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Abstract. Let G be a connected Lie group of polynomial growth. We
consider m-th order subelliptic differential operators H on G, the semigroups
St = e−tH and the corresponding heat kernels Kt. For a large class of H
with m > 4 we demonstrate equivalence between the existence of Gaussian
bounds on Kt, with “good” large t behaviour, and the existence of “cutoff”
functions on G. By results of [14], such cutoff functions exist if and only if G
is the local direct product of a compact Lie group and a nilpotent Lie group.
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1. INTRODUCTION

Let ∆ = −
d′∑
i=1

A2
i be a sublaplacian on a connected Lie group G of polynomial

growth. Here the Ai are right-invariant vector fields corresponding to an algebraic
basis a1, . . . , ad′ of the Lie algebra of G. It is a well-known theorem (see, for
example, [20], Section IV.4, or [22], Chapter VIII) that the corresponding heat
kernel, and its first derivatives with respect to the Ai, satisfy Gaussian bounds
with “good” large time behaviour. It was recently proved in [14] that the second
derivatives of the heat kernel have the expected good large time behaviour if, and
only if, G is the local direct product of a compact and a nilpotent group. Moreover,
it was proved this is equivalent to another analytic condition on G: the existence
of a family of cutoff functions of order j for some positive integer j > 2. The latter
is defined to be a family (ηR)R>0 of C∞ functions on G such that 0 6 ηR 6 1, the
support of ηR is contained in B(R), ηR(g) = 1 if g ∈ B(σR), and

‖AαηR‖∞ 6 cR−j ,
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for some constants c > 0, σ ∈ (0, 1), all multi-indices α of length j, and all R > 0.
(If (ηR)R>0 is of order j, it is automatically of order j′ for any j′ < j; see [14].)
Here B(R) is the ball of radius R associated with a canonical distance on G (see
below for details). Further, in the case when G is such a local direct product,
there is a family (ηR)R>0 of cutoff functions of order ∞ on G, i.e., (ηR)R>0 is of
order j for every j ∈ N.

In this paper we obtain analogues of these results for higher-order subelliptic
operators on G. Our results are in two directions: in one direction, we prove that
for an important class of right-invariant operators, of order 4 or more, the semi-
group kernels can satisfy “good” Gaussian bounds only if G has cutoff functions
of order 2 or more (and hence G is a local direct product as above.) In the reverse
direction, we assume G is a local direct product as above and prove that a certain
class of operators with order larger than the “dimension” of G satisfies “good”
Gaussian bounds. The latter proof is based on ideas of Davies in [4], but a new
feature is the use of cutoff functions in the standard “Davies perturbation” tech-
nique. The resulting estimates eliminate the need for any scaling arguments to
remove an undesired eωt factor from the Gaussian bounds. Such scaling arguments
(see for example, Lemma 6 of [2]) are only available if G possesses dilations, i.e., if
G is a homogeneous group, and are not available if G is a general nilpotent group.
To state our results precisely we introduce more notation.

Generally we adopt the notation of [11], [20], [14] or [13], with small changes.
Throughout, G will be a connected Lie group of polynomial growth, and a1, . . . , ad′
a fixed algebraic basis of the Lie algebra of G. We fix a (bi-invariant) Haar
measure dg on G. Then G is called a K ×l N group if it is the local direct
product of a connected compact Lie group and a connected nilpotent Lie group.
Let Ai = dLG(ai), for i ∈ {1, . . . , d′}, be the generators of left translations on the

Lp-spaces Lp(G; dg). The set of multi-indices is defined by J(d′) =
∞⋃
j=0

{1, . . . , d′}j .

If α = (i1, . . . , ij) ∈ J(d′) we say α has length |α| = j and set Aα = Ai1 · · ·Aij .
(If j = 0 then α is the “empty’ multi-index and we set |α| to be 0 and Aα to
be the identity on Lp.) The reverse multi-index of α is α∗ = (ij , . . . , i1). Let
Lp;j =

⋂
|α|=j

D(Aα) be the Sobolev space of j-times differentiable functions in Lp.

The seminorm Nj is defined on L2;j by Nj(ϕ) =
( ∑
|α|=j

‖Aαϕ‖2
2

)1/2

. Moreover,

(g, h) 7→ d(g;h) denotes the right-invariant distance associated with the algebraic
basis and g 7→ |g| = d(g; e) the modulus. Then V (r) denotes the Haar measure of
the ball B(r) = {g ∈ G : |g| < r}. There are integers D′ > 1, and D > 0, the local
dimension and the dimension at infinity, such that for some C > 0,

C−1rD
′
6 V (r) 6 CrD

′
if 0 < r 6 1

C−1rD 6 V (r) 6 CrD if r > 1.

Set N = D′ ∨D. In general, c, c′, b, b′, etc., denote positive constants whose value
we allow to change from line to line when convenient.

Throughout, m and n denote positive integers with m = 2n. We consider
(right-invariant) operators

H =
∑
|α|=m

cαA
α
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where cα ∈ C, defined on the domain D(H) = L2;m in L2. If H satisfies the
G̊arding inequality

(1.1) Re(Hϕ,ϕ) > µNn(ϕ)2 − λ‖ϕ‖2
2

for some µ > 0, λ > 0 and all ϕ ∈ C∞c (G), and then by density for all ϕ ∈ L2;m,
one can establish local Gaussian bounds on the semigroup kernel K associated
with H. Indeed, it follows from [11] that H generates a semigroup St = e−tH in
L2 with a smooth convolution kernel Kt, i.e, Stϕ = Kt ∗ ϕ for ϕ ∈ L2. For each
α ∈ J(d′) there exist c > 0, b > 0, and ω > 0 such that

(1.2) |(AαKt)(g)| 6 cV (t)−1/mt−|α|/meωte−b(|g|
m/t)1/(m−1)

for all t > 0 and g ∈ G. We mention also the paper [17] in which similar results
were obtained.

