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Abstract. In this paper we analyze the structure of group C∗-algebras of
Lie semi-direct products of Cn by R to show that these C∗-algebras have fi-
nite composition series with their subquotients C∗-tensor products involving
commutative C∗-algebras or the C∗-algebra of compact operators or non-
commutative tori. As an application, we estimate stable rank and connected
stable rank of these group C∗-algebras in terms of groups, and we deduce
that group C∗-algebras of Lie semi-direct products of Rn by R have a similar
structure as in the complex cases.
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1. INTRODUCTION

The problem to analyze the structure of group C∗-algebras of simply connected,
solvable Lie groups has been considered by a lot of mathematicians, but it is
rather mysterious although this problem is so far solved to some extent. See [6],
[15], [22] and [24] for some results on the structure of group C∗-algebras of semi-
direct products Rn o R with specified actions, and [5], [7], [11], and [12] for some
profound results. On the other hand, M.A. Rieffel ([14]) initiated the notion of
stable rank of C∗-algebras, and raised the important question of computing the
stable rank of group C∗-algebras of Lie groups. See [17], [18], [19], [20] and [21]
for some partial results on this question.

In this paper we mainly consider group C∗-algebras of Lie semi-direct prod-
ucts of the form Cn oα R (we often omit the symbol α). These semi-direct products
contain the Mautner group which is important as an example of simply connected,
non type I, solvable Lie groups. In Section 2, we first treat the case that the ac-
tion α of R on Cn is diagonal, and second the case with α non-diagonal. For the
analysis in some cases, we use some results by P. Green ([6], [7]) frequently, and in
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other cases, we use some methods of foliation C∗-algebras by A. Connes ([2]; cf.
[8]). Next, the general case is examined under observation of the diagonal or non-
diagonal cases. That is, we explicitly construct finite composition series of group
C∗-algebras of Cn o R as explained in the abstract. The main result (Theorem 2.3)
will be the first step in analyzing the group C∗-algebras of general solvable Lie
groups. As a corollary, using some formulas of stable rank and connected stable
rank obtained so far, we estimate these ranks of the group C∗-algebras considered
in terms of groups. This gives a partial answer to Rieffel’s problem as mentioned
above and a partially extended version of the main result in [21] (cf. [18], [19]). In
addition, the non-splitting of some exact sequences is proved in the case of these
group C∗-algebras. In Section 3, we apply the main theorem in Section 2 to the
cases of Lie semi-direct products of the form Rn o R, so that we obtain the sim-
ilar result with complex cases. Finally, we present an example to illustrate some
results in this paper.

Notations. We now review some notations and facts used later (cf. [1], [3], [14]).
Let G be a Lie group and C∗(G) its full group C∗-algebra. Denote by Ĝ1

the space of all 1-dimensional representations of G. If G is a simply connected,
solvable Lie group, then Ĝ1 is isomorphic to Rk with k = dim Ĝ1 as a topological
group (cf. [21]).

For a C∗-algebra A, we denote by A oα R the C∗-crossed product of A by
the action α of R. We often write it as A o R when α is specified.

Let A be a C∗-algebra. Denote by sr(A), csr(A) ∈ {1, 2, . . . ,∞} the stable
rank, connected stable rank of A respectively.

Let X be a locally compact T2-space and C0(X) the C∗-algebra of all complex
valued, continuous functions on X vanishing at infinity. Then we have that

(F1) : sr(C0(X)) = [dim X/2] + 1 ≡ dimC X,

where dim X is the covering dimension of X and [ · ] is the Gauss symbol.
For an exact sequence of C∗-algebras 0 → I → A → A/I → 0, we have that

(F2) : sr(I) ∨ sr(A/I) 6 sr(A) 6 sr(I) ∨ sr(A/I) ∨ csr(A/I),

csr(A) 6 csr(I) ∨ csr(A/I)

where ∨ means the maximum (see [14] and [17]).
Denote by K the C∗-algebra of all compact operators on a countably infinite

dimensional Hilbert space. For A⊗K the C∗-tensor product of a C∗-algebra A,

(F3) : sr(A⊗K) = 2 ∧ sr(A), csr(A⊗K) 6 2 ∧ csr(A)

where ∧ means the minimum (cf. [10], [14] and [17]).
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2. STRUCTURE OF GROUP C∗-ALGEBRAS OF Cn o R

We analyze the structure of group C∗-algebras of Lie semi-direct products Cn oα R
with α general. First of all, since the action α induces a Lie group homomorphism
from R to GLn(C), we have the following diagram:

R α−→ GLn(C) t 7→ αtx xexp

R dα−→ Mn(C) t 7→ tdα

where dα ∈ Mn(C) is the differential of α at t = 0. Next, we consider the Jordan
canonical form of dα. By taking a suitable base of Cn and denoting this base as

the natural base of Cn, we may have that dα is equal to the diagonal sum
s⊕

i=1

Ai

of Jordan blocks as follows:

Ai =


µi 0

1
. . .
. . . . . .

