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Abstract. Equality of non zero spectra of reversed products have multi-
variable analogues for “criss-cross commuting” tuples; some of these multi-
variable results in turn have single variable consequences.
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We recall ([8], [6]) that two n-tuples of operators T ∈ BL(X, Y )n and S ∈
BL(Y, X)n criss-cross commute if
(0.1) TiSkTj = TjSkTi and SiTkSj = SjTkSi

for each i, j, k = 1, 2, . . . , n; an immediate consequence is that each of the tuples

(0.2)
S · T = (S1T1, S2T2, . . . , SnTn) ∈ BL(X, X)n and

T · S = (T1S1, T2S2, . . . , TnSn) ∈ BL(Y, Y )n

is commutative. Li Shauchan has noticed ([8]) that if S and T criss-cross commute
then the tuples S · T and T · S share the same non-zero Taylor spectrum, and we
have offered ([6]) some break-down of the argument. In this note we continue these
observations, in particular for the inclusions (9.1) of [7] which between them may
well make up most of the Taylor spectrum of a general n-tuple. What is amusing
is how this multivariable observation feeds back into the single variable situation,
enabling us to add a footnote to the rather comprehensive discussion of Barnes
([1]). We also see how what we have called skew exactness ([5], [2]) is transmitted
to reversed products with criss-cross commutivity.

In single variables we compare the non-zero spectrum of reversed products
ST and TS, which means in practise the analysis of the operators I − ST and
I−TS. For n-tuples S ·T and T ·S the “non-zero spectrum” consists of all complex
n-tuples λ = (λ1, λ1, . . . , λn) 6= 0 = (0, 0, . . . , 0): we can without loss of generality
always take λ1 = 1.
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Theorem 1. Suppose (T1, Tj , Tk) in BL(X, Y ) and (S1, Sj , Sk) in BL(Y, X)
criss-cross commute: then there is implication

(1.1) (I − S1T1)−1(0) ∩
⋂
j

(λjI − SjTj)−1(0) ⊆
∑

k

(λkI − SkTk)(X)

implies

(1.2) (I − T1S1)−1(0) ∩
⋂
j

(λjI − TjSj)−1(0) ⊆
∑

k

(λkI − TkSk)(Y ),

and implication

(1.3)
⋂
j

(λjI − SjTj)−1(0) ⊆ (I − S1T1)(X) +
∑

k

(λkI − SkTk)(X)

implies

(1.4)
⋂
j

(λjI − TjSj)−1(0) ⊆ (I − T1S1)(Y ) +
∑

k

(λkI − TkSk)(X).

Proof. If (1.1) holds and if y ∈ Y is in the left hand side of (1.2) then

S1y ∈ S1(I − T1S1)−1(0) ∩
⋂
j

S1(λjI − TjSj)−1(0)

⊆ (I − S1T1)−1(0) ∩
⋂
j

(λjI − SjTj)−1(0),

using at this point the criss-cross commutivity assumption. Now applying (1.1)
and the assumption about y ∈ Y ,

y = T1S1y ∈ T1

∑
k

(λkI − SkTk)(X) ⊆
∑

k

(λkI − TkSk)T1X ⊆
∑

k

(λkI − TkSk)Y,

using again criss-cross commutivity. Thus (1.2) holds. If instead (1.3) holds and
if y ∈ Y is in the left hand side of (1.3) then

S1y ∈ S1

⋂
j

(λjI − TjSj)−1(0) ⊆
⋂
j

(λjI − SjTj)−1(0)

⊆ (I − S1T1)X +
∑

k

(λkI − SkTk)X,

using again the criss-cross commutivity assumption and the condition (1.3). Thus

T1S1y ∈ T1(I−S1T1)X +T1

∑
k

(λkI−SkTk)X ⊆ (I−T1S1)Y +
∑

k

(λkI−TkSk)Y,

using criss-cross commutivity, and finally

y = (I − T1S1)y + T1S1y.

To apply this to the one variable environment we offer a lemma (cf. [1], page
1060):
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Lemma 2. If T ∈ BL(X, X) and S ∈ BL(Y, Y ) there are polynomials pm for
each m ∈ N for which

(2.1) (I − ST )m = I − Spm(TS)T ∈ BL(X, X)

with

(2.2) Spm(TS) = pm(ST )S ∈ BL(Y,X).

Proof. Inductively

(2.3) p1(U) = I and pm+1(U) = I + pm(U)− Upm(U).