If G is a homogeneous group and the vector fields Ai are homogeneous of
order 1, then a scaling argument implies that (1.1) is equivalent to the strong
G̊arding inequality

(1.3) Re(Hϕ,ϕ) > µNn(ϕ)2

obtained by setting λ = 0 in (1.1). Similarly, (1.2) is equivalent to the global
Gaussian bounds

(1.4) |(AαKt)(g)| 6 c V (t)−1/mt−|α|/me−b(|g|
m/t)1/(m−1)

obtained by setting ω = 0 in (1.2). We will examine the relationship between
the strong G̊arding inequality (1.3) and the Gaussian bounds (1.4) for a general
polynomial group with no assumption of homogeneity.

If H satisfies (1.3) for ϕ ∈ L2;m we call H an m-th order G̊arding operator.
In this case the semigroup S extends to a holomorphic semigroup on L2 with
‖Sz‖ 6 1 for all z in some sector of the complex plane. This may be deduced,
for example, from the fact that the associated sesquilinear form h satisfies (1.6)
and (1.7) below (see the remarks after (1.7) and the proof of Theorem 1.3 (i)
below).

Theorem 1.1. Let H be an m-th order G̊arding operator with m > 4. If Kt

satisfies bounds

(1.5) |Kt(g)| 6 c V (t)−1/me−b(|g|
m/t)1/(m−1)

for all t > 0, g ∈ G, then G is a K ×l N group.

The condition m > 4 in this theorem is necessary; indeed ∆ = −
d′∑
i=1

A2
i is a

second-order G̊arding operator which provides a counterexample to the theorem
in the m = 2 case.

Examples of m-th order G̊arding operators include

∆m = (−1)n
∑
|α|=n

Aα∗Aα

or, more generally,
H = (−1)n

∑
|α|=|β|=n

cαβA
β∗Aα,
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where the coefficients cαβ ∈ C satisfy

Re
∑

|α|=|β|=n

cαβξαξβ > µ
∑
|α|=n

|ξα|2

for all ξ = (ξα)|α|=n ∈ C(d′)n

. For such operators the strong G̊arding inequality
follows by a simple calculation (see [11], Section 1).

Positive Rockland operators are also m-th order G̊arding operators. More
precisely, let G be a stratified nilpotent group and suppose that the algebraic
basis vector fields A1, . . . , Ad′ are homogeneous of degree 1 with respect to the
dilation structure of G. If H =

∑
|α|=m

cαA
α is a positive Rockland operator on G

(homogeneous of degree m) then H is m-th order G̊arding. More information on
positive Rockland operators, including heat kernel bounds, can be found in [7], [1]
and [16].

For another example, let G be nilpotent and H =
∑

|α|=m
cαA

α an m-th order

operator on G. Without going into details, it is possible to construct a larger “free”
nilpotent group G̃, which is a stratified group, such that H lifts to an operator H̃
homogeneous of degree m on G̃. If H̃ is a positive Rockland operator on G̃, then
H will be an m-th order G̊arding operator on G. The strong G̊arding inequality
for H is a consequence of the fact that all Riesz transforms of H are bounded

on L2(G); see [13], [19]. As special cases, the operators H = (−1)n
d′∑
i=1

Ami and

H = ∆m/2 are m-th order G̊arding whenever G is nilpotent.
When G is not a K ×l N group, however, the class of m-th order G̊arding

operators no longer includes some important subelliptic operators. For example,

when m > 4 we claim that the operator H = ∆m/2 =
(
−

d′∑
i=1

A2
i

)m/2
is m-th

order G̊arding if and only if G = K ×l N . Indeed, H satisfies (1.3) if and only if
all of the Riesz transforms Aα∆−n/2, |α| = n, are bounded on L2, and as shown
in [14], when n > 2 this occurs if and only if G = K ×l N . Nevertheless, on any
polynomial group G (and with an arbitrary choice of a1, . . . , ad′), the operator
∆m/2 satisfies m-th order Gaussian bounds (see [21] or [5]).

Our second main result, Theorem 1.2 below, is formulated for operators
associated with a sesquilinear form on L2 satisfying three abstract assumptions
inspired by [4].

Let h be a sesquilinear form with domain L2;n. We write h(ϕ) for h(ϕ,ϕ).
Our first two assumptions are that there are constants µ > 0, µ̃ > 0, ν > 0 such
that for all ϕ ∈ L2;n,

µNn(ϕ)2 6 Reh(ϕ) 6 µ̃(‖ϕ‖2
2 +Nn(ϕ)2)(1.6)

|Imh(ϕ)| 6 νNn(ϕ)2.(1.7)

It follows that

(1.8) |Imh(ϕ)| 6 µ−1ν Reh(ϕ).
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Thus h is a sectorial form with semiangle ζ = tan−1(µ−1ν) ∈ [0, π/2), i.e., we have

h(ϕ) ∈ Λ(ζ) = { z ∈ C : | arg z| 6 ζ } ∪ {0}.

