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ABSTRACT. Let G be a connected Lie group of polynomial growth. We
consider m-th order subelliptic differential operators H on G, the semigroups
S; = e M and the corresponding heat kernels K;. For a large class of H
with m > 4 we demonstrate equivalence between the existence of Gaussian
bounds on K, with “good” large ¢t behaviour, and the existence of “cutoft”
functions on G. By results of [14], such cutoff functions exist if and only if G
is the local direct product of a compact Lie group and a nilpotent Lie group.
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1. INTRODUCTION

d/
Let A = — Y A? be a sublaplacian on a connected Lie group G of polynomial
i=1
growth. Here the A; are right-invariant vector fields corresponding to an algebraic
basis ai,...,aq of the Lie algebra of G. It is a well-known theorem (see, for

example, [20], Section IV.4, or [22], Chapter VIII) that the corresponding heat
kernel, and its first derivatives with respect to the A;, satisfy Gaussian bounds
with “good” large time behaviour. It was recently proved in [14] that the second
derivatives of the heat kernel have the expected good large time behaviour if, and
only if, G is the local direct product of a compact and a nilpotent group. Moreover,
it was proved this is equivalent to another analytic condition on G: the existence
of a family of cutoff functions of order j for some positive integer j > 2. The latter
is defined to be a family (ng)r>o of C* functions on G such that 0 < g < 1, the
support of ng is contained in B(R), nr(g) =1 if g € B(cR), and

1A*nR]lsc < cR7Y,
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for some constants ¢ > 0, o € (0, 1), all multi-indices « of length 7, and all R > 0.
(If (nr)Rr>0 is of order j, it is automatically of order j' for any j' < j; see [14].)
Here B(R) is the ball of radius R associated with a canonical distance on G (see
below for details). Further, in the case when G is such a local direct product,
there is a family (ngr)g>o of cutoff functions of order oo on G, i.e., (ngr)r>0 is of
order j for every j € N.

In this paper we obtain analogues of these results for higher-order subelliptic
operators on G. Our results are in two directions: in one direction, we prove that
for an important class of right-invariant operators, of order 4 or more, the semi-
group kernels can satisfy “good” Gaussian bounds only if G has cutoff functions
of order 2 or more (and hence G is a local direct product as above.) In the reverse
direction, we assume G is a local direct product as above and prove that a certain
class of operators with order larger than the “dimension” of G satisfies “good”
Gaussian bounds. The latter proof is based on ideas of Davies in [4], but a new
feature is the use of cutoff functions in the standard “Davies perturbation” tech-
nique. The resulting estimates eliminate the need for any scaling arguments to
remove an undesired e** factor from the Gaussian bounds. Such scaling arguments
(see for example, Lemma 6 of [2]) are only available if G possesses dilations, i.e., if
G is a homogeneous group, and are not available if G is a general nilpotent group.
To state our results precisely we introduce more notation.

Generally we adopt the notation of [11], [20], [14] or [13], with small changes.
Throughout, G will be a connected Lie group of polynomial growth, and a1, ..., ag
a fixed algebraic basis of the Lie algebra of G. We fix a (bi-invariant) Haar
measure dg on G. Then G is called a K x; N group if it is the local direct
product of a connected compact Lie group and a connected nilpotent Lie group.
Let A; = dLg(a;), for i € {1,...,d'}, be the generators of left translations on the

o0 .
L,-spaces L,(G;dg). The set of multi-indices is defined by J(d') = J{1,...,d'}’.
=0

If & = (i1,...,i;) € J(d') we say « has length |a] = j and set A* = 4, --- A
(If j = 0 then « is the “empty’ multi-index and we set |a| to be 0 and A to

(2

be the identity on L,.) The reverse multi-index of o is ay = (¢j,...,41). Let
L,; = (1 D(A%) be the Sobolev space of j-times differentiable functions in L.
loe| =7
1/2
The seminorm N; is defined on Lo.; by N;(p) = ( > ||A°‘g0||§) . Moreover,
ol =7

(g, h) — d(g; h) denotes the right-invariant distance associated with the algebraic
basis and g — |g| = d(g; €) the modulus. Then V(r) denotes the Haar measure of
the ball B(r) = {g € G : |g| < r}. There are integers D’ > 1, and D > 0, the local
dimension and the dimension at infinity, such that for some C' > 0,

C P <V <er? ifo<r<1
C—lrP <V(r)y<CrP if r>1.
Set N = D’V D. In general, ¢,c’,b,V, etc., denote positive constants whose value
we allow to change from line to line when convenient.
Throughout, m and n denote positive integers with m = 2n. We consider
(right-invariant) operators
H= Z Co A

|al=m
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where ¢, € C, defined on the domain D(H) = Lo, in Lo. If H satisfies the
Garding inequality

