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1. INTRODUCTION

Recently, the theory of asymptotic behaviour of operator semigroups, especially
the study of the relations between their asymptotic and spectral properties, has
received considerable attention. The revival started from the following Katznelson-
Tzafriri result which we state together with its C0-semigroup analogue obtained
somewhat later.

Theorem 1.1. (i) ([25]) Let T be a linear bounded operator in a Banach
space X such that sup

n>0

‖Tn‖ < ∞. If the function

f(λ) =
∞∑

n=0

anλn, λ ∈ C, |λ| = 1,

∞∑
n=0

|an| < ∞,

is of spectral synthesis with respect to σ(T ) ∩ {λ ∈ C : |λ| = 1}, then

lim
n→∞

‖Tnf̂(T )‖ = 0,

where f̂(T )x :=
∞∑

n=0
anTnx, x ∈ X.
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(ii) ([17], [45]) Let (T (t))t>0 be a bounded C0-semigroup in a Banach space
X with the generator A. If the function f ∈ L1(R+) is of spectral synthesis with
respect to iσ(A) ∩ R, then

lim
t→∞

‖T (t) f̂(T )‖ = 0

where f̂(T )x :=
∞∫
0

T (t)xf(t) dt, x ∈ X.

Note that, by definition, f ∈ L1(R+) is of spectral synthesis with respect
to iσ(A) ∩ R, if there exists {fn : n > 1} ⊂ L1(R), lim

n→∞
fn = f in L1(R), such

that the Fourier transform f̂n = 0 in a neighbourhood of iσ(A) ∩R, n > 1. Thus,
the set iσ(A) ∩ R is necessarily of Lebesgue measure zero. Similarly, under the
conditions of Theorem 1.1 (i), the Lebesgue measure of σ(T ) ∩ {λ ∈ C : |λ| = 1}
is zero.

After several papers devoted to various extensions of this result, the following
famous Arendt-Batty-Lyubich-Vu (“ABLV-”) theorem emerged in [2], [30] (see also
[16], [17]).

Theorem 1.2. ([2], [30]) Let (T (t))t>0 be a bounded C0-semigroup in a
Banach space X with generator A. If

(i) σ(A) ∩ iR is countable;
(ii) σp(A∗) ∩ iR = ∅;

then for every x ∈ X:
lim

t→∞
‖T (t)x‖ = 0,

or in other words, (T (t))t>0 is stable.

Observe that Theorem 1.2 can be obtained from Theorem 1.1 (ii). If the
conditions of Theorem 1.2 hold, then the set

M := {f̂(T )x : x ∈ X, f ∈ L1(R+), supp f̂ ∩
(
iσ(A) ∩ R

)
= ∅}

is dense in X, and ‖T (t)f(T )x‖ → 0, t → ∞ for every x ∈ X. This approach
was realized in [16], [17]. There is also a discrete analogue of Theorem 1.2, with
the same connection to Theorem 1.1 (i), see [2] and [17]. Since then a significant
theory has been developed. The above theorem was generalized to wider classes
of semigroups (and also Volterra equations) and to more “qualitative” forms (in-
dividual stability, estimates etc.). For an account of these developments see the
book [34] and the surveys [4], [46]. But most of extensions follow the principle
“the smaller the set σ(A) ∩ iR, the better the asymptotic properties of the orbits
of (T (t))t>0”. On the other hand, as was already shown in [2], the ABLV-theorem
is best possible in the sense that for every closed uncountable set E ⊂ R there
exists a Banach space Y and an isometric C0-group (S(t))t∈R in Y such that the
generator B of (S(t))t∈R has the properties σ(B) ⊆ iE and σp(B∗) ∩ iR = ∅.

Recently, it has been observed in [12] and [21], that rather weak requirements
to the boundary behaviour of R(λ, A) in C+ = {λ ∈ C : Re λ > 0} ensure the
stability of (T (t))t>0. For example, Theorem 2.3 and the reasoning on page 63
from [12] imply that a bounded C0-semigroup (T (t))t>0 in a Banach space X is
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stable provided the set of x ∈ X with R(λ, A)x continuously extendable in C+ is
dense in X.

At the same time, the “local” variant of the ABLV-theorem was obtained by
C.J.K. Batty, J.M.A.M. van Neerven and F. Räbiger in [4].

Theorem 1.3. ([4]) Suppose (T (t))t>0 is a bounded C0-semigroup in a Ba-
nach space X with generator A, x ∈ X is fixed. Denote by σu(A, x) the set of
iβ ∈ iR such that the local resolvent, R(α + iβ, A)x, α > 0, does not extend
analytically in some neighbourhood of iβ. If

(i) σu(A, x) is countable;
(ii) for all β with iβ ∈ σu(A, x):

lim
α→0+

αR(α + iβ, A)x = 0,

then
lim

t→∞
‖T (t)x‖ = 0.

(The second condition was stated in a slightly different form.)
Theorem 1.3 leads to the following generalization of the ABLV-theorem.
Corollary 1.4. ([4]) Let (T (t))t>0 be a bounded C0-semigroup in a Banach

space X with generator A. Suppose there exists a dense set M ⊂ X such that:
(i) for every x ∈ M : σu(A, x) is countable;
(ii) for every β ∈ −iσ(A) ∩ R and every x ∈ X:

lim
α→0+

αR(α + iβ, A)x = 0,

then (T (t))t>0 is stable.
The conditions of Corollary 1.4 hold for the C0-semigroup of left shifts in

L1(R+) with the spectrum of the generator equal to {λ ∈ C : Re λ 6 0}. But as
was indicated in [6], they are not satisfied for the stable C0-semigroup (T (t))t>0

defined by

(T (t)f)(s) =
{

f(s− t) s > t,
0 s < t,

in the Banach space L1(R+, w) with an appropriate weight w (and the same spec-
trum of the generator).

So, for all the above statements we see the borders of the “spectral language”
in characterization of semigroup stability.

In the course of these heuristical arguments, the aim of the present paper
is to obtain the stability conditions for operator semigroups without appealing to
their spectral properties. It turned out that the behaviour of R(λ, A)x near to its
set of singular points on iR, rather than the absence of this set, is crucial for the
characterization of asymptotic properties of the orbit T (t)x. It also appeared that
via this approach it is possible to explain some previous spectral stability criterias,
and this was its unexpected byproduct.

The paper is organized as follows. In Section 2 we will give some basic con-
structions and auxiliary statements, which will be used in the further reasonings,
and outline the key idea of proofs. Section 3 is devoted to the study of the resolvent
criterias for stability of operator semigroups in Hilbert spaces. The same ques-
tions for Banach space semigroups are studied in Section 4. Finally, we consider
some examples to illustrate the obtained statements and analyze their relations to
previous results in Section 5.
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2. PRELIMINARY NOTIONS AND CONSIDERATIONS

This section contains essentially known material but arranged in the way most
appropriate for our further purposes.

We start with some notation. Let X be a complex Banach space and H
be a complex Hilbert space. Suppose (T (t))t>0 is a C0-semigroup in X or in H,
with generator A, T is a linear bounded operator in X or in H, and (Tn)n>0 is
the corresponding discrete operator semigroup. Denote by R(λ, A) the resolvent
of A, by ρ(A) the resolvent set of A, by σ(A) and σp(A) the spectrum and the
point spectrum of A respectively, and by Im(A) the image of the operator A. Let
D(R) stand for the space of C∞(R)-functions with compact support. The symbol
“ ∗ ” always means conjugation of the corresponding space or operator. We fix the
following definition for the sequel.

