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ABSTRACT. Equality of non zero spectra of reversed products have multi-
variable analogues for “criss-cross commuting” tuples; some of these multi-
variable results in turn have single variable consequences.

KEYWORDS: Criss-cross commutivity, spectrum, ezxactness, Kato invertibi-
lity.
MSC (2000): 47A10.

We recall ([8], [6]) that two n-tuples of operators T € BL(X,Y)™ and S €
L(Y, X)" criss-cross commute if

(0.1) ;5.1 =135, T; and  S;13S; = S;TS;

for each 7,5,k =1,2,...,n; an immediate consequence is that each of the tuples
ST = (5T1,85:Ts,...,5,T,) € BL(X, X)" and
T-S=(T15,T25s,...,T,S,) € BL(Y,Y)"

is commutative. Li Shauchan has noticed ([8]) that if S and T criss-cross commute
then the tuples S -T and T - S share the same non-zero Taylor spectrum, and we
have offered ([6]) some break-down of the argument. In this note we continue these
observations, in particular for the inclusions (9.1) of [7] which between them may
well make up most of the Taylor spectrum of a general n-tuple. What is amusing
is how this multivariable observation feeds back into the single variable situation,
enabling us to add a footnote to the rather comprehensive discussion of Barnes
([1]). We also see how what we have called skew exzactness ([5], [2]) is transmitted
to reversed products with criss-cross commutivity.

In single variables we compare the non-zero spectrum of reversed products
ST and TS, which means in practise the analysis of the operators I — ST and
I-TS. For n-tuples S-T and T'- S the “non-zero spectrum” consists of all complex
n-tuples A = (A1, A\1,..., ) #0=(0,0,...,0): we can without loss of generality
always take \; = 1.

(0.2)



40 ROBIN HARTE

THEOREM 1. Suppose (T1,T;,Ty) in BL(X,Y) and (S1,S;,Sk) in BL(Y, X)
criss-cross commute: then there is implication

(11) (= ST) 71 0) NN = ST)7H0) € Y (AT = SiTr)(X)
J k
implies

(1.2) (I =TS0~ 0)N (NI = T;5;) Y (I = TiSi)(Y),
J k

and implication
(13) (YOI =ST)7H0) € (I = SiTa)(X) + D> (Al — SiTi)(X)

J k
implies
(1.4) (T =T58)71(0) € (I = TuS)(Y) + D> (Al = TiSi)(X).

J k

Proof. If (1.1) holds and if y € Y is in the left hand side of (1.2) then
S1y € Si(I = T181) 71 (0) () S1(A T = T;5;)71(0)
J
C (1= ST0) 1 0) n(YNT = S;T5)71(0),
J

using at this point the criss-cross commutivity assumption. Now applying (1.1)
and the assumption about y € Y,

Yy = TlSly eTly Z()\k.[— Ska)(X) - Z(AkI_TkSk)TlX - Z()\k.[— TkSk)K
k k k

using again criss-cross commutivity. Thus (1.2) holds. If instead (1.3) holds and
if y € Y is in the left hand side of (1.3) then

Siy € S1 (VAT = T;8;)71(0) € (VNI = S5T3)7(0)
C(I—S1T)X + > (Ml — SiTh)X
k

using again the criss-cross commutivity assumption and the condition (1.3). Thus
TSy € (I = S$1T)X +T1 Y (Md = SpTi)X € (I-TiS1)Y + > (M —TiSy)Y,
k k
using criss-cross commutivity, and finally
Yy = (I—Tlsl)y+T151y |

To apply this to the one variable environment we offer a lemma (cf. [1], page
1060):
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LEMMA 2. IfT € BL(X, X) and S € BL(Y,Y) there are polynomials p,, for
each m € N for which

(2.1) (I — ST)™ =1 — Spm(TS)T € BL(X, X)
with
(2.2) Spm(TS) = pm(ST)S € BL(Y, X).
Proof. Inductively
(2.3) pU)=1 and pm1(U) =1+ pn(U) = Upn(U). 1