(1.1) Re(Hp, ) = uNu(9)? = Mloll3

for some > 0, A > 0 and all p € C°(G), and then by density for all ¢ € Loy,
one can establish local Gaussian bounds on the semigroup kernel K associated
with H. Indeed, it follows from [11] that H generates a semigroup S; = e~ in
Lo with a smooth convolution kernel K, i.e, Syp = Ky * ¢ for ¢ € Ly. For each
a € J(d') there exist ¢ > 0, b > 0, and w > 0 such that

1.2 AYK, <Vt 71/mt7|a\/mewtefb(\g|m/t)l/(m_l)
(1.2) [(A°K¢)(9)] < eV (E)

for all ¢ > 0 and g € G. We mention also the paper [17] in which similar results
were obtained.

If G is a homogeneous group and the vector fields A; are homogeneous of
order 1, then a scaling argument implies that (1.1) is equivalent to the strong
Garding inequality

(1.3) Re(Hp,¢) > pN,(p)?

obtained by setting A = 0 in (1.1). Similarly, (1.2) is equivalent to the global
Gaussian bounds

(1.4) [(A“K)(g)] < ¢ V(t)*l/mtfla\/me*b(\gl’"/t)

obtained by setting w = 0 in (1.2). We will examine the relationship between
the strong Garding inequality (1.3) and the Gaussian bounds (1.4) for a general
polynomial group with no assumption of homogeneity.

If H satisfies (1.3) for ¢ € Lo, we call H an m-th order Garding operator.
In this case the semigroup S extends to a holomorphic semigroup on Lo with
[|S.|| € 1 for all z in some sector of the complex plane. This may be deduced,
for example, from the fact that the associated sesquilinear form h satisfies (1.6)
and (1.7) below (see the remarks after (1.7) and the proof of Theorem 1.3 (i)
below).

THEOREM 1.1. Let H be an m-th order Garding operator with m > 4. If K,
satisfies bounds

(L5) [Ki(g)| < cV/(t)~H/mebilal™/m?
forallt >0, g € G, then G is a K x; N group.

1/(m—1)

d/
The condition m > 4 in this theorem is necessary; indeed A = — >~ A% is a
i=1
second-order Garding operator which provides a counterexample to the theorem
in the m = 2 case.
Examples of m-th order Garding operators include

Ap = (=1)" Y A% A
|a]=n
or, more generally,
H=(-1)" Y capA’ A,

loe|=[B|=n
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where the coefficients cog € C satisfy

Re Z caﬁgagﬁ Zp Z |§a|2

lo|=[B]=n loe|=n.

for all £ = (§a)jaj=n € C@)" . For such operators the strong Géarding inequality
follows by a simple calculation (see [11], Section 1).

Positive Rockland operators are also m-th order Garding operators. More
precisely, let G be a stratified nilpotent group and suppose that the algebraic
basis vector fields Aq,..., Ay are homogeneous of degree 1 with respect to the
dilation structure of G. If H = > ¢, A% is a positive Rockland operator on G

la]=m

(homogeneous of degree m) then H is m-th order Garding. More information on
positive Rockland operators, including heat kernel bounds, can be found in [7], [1]
and [16].

For another example, let G be nilpotent and H = . ¢, A® an m-th order

a|=m

operator on GG. Without going into details, it is possible tlo |construct a larger “free”
nilpotent group (~¥, which is a stratified group, such that H lifts to an operator H
homogeneous of degree m on G.IfHisa positive Rockland operator on C~v', then
H will be an m-th order Garding operator on GG. The strong Garding inequality
for H is a consequence of the fact that all Riesz transforms of H are bounded

d/
on Ly(QG); see [13], [19]. As special cases, the operators H = (—1)" > A™ and

H = A™/? are m-th order Garding whenever G is nilpotent.

When G is not a K x; N group, however, the class of m-th order Garding

operators no longer includes some important subelliptic operators. For example,
d’ m/2

when m > 4 we claim that the operator H = A™/2 = (— > Af) / is m-th
i=

order Garding if and only if G = K x; N. Indeed, H satisfies (1.3) if and only if

all of the Riesz transforms A*A~"/2 |a| = n, are bounded on Ly, and as shown

n [14], when n > 2 this occurs if and only if G = K x; N. Nevertheless, on any

polynomial group G (and with an arbitrary choice of aq,...,aq), the operator

A™/? gatisfies m-th order Gaussian bounds (see [21] or [5]).

Our second main result, Theorem 1.2 below, is formulated for operators
associated with a sesquilinear form on Lo satisfying three abstract assumptions
inspired by [4].