Moreover, assumption (1.6) then implies that h is a closed form. Let H be the m-
sectorial operator associated with the closed sectorial form h, in the sense of [18],
Theorem VI.2.1. Then D(H) ⊆ L2;n and

(Hϕ,ψ) = h(ϕ,ψ)

for all ϕ ∈ D(H) and ψ ∈ L2;n. The spectrum of H is contained in Λ(ζ), and H
is the generator of a holomorphic semigroup Sz = e−zH on L2 in the open sector
Λ(θH) = {z ∈ C−{0} : | arg z| < θH}, where θH = π/2− ζ. In addition, ‖Sz‖ 6 1
for all z ∈ Λ(θH) (see [18], p. 280 and Theorem IX.1.24). In the case where h is a
symmetric form, i.e., h(ϕ,ψ) = h(ψ,ϕ), we can choose ν = 0 and ζ = 0, and H is
a nonnegative self-adjoint operator.

Our third assumption, (1.10) below, is an analogue of (3) of [4] or Lemma
III.4.5 of [20], and is expressed in terms of a perturbed form defined using cutoff
functions. For the definition we suppose G is a K ×l N group. Fix a family
(ηR)R>0 of cutoff functions of order ∞ on G and define ψlR = R ·R(l)ηR for R > 0
and l ∈ G, where R(l) denotes right translation by l. For each α ∈ J(d′) we have
an estimate

(1.9) ‖AαψlR‖∞ 6 cαR
1−|α|

because Aα commutes with R(l).
If ρ ∈ R, we let eρψ

l
R denote the bounded operator of multiplication by eρψ

l
R

on L2 and the spaces L2;j . Then the perturbed form, operator and semigroup are
defined by

hρ(ϕ) = h(eρψ
l
Rϕ, e−ρψ

l
Rϕ), Hρ = e−ρψ

l
RHeρψ

l
R , Sρz = e−ρψ

l
RSzeρψ

l
R

for ϕ ∈ L2;n, ρ ∈ R, l ∈ G, R > 0, and z ∈ Λ(θH) ∪ {0}. One finds that
Sρz = e−zHρ and (Hρϕ,ϕ) = hρ(ϕ) whenever ϕ ∈ D(Hρ). Note also that D(Hρ) =
e−ρψ

l
R(D(H)) ⊆ e−ρψ

l
R(L2;n) = L2;n.

Our third assumption is that there exist an ε ∈ (0, 1) and Cε > 0 such that

(1.10) |hρ(ϕ)− h(ϕ)| 6 εReh(ϕ) + Cερ
m‖ϕ‖2

2

for all ϕ ∈ L2;n, l ∈ G, ρ ∈ R∗ = R − {0}, and R > 0, subject to the condition
|ρ| > R−1. All subsequent estimates involving the perturbed objects are also
understood to hold for all l ∈ G, ρ ∈ R∗, and R > 0 subject to the condition
|ρ| > R−1, even though for brevity R and l do not appear in our notation.

We remark that assumption (3) of [4] differs crucially from our assumption
(1.10) in having (1+ρm) in place of ρm. The absence of the 1 allows us to avoid an
eωt factor which occurs in semigroup estimates in [4]. In [2], Barbatis and Davies
obtained an estimate similar to (1.10) when G = RN and the form is perturbed
by linear functions.

In the following theorem, for a function F on G × G, we use the notations
AαF and BαF for the Aα derivatives of F with respect to the first and second
variables, respectively.
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Theorem 1.2. Let G be a K ×l N group and let the form h satisfy the
assumptions (1.6), (1.7), and (1.10), with m > N . Then the semigroup generated
by the associated operator H has an integral kernel Kt, continuous on G ×G for
each t > 0, satisfying

|Kt(g ;h)| 6 c V (t)−1/me−b(|gh
−1|m/t)1/(m−1)

for all t > 0 and g, h ∈ G.
Moreover, for α, β ∈ J(d′) with |α|, |β| < 2−1(m − N), the derivatives

AαBβKt exist and are continuous on G×G, and

|AαBβKt(g ;h)| 6 c′ V (t)−1/m t−(|α|+|β|)/m e−b
′(|gh−1|m/t)1/(m−1)

for all t > 0 and g, h ∈ G.

The next theorem verifies that Theorem 1.2 applies not only to m-th order
G̊arding operators but to an important class of operators with variable coefficients
in divergence form.

Theorem 1.3. Let G be a K ×l N group. The hypotheses of Theorem 1.2
hold if either of the following two conditions is valid:

(i) H is an m-th order G̊arding operator, with m > N ;
(ii) H = (−1)n

∑
|α|=|β|=n

Aβ∗cαβA
α is an m-th order operator, with m > N ,

associated with the form h(ϕ,ψ) =
∑

|α|=|β|=n
(cαβAαϕ,Aβψ) where the cαβ are

bounded measurable complex-valued functions on G and∑
|α|=|β|=n

Re cαβ(g)ξαξβ > µ
∑
|α|=n

|ξα|2

for all g ∈ G and ξ ∈ C(d′)n

.

Our final result is obtained by combining Theorems 1.1–1.3.

Corollary 1.4. Let H be an m-th order G̊arding operator with m > N .
Then:

(i) the convolution kernel satisfies bounds ‖Kt‖2 6 c V (t)−1/(2m) and
‖Kt‖∞ 6 c V (t)−1/m for all t > 0;

(ii) Kt satisfies (1.5) if and only if G is a K ×l N group.