Barnes ([1]) shows that if T € BL(X,Y) and S € BL(Y, X) then I — ST €
BL(X, X) and I — T'S € BL(Y,Y) either both or neither have closed range (The-
orem 5 of [1]), and either both or neither have generalized inverses (Theorem 4 of
[1]). We here extend these observations to what we have called Kato invertibility
([3]) and Kato non-singularity ([4]), which consist of either the generalized invert-
ibility or the closed range condition together with the Saphar condition ([3], [4]):
U € BL(X, X) is “hyperexact”, or has the Saphar condition, iff

(2.4 U 0) € (U (X);
equivalently
(2.5) Ju ) cux).
THEOREM 3. IfT € BL(X,Y) and S € BL(Y, X) and m € N then
(3.1) (I-ST)"'(0)C (I-ST)"X
if and only if
(3.2) (I-TS)"0) C (I -T9)™Y.

Proof. This is easy to see without recourse to criss-cross commutivity; how-
ever Lemma 2 shows that we can write, taking R = p,,(T'S)T,

(I-ST)"=1-SR
in such a way that
(Th,T5) = (T,R) and (S1,52) =(S,9)
criss-cross commute. Indeed it is trivial that
51182 = S5T1351, j=1,2,
and we notice
T15;To =TSR =TSpp(TS)T = Tpn(ST)ST = RST =T55,;T1, j=1,2.
Now Theorem 1 applies. 1

We recall that we have described a chain of operators (S,7) : X - Y — Z
as skew ezact ([5], Section 10.9 of [2]) if either

(3.3) (ST)~1(0) = T7(0), equivalently S~'(0) N T(X) = {0},
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or dually

(3.4) (ST)X D S(Y), equivalently S71(0) 4+ T'(X) =Y.
Stronger “split” versions would be that there is R for which respectively
(3.5) T = RST

or

(3.6) S =STR.

THEOREM 4. Suppose (T1,T;,Ty) in BL(X,Y) and (S1,S;,Sk) in BL(Y, X)
criss-cross commute: then there is implication

(41)  (I=ST)7H0) NN = ST)7H0) N (AT = STy)(X) = {0}

J k
implies
(42) (I =T18)7"0) N[N =T55,)7H0) N Y (AT = TiSi)(Y) = {0},
j k
and implication
(4.3) (NI = ST)7H0) + (I = SIT)X + Y (M — Sk Th)X = X
j %
implies
(4.4) (YT = T38) 7 (0) + (I = T1S1)X + > (] — TpSk)X = X.
j k

Proof. If (4.1) holds and if y € Y is in the left hand side of (4.2) then, using
criss-cross commutivity, S1y € X is in the left hand side of (4.1). Thus by (4.1)
S1y = 0, by assumption y = T1S1y = 0, giving (4.2). If (4.3) holds and if y € YV
then with criss-cross commutivity S;y € X is in the left hand side of (4.3): there
are x, z1, 2 € X for which

Sly =x+ (I — SlTl)Zl + Z()\k‘[ — Ska)Zk with )\jx = SjTj.%‘.
k
By criss-cross commutivity it follows
TlSly = T1I + (I - TlSl)lel + Z()\kI - TkSk)lek with )\jTll’ = TijTll'.
k
Therefore, 7151y, and hence also y = (I — T151)y + T1.51y, is in the left hand
side of (4.4). 1
The criss-cross commutivity cannot be omitted from the assumptions:
EXAMPLE 5. If X =Y = /5 and if U and V are the forward and the

backward shifts then (3.5) holds and (3.4) fails with T =1 —-VU and S=1-UV,
while (3.6) holds and (3.3) fails with T =1 —-UV and S=1-VU.

For the proof notice that I — VU =0#1-UV.
Of course the pairs (T1,T3) = (V,U) and (S1, S2) = (U, V') do not criss-cross
commute. We might also remark on the failure of a sort of dual to Theorem 4:
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then
(6.1)
and

(6.2)

£ mIx HIH IW W

EXAMPLE 6. If U and V are the forward and backward shiftson X =Y = /,

(VU) " (0) N (I~ VU)(X) = {0} but (UV)~1(0) N (I — UV)(Y) # {0}

(VU)X 4+ (I —=VU)"H0) = X but (UV)(Y)+ (I -UV)"1(0) #Y.

The proof is clear.
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