Let h be a sesquilinear form with domain La;,. We write h(yp) for h(ap ©).
Our first two assumptions are that there are constants p > 0, g > 0, v > 0 such
that for all ¢ € Loy,

(1.6) 1NA(9)? < Reh(p) < B(llel3 + Nu(e)?)
(1.7) IIm h(p)| < vN.(p)>.

It follows that
(1.8) [Im A ()| < p~ v Re h(p).



HIGHER ORDER OPERATORS AND GAUSSIAN BOUNDS 49

Thus h is a sectorial form with semiangle ¢ = tan~!(u~'v) € [0,7/2), i.e., we have
hg) € K(¢) = {2 €C: |arg 2| < C} U {0},

Moreover, assumption (1.6) then implies that h is a closed form. Let H be the m-
sectorial operator associated with the closed sectorial form h, in the sense of [18],
Theorem VI.2.1. Then D(H) C Ly, and

(Hep,¥) = hip,v)

for all ¢ € D(H) and 9 € La,;,. The spectrum of H is contained in A(¢), and H
is the generator of a holomorphic semigroup S, = e~* on Ly in the open sector
AOg) ={z€ C—{0}: |argz| < Oy}, where 0 = 7/2 — (. In addition, || S]] < 1
for all z € A(0g) (see [18], p. 280 and Theorem IX.1.24). In the case where h is a
symmetric form, i.e., h(p,¥) = h(¥, ¢), we can choose v = 0 and ( =0, and H is
a nonnegative self-adjoint operator.

Our third assumption, (1.10) below, is an analogue of (3) of [4] or Lemma
II1.4.5 of [20], and is expressed in terms of a perturbed form defined using cutoff
functions. For the definition we suppose G is a K x; N group. Fix a family
(nr) r>0 of cutoff functions of order co on G and define 1% = R- R(I)ng for R > 0
and | € G, where R(l) denotes right translation by I. For each o € J(d’) we have
an estimate

(1.9) ||Aa7/’é%||oo < CaRlila‘

because A® commutes with R(1).

If p € R, we let eP¥r denote the bounded operator of multiplication by eP¥h
on Ly and the spaces Lo.;. Then the perturbed form, operator and semigroup are
defined by

ho(p) = h(ePrp e PVryp), H,=e PVnHet¥r SP =e PVrg ePVn

for ¢ € Loy, p € R, 1 € G, R > 0, and z € A(fg) U {0}. One finds that
SP =e *He and (H,p, p) = h,(p) whenever ¢ € D(H,). Note also that D(H,) =
e=PVs(D(H)) C e #¥5(Lay) = Lo

Our third assumption is that there exist an € € (0,1) and C. > 0 such that

(1.10) hp(0) = h(p)] < eReh(p) + Cep™[lel3

for all ¢ € Ly, I € G, p € R* =R — {0}, and R > 0, subject to the condition
lp| = R™!. All subsequent estimates involving the perturbed objects are also
understood to hold for all I € G, p € R*, and R > 0 subject to the condition
lp| = R~!, even though for brevity R and [ do not appear in our notation.

We remark that assumption (3) of [4] differs crucially from our assumption
(1.10) in having (14 p™) in place of p™. The absence of the 1 allows us to avoid an
e“! factor which occurs in semigroup estimates in [4]. In [2], Barbatis and Davies
obtained an estimate similar to (1.10) when G' = RY and the form is perturbed
by linear functions.

In the following theorem, for a function F' on G x G, we use the notations
A®F and B®F for the A® derivatives of F with respect to the first and second
variables, respectively.
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THEOREM 1.2. Let G be a K xX; N group and let the form h satisfy the
assumptions (1.6), (1.7), and (1.10), with m > N. Then the semigroup generated
by the associated operator H has an integral kernel Ky, continuous on G X G for
each t > 0, satisfying

[Ki(g: )| < eV ()~ /metlon Imm

for allt >0 and g,h € G.
Moreover, for o, € J(d') with |a|,|3] < 27Y(m — N), the derivatives
A*BPK, exist and are continuous on G x G, and

|ABP K, (g: h)| < & V(t)~Y/m = (alHB)/m o=t/ (Igh™! ™ /) /(=0
forallt >0 and g,h € G.

The next theorem verifies that Theorem 1.2 applies not only to m-th order
Garding operators but to an important class of operators with variable coefficients

in divergence form.

THEOREM 1.3. Let G be a K x; N group. The hypotheses of Theorem 1.2

hold if either of the following two conditions is valid:
(i) H is an m-th order Garding operator, with m > N ;
(i) H=(=1)" > APcopA% is an m-th order operator, with m > N,
lor|=|8l=n
associated with the form h(p,) = . (capA®p, APtp) where the cap are
lee|=]8]=n

bounded measurable complex-valued functions on G and

Z Recag(g)ﬁafg 2 Z |§a|2

|ee|=]B]=n loe|=n
forallge G and € € c@",
Our final result is obtained by combining Theorems 1.1-1.3.

