfies property
Er

0,1. By Corollary 3.5 the dual algebra generated by T satisfies property (A1,χ0).
In particular T possesses non-trivial joint invariant subspaces.

By a well-known result of Ando ([3]) each commuting pair of Hilbert-space
contractions possesses a unitary dilation. Therefore we obtain the following con-
sequence of Theorem 4.2 in dimension n = 2.

Corollary 4.3. Each commuting pair T = (T1, T2) ∈ L(H)2 of contrac-
tions with dominating Harte spectrum in the bidisc D2 possesses non-trivial joint
invariant subspaces.

The proof of Theorem 4.2 yields the following factorization result.

Corollary 4.4. Let T ∈ L(H)n be a commuting tuple of contractions with
a unitary dilation. Suppose that all components of T are of type C·0 or that all
components of T are of type C0·. If σHe (T ) is dominating in Dn, then T satisfies
condition Er

0,1. In particular, the dual algebra AT has property (A1,χ0).

The condition that the Harte spectrum of T is dominating in Dn has only
been used to ensure that the tuple T satisfies the almost factorization property.
Without this hypothesis one obtains the following variant of Theorem 4.2.

Theorem 4.5. Let T ∈ L(H)n be a commuting tuple of contractions such
that T possesses a unitary dilation. Suppose that either T is not absolutely con-
tinuous or that T is absolutely continuous and satisfies the ρ-almost factorization
property for some real number ρ > 0. Then Lat(T ) is non-trivial.

Proof. Because of the theorem of Sz.-Nagy and Foiaş stated at the beginning
of this section we are allowed to assume that each component Ti (i = 1, . . . , n) of
T is of type C0· or of type C·0. Then Apostol’s results from [4] show that T is
absolutely continuous.

Suppose that T satisfies the ρ-almost factorization property for some real
number ρ > 0. Set γ = 1/ρ2. It follows from Lemma 2.7 in [16] that, if T ∗i and Tj

are of type C·0 for some indices i, j ∈ {1, . . . , n}, then the H∞-functional calculus
of T satisfies condition (∆0,γ) (see [16] for this notion). Since in this case the dual
algebra generated by T has property (Aχ0) (Proposition 1.6 in [16]), we are allowed
to assume that each component of T , and hence also the H∞-functional calculus
of T , is of type C·0. Then Proposition 2.6 shows that T satisfies condition Er

0,γ .
By Corollary 3.5 the dual algebra generated by T has property (A1,χ0). Hence in
any case the existence of joint invariant subspaces is shown.
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Each absolutely continuous contraction with isometric H∞-functional cal-
culus satisfies the almost factorization property ([6]). It would be interesting to
know whether the corresponding result holds true in the multivariable setting. If
the answer to this question is positive, then Theorem 4.2 and Corollary 4.3 hold
true with the Taylor spectrum instead of the Harte spectrum. Moreover, in this
case, each commuting tuple T of contractions with a unitary dilation such that
T is absolutely continuous with isometric H∞-functional calculus over Dn would
possess a non-trivial joint invariant subspace.

The methods of this paper can be used to show that each completely non-
unitary subnormal tuple with an isometricH∞(Dn)-functional calculus is reflexive.
This result will be the subject of a sequel to this paper.

After completing this paper B. Chevreau showed with different methods that
the dual algebra generated by an absolutely continuous commuting tuple of con-
tractions with a unitary dilation and dominating essential Harte spectrum pos-
sesses the factorization property (Aχ0).
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