Our results indicate that (1.3) and (1.5) are probably not to be expected for
many operators on groups which are not of the form K×lN . Examples ([12]) show
that the kernel Kt can have more complicated large t behaviour, for example, it
can behave like a Gaussian of order less than m for large t.
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2. PROOF OF THEOREM 1.1

To prove Theorem 1.1, by the result of [14] it is sufficient to construct cutoff
functions of order n = m/2 on G. The method of construction is an extension of
the argument on page 14 of [14]. If H is self-adjoint, then Kt is a positive-definite
function on G, and using techniques of [10] one can find κ > 0 such that

ReKt(g) > c V (t)−1/m

for all g ∈ G and t > 0 satisfying |g| 6 κ t1/m. For an appropriate φ ∈ C∞(R),
one defines

φR(g) = φ

(
ReKRm(g)
KRm(e)

)
and one can argue that for an appropriate ρ > 0, (φρR)R>0 is a family of cutoff
functions of order n. Since the argument for H self-adjoint is contained in the
argument for general H, we omit further details, and turn to the general proof.
The proof is in 3 steps.

Step 1. Since H is the generator of a bounded holomorphic semigroup on
L2, one has an estimate ‖HSt‖2→2 6 c1t

−1 for all t > 0. Also, a standard
quadrature argument using the Gaussian bounds (1.5) gives ‖St‖2→∞ = ‖Kt‖2 6
c2V (t)−1/(2m). Therefore

‖HKt‖2 = ‖HSt‖2→∞ 6 ‖St/2‖2→∞‖HSt/2‖2→2 6 c t−1V (t)−1/(2m).

Now by (1.3), whenever |α| = n,

‖AαKt‖2
2 6 µ−1Re(HKt,Kt) 6 µ−1‖HKt‖2‖Kt‖2 6 c t−1V (t)−1/m.

The interpolating inequality

(2.1) ‖Aαϕ‖2 6 cj(‖ϕ‖2)1−|α|/j (Nj(ϕ))|α|/j

holds for all ϕ ∈ L2;j and α ∈ J(d′) with 0 6 |α| 6 j, where j ∈ N (see [14],
equation (25), or [20], Lemma III.3.3). Applying this with j = n we obtain

‖AαKt‖2 6 c t−|α|/mV (t)−1/(2m)

whenever 0 6 |α| 6 n.
Define Lt = Kt/2 ∗K∗

t/2 where K∗
t (g) = Kt(g−1) is the kernel of the adjoint

semigroup S∗t . (If H is self-adjoint, Lt = Kt.) Since AαLt = (AαKt/2) ∗K∗
t/2 and

‖K∗
t/2‖2 = ‖Kt/2‖2,

‖AαLt‖∞ 6 ‖AαKt/2‖2‖K∗
t/2‖2 6 c t−|α|/mV (t)−1/m

for 0 6 |α| 6 n. Finally, since Lt is a convolution of two Gaussian bounded kernels
we can easily obtain Gaussian bounds

|Lt(g)| 6 c V (t)−1/me−b
′(|g|m/t)1/(m−1)

for all t > 0, g ∈ G (see for example [8], Lemma 2.2).
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Step 2. In this step we prove lower bounds

(2.2) ReLt(g) > c V (t)−1/m

valid for all t > 0 and g ∈ G such that |g| 6 κt1/m, for some constant κ > 0. The
technique is that of [10].

First, it follows straightforwardly from the definition of Lt that it is a positive-
definite function on G, i.e.,∫

G

∫
G

dg dhLt(gh−1)φ(g)φ(h) > 0

for all φ ∈ Cc(G). As a consequence,

(2.3) Lt(e) > 2ρReLt(h)− ρ2Lt(e)

for all t > 0, h ∈ G and ρ ∈ R (see [10] and Chapter 3 of [15]).

Lemma 2.1. There exists r > 0 such that

(2.4)
∫

B(rt1/m)

dhReLt(h) > 1/2

for all t > 0.

Proof. Since H and its adjoint H∗ are pure m-th order operators,
∫
Kt =∫

K∗
t = 1 for all t > 0 (see for example [20], p. 216). Then an easy calculation

shows that
∫
Lt = 1. Also, it is standard that the Gaussian bounds on Lt imply

an estimate∣∣∣∣ ∫
|h|>rt1/m

dhReLt(h)
∣∣∣∣ 6

∫
|h|>rt1/m

dh|Lt(h)| 6 c e−b
′rm/(m−1)

for all r > 0 and t > 0. Therefore, by writing∫
B(rt1/m)

dhReLt(h) = Re
∫
G

dhLt −
∫

|h|>rt1/m

dhReLt(h),

one deduces (2.4) for all sufficiently large r.

Fix r > 0 such that (2.4) holds. Integrating (2.3) over B(rt1/m) and dividing
by V (rt1/m) gives

Lt(e) > 2ρ V (rt1/m)−1

∫
B(rt1/m)

ReLt − ρ2Lt(e) > ρ c−1
r V (t)−1/m − aρ2V (t)−1/m

for all ρ > 0, t > 0, where we have used (2.4), an estimate V (rt1/m) 6 crV (t)1/m

and the upper bound Lt(e) 6 aV (t)−1/m. Then maximizing over ρ yields the
lower bound

Lt(e) > c′V (t)−1/m

for all t > 0. As a consequence of the bounds on ‖AiLt‖∞ from Step 1, |Lt(g) −
Lt(e)| 6 c′′V (t)−1/m|g|t−1/m for all t > 0, g ∈ G. Now (2.2) follows easily through
the inequality ReLt(g) > Lt(e)− |Lt(g)− Lt(e)|.
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Step 3. Now we complete the proof of Theorem 1.1.
From Steps 1 and 2, there exist constants c1, b > 0 so that

(2.5)
ReLRm(g)
LRm(e)

6 c1e−b(|g|/R)m/(m−1)

for all g ∈ G and R > 0. Also there exists a c2 > 0 such that

(2.6)
ReLRm(g)
LRm(e)

> c2

whenever g ∈ G and R > 0 with |g| 6 κR, where κ is as in Step 2. Let ϕ ∈ C∞(R)
with 0 6 ϕ 6 1 such that ϕ(x) = 1 for all x > c2 and ϕ(x) = 0 for all x 6 (1/2)c2.
For R > 0, define ϕR ∈ C∞(G) by

ϕR(g) = ϕ

(
ReLRm(g)
LRm(e)

)
.