COROLLARY 1.4. Let H be an m-th order Garding operator with m > N.
Then:
(i) the convolution kernel satisfies bounds ||Ki|s < c¢V(t)~Y®™ and
1 Ktlloo < cV()™Y™ forallt > 0;
(ii) K; satisfies (1.5) if and only if G is a K x; N group.

Our results indicate that (1.3) and (1.5) are probably not to be expected for
many operators on groups which are not of the form K x; N. Examples ([12]) show
that the kernel K; can have more complicated large ¢t behaviour, for example, it
can behave like a Gaussian of order less than m for large ¢.
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2. PROOF OF THEOREM 1.1

To prove Theorem 1.1, by the result of [14] it is sufficient to construct cutoff
functions of order n = m/2 on G. The method of construction is an extension of
the argument on page 14 of [14]. If H is self-adjoint, then K; is a positive-definite
function on G, and using techniques of [10] one can find £ > 0 such that

Re Ki(g) > cV(t)~1/m
for all g € G and t > 0 satisfying |g| < xt'/™. For an appropriate ¢ € C>°(R),

one defines Re Kn (g)
o e N pm(g
¢R(g) - ¢ ( KR'HL (6) )

and one can argue that for an appropriate p > 0, (¢,r)r>0 is a family of cutoff
functions of order n. Since the argument for H self-adjoint is contained in the
argument for general H, we omit further details, and turn to the general proof.
The proof is in 3 steps.

STEP 1. Since H is the generator of a bounded holomorphic semigroup on
Ly, one has an estimate ||[HS¢|lz2—2 < e1t7! for all ¢ > 0. Also, a standard
quadrature argument using the Gaussian bounds (1.5) gives ||St|l2—00 = || K¢ll2 <
coV (1)~ (™) Therefore

1K ll2 = [ HSll200 < 1S/l ool H Sy 2ll2—2 < ct ™V (1) =/,
Now by (1.3), whenever |a| = n,

1A K13 < p™ ' Re(H Ky, Ko) < p I HE 2| Kol < etV ()™,
The interpolating inequality
(2.1) 14%¢ll2 < ¢;(lpll2) 1V (N ()l

holds for all ¢ € Lo; and a € J(d') with 0 < |a| < j, where j € N (see [14],
equation (25), or [20], Lemma II1.3.3). Applying this with j = n we obtain

HAO[KtHQ < ct—|a\/mv(t)—1/(2m)
whenever 0 < |o| < n.

Define Ly = Ky/3 * K, where K (g) = Ki(g~1) is the kernel of the adjoint
semigroup Sf. (If H is self-adjoint, L; = K;.) Since A*L; = (AKy)5) * Ky, and
1K oll2 = 122,

IA® Lielloo < 1A Ky pol2]l K oll2 < ct™1oVmy ()=

for 0 < |a| < n. Finally, since L; is a convolution of two Gaussian bounded kernels
we can easily obtain Gaussian bounds

[Le(g)] < eV ()~ met ol /or?

for all t > 0, g € G (see for example [8], Lemma 2.2).
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STEP 2. In this step we prove lower bounds
(2.2) Re Li(g) = cV(t)~Y/m

valid for all ¢t > 0 and g € G such that |g| < xt'/™, for some constant £ > 0. The
technique is that of [10].

First, it follows straightforwardly from the definition of L; that it is a positive-
definite function on G, i.e.,

// dgdhLi(gh™")p(g)p(h) =0
GG

for all ¢ € C.(G). As a consequence,

(2.3) Li(e) = 2pRe Ly(h) — p°Ly(e)

for allt >0, h € G and p € R (see [10] and Chapter 3 of [15]).
LEMMA 2.1. There exists r > 0 such that

(2.4) / dhRe Li(h) > 1/2
B(rtl/m)
for allt > 0.
Proof. Since H and its adjoint H* are pure m-th order operators, [ K; =
JK; =1forallt>0 (see for example [20], p. 216). Then an easy calculation

shows that [ L; = 1. Also, it is standard that the Gaussian bounds on L; imply
an estimate

g pm/ (m—1)
e b'r

theLt(h)‘g / dh|Li(h)| < c
|h| Z>rtt/m |h| Zrtt/m

for all » > 0 and t > 0. Therefore, by writing

/ dhRe Li(h) = Re/ dhL; — / dhRe Li(h),
B(rtt/m) G |h|>rtt/m
one deduces (2.4) for all sufficiently large r. 1

Fix r > 0 such that (2.4) holds. Integrating (2.3) over B(rt'/™) and dividing
by V (rt'/™) gives