0 1 µi

 = Di + Ni, or Ai = Di

where µi is an eigenvalue of dα, and Di, Ni are respectively the diagonal, off
diagonal part of Ai. Then we have that

αt = exp(tdα) =
s⊕

i=1

exp(tAi)

on the decomposition of Cn associated with the Jordan decomposition of dα.
Then via Fourier transform we have C∗(Cn oα R) ∼= C0(Cn) o

α̂
R, where α̂t =

s⊕
i=1

exp(tA∗
i ) with A∗

i the adjoint matrix of Ai. Then since the origin {0n} of Cn

is closed in Cn and invariant under α̂, we obtain the following exact sequence:

0 → C0(Cn \ {0n}) o R → C0(Cn) o
α̂

R → C0(R) → 0.

We will examine the structure of C0(Cn \ {0n}) o R in the diagonal case, i.e.,
Ai = Di first and the non-diagonal case next in the following.

The diagonal case. When n = 1 we have the following non-trivial cases:
(1) Radial case: αt(z) = eµt+iθtz for z ∈ C and t, µ, θ ∈ R with µ 6= 0;
(2) The rotation: αt(z) = eiθtz for z ∈ C, θ, t ∈ R with θ 6= 0.

Remark 1.1. We may assume that µ = 1 = θ since every group C∗-algebra
in each case has the same structure as given below.

For some uses below, we give the following definitions (cf. [6]):
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Definition 1.2. We say that the action α of R on a subset X of Cn is
wandering if for any compact subset U of X, the set {g ∈ R | αg(U) ∩ U 6= ∅} is
relatively compact in R.

Remark 1.3. In the case (1) above, α is wandering and free on C \ {0}.

Definition 1.4. We say that the action α of R on Cn is diagonal if αt

is diagonal for any t ∈ R, and that the diagonal action α is diagonally radial
(respectively rotational) if the restriction of α to each direct factor C of Cn is
radial (respectively the rotation).

Let G = Cn oα R, where α is diagonal. If α is trivial on a direct factor C
of Cn, then we have that C∗(G) ∼= C0(C) ⊗ (C0(Cn−1) o

α̂
R). Thus we assume

that α is non trivial on each C of Cn. Since the direct product of k direct factors
C \ {0} corresponding to each subset {ij}k

j=1 of {1, . . . , n}, denoted by the same
symbol (C \ {0})k, is closed in Xk−1 defined below and invariant under α̂, and
these (C \ {0})k are open and closed in their disjoint union, we have the following
exact sequences (1 6 k 6 n) inductively

0 → C0(Xk) o R → C0(Xk−1) o R →
⊕

16i1<···<ik6n

C0((C \ {0})k) o R → 0

with X0 = Cn \ {0n}, Xn = (C \ {0})n, where
⊕

16i1<···<ik6n

means the direct

sum of the combination
(
n
k

)
direct factors. By taking refinements of the above

exact sequences, C∗(G) has a finite composition series {Il}K
l=1 with IK = C∗(G),

I0 = {0} and

Il/Il−1
∼=

 C0(Ĝ1) = C0(R) for l = K ≡ 1 +
n∑

k=1

(
n

n−k+1

)
,

C0((C \ {0})n−j+1) o R,

for
j−1∑
k=1

(
n

n−k+1

)
+ 1 6 l 6

j∑
k=1

(
n

n−k+1

)
with 1 6 j 6 n.

In the cases with diagonally radial actions on (C \ {0})k where k is as in the
above setting, it is clear that α is free and wandering on it. Hence by Green’s
result ([6], Corollary 15), we get that

C0((C \ {0})k) o
α̂

R ∼= C0((C \ {0})k/R)⊗K

where (C\{0})k/R is the quotient space by α̂, and it is homeomorphic to T× (C\
{0})k−1.