Then 0 6 ϕR 6 1, and by (2.6), ϕR(g) = 1 if |g| 6 κR.
Next choose τ > 0 large enough so that τ > κ and c1e−bτ

m/(m−1)
< (1/2)c2.

If τ ′ ∈ (κ, τ) is sufficiently close to τ we have c1e−bτ
′m/(m−1)

< (1/2)c2 and hence
by (2.5), ϕR(g) = 0 whenever |g| > τ ′R. Therefore the support of ϕR is contained
in B(τR).

When |α| = n, a straightforward calculation gives

(AαϕR)(g) =
∑

ϕ(l)

(
ReLRm(g)
LRm(e)

) l∏
p=1

(Aβp(ReLRm))(g)
LRm(e)

where the sum is over a subset of all l ∈ {1, . . . , n} and β1, . . . , βl in J(d′) with
|βp| > 1 for all p and |β1|+ · · ·+ |βl| = n. Combining the equality Aβp(ReLRm) =
Re(AβpLRm), the bounds

‖Re(AβpLRm)‖∞ 6 ‖AβpLRm‖∞ 6 cR−|βp| V (Rm)−1/m

from Step 1, together with the lower bound LRm(e) > c′V (Rm)−1/m, we obtain
an estimate ‖AαϕR‖∞ 6 cR−n for all R > 0, whenever |α| = n. Finally, define
ηR = ϕτ−1R. It follows easily from the properties of the ϕR that (ηR)R>0 is a
family of cutoff functions of order n.

Remark 2.2. By modifying the above proof it is possible to prove Theo-
rem 1.1 under the assumption of pointwise bounds on Kt which have a much slower
decay on G than Gaussian bounds. To be specific, it is enough to assume Poisson
bounds as defined in [6]:

|Kt(g)| 6 V (t)−1/mP (|g|m/t)

where P : [0,∞) → (0,∞) is a continuous, bounded and decreasing function which
satisfies

lim
r→∞

rN+δP (rm) = 0

for some δ > 0. The modified proof requires integral estimates for Poisson bounds
found in the statement and proof of Proposition 2.1 of [6].
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3. PROOF OF THEOREM 1.2

Our proof is similar in structure to proofs in [4] and [2]. We concentrate on proving
the bounds on Kt, and sketch in the final remarks of this section how the proof can
be extended to obtain bounds on the derivatives AαBβKt. In Lemma 3.2 below,
using the Sobolev embedding of Lemma 3.1, we derive uniform bounds on the
kernel. We remark that these two lemmas hold for any polynomial group G, since
the proofs do not use the existence of cutoff functions. However in the subsequent
derivation of Gaussian bounds, the requirement that G be a K ×l N group, and
assumption (1.10), are crucial.

Lemma 3.1 is a generalization to polynomial groups of a standard Sobolev
embedding theorem for RN . In fact, when G = RN the lemma is equivalent to
Lemma 16 of [4]. On the other hand, on a general unimodular Lie group there is a
local version of the lemma which holds whenever m > D′ but with the restriction
that λ ∈ (0, 1] (see [20], Theorem IV.5.8 and its proof, or one can use a Laplace
transform argument and the bounds (1.2)). When G is polynomial, to prove the
lemma we will use the fact ([20], Section IV.4, or [22], Chapter VIII) that the heat

kernel pt of ∆ = −
d′∑
i=1

A2
i satisfies Gaussian bounds

|pt(g)| 6 c V (t)−1/2e−b(|g|
2/t)

for all t > 0 and g ∈ G.

Lemma 3.1. If m,n are positive integers such that m = 2n > N , there exists
cm > 0 such that

‖ϕ‖∞ 6 cmV (λ)−1/m (‖ϕ‖2 + λNn(ϕ))

for all λ > 0 and ϕ ∈ L2;n.

Proof. The bounds on pt imply bounds ‖e−t∆‖2→∞ 6 c V (t)−1/4. Using
a volume inequality V (tλ2/n)−1/4 6 c (1 + t−N/4)V (λ)−1/m, valid for all λ > 0,
t > 0, and the Laplace transformation,

‖(1 + λ2/n∆)−n/2‖2→∞ 6 Γ(n/2)−1

∞∫
0

dte−t t−1tn/2 ‖e−tλ
2/n∆‖2→∞

6 c V (λ)−1/m

( ∞∫
0

dte−t t−1tn/2 (1 + t−N/4)
)

where the last integral converges because n > N/2. Then for ϕ ∈ C∞c (G), using
spectral theory

‖ϕ‖∞ 6 c V (λ)−1/m‖(1 + λ2/n∆)n/2ϕ‖2 6 c′ V (λ)−1/m‖(1 + λ∆n/2)ϕ‖2

6 c′ V (λ)−1/m
(
‖ϕ‖2 + λ(∆nϕ,ϕ)1/2

)
.