Lt(e) 2 2[)V(7‘t1/m)_1 / Re Lt — szt(e) 2 pCT_IV(t)_l/m — apZV(t)_l/”L
B(rtl/m)

for all p > 0, t > 0, where we have used (2.4), an estimate V (rt'/™) < ¢,V (t)1/™
and the upper bound L;(e) < aV(t)~'/™. Then maximizing over p yields the
lower bound

Li(e) =V ()~Y/m
for all t > 0. As a consequence of the bounds on ||A;L;| s from Step 1, |L;(g) —
Li(e)] < 'V (t)~Ym|glt—Y/™ for all t > 0, g € G. Now (2.2) follows easily through
the inequality Re Lt(g) > Lt(e) — |Lt(g) — Lt(€)|
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STEP 3. Now we complete the proof of Theorem 1.1.
From Steps 1 and 2, there exist constants ¢1,b > 0 so that

(2.5) Re Lgm(9) < Cle*b(\g\/R)m/(m—l)

LRm (6)
for all g € G and R > 0. Also there exists a ¢ > 0 such that
Re LRm, (g)
2.6 — 2
(26) Lgm(e) “

whenever g € G and R > 0 with |g| < kR, where k is as in Step 2. Let ¢ € C*(R )
with 0 < ¢ < 1 such that ¢(z) =1 for all x > ¢ and p(x) =0 for all < (1/2)c
For R > 0, define pp € C*(G) by

or(g) = ¢ (RZifT("e()g)> :

Then 0 < pr < 1, and by (2.6), pr(g) =1if |g| < KR
Next choose T > 0 large enough so that > x and c;e=07" """ < (1/2)cs.

If 7/ € (K, ) is sufficiently close to 7 we have et o (1/2)c2 and hence
by (2.5), ¢r(g) = 0 whenever |g| > 7' R. Therefore the support of pg is contained
in B(TR).

When |a| = n, a straightforward calculation gives

l

€ m ﬁp € m
(A%r)(9) =D o (RL];f )H (4 fRfR )

where the sum is over a subset of all I € {1,...,n} and B1,...,5 in J(d') with
|B,] > 1 for all p and |B1]+ - -+ |Bi| = n. Combining the equality A%»(Re Lrm) =
Re(AP» Lzm), the bounds

HRe(AﬂpLR’")”oo < ||ABPLR’" o

from Step 1, together with the lower bound Lzm(e) > ¢/V(R™)~'/™ we obtain
an estimate ||A%¢g|lcoc < ¢cR™™ for all R > 0, whenever |a| = n. Finally, define
Nr = ¢,-1g. It follows easily from the properties of the ¢ that (ng)r>o is a
family of cutoff functions of order n. 1

< c R~ 18wl V(Rm')—l/m

REMARK 2.2. By modifying the above proof it is possible to prove Theo-
rem 1.1 under the assumption of pointwise bounds on K; which have a much slower
decay on G than Gaussian bounds. To be specific, it is enough to assume Poisson
bounds as defined in [6]:

|Ke(g)l S V(&)™ P (g™ /1)

where P : [0,00) — (0, 00) is a continuous, bounded and decreasing function which
satisfies

lim rNHP™) =0
for some § > 0. The modified proof requires integral estimates for Poisson bounds
found in the statement and proof of Proposition 2.1 of [6].
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3. PROOF OF THEOREM 1.2

Our proof is similar in structure to proofs in [4] and [2]. We concentrate on proving
the bounds on K, and sketch in the final remarks of this section how the proof can
be extended to obtain bounds on the derivatives A*B°K;. In Lemma 3.2 below,
using the Sobolev embedding of Lemma 3.1, we derive uniform bounds on the
kernel. We remark that these two lemmas hold for any polynomial group G, since
the proofs do not use the existence of cutoff functions. However in the subsequent
derivation of Gaussian bounds, the requirement that G be a K x; N group, and
assumption (1.10), are crucial.

Lemma 3.1 is a generalization to polynomial groups of a standard Sobolev
embedding theorem for RY. In fact, when G = R” the lemma is equivalent to
Lemma 16 of [4]. On the other hand, on a general unimodular Lie group there is a
local version of the lemma which holds whenever m > D’ but with the restriction
that A € (0,1] (see [20], Theorem IV.5.8 and its proof, or one can use a Laplace
transform argument and the bounds (1.2)). When G is polynomial, to prove the
lemma we will use the fact ([20], Section IV.4, or [22], Chapter VIII) that the heat

d/
kernel p; of A = — 3" A? satisfies Gaussian bounds
i=1

pe(g)| < eV (£)~ /2 bUsl*/0)
forallt>0and g € G.