In the cases with diagonally rotational actions on (C \ {0})k as above, we let

αt(zi1 , . . . , zik
) = (eiθi1 tzi1 , . . . , e

iθik
tzik

), zij
∈ C \ {0}, t ∈ R, θij

∈ R \ {0},

(1 6 j 6 k). Then α̂t(wi1 , . . . , wik
) = (e−iθi1 twi1 , . . . , e

−iθik
twik

) with wij
∈

C \ {0}. By the identification between w ∈ C \ {0} and (|w|, w/|w|) ∈ R+ ×T, we
obtain that

C0((C \ {0})k) o
α̂

R ∼= C0(Rk
+)⊗ (C(Tk) o

α̂
R).

Set Θ(i1, . . . , ik) = {θij
}k

j=1 and Θ = Θ(i1, . . . , ik).
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Then we examine the structure of C(Tk) o
α̂

R in the following. We say that
the elements of Θ are rationally dependent, when there is the least positive number
q such that qθij = 0 mod 2π for any 1 6 j 6 k. If elements of Θ are not rationally
dependent, then G = Cn o R for n = 2 is the Mautner group.

In the case k = 1, the action of R on T is the rotation. By Green’s imprimi-
tivity theorem ([7], Corollary 2.10), we obtain that

C(T) o R ∼= C(R/R1) o R ∼= C∗(R1)⊗K(L2(T)) ∼= C(T)⊗K
where R1 = Z is the stabilizer of 1 ∈ T. Hence, we obtain that

C0(C \ {0}) o
α̂

R ∼= C0(R+)⊗ (C(T) o
α̂

R) ∼= C(C \ {0})⊗K.

For the cases of k > 2, we use the methods of foliation C∗-algebras (see
[2]). Since the stabilizers for all elements of Tk are isomorphic to Z or zero, hence
discrete, according to whether elements of Θ are rationally dependent or not. So
we obtain that

C(Tk) o R ∼= C∗(Tk,Fk)
which is the foliation C∗-algebra with the foliation Fk consisting of all orbits in
Tk by α̂ (cf. [8], Proposition 6.5). Then the graph G of Fk is the groupoid Tk ×R
with the range, source maps r, s : G → Tk respectively defined by r(w, t) = α̂t(w),
s(w, t) = w for w ∈ Tk, t ∈ R. Moreover, we see that (Tk,Fk) is a foliated
Tk−1-bundle over T with Fk transversal to each fibers Tk−1. Therefore, we have
that

C∗(Tk,Fk) ∼= C∗(GN )⊗K ∼= (C(Tk−1) o Z)⊗K
where C∗(GN ) is the reduced groupoid C∗-algebra of the reduced graph GN which
is the groupoid N × Z = ({1} × Tk−1) × Z with the range, source maps rN , sN :
GN → N respectively defined by rN (w, n) = α̂2πθ−1

i1
n(w), sN(w, n) = w for w ∈ N ,

n ∈ Z. The case of k = 1 is recovered since C({1}) o Z ∼= C(T) with {1} = N ⊂ T.
Moreover, we see that C(Tk−1) o Z is a special case of noncommutative tori, say
AΘ(i2,...,ik) (cf. [1], [5]). Note that elements of Θ(i1, . . . , ik) are not rationally
dependent if and only if α̂ is minimal on Tk−1, i.e. any orbit by α̂ is dense in
Tk−1. In this case, we see that AΘ(i2,...,ik) is simple (cf. [13]). As a remarkable
fact, it is known that if AΘ(i2,...,ik) is simple, then it is an inductive limit of direct
sums of matrix algebras over C(T) (cf. [5]).

We next treat the general cases with diagonal actions. By taking a suitable

base of Cn, we have a decomposition Cn =
2∏

i=0

Cni for which α is trivial on

Cn0 , diagonally radial on Cn1 , and diagonally rotational on Cn2 . Then C∗(G) is
obtained by iterating finitely many extensions by the C∗-algebras of the following
form:

C0(Cn0 × (C \ {0})k1 × (C \ {0})k2) o R
where 0 6 ki 6 ni (i = 1, 2). Denote by C0(X) o R the C∗-algebra of the above
form. If k1 6= 0, that is, an eigenvalue of dα on X is nonzero and not purely
imaginary, then α is free and wandering on X. By [6], Corollary 15, C0(X) o R ∼=
C0(X/R)⊗K, where X/R is the quotient space of X by R, and homeomorphic to
the following product space:

Cn0 × T× (C \ {0})k1−1 × (C \ {0})k2
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since any orbit under α̂ on X has the same type. If k1 = 0, then C0(X) o R is
isomorphic to C0(Cn0)⊗C0((C\{0})k3) o R. If ki = 0 for i = 1, 2, then we obtain
that C0(X) o R ∼= C0(Cn0 × R).