Definition 2.1. A C0-semigroup (T (t))t>0 (discrete operator semigroup
(Tn)n>0) in X is called stable, if for every x ∈ X:

lim
t→∞

‖T (t)x‖ = 0,

(respectively lim
n→∞

‖Tnx‖ = 0).

By definition it follows that a stable operator semigroup is necessarily
bounded:

sup
t>0

‖T (t)‖ < ∞ (sup
n>0

‖Tn‖ < ∞).

Thus, without loss of generality, we can consider only bounded operator semi-
groups.

It is a remarkable fact and one of the cornerstones of the theory of asymptotic
behaviour of semigroups that the study of stable semigroups is reduced essentially
to the study of isometric semigroups (groups).

This correspondence is described in the following statement.

Theorem 2.2. Let (T (t))t>0 be a bounded C0-semigroup in a Banach (Hilbert)
space X. Then there exist a Banach (Hilbert) space Y , a linear bounded operator
j : X → Y , and an isometric C0-group (S(t))t∈R in Y such that:

(i) S(t)j(x) = j(T (t)x), x ∈ X, t > 0;
(ii) for every x ∈ X : j(x) = 0 if and only if lim

t→∞
‖T (t)x‖ = 0;

(iii)
⋃
{S(−t)j(X) : t > 0} is dense in Y.

Such a group (S(t))t∈R is unique up to similarity: if (S′(t))t∈R is another
isometric C0-group in a Banach (Hilbert) space Y ′ satisfying the above properties,
then S′(t) = KS(t)K−1 for some linear bounded invertible operator K : Y → Y ′.
Moreover, if (T (t))t>0 is a semigroup of Hilbert space contractions, then (S(t))t∈R
is unique up to unitary equivalence.

We will call the triple S =
(
(S(t))t∈R, j, Y

)
the limit isometric C0-group in

accordance with established terminology in semigroup theory and will refer to it
simply as (S(t))t∈R. Only the properties (i) and (ii) of (S(t))t∈R will be used in the
proofs. The property (iii) implies the similarity equivalence of the limit isometric
groups, and we mentioned it to underline the “universality” of (S(t))t∈R ([7]).
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Because our reasonings will depend essentially on the existence of (S(t))t∈R,
we will outline its construction following mainly [7], but with some modifications
taken from [4], [5]. It will be important for us, that a C0-semigroup (T (t))t>0 in
an initial Hilbert space X transforms to a (part of) isometric C0-group (S(t))t∈R
in a space Y , which is also Hilbert.

Let L be an arbitrary Banach limit over L∞(R+), that is a linear functional
L : L∞(R+) → C such that L(1) = 1, ‖L‖ = 1, and L(f(t+s)) = L(f(t)), {t, s} ⊂
R+, for every f ∈ L∞(R+). Then, define a new seminorm p1(x) := L(‖T (·)x‖) on
X, if X is a Banach space, and a new semiinner product p2(x, y) := L(T (·)x, T (·)y)
on X, if X is a Hilbert space. The rest of the reasonings is the same for both cases
and the symbol p = p(x) will refer to p1(x) or to p2(x) :=

√
p2(x, x) depending

on the original space X.
Consider the algebraic quotient space X/Ker p, and the corresponding quo-

tient operator j : X → X/Ker p. Observe that in both Banach space and Hilbert
space cases,

j(x) = 0 if and only if lim
t→∞

‖T (t)x‖ = 0, x ∈ X.

This follows directly from the next inequality for Banach limits

lim inf
t→∞

f(t) 6 L(f) 6 lim sup
t→∞

f(t), f ∈ L∞(R+), f > 0,

and the fact that for fixed x ∈ X the properties
(1) lim

t→∞
‖T (t)x‖ = 0;

(2) lim
t→∞

‖T (t)x‖2 = 0;

(3) lim inf
t→∞

‖T (t)x‖ = 0,

are equivalent (see also [7]).
Let Y0 be the completion of X/Ker p under the norm p . Then it is easy to

show that the C0-semigroup (S0(t))t>0, defined by

S0(t)j(x) = j(T (t)x), x ∈ X, t > 0,

is isometric and extends by continuity to the whole Banach (Hilbert) space Y0.
Having defined the isometric C0-semigroup (S0(t))t>0 on Y0, we can extend

it to an isometric (unitary) C0-group in the original Banach (Hilbert) space Y0, if
σ(A) 6⊇ iR ([5]), and in a larger Banach (Hilbert) space otherwise ([4], [5], [7], [15]).
Namely, in the last case, if (S0(t))t>0 is an isometric C0-semigroup in a Banach
(Hilbert) space Y0, then there is a Banach (Hilbert) space Y and an isometric
(unitary) C0-group (S(t))t∈R in it such that

S0(t)j(x) = S(t)j(x) for every x ∈ X and every t ∈ R+,

where we identified the C0-semigroup (S0(t))t>0 with its isometric image. This
statement was proved first in [15].

For the formal definition of a C0-group (S(t))t∈R as well as for the details
we refer the reader to [15], [7], [5]. The proof of uniqueness (up to similarity) of
(S(t))t∈R , based on the property (iii), Theorem 2.2, can be found in [7] and for a
less general situation in [5], [45].

Word by word, repeating the above construction for the discrete operator
semigroup (Tn)n>0 up to replacement of R+ by N ∪ {0}, we obtain an analogue
of Theorem 2.2 (see [7], and also [26], [5]).
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Theorem 2.3. Let (Tn)n>0 be a bounded discrete operator semigroup in
a Banach (Hilbert) space X (or, in another terminology, T is a power-bounded
operator in X). Then there exists a Banach (Hilbert) space Y containing X, a
linear bounded operator j : X → Y , and an isometric group (Sn)n∈Z in Y such
that

(i) Snj(x) = j(Tnx), x ∈ X;
(ii) for every x ∈ X : j(x) = 0 if and only if lim

n→∞
‖Tnx‖ = 0;

(iii)
⋃
{S−nj(X) : n > 0} is dense in Y.

Such a group (Sn)n>0 is unique up to similarity in the same sense as in Theo-
rem 2.2.

As above, S =
(
(Sn)n∈Z, j, Y

)
will be called the limit isometric group.

Remark that, it is possible to combine both “continuous” and “discrete”
cases here via the language of representations of locally compact groups, as it was
done in several works. But since our reasonings will depend essentially on the
theory of analytic functions, we treat these cases separately with emphasis on the
continuous one.

Thus, in view of Theorem 2.2, to obtain the stability of (T (t))t>0, it is
sufficient to prove that the corresponding limit isometric C0-group (S(t))t∈R is
zero on the image j(X) of the Banach (Hilbert) space X. Let here and in the
sequel B denote the generator of the limit isometric C0-group (S(t))t∈R. If X is a
Hilbert space, then by Stone’s theorem

B = iC,

for some selfadjoint operator C in Y . So, the stability of (T (t))t>0 follows from
the formal equality

j(X) = E(R)j(X) = {0},
where E(·) is the spectral measure corresponding to C, reflecting the way of the
further reasonings.