LEMMA 3.1. If m,n are positive integers such that m = 2n > N, there exists
Cm > 0 such that

lellso < emVN)T™ (llell2 + ANn(¢)
for all A >0 and ¢ € La.,.
Proof. The bounds on p; imply bounds [le™*2 |20 < ¢V ()74 Using

a volume inequality V(tA?/™)~V4 < (1 + ¢~ N1 V(A)~H/™ valid for all A > 0,
t > 0, and the Laplace transformation,

11+ X2/mA) 25 < F(n/Q)’l/ dte~t =12 ||l Ay
0

< cV()\)_l/m</ dte tt=1"/2 (1 +t_N/4))
0
where the last integral converges because n > N/2. Then for ¢ € C(G), using
spectral theory
lelloo < V)™ I+ A2"A) 20|z < ¢ V)™ [[(L+AA"2)p|l2
<V (lellz + AA™ . 0)?).
But A" is a pure m-th order operator, i.e., it is of the form > b,A®. Since
|al=m

for |a] = m we can write (A%, p) = (—1)81(A7p, AP-p) where o = By and
18] = |y| = n, it follows that [(A"p, p)| < cNn(p)2. 1



HIGHER ORDER OPERATORS AND GAUSSIAN BOUNDS 55

LEMMA 3.2. For each t > 0 the operator S; = e~ has an integral kernel
K; € Loo(G x G) and
[Ki(g; )| <cVie)

forallt >0 and g,h € G.

Proof. Let ¢ € Ly. For any t > 0, Syp € D(H) C Lo, so we have the
Sobolev inequality

[1Set]lo0 < eV (E/2) 7™ ([Sebll2 + /2N, (Si))).
But [|St)]|2 < [[¢[|2 and
Ny (Se)? < p"Re h(Spp) < p [ HSu|2]|Seb]l2 < et~ H|w|3.

Hence ||Si]l200 < ¢V(t)71/m) Next, the adjoint H* of H is the operator
associated with the form h*, where h*(p, 1) = h(¢, ) (see [18], Theorem VI.2.5).
Since h* clearly satisfies (1.6), (1.7) (and (1.10)) whenever h does, we obtain

I1Se]1—2 = 157 200 < V(1) 71/
and hence [|Si||1 oo < ¢V (t)~'/™. The statement of the lemma follows. &
LEMMA 3.3. (i) For e, C. as in (1.10), there is 6. € (0,0g) such that
Cep™r

157 sell2—2 < e

forallr >0, 0 € [—0.,0.], p € R*. In particular, there is k > 0 such that for all
t>0, pe R,
158 [l2—2 < "™

(ii) There is k' > 0 such that
1H,SE (a2 < ct1ete™
forallt >0, p e R*.

Proof. Tt follows from (1.8) that there is 6. € (0,0y) such that whenever
0 e [_95795]7 (2BS L2;n7

(3.1) Re(e'h(p)) = cos@Re h(p) — sin fIm h(p) > e Re h(yp).
Given ¢ € Lo, 6 € [—0.,0.], define ¢, = S’ ,4 for r > 0. Then

S8 = = ) = €7, i) = —2Re( R (1)
— ~2Re(eh(1,)) + 2Re(e” (h(1) ~ (1)) < 2Cc o 13

where in the last inequality we used (3.1) and (1.10). Solving the differential
inequality yields ||[¢.]|2 < e“=P""||1)||2, and statement (i) follows.

Statement (ii) follows from statement (i) and the Cauchy integral formula as
in the proof of Lemma 2.38 of [3]. 1
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LEMMA 3.4. There is k" > 0 such that whenever |a| = n,
14287 ||2 s < ct 126k
for allt >0 and p € R*.
Proof. Since € € (0,1), equation (1.10) implies an estimate

(3.2) Reh(p) < cRehy(p) +cp™|oll3

for all ¢ € Ly,. For any ¢ € Lo, t > 0, S¢ € D(H,) C Lo,,. Applying (1.6),
(3.2) and Lemma 3.3, one finds
[A*SEp)3 < p~'Reh(SP) < ¢ Reh, (SP) + ¢/ p™||SP 13
S NHpSP0l2)E% )2 + ¢ ™ 1SE 13
< (ct_lek/"mtekpmt + cpme%pmt) |13

The statement of the lemma follows immediately. 1§

Now we complete the proof of the Gaussian bounds on K;. For ¢ € Lo,
applying the Sobolev inequality and Lemmas 3.3 and 3.4 gives

1578 oo < cV(EY2) M (ISP o + /2N (S740)) < eV ()~ Bmeke™

Y|l

for some k > 0. Thus [|S?||2—00 < ¢V (t)~V/EmekP™t Arguing by duality as
in the proof of Lemma 3.2, we find that there is a k& > 0 such that ||S?||1 -0 <
cV(t)~Y/meke™t Since S has the kernel