The non-diagonal case. We next consider the case s = 1 in the above
setting. We suppose that A1 = D1 + N1. Let λ be the complex conjugate of µ1.
By direct computation, we have that

exp(tA∗
1) = exp(tD∗

1 + tN∗) = exp(tD∗
1) exp(tN∗)

=

 etλ 0
. . .

0 etλ




1 t t2/2! · · · tn−1/(n− 1)!
. . . . . . . . .

...
. . . . . . t2/2!

. . . t
0 1

 .

If λ is not purely imaginary and λ 6= 0, α̂ is free and wandering on Cn \{0n}.
In fact, for any z = (zi) ∈ Cn \ {0n}, since zk 6= 0 for some k > 1 and zj = 0 for
all j > k, we have wk = etλzk where α̂t(z) = w = (wi). Now, we use the following
decomposition:

Cn \ {0n} =
n⋃

k=1

Ck−1 × (C \ {0})× {0n−k},

and Ck−1×(C\{0})×{0n−k} is closed in (Cn\{0n})\
k−1⋃
l=1

Cl−1×(C\{0})×{0n−l}

and invariant under α̂. Then C0(Cn \ {0n}) o R has a finite composition series
{Lk}n

k=1 with L0 = {0} such that Lk/Lk−1 = C0(Cn−k× (C\{0})) o R. Then the
quotient space of Cn−k × (C \ {0}) by R is homeomorphic to Cn−k ×T. Hence, by
[7], Corollary 15, we have C0(Cn−k × (C \ {0})) o R ∼= C0(Cn−k × T)⊗K.

Next suppose λ is nonzero and purely imaginary, or λ = 0. Since the set
{(z, 0n−1) ∈ Cn | z ∈ C \ {0}} is closed in Cn \ {0n} and invariant under α̂, we
have that

0 → C0(C× (Cn−1 \ {0n−1})) o R → C0(Cn \ {0n}) o R → C0(C \ {0}) o R → 0.

Note that the action of R on C \ {0} is trivial or the rotation. We show that
α̂ is free and wandering on C × (Cn−1 \ {0n−1}). Take an element z = (zi) ∈
C × (Cn−1 \ {0n−1}) and set w = (wi) = α̂t(z). Then there is k > 2 such that
zk 6= 0 and zj = 0 for any j > k. If zk−1 = 0, then wk−1 = tetλzk. Hence, the
claim holds. If zk−1 6= 0, then wk−1 = etλzk−1 + tetλzk. The claim follows in
the case λ = 0. In the cases λ 6= 0, if α̂t(z) = z for some t 6= 0, then we have
tetλzk = (1 − etλ)zk−1. This equation holds for integral multiples of t, which is
impossible. Indeed, for any l ∈ Z, we have t(e−ltλ − 1) = lt(e−tλ − 1), which
implies 2 > |e−ltλ − 1| = |l(e−tλ − 1)|.

Now, we apply the same argument above to view C× (Cn−1 \ {0n−1}) as the
disjoint union of Yk, where Yk = C × (Ck−2 × (C \ {0}) × {0n−k}) (2 6 k 6 n).
Then we see that the orbit space of Yk is homeomorphic to Ck−2 × (C \ {0})×R.
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Moreover, the quotient space (C × (C \ {0}))/R by α̂ is obtained by identifying
points in the subset

{(etλzk−1 + tetλzk, etλzk) ∈ C× (C \ {0}) | t ∈ R}.

If λ = 0, we have the following fiber structure of (C×(C\{0}))/R with R the
base space and (C\{0}) fibers since the orbit of (zk−1, zk) by α̂ corresponds to the
point (t0, zk) ∈ R× (C \ {0}) such that (zk−1 + t0zk, zk) is in the line orthogonal
to the line {(tzk, zk) | t ∈ R} and containing {(0, zk)}. Since any orbit under α̂ in
C× (C \ {0}) has the same type, we obtain (C× (C \ {0}))/R ≈ R× (C \ {0}).