Similarly, the equality Ed(T)j(X) = 0, where Ed(·) is the spectral mea-
sure corresponding to the unitary operator S, implies the stability of the discrete
operator semigroup (Tn)n>0.

If X is a Banach space, then we need to invoke the substitutes of Stone’s
theorem in this more general setting. One of them is its distributional counterpart,
provided by the next theorem and used in the Banach space setting in [18], [22].

Theorem 2.4. (“The edge of the wedge theorem”, [39]) Let P := {α + iβ :
|α| < a, |β| < b}, P+ := {α + iβ : 0 < α < a, |β| < b}, P− := {α + iβ : −a < α <
0, |β| < b}. Suppose that the functions f+, f− : P± → X are analytic in P+, P−

respectively, and satisfy the condition

(2.1) sup
β∈(−b,b)

‖f±(±α + iβ)‖ = O(α−n), α → 0+, n ∈ N.

Then f± have boundary distributional values

(2.2) Q±(g) = lim
α→0+

b∫
−b

f±(±α + iβ)g(β) dβ, g ∈ D((−b, b)),
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in P± respectively. If the distributions Q± coincide on (−b, b), then there exists
f : P → X, analytic in P , such that f |P+ = f+, f |P− = f−.

This Banach space version can be obtained from its scalar counterpart by a
standard application of the uniform boundedness and the Hahn-Banach principles.

If (S(t))t∈R is an isometric C0-group, then the resolvent of its generator,
R(λ, B), satisfies the inequality

(2.3) ‖R(λ, B)‖ 6
1

|Re λ|
, Re λ 6= 0.

Define the distribution Q : D(R) → L(Y ) by the formula

(2.4) Q(g) := lim
α→0+

1
2π

∫
R

(
R(α + iβ, B)−R(−α + iβ, B)

)
g(β) dβ, g ∈ D(R).

(For use of Q(·) in the spectral theory of bounded operator semigroups see, for
example, [18], [22], [33].) In view of the inequality (2.3) and Theorem 2.4, the
distribution Q(·) is well defined, and so are the distributions Q(·)y : D(R) → Y ,
y ∈ Y . Note that R(λ, B)y extends to an entire function if and only if y = 0 ([37]
p. 23). So, by Theorem 2.4, the distributions Q(·)y, y 6= 0 are different from zero.
It is a classical fact that a different from zero distribution has nonempty support.
Since this property of Q(·)y will be used frequently, we will state it separately.

Lemma 2.5. For every y ∈ Y , y 6= 0, we have

(2.5) suppQ(·)y 6= ∅.
Discrete operator semigroups (Tn)n>0 in Banach spaces can be considered

following the same scheme as the C0-semigroups. Let T be a bounded linear
operator in X with sup

n>0

‖Tn‖ < ∞. The resolvent R(λ, T ) := (λI − T )−1 of T is

defined (a priori) in U := {λ ∈ C : |λ| > 1} by the expansion

(2.6) R(λ, T ) =
∞∑

n=0

λ−(n+1)Tn, λ ∈ U.

If (Sn)n∈Z is the limit unitary group corresponding to the bounded semigroup
(Tn)n>0, then the distribution Qd : D(T) → L(Y ) defined by the formula

(2.7) Qd(g) := lim
r→1−

1
2πi

∫
T

(
1
r
R

(
ξ

r
, S

)
− rR(rξ, S)

)
g(ξ) dξ, g ∈ D(T),

has a property similar to the case of C0-semigroups.

Lemma 2.6. For every y ∈ Y , y 6= 0,

(2.8) suppQd(·)y 6= ∅.
This is the simple consequence of Liouville’s theorem.

The support of Qd(·) can be studied either by the “reduction” to the halfplane
case (as, for instance, in [44], p. 220–225) or directly. The latter approach for
the distribution Qd(·) was employed, in particular, in [31], [35]. In the sequel we
reduce the proofs of the statements on stability of Banach space discrete operator
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semigroups to their “continuous” analogues, and deal with the distribution Q(·)
instead of Qd(·). Nevertheless it is instructive to have in mind both Lemma 2.5
and Lemma 2.6.

Summarizing the above reasonings, if for every x ∈ X:

Q(·)j(x) = 0 (Qd(·)j(x) = 0),

then j(X) = {0}, and the C0-semigroup (T (t))t>0 (or, respectively, discrete oper-
ator semigroup (Tn)n>0) is stable.

Finally, we note the following simple statement which is the key for the rest
of the paper.

Lemma 2.7. (“Majorization lemma”) Let B be the generator of the limit
isometric C0-group (S(t))t∈R. Then:

(i) the halfplane C+ = {λ ∈ C : Re λ > 0} is contained in ρ(A)∩ ρ(B), and
for every x ∈ X and λ ∈ C+:

‖R(λ, B)j(x)‖ 6 ‖j‖ ‖R(λ, A)x‖,
‖R2(λ, B)j(x)‖ 6 ‖j‖ ‖R2(λ, A)x‖;

(ii) for every x ∈ X and α > 0:

‖(R(α + iβ, B)−R(−α + iβ, B))j(x)‖ 6 6α‖j‖ ‖R2(α + iβ, A)x‖;

(iii) for every x ∈ X and α > 0:

1
2
‖αR2(α + iβ, A)x‖ 6 ‖(R(α + iβ, A)−R(2α + iβ, A))x‖ 6 2‖αR2(α + iβ, A)x‖.

Proof. (i) By Theorem 2.2, (S(t))t>0 and (T (t))t>0 are both bounded semi-
groups. Moreover, if Reλ > 0, then

‖R2(λ, B)x‖=
∥∥∥∥
∞∫
0

e−λtt S(t)j(x) dt

∥∥∥∥=
∥∥∥∥j

( ∞∫
0

e−λtt T (t)xdt

)∥∥∥∥6‖j‖ ‖R2(λ, A)x‖.

Similarly,
‖R(λ, B)j(x)‖ 6 ‖j‖ ‖R(λ, A)x‖, Re λ > 0.

(ii) By the first resolvent identity,

R(−α + iβ, B)−R(α + iβ, B) = 2αR(α + iβ, B)R(−α + iβ, B),

so

R(α + iβ, B)−R(−α + iβ, B)

= 2αR(α + iβ, B)(2αR(α + iβ, B)R(−α + iβ, B) + R(α + iβ, B))

= 2αR2(α + iβ, B)(2αR(−α + iβ, B) + I).

In view of the resolvent estimate (2.3) and (i),

‖(R(α + iβ, B)−R(−α + iβ, B))j(x)‖ 6 6α‖R2(α + iβ, B)j(x)‖
6 6α‖j‖ ‖R2(α + iβ, A)x‖.
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(iii) We will prove only the left inequality. The reasoning for the right in-
equality is similar. Using the first resolvent identity we obtain

αR2(α + iβ, A)− αR(2α + iβ, A) = α2R2(α + iβ, A)R(2α + iβ, A),

and then for x ∈ X

‖αR2(α + iβ, A)x‖ 6 ‖(αR(α + iβ, A) + I)(R(α + iβ, A)−R(2α + iβ, A))x‖
6 2‖(R(α + iβ, A)−R(2α + iβ, A))x‖.