Kf(g ih) = e—l“l’é:c(g)Kt(g : h)ep'/’%(h))
we obtain bounds
1Ky (g h)| < cV ()~ meke ™ t=p(vr(h)=vk(9)

uniformly for all t > 0, g, h,l € G, p € R*, and R > 0 such that |p| > R™L. Setting
I=h"' and R = |gh~!| and noting that ¢ (k) = [gh~1|, ¥ ' (g) = 0 yields

1Ky (g:h)| < c V() Y/ meke™t=rloh ™|

whenever p > 0 and g, h are such that [gh™!| > p~1. Now the function 0 < p —
kp™t—p|lgh~!| has the minimum —b(|gh~*|™/t)*/(™~1) where b > 0 depends only
on k and m, and this minimum is attained when

p=po= (km)fl/(mfl)(|gh*1|/t)1/(m71)'

Thus we have the Gaussian bounds of Theorem 1.2 under the condition that
lgh™'| = pg'*, or equivalently, |gh™| = (km)/™¢'/™. But in the sector consisting
of those g, h and t > 0 for which |gh~'| < (km)'/™t'/™ the Gaussian bounds are
equivalent to the bounds of Lemma 3.2. Thus the desired bounds are proved. 1



HIGHER ORDER OPERATORS AND GAUSSIAN BOUNDS 57

Gaussian bounds and continuity for the kernels A*BPK;, where |af, || <
271(m— N), are obtained by combining the ideas of the above proof with standard

techniques for dealing with derivatives and Holder derivatives of kernels, found for
example in [9]. We only sketch the proofs.
The proof of the bounds on A*BP K, is based on the Sobolev inequalities

(3-3) 1A% llo0 < emaVA)THTATN (Jlo]lz + AN (9))

valid for positive integers m,n with m = 2n, a € J(d'), A > 0, and ¢ € Lo,
whenever || < 271(m — N). (One can derive (3.3) by substituting A%p for ¢
and n — |« for n in Lemma 3.1, and applying (2.1).) Reasoning as in the proof of
Lemma 3.2, but applying (3.3) in place of Lemma 3.1, one obtains bounds

|A%S, AP+ ||y oo < eV (£)~H/me=(laltiBh/m

when |a|, |3] < 271(m — N). This yields uniform bounds on the mixed derivatives
|A°BP K| 1 (axa) < eV (t)~Y/mt=(el+18D/m = To obtain Gaussian bounds, one
applies (3.3) and Lemmas 3.3 and 3.4 to obtain

||AaStpH2—>oo < CVf(t)71/(2m)tf|oz\/mekp"”t7
where |a| < 271(m — N). This leads, via the identity (3.6) below, to bounds
||efp¢5%AaStep%||g_,oo < e V()Y @m)g—lal/mokp™
and then to
||e—pnga5tAﬁ*epngboo < CV(t)—1/mt—(\a|+lﬁ\)/mekpmt_

These bounds yield Gaussian bounds on A B?K; outside a sector.
Finally, the continuity, in fact the Holder continuity, of the kernels A*BPK,
on G x (G is a consequence of bounds

(3-4) 17 = L(1,9))A* B Kyloo < e ([1]7 + |s|7) ¢~ (80 m y () =1 /m

for all t > 0, I, s € G, where L denotes left translation on G x G, and o € (0,1)
satisfies || + 0 < 271(m — N), |8| + 0 < 271(m — N). The derivation of (3.4)
is again similar to the proof of Lemma 3.2, but one now begins with the Sobolev
inequality

(3.5) sup [I[77I(I=LD))A"Plloo < cmaoV (X)) mATIFD (]l AN, (¢))
0#l€G
for A\ > 0, ¢ € Loy, where |a| + 0 < 27'(m — N). One can obtain (3.5)

in the case |a] = 0 by a Laplace transform argument based on the bounds
sup |I|77(I — L(1))e " ||lzoo < o V(t)~/4t79/2 and the case of general «
041G

follows by substituting A%p for ¢. We omit further details of the proof of (3.4)
and refer to [9] for a similar proof.
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4. PROOF OF THEOREM 1.3 AND COROLLARY 1.4

We first prove part (ii) of Theorem 1.3. We need to show that the form
W)= S (capA®p, A7),
la|=]8]=n
with ¢,1 € Lo,,, satisfies (1.6), (1.7) and (1.10). The first inequality of (1.6)
follows from the condition on the c,. For (1.7), we note that
Imh(p) = Y (lapA®p, APp)
lal=|8]=n
where Ing = (1/(21))(cap — €sa) so that