If λ is nonzero and purely imaginary, we see that the orbit of (zk−1, zk) by
α̂ corresponds to the point (t0, et0λzk) ∈ R × (C \ {0}) such that (et0λ(zk−1 +
t0zk), et0λzk) is in the product space L× (C \ {0}), where L is the line orthogonal
to the line {tzk ∈ C | t ∈ R} and containing {0}. Then we have that (C × (C \
{0}))/R ≈ R× (C \ {0}).

Therefore, when λ is nonzero and purely imaginary, or λ = 0, we get that

Yk/R ≈ Ck−2 × ((C× (C \ {0}))/R) ≈ Ck−2 × R× (C \ {0}).

Hence, by using Green’s result ([6], Corollary 15) again, we obtain a finite com-
position series {Kj}n−1

j=1 of C0(C× (Cn−1 \ {0n−1})) o R with K0 = {0} such that

Kj/Kj−1
∼= C0(Cn−j−1 × R× (C \ {0}))⊗K.

The general case. Summing up we obtain the main result for the structure of
group C∗-algebras for the Lie semi-direct products Cn o R.

Theorem 2.1. If G is a Lie semi-direct product Cn o R (n > 1), then C∗(G)
has a finite composition series {Ij}K

j=1 with IK = C∗(G), I0 = {0} such that

Ij/Ij−1
∼=


C0(Cn0+u × R) = C0(Ĝ1) for j = K,
C0(Cn0+sj × (C \ {0})tj × T)⊗K or,
C0(Cn0+sj × (C \ {0})tj × R)⊗K or,
C0(Cn0+sj × Ruj

+ )⊗ AΘ(i2,...,iuj
) ⊗K for 1 6 j 6 K − 1;

with 0 6 n0 6 n and 0 6 sj , tj 6 n− n0 and 2 6 uj 6 n− n0,

sj + tj + 1 6 n− n0, and sj + uj 6 n− n0, and

n0 the number of zero Jordan blocks of dα, and u the number

of nonzero Jordan blocks of dα with zero on the diagonal,

where the second (respectively third) case occurs when some (respectively every)
eigenvalue of dα on an α̂-invariant subspace of Cn is nonzero and not purely
imaginary (respectively zero or purely imaginary but α̂ is not diagonal), and the
fourth case occurs when α̂ is rotational on an α̂-invariant subspace of Cn, and
AΘ(i2,...,iuj

) is simple if and only if elements of Θ(i1, . . . , iuj
) are not rationally

dependent.
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Proof. In the above setting we may have the direct sum Cn =
l∏

i=0

Cni with

each Cni α̂-invariant, where α̂ is trivial on Cn0 , diagonal on Cn1 and non trivial
on each direct factor of Cn1 , and non-diagonal on each Cni (2 6 i 6 l) such that

α̂t =

 1
. . .

1

⊕

 etλ11 0
. . .

0 etλ1n1

⊕


l⊕

i=2

etλi


1 t ∗

. . . . . .
. . . t

0 1




where λ1k (1 6 k 6 n1), λi (2 6 i 6 l) are eigenvalues of dα. Moreover, we may
assume that the eigenvalue of dα is zero on Cni for any 2 6 i 6 i0 with some
i0 6 l. Then since Cn0 and the direct factor C × {0ni−1} of Cni for 2 6 i 6 i0
are fixed under α̂, we obtain that Ĝ1 is homeomorphic to Cn0 × Ci0−1 × R, say
u = i0 − 1. Then it is clear that n0 is equal to the number of zero Jordan blocks
of dα, and u is equal to the number of nonzero Jordan blocks of dα with zero on
the diagonal.

From the analysis in this section, we have a finite composition series of C∗(G)
such that its each subquotient has the following form:

C0(Cn0 × (C \ {0})k1 × (C \ {0})k2 ×
pt∏

m=p1

(Chm × (C \ {0}))) o R

where k1 + k2 6 n1, and 0 6 hm 6 nm − 1, and 2 6 p1 < · · · < pt 6 l. Denote
by C0(X) o R the above C∗-algebra. From construction, we notice that dimen-
sion of X increases when k1 or k2 or t increase, but the indices of corresponding
subquotients decrease.