Barnes ([1]) shows that if T ∈ BL(X, Y ) and S ∈ BL(Y, X) then I − ST ∈
BL(X, X) and I − TS ∈ BL(Y, Y ) either both or neither have closed range (The-
orem 5 of [1]), and either both or neither have generalized inverses (Theorem 4 of
[1]). We here extend these observations to what we have called Kato invertibility
([3]) and Kato non-singularity ([4]), which consist of either the generalized invert-
ibility or the closed range condition together with the Saphar condition ([3], [4]):
U ∈ BL(X, X) is “hyperexact”, or has the Saphar condition, iff

(2.4) U−1(0) ⊆
⋂
n

Un(X);

equivalently

(2.5)
⋃
n

U−n(0) ⊆ U(X).

Theorem 3. If T ∈ BL(X, Y ) and S ∈ BL(Y,X) and m ∈ N then

(3.1) (I − ST )−1(0) ⊆ (I − ST )mX

if and only if

(3.2) (I − TS)−1(0) ⊆ (I − TS)mY.

Proof. This is easy to see without recourse to criss-cross commutivity; how-
ever Lemma 2 shows that we can write, taking R = pm(TS)T ,

(I − ST )m = I − SR

in such a way that

(T1, T2) = (T,R) and (S1, S2) = (S, S)

criss-cross commute. Indeed it is trivial that

S1TjS2 = S2TjS1, j = 1, 2,

and we notice

T1SjT2 = TSR = TSpm(TS)T = Tpm(ST )ST = RST = T2SjT1, j = 1, 2.

Now Theorem 1 applies.

We recall that we have described a chain of operators (S, T ) : X → Y → Z
as skew exact ([5], Section 10.9 of [2]) if either

(3.3) (ST )−1(0) = T−1(0), equivalently S−1(0) ∩ T (X) = {0},
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or dually

(3.4) (ST )X ⊇ S(Y ), equivalently S−1(0) + T (X) = Y.

Stronger “split” versions would be that there is R for which respectively

(3.5) T = RST

or

(3.6) S = STR.

Theorem 4. Suppose (T1, Tj , Tk) in BL(X, Y ) and (S1, Sj , Sk) in BL(Y, X)
criss-cross commute: then there is implication

(4.1) (I − S1T1)−1(0) ∩
⋂
j

(λjI − SjTj)−1(0) ∩
∑

k

(λkI − SkTk)(X) = {0}

implies

(4.2) (I − T1S1)−1(0) ∩
⋂
j

(λjI − TjSj)−1(0) ∩
∑

k

(λkI − TkSk)(Y ) = {0},

and implication

(4.3)
⋂
j

(λjI − SjTj)−1(0) + (I − S1T1)X +
∑

k

(λkI − SkTk)X = X

implies

(4.4)
⋂
j

(λjI − TjSj)−1(0) + (I − T1S1)X +
∑

k

(λkI − TkSk)X = X.

Proof. If (4.1) holds and if y ∈ Y is in the left hand side of (4.2) then, using
criss-cross commutivity, S1y ∈ X is in the left hand side of (4.1). Thus by (4.1)
S1y = 0, by assumption y = T1S1y = 0, giving (4.2). If (4.3) holds and if y ∈ Y
then with criss-cross commutivity S1y ∈ X is in the left hand side of (4.3): there
are x, z1, zk ∈ X for which

S1y = x + (I − S1T1)z1 +
∑

k

(λkI − SkTk)zk with λjx = SjTjx.

By criss-cross commutivity it follows

T1S1y = T1x + (I − T1S1)T1z1 +
∑

k

(λkI − TkSk)T1zk with λjT1x = TjSjT1x.

Therefore, T1S1y, and hence also y = (I − T1S1)y + T1S1y, is in the left hand
side of (4.4).

The criss-cross commutivity cannot be omitted from the assumptions:

Example 5. If X = Y = `2 and if U and V are the forward and the
backward shifts then (3.5) holds and (3.4) fails with T = I−V U and S = I−UV ,
while (3.6) holds and (3.3) fails with T = I − UV and S = I − V U .

For the proof notice that I − V U = 0 6= I − UV .
Of course the pairs (T1, T2) = (V,U) and (S1, S2) = (U, V ) do not criss-cross

commute. We might also remark on the failure of a sort of dual to Theorem 4:
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Example 6. If U and V are the forward and backward shifts on X = Y = `2
then

(6.1) (V U)−1(0) ∩ (I − V U)(X) = {0} but (UV )−1(0) ∩ (I − UV )(Y ) 6= {0}
and

(6.2) (V U)X + (I − V U)−1(0) = X but (UV )(Y ) + (I − UV )−1(0) 6= Y.

The proof is clear.
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