But ∆n is a pure m-th order operator, i.e., it is of the form
∑

|α|=m
bαA

α. Since

for |α| = m we can write (Aαϕ,ϕ) = (−1)|β|(Aγϕ,Aβ∗ϕ) where α = βγ and
|β| = |γ| = n, it follows that |(∆nϕ,ϕ)| 6 cNn(ϕ)2.
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Lemma 3.2. For each t > 0 the operator St = e−tH has an integral kernel
Kt ∈ L∞(G×G) and

|Kt(g ;h)| 6 c V (t)−1/m

for all t > 0 and g, h ∈ G.

Proof. Let ψ ∈ L2. For any t > 0, Stψ ∈ D(H) ⊆ L2;n, so we have the
Sobolev inequality

‖Stψ‖∞ 6 c V (t1/2)−1/m
(
‖Stψ‖2 + t1/2Nn(Stψ)

)
.

But ‖Stψ‖2 6 ‖ψ‖2 and

Nn(Stψ)2 6 µ−1Reh(Stψ) 6 µ−1‖HStψ‖2‖Stψ‖2 6 c t−1‖ψ‖2
2.

Hence ‖St‖2→∞ 6 c V (t)−1/(2m). Next, the adjoint H∗ of H is the operator
associated with the form h∗, where h∗(ϕ,ψ) = h(ψ,ϕ) (see [18], Theorem VI.2.5).
Since h∗ clearly satisfies (1.6), (1.7) (and (1.10)) whenever h does, we obtain

‖St‖1→2 = ‖S∗t ‖2→∞ 6 c V (t)−1/(2m)

and hence ‖St‖1→∞ 6 c V (t)−1/m. The statement of the lemma follows.

Lemma 3.3. (i) For ε, Cε as in (1.10), there is θε ∈ (0, θH) such that

‖Sρ
reiθ

‖2→2 6 eCερ
mr

for all r > 0, θ ∈ [−θε, θε], ρ ∈ R∗. In particular, there is k > 0 such that for all
t > 0, ρ ∈ R∗,

‖Sρt ‖2→2 6 ekρ
mt.

(ii) There is k′ > 0 such that

‖HρS
ρ
t ‖2→2 6 c t−1ek

′ρmt

for all t > 0, ρ ∈ R∗.

Proof. It follows from (1.8) that there is θε ∈ (0, θH) such that whenever
θ ∈ [−θε, θε], ϕ ∈ L2;n,

(3.1) Re(eiθh(ϕ)) = cos θReh(ϕ)− sin θImh(ϕ) > εReh(ϕ).

Given ψ ∈ L2, θ ∈ [−θε, θε], define ψr = Sρ
reiθ

ψ for r > 0. Then

d
dr
‖ψr‖2

2 = −eiθ(Hρψr, ψr)− e−iθ(ψr,Hρψr) = −2Re(eiθhρ(ψr))

= −2Re(eiθh(ψr)) + 2Re(eiθ(h(ψr)− hρ(ψr))) 6 2Cε ρm‖ψr‖2
2

where in the last inequality we used (3.1) and (1.10). Solving the differential
inequality yields ‖ψr‖2 6 eCερ

mr‖ψ‖2, and statement (i) follows.
Statement (ii) follows from statement (i) and the Cauchy integral formula as

in the proof of Lemma 2.38 of [3].
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Lemma 3.4. There is k′′ > 0 such that whenever |α| = n,

‖AαSρt ‖2→2 6 c t−1/2ek
′′ρmt

for all t > 0 and ρ ∈ R∗.

Proof. Since ε ∈ (0, 1), equation (1.10) implies an estimate

(3.2) Reh(ϕ) 6 cRehρ(ϕ) + c ρm‖ϕ‖2
2

for all ϕ ∈ L2;n. For any ψ ∈ L2, t > 0, Sρt ψ ∈ D(Hρ) ⊆ L2;n. Applying (1.6),
(3.2) and Lemma 3.3, one finds

‖AαSρt ψ‖2
2 6 µ−1Reh(Sρt ψ) 6 c′ Rehρ(S

ρ
t ψ) + c′ρm‖Sρt ψ‖2

2

6 c′‖HρS
ρ
t ψ‖2‖Sρt ψ‖2 + c′ρm‖Sρt ψ‖2

2

6
(
c t−1ek

′ρmtekρ
mt + cρme2kρmt

)
‖ψ‖2

2.

The statement of the lemma follows immediately.

Now we complete the proof of the Gaussian bounds on Kt. For ψ ∈ L2,
applying the Sobolev inequality and Lemmas 3.3 and 3.4 gives

‖Sρt ψ‖∞ 6 c V (t1/2)−1/m
(
‖Sρt ψ‖2 + t1/2Nn(S

ρ
t ψ)

)
6 c V (t)−1/(2m)ekρ

mt‖ψ‖2

for some k > 0. Thus ‖Sρt ‖2→∞ 6 c V (t)−1/(2m)ekρ
mt. Arguing by duality as

in the proof of Lemma 3.2, we find that there is a k > 0 such that ‖Sρt ‖1→∞ 6
c V (t)−1/mekρ

mt. Since Sρt has the kernel

Kρ
t (g ;h) = e−ρψ

l
R(g)Kt(g ;h)eρψ

l
R(h),

we obtain bounds

|Kt(g ;h)| 6 c V (t)−1/mekρ
mt−ρ(ψl

R(h)−ψl
R(g))

uniformly for all t > 0, g, h, l ∈ G, ρ ∈ R∗, and R > 0 such that |ρ| > R−1. Setting
l = h−1 and R = |gh−1| and noting that ψh

−1

R (h) = |gh−1|, ψh−1

R (g) = 0 yields

|Kt(g ;h)| 6 c V (t)−1/mekρ
mt−ρ|gh−1|

whenever ρ > 0 and g, h are such that |gh−1| > ρ−1. Now the function 0 < ρ 7→
kρmt−ρ|gh−1| has the minimum −b(|gh−1|m/t)1/(m−1), where b > 0 depends only
on k and m, and this minimum is attained when

ρ = ρ0 = (km)−1/(m−1)(|gh−1|/t)1/(m−1).