If the eigenvalue of dα on some Chm × (C \ {0}) is nonzero and not purely
imaginary, or k1 6= 0, then α̂ is free and wandering on X. It follows from [6],
Corollary 15 that C0(X) o R ∼= C0(X/R)⊗K. In the first case, the quotient space
X/R by α̂ has the fiber structure with (C× (C \ {0}))/R the base space and fibers
given by

Cn0 × (C \ {0})k1+k2 × Chm−1 ×
pt∏

q=p1,q 6=m

(Chq × (C \ {0})).

In the second case, X/R has the fiber structure with T the base space and fibers

Cn0 × (C \ {0})k1−1 × (C \ {0})k2 ×
pt∏

m=p1

(Chm × (C \ {0})).

In both cases, each fiber structure splits into the product space since any orbit un-
der α̂ in X has the same type when t ∈ R is large enough. Therefore, we have that

the quotient space X/R is homeomorphic to C
n0+

pt∑
m=p1

hm

×(C\{0})t−1+k1+k2×T.
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In the cases left, if the eigenvalue of dα on every Chm × (C \ {0}) is zero or

purely imaginary, but α̂ is not rotational on
pt∏

m=p1

(Chm × (C \ {0})), then

X = Cn0 × (C \ {0})k2 ×
pt∏

m=p1

(Chm × (C \ {0}))

on which α̂ is also free and wandering. Then X/R has the fiber structure with the
base space given by (C× (C \ {0}))/R and fibers by

Cn0 × (C \ {0})k2 × Chp1−1 ×
pt∏

m=p2

(Chm × (C \ {0})),

and (C × (C \ {0}))/R ≈ R × (C \ {0}). Since every orbit under α̂ in X has the

same type when t ∈ R is large enough, X/R ≈ C
n0−1+

pt∑
m=p1

hm

× (C \ {0})t+k2 ×R.

In the cases left in the end, we have X = Cn0 × (C \ {0})k2+t where the
action of R on (C \ {0})k2+t is diagonally rotational.

Remark 2.2. The above theorem will be the first result for the fine structure
of group C∗-algebras for a class of simply connected solvable Lie groups including
the Mautner group. The expressions of subquotients in some cases are reasonable
by Green or Poguntke’s results ([7], [12]). As a note, the construction of compo-
sition series in this theorem is a realization for Pedersen’s result ([11]) in the case
of those Lie semi-direct products.

Corollary 2.3. Under the same situation as in Theorem 2.1, we obtain
that

2 ∨ dimC Ĝ1 6 sr(C∗(G)) 6 dimC Ĝ1 + 1,

2 6 csr(C∗(G)) 6 dimC Ĝ1 + 1.

Proof. By repeatedly using (F2) and (F3) in Section 1, we obtain that

sr(Ij) 6 2, csr(Ij) 6 2

for 1 6 j 6 K − 1. We use the fact of [17] that csr(C0(Rn)) = 2 for n = 1, 1 for
n = 2 and [(n + 1)/2] + 1 for n > 3. Since dim Ĝ1 = 2k + 1 (k > 0), we have that

dimC Ĝ1 + 1 = k + 2, 2 ∨ csr(C0(Ĝ1)) = [(dim Ĝ1 + 1)/2] + 1 = k + 2.

Moreover, for any simply connected, solvable Lie group G, we know that sr(C∗(G)) =
1 if and only if G ∼= R ([21], Lemma 3.7). On the other hand, by Connes’ Thom
isomorphism, we get the following calculation of K-groups of C∗-algebras:

K1(C∗(G)) ∼= K1(C0(Cn) o R) ∼= K0(C0(Cn)) ∼= K0(C) ∼= Z.

Hence, by Elhage Hassan’s result ([4], Corollary 1.6), we obtain csr(C∗(G)) > 2.
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Remark 2.4. It would be true that sr(C∗(G)) = 2 ∨ dimC Ĝ1 for any G =
Cn o R (n > 1). This formula is true for any simply connected, solvable Lie group
of type I with its dimension > 2 (cf. [21]). As a note, we get that sr(C0(R) ⊗
C∗(G)) = dimC(R× Ĝ1).

Next, using K-theory of C∗-algebras, we give an answer to a fundamental
question for extension of C∗-algebras about whether a short exact sequence is split
or not.