The analogue of Lemma 2.7 is also true for the case of discrete operator
semigroups with the obvious modifications which we leave to the reader.

3. THE HILBERT SPACE CASE

The operator semigroups in a Hilbert space H can be considered as a model for
our goals in view of the explicit representation of the corresponding limit unitary
groups by spectral integrals. The validity of the Plancherel theorem for L2(R+,H)-
functions allows to obtain a simple global stability criterion for a C0-semigroup
in H. The arguments of this type were used, in particular, in [11] for the study of
operator groups similar to unitary groups.

Theorem 3.1. Let (T (t))t>0 be a bounded C0-semigroup in a Hilbert space H
with generator A. Then (T (t))t>0 is stable if and only if for every x ∈ H

(3.1) lim
α→0+

α

∞∫
−∞

‖R(α + iβ, A)x‖2 dβ = 0.

Remark 3.2. Observe, that if (T (t))t>0 is a bounded C0-semigroup in a
Hilbert space H, then by the vector-valued Plancherel theorem,

(3.2) sup
α>0

α

∞∫
−∞

‖R(α + iβ, A)x‖2 dβ = sup
α>0

2πα

∞∫
0

e−2αt‖T (t)x‖2 dt 6 πC2‖x‖2,

where C := sup
t>0

‖T (t)‖. Hence the condition of Theorem 3.1 can be restated as

follows: there exists a dense set M ⊂ H such that for every x ∈ M

lim
α→0+

α

∞∫
−∞

‖R(α + iβ, A)x‖2 dβ = 0.

Note that since (T ∗(t))t>0 is also a bounded C0-semigroup in H, for every x ∈ H:

(3.3) sup
α>0

α

∞∫
−∞

‖R(α + iβ, A∗)x‖2 dβ 6 πC2‖x‖2.
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Proof. Necessity. Suppose (T (t))t>0 is stable. By the vector-valued Plan-
cherel theorem,

1
2π

∞∫
−∞

‖R(α + iβ, A)x‖2 dβ =

∞∫
0

e−2αt‖T (t)x‖2 dt, x ∈ H.

In view of the regularity of the Abel summation ([20], p. 505),

lim
α→0+

α

∞∫
−∞

‖R(α + iβ, A)x‖2 dβ = 2π lim
α→0+

α

∞∫
0

e−2αt‖T (t)x‖2 dt = 0.

Sufficiency. Suppose that for every x ∈ H

lim
α→0+

α

∞∫
−∞

‖R(α + iβ, A)x‖2 dβ = 0.

Define an equivalent norm ‖x‖1 := sup
t>0

‖T (t)x‖ on H,

‖x‖1 > ‖x‖ >
1
C
‖x‖1,

C := sup
t>0

‖T (t)‖. Since (T (t))t>0 is a contraction semigroup in the Banach space

X := (H, ‖ · ‖1) it follows that lim
t→∞

‖T (t)x‖1 exists for every x ∈ X. Then for
every x ∈ H

(3.4)

0 = lim
α→0+

α

∞∫
−∞

‖R(α + iβ, A)x‖2 dβ = 2π lim
α→0+

α

∞∫
0

e−2αt‖T (t)x‖2 dt

>
2π

C2
lim sup
α→0+

α

∞∫
0

e−2αt‖T (t)x‖2
1 dt.

In view of (3.4) and the regularity of the Abel summation,

lim sup
t→∞

‖T (t)x‖ 6 lim
t→∞

‖T (t)x‖1 = 0.

Thus, the above statement gives a global integrability criterion for the stabil-
ity of C0-semigroups in Hilbert spaces. The following statement is its “localized”
version. We assume, in the sequel, that for a selfadjoint operator C with the corre-
sponding spectral measure E(·), the resolution of the identity Et := E((−∞, t)),
is normalized such that

(Etj(x), j(x)) =
(Et−0j(x), j(x)) + (Et+0j(x), j(x))

2
, t ∈ R.

We will use freely basic properties of the spectral resolutions of selfadjoint (and
also unitary) operators. These properties can be found, for example, in [9].
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Theorem 3.3. Let (T (t))t>0 be a bounded C0-semigroup in a Hilbert space
H with generator A. Then (T (t))t>0 is stable if and only if for every β0 ∈ R there
exist ε > 0 and a dense set M := M(β0, ε) in H such that for every x ∈ M :

(3.5) lim
α→0+

α

β0+ε∫
β0−ε

‖R(α + iβ, A)x‖2 dβ = 0.

The necessity of (3.5) is proved in Theorem 3.1, so we only have to prove its
sufficiency.

Proof. Let (S(t))t∈R be the limit unitary C0-group in a Hilbert space Y
corresponding to (T (t))t>0, and let B be the generator of this group. By Stone’s
theorem, B = iC for some selfadjoint operator C. If E(·) is the spectral measure
corresponding to the operator C, then∫
R

α

(β − t)2 + α2
d(Et j(x), j(x))=α‖R(−iα + β, C)j(x)‖2 =α‖R(α + iβ, B)j(x)‖2

6α‖j‖ ‖R(α + iβ, A)x‖2, α > 0, x ∈ X.

Let β0 ∈ R be fixed. The condition

lim
α→0+

α

β0+ε∫
β0−ε

‖R(α + iβ, A)x‖2 dβ = 0, x ∈ M,

implies that

(3.6)

0 = lim
α→0+

β0+ε∫
β0−ε

∫
R

α

(β − t)2 + α2
d(Et j(x), j(x)) dβ

= lim
α→0+

∫
R

d(Etj(x), j(x))

β0+ε∫
β0−ε

α

(β − t)2 + α2
dβ

= lim
α→0+

∫
R

d(Et j(x), j(x))
∫
R

α 1[β0−ε,β0+ε](β)
(β − t)2 + α2

dβ

=

β0+ε∫
β0−ε

f(t)d(Et j(x), j(x)),

f(t) =
{

π, t ∈ (β0 − ε, β0 + ε),
π
2 , t = β0 − ε ∨ t = β0 + ε,

= π(Eβ0+εj(x), j(x))− (Eβ0−εj(x), j(x)),

by the bounded convergence theorem and the radial limit properties of Poisson
integrals. In particular, E((β0 − ε, β0 + ε))j(x) = 0, x ∈ M. As M = H, the last
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equality holds for every j(x), x ∈ H. Since the choice of β0 ∈ R was arbitrary, we
conclude by σ-semiadditivity of E(·) that

E(R)j(H) = 0,

or j(H) = 0, so the semigroup (T (t))t>0 is stable.

Note that one can give the second proof of Theorem 3.3 using the distribution
Q(·) and the inequalities (3.2), (3.3). The versions of these inequalities can be
obtained easily for C0-semigroups in Banach spaces with Fourier type greater
than 1. (Recall that a Banach space X is a Hilbert space iff it has Fourier type
equal to 2.) This fact can be used to generalize Theorem 3.3 for this class of C0-
semigroups when Stone’s theorem is not available. We will not go into details here.

In contrast to Theorem 3.3, the following statement will make essential use
of Stone’s theorem.