Thus we have the Gaussian bounds of Theorem 1.2 under the condition that
|gh−1| > ρ−1

0 , or equivalently, |gh−1| > (km)1/mt1/m. But in the sector consisting
of those g, h and t > 0 for which |gh−1| 6 (km)1/mt1/m, the Gaussian bounds are
equivalent to the bounds of Lemma 3.2. Thus the desired bounds are proved.
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Gaussian bounds and continuity for the kernels AαBβKt, where |α|, |β| <
2−1(m−N), are obtained by combining the ideas of the above proof with standard
techniques for dealing with derivatives and Hölder derivatives of kernels, found for
example in [9]. We only sketch the proofs.

The proof of the bounds on AαBβKt is based on the Sobolev inequalities

(3.3) ‖Aαϕ‖∞ 6 cm,αV (λ)−1/mλ−|α|/n (‖ϕ‖2 + λNn(ϕ))

valid for positive integers m,n with m = 2n, α ∈ J(d′), λ > 0, and ϕ ∈ L2;n

whenever |α| < 2−1(m − N). (One can derive (3.3) by substituting Aαϕ for ϕ
and n− |α| for n in Lemma 3.1, and applying (2.1).) Reasoning as in the proof of
Lemma 3.2, but applying (3.3) in place of Lemma 3.1, one obtains bounds

‖AαStAβ∗‖1→∞ 6 c V (t)−1/mt−(|α|+|β|)/m

when |α|, |β| < 2−1(m−N). This yields uniform bounds on the mixed derivatives
‖AαBβKt‖L∞(G×G) 6 cV (t)−1/mt−(|α|+|β|)/m. To obtain Gaussian bounds, one
applies (3.3) and Lemmas 3.3 and 3.4 to obtain

‖AαSρt ‖2→∞ 6 c V (t)−1/(2m)t−|α|/mekρ
mt,

where |α| < 2−1(m−N). This leads, via the identity (3.6) below, to bounds

‖e−ρψ
l
RAαSteρψ

l
R‖2→∞ 6 c V (t)−1/(2m)t−|α|/mekρ

mt

and then to

‖e−ρψ
l
RAαStA

β∗eρψ
l
R‖1→∞ 6 c V (t)−1/mt−(|α|+|β|)/mekρ

mt.

These bounds yield Gaussian bounds on AαBβKt outside a sector.
Finally, the continuity, in fact the Hölder continuity, of the kernels AαBβKt

on G×G is a consequence of bounds

(3.4) ‖(I − L̃(l, s))AαBβKt‖∞ 6 c (|l|σ + |s|σ) t−(|α|+|β|)/m V (t)−1/m

for all t > 0, l, s ∈ G, where L̃ denotes left translation on G × G, and σ ∈ (0, 1)
satisfies |α| + σ < 2−1(m − N), |β| + σ < 2−1(m − N). The derivation of (3.4)
is again similar to the proof of Lemma 3.2, but one now begins with the Sobolev
inequality

(3.5) sup
0 6=l∈G

|l|−σ‖(I−L(l))Aαϕ‖∞6cm,α,σV (λ)−1/mλ−(|α|+σ)/n (‖ϕ‖2+λNn(ϕ))

for λ > 0, ϕ ∈ L2;n, where |α| + σ < 2−1(m − N). One can obtain (3.5)
in the case |α| = 0 by a Laplace transform argument based on the bounds
sup

0 6=l∈G
|l|−σ‖(I − L(l))e−t∆‖2→∞ 6 cσ V (t)−1/4 t−σ/2, and the case of general α

follows by substituting Aαϕ for ϕ. We omit further details of the proof of (3.4)
and refer to [9] for a similar proof.
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4. PROOF OF THEOREM 1.3 AND COROLLARY 1.4

We first prove part (ii) of Theorem 1.3. We need to show that the form

h(ϕ,ψ) =
∑

|α|=|β|=n

(cαβAαϕ,Aβψ),

with ϕ,ψ ∈ L2;n, satisfies (1.6), (1.7) and (1.10). The first inequality of (1.6)
follows from the condition on the cαβ . For (1.7), we note that

Imh(ϕ) =
∑

|α|=|β|=n

(IαβAαϕ,Aβϕ)

where Iαβ = (1/(2i))(cαβ − cβα) so that

|Imh(ϕ)| 6
∑

|α|=|β|=n

‖Iαβ‖∞‖Aαϕ‖2‖Aβϕ‖2 6
( ∑
|α|=|β|=n

‖Iαβ‖2
∞

)1/2

Nn(ϕ)2.

A similar estimate holds for the second inequality of (1.6) with Rαβ = (1/2)(cαβ+
cβα) replacing Iαβ . To complete the proof of (ii) we will prove:

Proposition 4.1. There exists a K > 0 such that assumption (1.10) holds
for any ε ∈ (0, 1], with Cε = Kε−(m−1).