Proposition 2.5. Under the same situation as in Theorem 2.1, we have the
following exact sequence non split: with m = n0 + u,

0 → IK−1 = C0(Cn \Cm×{0n−m}) o R → C∗(G) → C0(Cm×R) = C0(Ĝ1) → 0.

Proof. We calculate K-groups of C∗-algebras in the above exact sequence by
using Connes’ Thom isomorphism and Bott periodicity (cf. [2], [23]) as follows:

K0(C0(Cn \ (Cm × {0n−m})) o R) ∼= K1(C0(Cm × (Cn−m \ {0n−m})))
∼= K1(C0(Cn−m \ {0n−m})) ∼= K1(C0(R+ × S2(n−m)))
∼= K0(C0(R2(n−m))⊕ C) ∼= Z2,

K0(C∗(G)) ∼= K1(C0(Cn)) ∼= 0, K0(C0(Cm × R)) ∼= K1(Cm) ∼= 0

where S2n denotes the 2n-dimensional sphere. If the exact sequence in the state-
ment is split, then so is the following exact sequence of K-groups (cf. [23], Corol-
lary 8.2.2):

0 → K0(IK−1) → K0(C∗(G)) → K0(C0(Ĝ1)) → 0,

that is, 0 ∼= Z2 ⊕ 0, which is false.

Remark 2.6. The non-splitting of the exact sequence associated with the
group C∗-algebra of the real generalized Heisenberg group of the form Rn+1 oα Rn

(n > 1) is obtained by Kasparov (cf. [16]). The above proposition extends the case
of n = 1.

3. STRUCTURE OF GROUP C∗-ALGEBRAS OF Rn o R

In this section, we first give an application of our main result Theorem 2.1 as
follows:

Theorem 3.1. If G is a Lie semi-direct product Rn o R (n > 1), then C∗(G)
has a finite composition series {Dj}K

j=1 with DK = C∗(G), D0 = {0} such that

Dj/Dj−1
∼=


C0(Rn′+1) = C0(Ĝ1) for j = K,
C0(Ωj)⊗K or,
C0(Ω′

j)⊗ AΘ(i2,...,iuj
) ⊗K or,

C0(Ω′
j)⊗Bj ⊗K for 1 6 j 6 K − 1;

with 0 6 n′ 6 n and 0 6 sj , tj 6 n− n′,

1 6 uj 6 n− n′ and sj + tj + 1, sj + uj 6 n− n′
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where Ωj is a closed subspace of Cn′+sj ×(C\{0})tj ×T or Cn′+sj ×(C\{0})tj ×R
with 0 6 sj , tj 6 n − n′ and sj + tj + 1 6 n − n′, Ω′

j is a closed subspace of
Cn′+sj ×Ruj

+ with 2 6 uj 6 n−n′ and sj +uj 6 n−n′, and AΘ(i2,...,iuj
) is simple,

and when it is not simple, Bj is its quotient or itself.

Proof. One can embed G = Rn oα R into G̃ = Cn o
α̃

R with the action α̃
of R on Cn defined by α̃t(x + iy) = αt(x) + iαt(y) for x, y ∈ Rn and t ∈ R.
By definition of α̃, since Rn is invariant under α̃ and closed in Cn, we have the
following exact sequence:

0 → C0(Cn \ Rn) o
α̃∧

R → C∗(G̃) → C∗(G) → 0

with α̃∧ the dual action of α̃ on Cn. Put I = C0(Cn\Rn) o
α̃∧

R. By Theorem 2.1,
we find a finite composition series {Ik}N

k=1 of C∗(G̃) such that each subquotient
Ik/Ik−1 has the form as stated in it. Set Dk = Ik + I/I. Then, note that
{Dk}K

k=1 is a finite composition series of C∗(G) with each subquotient satisfying
the following:

Dk/Dk−1 = (Ik + I/I)/(Ik−1 + I/I) ∼= (Ik + I)/(Ik−1 + I)

= (Ik + Ik−1 + I)/(Ik−1 + I) ∼= Ik/(Ik ∩ (Ik−1 + I))

(cf. [9], Remark 3.1.3). Since Ik−1 ⊂ Ik ∩ (Ik−1 + I), we see that Dk/Dk−1

is isomorphic to a quotient C∗-algebra of Ik/Ik−1. In particular, DK/DK−1 is
isomorphic to a quotient of IK/IK−1

∼= C0((G̃)∧1 ), and thus isomorphic to C0(Ĝ1).
In other cases, when a noncommutative torus AΘ is a tensor factor of Ik/Ik−1 and
simple, from the form of Ik/Ik−1 and that K, AΘ ⊗ K are simple, we know that
Dk/Dk−1 is isomorphic to the form as in this statement. And if AΘ is not simple,
Dk/Dk−1 is isomorphic to the form in the fourth case having a tensor factor which
is a quotient of AΘ.