Theorem 3.4. Let (T (t))t>0 be a bounded C0-semigroup in a Hilbert space
H with generator A. If for every β0 ∈ R there exist ε > 0 and a dense set M :=
M(β0, ε) in H such that for every x ∈ M :

(3.7) lim
α→0+

√
αR(α + iβ, A)x = 0, β ∈ (β0 − ε, β0 + ε),

then (T (t))t>0 is stable.

Remark 3.5. Clearly, (3.7) is satisfied for β ∈ (β0 − ε, β0 + ε) ∩ −iρ(A).
On the other hand, the word “every” in the above statement is essential. For
example, the resolvent (λ − iβ0)−1 of the one-dimensional semigroup (eiβ0t)t>0

satisfies (3.7) at all points of iR except iβ0. Observe also that by the uniform
boundedness principle the existence of the limit in (3.7) for all x ∈ H and fixed
β ∈ (β0 − ε, β0 + ε) ∩ −iσ(A) would contradict the spectral mapping theorem.

Proof. Let β0 ∈ R be fixed. Let (S(t))t∈R be the limit unitary C0-group
in a Hilbert space Y corresponding to (T (t))t>0, and let B be the generator of
this group. By Stone’s theorem, B = iC for some selfadjoint operator C. If E(·)
is the spectral measure corresponding to the operator C, then as in the proof of
Theorem 3.3 for x ∈ H

(3.8)
∫
R

α

(β − t)2 + α2
d(Et j(x), j(x)) 6 α‖j‖ ‖R(α + iβ, A)x‖2, α > 0.

For fixed x ∈ M = M(β0, ε) let µ := (E(·)j(x), j(x)). By assumption,

lim
α→0+

α‖R(α + iβ, A)x‖2 = 0, β ∈ (β0 − ε, β0 + ε), x ∈ M,

so the Poisson integral in (3.8) has a radial limit at every point β from (β0−ε, β0+
ε). Hence, for every β ∈ (β0 − ε, β0 + ε), the symmetric derivative of the measure
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µ, (Dµ)(β), has the property

(3.9)

(Dµ)(β) = lim
α→0+

µ
(
(β − α, β + α)

)
2α

6 lim
α→0+

β+α∫
β−α

α

(β − t)2 + α2
d(Et j(x), j(x))

6 lim
α→0+

∫
R

α

(β − t)2 + α2
d(Et j(x), j(x)) = 0.

Let µ := 1
π f dt + µsing, f > 0, be the Lebesgue decomposition of µ. Suppose that

the singular part µsing of µ satisfies µsing((β0 − ε, β0 + ε)) 6= 0. Since, according
to [38], p. 169–170, (Dµsing)(t) = +∞, µsing-a.e. on R, there exists a point t0 ∈
(β0 − ε, β0 + ε) with (Dµsing)(t0) = +∞. Then (Dµ)(t0) = +∞, and we obtain a
contradiction with (3.9). Hence, for the density f ∈ L1(R) of µ, we have (Dµ)(t) =
1
π f(t) = 0, a.e. on (β0− ε, β0 + ε) by Fatou’s theorem. Therefore, for every n ∈ N,(

E

([
β0 − ε

(
1− 1

n

)
, β0 + ε

(
1− 1

n

)])
j(x), j(x)

)
=

1
π

β0+ε(1− 1
n )∫

β0−ε(1− 1
n )

f(t) dt = 0,

and then E
(
(β0 − ε, β0 + ε)

)
j(x) = 0 by σ-semiadditivity of E(·). The denseness

of M in H implies j(H) ⊂ j(M). Hence E
(
(β0 − ε, β0 + ε)

)
j(x) = 0 for every

j(x) ∈ Y. Since β0 was arbitrary and E(·) is σ-semiadditive we have
‖E(R)j(x)‖ = 0, x ∈ H.

Thus, (T (t))t>0 is stable.

Remark 3.6. In the proof we actually used a weak form of Loomis’ taube-
rian theorem for positive harmonic functions ([29]).

Via the construction of the limit unitary group (S(t))t∈R, the Hilbert space
stability conditions can be considered as “annihilation” conditions for the mea-
sures (E(·)j(x), j(x)), x ∈ H, determined by (S(t))t∈R. Therefore, it is important
to know criteria for the separate components in the Lebesgue decomposition of
(E(·)j(x), j(x)) to vanish. Along with the a priori information, such criteria could
sharpen the stability characterization. Some of them are discussed below.

The reasoning from the proof of Theorem 3.4 shows that the condition
(3.10) lim

α→0+

√
αR(α + iβ, A)x = 0 on (β0 − ε, β0 + ε), ε > 0, a.e.,

“annihilates” the absolutely continuous part of the restriction of (E(·)j(x), j(x))
to (β0 − ε, β0 + ε). Conversely, if the absolutely continuous part of this restriction
is zero, then (3.10) holds by the Fatou theorem.

As follows from Theorem 3.3, the condition (3.10) is necessary for stability of
a C0-semigroup, and if the singular part of (E(·)j(x), j(x)) is zero, it gives a simple
stability criterion. In this connection, we recall the criterion for the stability of a
C0-semigroup (T (t))t>0 of completely nonunitary contractions in a Hilbert space.
It was obtained in [10] by direct calculations involving the characteristic function
of a contraction in the sense of [40].
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Theorem 3.7. ([10]) Let (T (t))t>0 be a C0-semigroup of completely nonuni-
tary contractions in a Hilbert space H with generator A and cogenerator G :=
(A + I)(A − I)−1. Then (T (t))t>0 is stable iff there is a set E ⊂ R of Lebesgue
measure zero such that

lim
α→0+

√
αR(α + iβ, A)x = 0, β ∈ R\E,

for every x from Im(I −GG∗). (Note that Im(I −GG∗) = H.)

To deduce our version of this statement, observe that if (T (t))t>0 is a C0-
semigroup of completely nonunitary contractions, then its minimal unitary dilation
(U(t))t∈R to a Hilbert space K ⊃ H (in the sense of [40]) has absolutely continuous
spectral measure (with respect to the Lebesgue measure) [32]. Define the subspace
K∞ of K as

K∞ :=
⋂
s>0

⋃
t>s

U(−t)H.

Let j∞ : K → K∞ be the orthogonal projector on K∞. Making use of results
from [19], we infer that K∞ is U(t)-invariant, t ∈ R, and (U(t))t∈R satisfies the
properties (i)–(ii) of Theorem 2.2 in a Hilbert space K with intertwining operator
j = j∞|H . The property (ii) is mentioned explicitly in [19] and the property (i)
follows from the representation

j∞x = lim
t→∞

U(−t)T (t)x, x ∈ H,

indicated there. (The triple ((U(t))t∈R, j,K) does not satisfy, in general, the prop-
erty (iii) of Theorem 2.2). Hence, if (T (t))t>0 is a C0-semigroup of completely
nonunitary contractions, we can refine Theorem 3.4 by replacing (3.7) by (3.10).
So, unitary dilation provides an alternative tool for proving stability of semigroups
of contractions in Hilbert spaces.

Thus, for our purposes, it is important to know when the singular part of
(E(·)j(x), j(x)) is zero. We will discuss this in some more details.

To “annihilate” the singular part of (E(·)j(x), j(x)), one can use conditions
of other type than for the absolutely continuous part. Being combined with (3.10)
they constitute Theorem 3.3.