1/2
mh@) < > MasllA®el2l A%l < (2 asl) ~ Nale)®
la|=|8|=n la|=|8]|=n

A similar estimate holds for the second inequality of (1.6) with Rag = (1/2)(cag+
€3q) replacing I,g. To complete the proof of (ii) we will prove:

PROPOSITION 4.1. There exists a K > 0 such that assumption (1.10) holds
for any ¢ € (0,1], with C. = Ke=(m=1),

Proof. The relation
eV A" o = Aip + p(Ai)p

is straightforward to establish. It may be iterated to show that there exist integer
constants g ;... v.,5 Such that

(36) AN o= A%+ Y Chys P (AT) - (A )(A0p)

for all & € J(d'), ¢, € C(G), and p € R. The sum is over & € N and multi-
indices v1,...,7k, 0 satisfying |y;| > 1 for all j € {1,...,k} and ||+ -+ || +
|0] = |a|. Now, it suffices to prove (1.10) for ¢ € C(G). We have

/ Y cap(A%p)(APp)

lol=[B]=n

/ S cap(e PR APV p) (eVh Al )
jal=I8l=n

and using (3.6) it follows that h,(¢) —h(yp) is a sum of constant multiples of terms
T of the form

T = / Cop (AN - - (AT 4Pl (A% o) (AP2 )

where k € N, vq,...,7, 01,02 are in J(d') with |y;| > 1 for all 7, |§1],|d2| < n and
[y + -+ + |y + 101] + [02] = m. Now cop € Lo and by (1.9),

(AT apl) - (AR b)) [|oo < ¢ Rl Flvel=R) o | p|IraltHll =k
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because |p| > R~! and |y1]| + -+ + |y%| — k = 0. Hence
IT| < elpl" A% pll2 A% 2

where r = |y1| 4+ -+ - + |yk|. Note that 0 < r < m and |§1| + |d2| + r = m. Thus
IT| < cp™||¢|]3 in the case r = m.

If 0 < r < m, one applies (2.1) with j = n and « = ¢;, ¢ = 1,2, and then
applies (1.6) to deduce that

r r/m —(r/m —(m—r)/r -m
7| < clpl” (Ile2)™™ Reh(p) ™ "/™ < eReh(p) + e/ pm )3

1 m—1)

for all ¢ > 0, by a standard e, e~! argument. Since e~ ("m=")/" L ¢=( when

0 < e < 1, these estimates on T complete the proof of the proposition. 1

Now we prove part (i) of Theorem 1.3.
Let H= 3. coA® be an m-th order Garding operator so D(H) = Lo.y,.
|a|=m
We first show that H is the m-sectorial operator associated with a sectorial form
satisfying (1.6) and (1.7). Define

(3.7) h(p,¥) = (Hep,v)

for ¢, € La,yy,. One easily verifies (1.6) and (1.7) for ¢ € Lo, (see the last step
in the proof of Lemma 3.1). It follows that h is a closable sectorial form and that
the domain of the closure is Ls,,. We continue to denote the closure by h: then
(1.6) and (1.7) hold for ¢ € Lo,,. Let H be the m-sectorial operator associated
with h, as in Section 1. It follows from (3.7) and Corollary VI.2.4 of [18] that H
is an extension of H. But H and H are both semigroup generators, and hence
H=H.

Finally, we verify (1.10) and in fact show that C. can be chosen to have the
same form as in Proposition 4.1. For ¢ € C*(G)

hy(¢) — h(p) = Z Ca((efpngaepwg — A%, )
|a]=m
is, by (3.6), a sum of constant multiples of terms
T — pk (Aé% (A'Ylwé%) .. (A’kaﬁz)tp)

where k € N, |y;| > 1 for all j, and |y1| + --- + || + |d] = m. Note |§| < m.
If |0] < n, T" can be estimated just like T in the proof of Proposition 4.1. If
|6] > n, let § = 6162 where |da] = n, |61] < n. One uses the identity (A%, x) =
(—1)1%11(A%2p A%*y) and then expands 7" as a sum of constant multiples of terms

T" — pk(Aéz% (A51w%)...(Aﬁkw%)(Aés¢))

where |3;] > 1 for all j, |02 = n, |03] < n, and |B1| + - - + |Bk| + |02] + 03] = m.
Then T can be estimated just like T above, and the proof of Theorem 1.3 is
complete. 1
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Corollary 1.4 follows easily from our previous results. For (i), we have
I ]l2 = ||Stll2—o00 and || Ktlloo = ||St|l1—o00, SO the required estimates follow from
the proof of Lemma 3.2. For (ii), we may assume that d > 2, where d is the vector
space dimension of the Lie algebra of G. Now D’ > d (see [11], Section 6, or [22],

Chapter V) so m > 4, and the result follows by combining Theorems 1.1, 1.2,
and 1.3 (i).
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