Proof. The relation

e−ρψAieρψϕ = Aiϕ+ ρ(Aiψ)ϕ

is straightforward to establish. It may be iterated to show that there exist integer
constants ck,γ1,...,γk,δ such that

(3.6) e−ρψAαeρψϕ = Aαϕ+
∑

ck,γ1,...,γk,δ ρ
k (Aγ1ψ) · · · (Aγkψ)(Aδϕ)

for all α ∈ J(d′), ϕ,ψ ∈ C∞(G), and ρ ∈ R. The sum is over k ∈ N and multi-
indices γ1, . . . , γk, δ satisfying |γj | > 1 for all j ∈ {1, . . . , k} and |γ1|+ · · ·+ |γk|+
|δ| = |α|. Now, it suffices to prove (1.10) for ϕ ∈ C∞c (G). We have

h(ϕ) =
∫ ∑

|α|=|β|=n

cαβ(Aαϕ)(Aβϕ)

hρ(ϕ) =
∫ ∑

|α|=|β|=n

cαβ
(
e−ρψ

l
RAαeρψ

l
Rϕ

)(
eρψl

RAβe−ρψl
Rϕ

)
and using (3.6) it follows that hρ(ϕ)−h(ϕ) is a sum of constant multiples of terms
T of the form

T = ρk
∫
cαβ(Aγ1ψlR) · · · (AγkψlR)(Aδ1ϕ)(Aδ2ϕ)

where k ∈ N, γ1, . . . , γk, δ1, δ2 are in J(d′) with |γj | > 1 for all j, |δ1|, |δ2| 6 n and
|γ1|+ · · ·+ |γk|+ |δ1|+ |δ2| = m. Now cαβ ∈ L∞ and by (1.9),

‖(Aγ1ψlR) · · · (AγkψlR)‖∞ 6 cR−(|γ1|+···+|γk|−k) 6 c′ |ρ||γ1|+···+|γk|−k
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because |ρ| > R−1 and |γ1|+ · · ·+ |γk| − k > 0. Hence

|T | 6 c |ρ|r‖Aδ1ϕ‖2‖Aδ2ϕ‖2

where r = |γ1| + · · · + |γk|. Note that 0 < r 6 m and |δ1| + |δ2| + r = m. Thus
|T | 6 cρm‖ϕ‖2

2 in the case r = m.
If 0 < r < m, one applies (2.1) with j = n and α = δi, i = 1, 2, and then

applies (1.6) to deduce that

|T | 6 c |ρ|r
(
‖ϕ‖2

2

)r/m
(Reh(ϕ))1−(r/m) 6 εReh(ϕ) + c′ε−(m−r)/rρm‖ϕ‖2

2

for all ε > 0, by a standard ε, ε−1 argument. Since ε−(m−r)/r 6 ε−(m−1) when
0 < ε 6 1, these estimates on T complete the proof of the proposition.

Now we prove part (i) of Theorem 1.3.
Let H =

∑
|α|=m

cαA
α be an m-th order G̊arding operator so D(H) = L2;m.

We first show that H is the m-sectorial operator associated with a sectorial form
satisfying (1.6) and (1.7). Define

(3.7) h(ϕ,ψ) = (Hϕ,ψ)

for ϕ,ψ ∈ L2;m. One easily verifies (1.6) and (1.7) for ϕ ∈ L2;m (see the last step
in the proof of Lemma 3.1). It follows that h is a closable sectorial form and that
the domain of the closure is L2;n. We continue to denote the closure by h: then
(1.6) and (1.7) hold for ϕ ∈ L2;n. Let H̃ be the m-sectorial operator associated
with h, as in Section 1. It follows from (3.7) and Corollary VI.2.4 of [18] that H̃
is an extension of H. But H̃ and H are both semigroup generators, and hence
H̃ = H.

Finally, we verify (1.10) and in fact show that Cε can be chosen to have the
same form as in Proposition 4.1. For ϕ ∈ C∞c (G)

hρ(ϕ)− h(ϕ) =
∑
|α|=m

cα
(
(e−ρψ

l
RAαeρψ

l
R −Aα)ϕ,ϕ

)
is, by (3.6), a sum of constant multiples of terms

T ′ = ρk
(
Aδϕ, (Aγ1ψlR) · · · (AγkψlR)ϕ

)
where k ∈ N, |γj | > 1 for all j, and |γ1| + · · · + |γk| + |δ| = m. Note |δ| < m.
If |δ| 6 n, T ′ can be estimated just like T in the proof of Proposition 4.1. If
|δ| > n, let δ = δ1δ2 where |δ2| = n, |δ1| < n. One uses the identity (Aδϕ, χ) =
(−1)|δ1|(Aδ2ϕ,Aδ1∗χ) and then expands T ′ as a sum of constant multiples of terms

T ′′ = ρk(Aδ2ϕ, (Aβ1ψlR) · · · (AβkψlR)(Aδ3ϕ))

where |βj | > 1 for all j, |δ2| = n, |δ3| < n, and |β1|+ · · ·+ |βk|+ |δ2|+ |δ3| = m.
Then T ′′ can be estimated just like T above, and the proof of Theorem 1.3 is
complete.
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Corollary 1.4 follows easily from our previous results. For (i), we have
‖Kt‖2 = ‖St‖2→∞ and ‖Kt‖∞ = ‖St‖1→∞, so the required estimates follow from
the proof of Lemma 3.2. For (ii), we may assume that d > 2, where d is the vector
space dimension of the Lie algebra of G. Now D′ > d (see [11], Section 6, or [22],
Chapter V) so m > 4, and the result follows by combining Theorems 1.1, 1.2,
and 1.3 (i).
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