Lemma 3.8. Let x ∈ H, β0 ∈ R, and ε > 0 be fixed.
(i) If the restriction of the measure (E(·)j(x), j(x)) to (β0 − ε, β0 + ε) is

absolutely continuous (with respect to the Lebesgue measure), then

(3.11) lim
α→0+

α‖R(α + i·, B)j(x)‖2

exists in L1([β0 − δ, β0 + δ]) for every 0 < δ < ε. If the limit (3.11) exists in
L1([β0−ε, β0+ε]), then (E(·)j(x), j(x)) is absolutely continuous on (β0−ε, β0+ε).

(ii) The condition (3.11) is satisfied if the limit

(3.12) lim
α→0+

√
αR(α + i·, A)x

exists in L2([β0 − ε, β0 + ε],H).

Proof. (i) Let 0 < δ < ε be fixed. Let j(x) = E(R \ (β0 − ε, β0 + ε))j(x),
j(x) ∈ Y. Since dist([β0 − δ, β0 + δ], R \ (β0 − ε, β0 + ε)) > 0, the limit in (3.11)
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exists in L1([β0 − δ, β0 + δ]) and is equal to 0. So, we can assume that j(x) =
E((β0−ε, β0+ε))j(x). If the measure µ := (E(·)j(x), j(x)) is absolutely continuous
on (β0 − ε, β0 + ε), then the symmetric derivative (Dµ)(·) belongs to L1(R). The
limit in (3.11) exists in L1(R) as the L1(R)-limit of the Poisson integral of (Dµ)(t).
Then the limit in (3.11) exists in L1([β0 − δ, β0 + δ]).

Conversely, suppose that the limit in (3.11) exists and is equal to f. It is
sufficient to consider j(x) such that j(x) = E([β0 − ε, β0 + ε])j(x). By Fatou’s
theorem,

(Dµ)(t) =
1
π

f(t) on [β0 − ε, β0 + ε] a.e..

Hence, µ = 1
π f(t) dt + µsing, where µsing is the singular part of µ. According to

equality (3.6) from the proof of Theorem 3.3 and (3.11),

1
π

β0+ε∫
β0−ε

f(t) dt + µsing(β0 − ε, β0 + ε) 6 (Eβ0+ε j(x), j(x))− (Eβ0−ε j(x), j(x))

= lim
α→0+

α

π

β0+ε∫
β0−ε

‖R(α + iβ, B)j(x)‖2 =
1
π

β0+ε∫
β0−ε

f(t) dt.

Since µ is positive, µsing((β0 − ε, β0 + ε)) = 0.
(ii) Suppose that there exists f ∈ L2([β0 − ε, β0 + ε],H) such that

lim
α→0+

β0+ε∫
β0−ε

‖
√

αR(α + iβ, A)x− f(β)‖2 dβ = 0.

Then for some αk → 0+, k →∞, we have

lim
k→∞

‖
√

αkR(αk + iβ, A)x− f(β)‖ = 0 on [β0 − ε, β0 + ε] a.e..

Since the operator j : H → Y transforms fundamental sequences in L2([β0−ε, β0+
ε],H) into fundamental sequences in L2([β0 − ε, β0 + ε], Y ), the limit

lim
α→0+

√
αR(α + i·, B)j(x)

exists in L2([β0−ε, β0+ε], Y ). It is equal to j◦f almost everywhere on [β0−ε, β0+ε]
as the image of the pointwise limit of

√
αkR(αk + i ·, A)x. In particular,

lim
α→0+

β0+ε∫
β0−ε

∣∣√α‖R(α + iβ, B)j(x)‖ − ‖j(f(β))‖
∣∣2 dβ = 0.

Since for almost every β from [β0 − ε, β0 + ε],∣∣α||R(α + iβ, B)j(x)‖2 − ‖j(f(β))‖2
∣∣

6
∣∣√α‖R(α + iβ, B)j(x)‖ − ‖j(f(β))‖

∣∣2
+ 2

∣∣√α‖R(α + iβ, B)j(x)‖ − ‖j(f(β))‖
∣∣ ‖j(f(β))‖,
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we obtain

lim
α→0+

β0+ε∫
β0−ε

∣∣ α‖R(α + iβ, B)j(x)‖2 − ‖j(f(β))‖2
∣∣ dβ = 0.

The statement follows.

Thus, (3.11) is necessary for the stability of C0-semigroups in a Hilbert space
on the one hand, and ensures that the singular part of (E(·)j(x), j(x)) is zero on
(β0 − ε, β0 + ε), on the other hand.

Observe that for every x ∈ H and every αn → 0+, n →∞, the sequence of
measures {αn‖R(αn + i·, B)j(x)‖2dβ : n ∈ N} converges to (E(·)j(x), j(x)) in the
w∗-topology of (C

(
[β0 − ε, β0 + ε]

)
)∗ (see [27], Chapter 6, B). Hence, according to

[27], p. 103, the integral condition

(3.13) sup
α>0

β0+ε∫
β0−ε

f(α‖R(α + iβ, B)j(x)‖2) dβ < ∞,

where f(x) is a nonnegative measurable function such that lim
x→∞

f(x)
x = ∞, also

implies the absolute continuity of (E(·)j(x), j(x)) on (β0−ε, β0+ε). If, in addition,
f(x) is nondecreasing, then (3.13) follows from

(3.14) sup
α>0

β0+ε∫
β0−ε

f(α‖j‖ ‖R(α + iβ, A)x‖2) dβ < ∞.

It is possible to give conditions of different type for the “annihilation” of the
singular part of (E(·)j(x), j(x)) on (β0 − ε, β0 + ε). For example, as follows from
the proof of Theorem 3.4, the “pointwise” condition
(3.15) lim

α→0+

√
α‖R(α + iβ, A)x‖ < ∞,

for every β from (β0 − ε, β0 + ε), could serve for this purpose.
Alternatively, one can use “weak type” inequalities. Remark that the resol-

vent majorization property (Lemma 2.7) implies for every α > 0
{β ∈ R :

√
α‖R(α + iβ, B)j(x)‖ > 1}⊂{β ∈ R :

√
α‖j‖ ‖R(α + iβ, A)x‖ > 1}.

According to [1], a positive singular Borel measure µ on R satisfies

lim
α→0+

√
α mes

{
β ∈ R :

∫
R

α

(β − t)2 + α2
dµ(t) > 1

}
> 0,

where mes denotes the Lebesgue measure.
Hence for fixed x from H such that x = E((β0 − ε, β0 + ε))x the “global”

condition
(3.16) lim

α→0+

√
α mes{β ∈ R :

√
α‖j‖ ‖R(α + iβ, A)x‖ > 1} = 0

annihilates the singular part of (E(·)j(x), j(x)) on (β0 − ε, β0 + ε).
But it is not clear whether the conditions (3.14), (3.15), (3.16) are necessary

for stability of a C0-semigroup.
Summarizing the above discussion of the “annihilation” conditions, we can

formulate the following statement.
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Proposition 3.9. Let (T (t))t>0 be a bounded C0-semigroup in a Hilbert
space H with generator A. Let (S(t))t∈R be the limit unitary C0-group correspond-
ing to (T (t))t>0, with generator B. Suppose E(·) is the spectral measure defined
by the operator C = −iB, and let x ∈ H, β0 ∈ R and ε > 0 be fixed.