Remark 3.2. As a note, the similar result can be easily obtained in the
cases for Lie semi-direct products of connected, commutative Lie groups by R, i.e,
(Rn × Ts) o R for some n, s > 0 by applying the same methods to their universal
covering groups Rn+s o R.

Corollary 3.3. Under the assumption of Theorem 3.1, we obtain that{
sr(C∗(G)) = 2 ∨ dimC Ĝ1 if dim Ĝ1 is even,
2 ∨ dimC Ĝ1 6 sr(C∗(G)) 6 dimC Ĝ1 + 1 if dim Ĝ1 is odd;{
csr(C∗(G)) 6 2 ∨ csr(C0(Ĝ1)) = [(dim Ĝ1 + 1)/2] + 1, and
csr(C∗(G)) > 2 if dim G is odd.

Proof. The claim follows from the same argument as in Corollary 2.3.

Remark 3.4. It would be true that sr(C∗(G)) = 2 ∨ dimC Ĝ1 for any G =
Rn o R (n > 1). If dim Ĝ1 is odd, we know that sr(C0(R)⊗C∗(G)) = dimC(R×Ĝ1).

Finally, we give an example to illustrate Theorem 2.1 and 3.1 as follows:



36 Takahiro Sudo

Example 3.5. Let G = R2 oα R with αt(x, y) = (etx, e−ty) for t ∈ R,
x, y ∈ R (cf. [15], [22]). Set G̃ = C2 o

α̃
R with α̃t(z, w) = (etz, e−tw) for t ∈ R,

z, w ∈ C. Then we have the structure of C∗(G̃) as follows:

0 → C0(C2 \ {02}) o
α̃∧

R → C∗(G̃) → C0(R) → 0,

0 → C0((C \ {0})2) o R → C0(C2 \ {02}) o
α̃∧

R →
2⊕

k=1

C0(C \ {0}) o R → 0,

C0((C \ {0})2) o R ∼= C0((C \ {0})× T)⊗K, C0(C \ {0}) o R ∼= C(T)⊗K.

Since R2 is invariant under α̃∧ and closed in C2, we have the following:

0 → I = C0(C2 \ R2) o
α̃∧

R → C∗(G̃) → C∗(G) → 0.

Then we construct a composition series {Dj}3j=1 of C∗(G) with D3 = C∗(G) as
follows:

D2 = (C0(C2 \ {02}) o
α̃∧

R + I)/I

∼= C0(C2 \ {02}) o
α̃∧

R/(C0(C2 \ {02}) o
α̃∧

R ∩ I) ∼= C0(R2 \ {02}) o R,

D1 = C0((C \ {0})2) o R + I)/I ∼= C0((C \ {0})2) o R/(C0((C \ {0})2) o R ∩ I)

∼= C0((R \ {0})2) o R ∼=
4⊕

k=1

C0(R2
+) o R ∼=

4⊕
k=1

C0(R)⊗K.

Moreover, we have that

D3/D2 = C∗(G)/((C0(C2 \ {02}) o
α̃∧

R + I)/I)
∼= C∗(G̃)/(C0(C2 \ {02}) o

α̃∧
R + I) ∼= C0(R),

D2/D1
∼= C0(R2 \ {02}) o R/C0((R \ {0})2) o R ∼=

4⊕
k=1

C0(R+) o R ∼=
4⊕

k=1

K

where the last isomorphism is a well known fact and is also obtained by [6], Corol-
lary 15. Hence, the structure of C∗(G) is given by

0 → C0(R2 \ {02}) o R → C∗(G) → C0(R) → 0,

0 →
4⊕

k=1

C0(R)⊗K → C0(R2 \ {02}) o R →
4⊕

k=1

K → 0.

Remark 3.6. This example suggests that it is difficult to give the structure
of C∗(Rn oα R) explicitly from that of C∗(Cn o

α̃
R) in general, and it is easier to

analyze it directly for specified actions α. But no systematic results more than
Theorem 3.1 are known.
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