The conditions
(i) lim

α→0+

√
α‖R(α + iβ, A)x‖ = 0, for almost all β from (β0 − ε, β0 + ε),

(ii) the limit lim
α→0+

√
αR(α + i·, A)x exists in L2([β0 − ε, β0 + ε],H),

are equivalent to the absence of the absolutely continuous and of the singular parts
of (E(·)j(x), j(x)) on (β0 − ε, β0 + ε) respectively, and necessary for the stability
of (T (t))t>0.

The “resolvent language” easily allows us to obtain the “individual” stability
results.

Corollary 3.10. Let (T (t))t>0 be a bounded C0-semigroup on a Hilbert
space H with generator A, and let x ∈ X be fixed.

(i) Then lim
t→∞

‖T (t)x‖ = 0, if and only if for every β0 ∈ R there is ε(β0) > 0
such that

lim
α→0+

α

β0+ε∫
β0−ε

‖R(α + iβ, A)x‖2 dβ = 0.

(ii) If for every β ∈ R

lim
α→0+

√
αR(α + iβ, A)x = 0,

then
lim

t→∞
‖T (t)x‖ = 0.

Proof. The proof is straightforward. The restriction of the semigroup
(T (t))t>0 to the closed linear span of {T (t)x : t > 0} satisfies the conditions
(3.5) or (3.7) for a dense set equal to the linear span of {T (t)x : t > 0} (the same
for all β0).

The analogous statements to Theorems 3.3, 3.4 are also true for discrete
operator semigroups. The proofs follow the same lines as for the strongly con-
tinuous ones. The only differences are that in this case one deals with Parseval’s
equality instead of Plancherel’s theorem, Abel summability of sequences instead
of functions, and the unitary group (Sn)n∈Z and the spectral representation of S.

Theorem 3.11. Let (Tn)n>0 be a bounded semigroup in a Hilbert space H.
Then (Tn)n>0 is stable if and only if one of the following conditions holds:

(i) (a) For every x from a dense set M in H:

(3.17) lim
r→1+

(r − 1)

2π∫
0

‖R(reiϕ, T )x‖2 dϕ = 0;
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(b) For every ϕ0 ∈ R there are ε > 0 and a dense set M := M(ϕ0, ε) such
that for every x ∈ M :

(3.18) lim
r→1+

(r − 1)

ϕ0+ε∫
ϕ0−ε

‖R(reiϕ, T )x‖2 dϕ = 0.

(ii) If for every ϕ0 ∈ R there are ε(ϕ0) > 0 and a dense set M := M(ϕ0, ε)
such that for every x ∈ M :

(3.19) lim
r→1+

(r − 1)
1
2 ‖R(reiϕ, T )x‖ = 0, ϕ ∈ (ϕ0 − ε, ϕ0 + ε),

then (Tn)n>0 is stable.

We will give only the proofs of the first and of the third statement. The
proof of the second statement is left to the reader.

Proof. (i) Suppose that for every x ∈ H, lim
n→∞

‖Tnx‖ = 0. Then by Parse-
val’s identity,

(r − 1)
1
2π

2π∫
0

‖R(reiϕ, T )x‖2 dϕ = (1− t)
∞∑

n=0

t2n+1‖Tnx‖2, t =
1
r
.

Being the Abel limit of a sequence tending to zero, the right hand side of the above
equality tends to zero as r → 1+. Therefore,

lim
r→1+

(r − 1)
1
2π

2π∫
0

‖R(reiϕ, T )x‖2 dϕ = 0.

Conversely, suppose that (3.17) is true. Defining an equivalent norm on H:

‖x‖1 := sup
n>0

‖Tnx‖,

we have
‖x‖ 6 ‖x‖1 6 C‖x‖, C := sup

n>0

‖Tn‖.

The limit lim
n→∞

‖Tnx‖2
1 exists for every x ∈ (H, ‖ · ‖1). So,

0 = lim
r→1+

(r − 1)
1
2π

2π∫
0

‖R(reiϕ, T )x‖2 dϕ = lim
t→1−

(1− t)
∞∑

n=0

t2n+1‖Tnx‖2

> lim sup
t→1−

(1− t)C−2
∞∑

n=0

t2n+1‖Tnx‖2
1.

The sequence {‖Tnx‖2
1 : n > 0} is convergent and Abel convergent to zero, there-

fore its limit is zero. Hence the limit of {‖Tnx‖ : n > 0} is also zero.
(ii) Let (Sn)n∈Z be the limit unitary group corresponding to the semigroup

(Tn)n>0. Suppose Ed(·) is the spectral measure on {λ ∈ C : |λ| = 1} corresponding
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to S, and Ed
ξ := Ed(δξ), δξ = {eiϕ : ϕ ∈ [0, ξ)}, ξ ∈ [0, 2π) is the resolution of

the identity associated with Ed(·). Suppose further that ϕ0 and the corresponding
ε = ε(ϕ0) > 0 are fixed. According to our assumption, for every x ∈ M(ϕ0, ε):

(3.20)

lim
r→1−

2π∫
0

1− r2

1− 2r cos(ϕ− ξ) + r2
d(Ed

ξ j(x), j(x))

= lim
r→1−

(1− r2)‖(I − re−iϕS)−1j(x)‖2

= lim
r→1−

2
(

1
r
− 1

) ∥∥∥∥R

(
eiϕ

r
, S

)
j(x)

∥∥∥∥2

6 lim
r→1−

2
(

1
r
− 1

)
‖j‖

∥∥∥∥R

(
eiϕ

r
, T

)
x

∥∥∥∥2

= 0.

Let µ := (Ed(·)j(x), j(x)) and let µ = 1
2π f dξ + µsing, f > 0, be the Lebesgue

decomposition of the measure µ. Observe that for fixed ϕ ∈ (ϕ0 − ε, ϕ0 + ε) and
0 6 r < 1,

lim
ξ→ϕ

1− r2

1− 2r cos(ϕ− ξ) + r2
=

1 + r

1− r
.

Hence, there is δ := δ(ϕ), ε > δ > 0 such that

1− r2

1− 2r cos(ϕ− ξ) + r2
>

1 + r

2(1− r)
, ξ ∈ (ϕ− δ, ϕ + δ).

By (3.19) and (3.20) the symmetric derivative Dµ(ϕ) of µ satisfies the condition

(3.21)

(Dµ)(ϕ) = lim
r→1−

µ
(
(ϕ− (1− r), ϕ + (1− r))

)
2(1− r)

6 lim
r→1−

ϕ+δ∫
ϕ−δ

1− r2

(1 + r)(1− 2r cos(ϕ− ξ) + r2)
d(Ed

ξ j(x), j(x))

6 lim
r→1−

2π∫
0

1− r2

(1 + r)(1− 2r cos(ϕ− ξ) + r2)
d(Ed

ξ j(x), j(x))

6 lim
r→1−

(
1
r
− 1

)
‖j‖

∥∥∥∥R

(
eiϕ

r
, T

)
x

∥∥∥∥2

= 0.

If µsing

(
(ϕ0 − ε, ϕ0 + ε)

)
6= 0, then as in the proof of Theorem 3.4, there exists

ϕ ∈ (ϕ0 − ε, ϕ0 + ε) with (Dµ)(ϕ) = +∞, which is impossible in view of (3.21).
Therefore,

(Dµ)(ξ) =
1
2π

f(ξ) = 0 on (ϕ0 − ε, ϕ0 + ε) a.e.,
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and

(Ed
(
(ϕ0 − ε, ϕ0 + ε)

)
j(x), j(x)) 6

1
2π

∞∑
n=1

ϕ0+ε(1− 1
n )∫

ϕ−ε(1− 1
n )

f(ξ) dξ = 0.

Hence, Ed
(
(ϕ0 − ε, ϕ0 + ε)

)
j(x) = 0 by the denseness of M(ϕ0, ε) in H. As the

choice of ϕ0 was arbitrary,
‖Ed(R)j(x)‖ = 0, x ∈ H.

Hence (Tn)n>0 is stable.

4. THE BANACH SPACE CASE

In the “absence” of Stone’s theorem for semigroups on Banach spaces we have to
invoke substitutes for it as mentioned in the Introduction. The following statement
illustrates this approach.

Theorem 4.1. Let (T (t))t>0 be a bounded C0-semigroup in a Banach space
X with generator A. If for every β0 ∈ R there exist ε > 0 and a dense set M :=
M(β0, ε) in X such that for every x ∈ M :

(4.1) lim
α→0+

α

β0+ε∫
β0−ε

‖R2(α + iβ, A)x‖dβ = 0,

then the C0-semigroup (T (t))t>0 is stable.

Proof. Assume that (4.1) holds. Let (S(t))t∈R be the limit isometric C0-
group corresponding to (T (t))t>0 with generator B. Let β0 ∈ R and g ∈ D

(
(β0 −

ε, β0 + ε)
)
, ε > 0, be fixed. Define a linear operator Qg

β0
on the Banach space Y

by the equality

(4.2) Qg
β0

y := lim
α→0+

β0+ε∫
β0−ε

(R(α + iβ, B)−R(−α + iβ, B))y g(β) dβ, y ∈ Y.

This definition is correct in view of Theorem 2.4 and the remark after it. Moreover,
Qg

β0
is a bounded operator by the closed graph theorem. If x ∈ M , then by

Lemma 2.7,

‖Qg
β0

j(x)‖ 6 lim
α→0+

β0+ε∫
β0−ε

‖
(
R(α + iβ, B)−R(−α + iβ, B)

)
j(x)‖ |g(β)|dβ,

6 lim
α→0+

6‖j‖
β0+ε∫

β0−ε

α‖R2(α + iβ, A)x‖dβ max
[β0−ε,β0+ε]

|g(β)| = 0.

Since j(X) ⊂ j(M), and since Qg
β0

is continuous, it follows that Qg
β0

j(x) = 0 for
every x ∈ X. As β0 ∈ R and g ∈ D

(
(β0 − ε, β0 + ε)

)
were arbitrary, we obtain

suppQ(·)j(x) = ∅, where Q(·) is defined by (2.4). According to Lemma 2.5, this
is impossible, unless j(x) = 0. Therefore, j(X) = {0}, so (T (t))t>0 is stable.
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The next corollary clarifies somewhat the condition of integrability of the
local resolvents (4.1).

Corollary 4.2. Let (T (t))t>0 be a bounded C0-semigroup on a Banach
space X. If for every β0 ∈ R there are ε > 0 and a dense set M := M(β0, ε) ⊂ X
such that for every x ∈ M and some fx ∈ L1([β0 − ε, β0 + ε], X):

(4.3) lim
α→0+

β0+ε∫
β0−ε

‖R(α + iβ, A)x− fx(β)‖dβ = 0,

then (T (t))t>0 is stable.

(Compare with [12], Theorem 3.4.)

Proof. If x ∈ M , then by Lemma 2.7 and (4.3),

lim
α→0+

α

β0+ε∫
β0−ε

‖R2(α+iβ, A)x‖dβ62 lim
α→0+

β0+ε∫
β0−ε

‖(R(α+iβ, A)−R(2α+iβ, A))x‖dβ=0.

Therefore, the desired statement follows from Theorem 4.1.

Remark 4.3. If a Banach space X has the analytic Radon-Nikodym prop-
erty (see [12], [21] for a discussion of the role of this property in stability theory),
then the convergence condition (4.3) can be replaced by the condition

(4.4) sup
α>0

β0+ε∫
β0−ε

‖R(α + iβ, A)x‖dβ < ∞.

In this case, as proved in [12], (4.4) implies the existence of the limit in (4.3).
Obviously, (4.4) is weaker than the “local” boundedness of R(α + iβ, A)x:

(4.5) sup
α>0

sup
β∈(β0−ε,β0+ε)

‖R(α + iβ, A)x‖ < ∞

for every β0 ∈ R and corresponding ε(β0) > 0. However, the conditions (4.4), (4.5)
are not sufficient in Banach spaces without the analytic Radon-Nikodym property
as Example 1.7 in [21] shows.

Now, we are to obtain the Banach space counterpart of Theorem 3.4. When
X was a Hilbert space, we were using essentially the representation of the difference(

R(α + iβ, B)−R(−α + iβ, B)
)
y, y ∈ Y,

as the Poisson integral of an operator-valued measure. On the other hand, as was
indicated in [24], p. 52, there is a Banach space and a C0-group in it, such that
the representation of the above difference as the Poisson integral of a Y -valued
measure does not exist.

To overcome this difficulty, one can apply theorems of the Phragmen-Lindelöf
type.
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Theorem 4.4. Let f+, f− be a pair of functions analytic in the rectangles
P+ = (0, 1) × (a, b), P− = (−1, 0) × (a, b), {a, b} ⊂ R, respectively, and let
f(α + iβ) := f+(α + iβ)− f−(−α + iβ), (α, β) ∈ P+. Suppose that:

(i) for (α + iβ) ∈ P+:

(4.6) sup
β∈(a,b)

|f(α + iβ)| = O
(

1
α

)
, α → 0+,

(ii) for every β ∈ (a, b):

(4.7) lim
α→0+

|f(α + iβ)| = 0.

Then there exists a function F analytic in P := (−1, 1)× (a, b), such that F |P+ =
f+, F |P− = f−.

It is necessary to make some comments concerning Theorem 4.4. It was
claimed in [43] that the conditions:

(i′) for (α, β) ∈ P+:

sup
β∈(a,b)

|f(α + iβ)| = o
(

1
α2

)
, α → 0+,

(ii′) for every β ∈ (a, b) except a countable set:

lim
α→0+

|f(α + iβ)| = 0,

imply the same conclusion as in Theorem 4.4. However, the function
(
λ− i(a+b)

2

)−1

satisfies the conditions (i′)′, (ii′) and has a pole at i(a+b)
2 . The arguments and,

clearly, the conditions (i′)′, (ii′) from [43] require corrections. In view of this and
the importance of Theorem 4.4 for further reasonings, we give a proof with our
changes. The present form of Theorem 4.4 is not the most general, but is sufficient
for our purposes. For results related to Theorem 4.4 for the case of unit disc see
[3], [13], [42], where somewhat different ideas are used.

Let B(ξ, r) := {λ ∈ C : |ξ − λ| < r}, B0(ξ, r) := {λ ∈ C : 0 < |ξ − λ| < r}.
Here and in the sequel we will use the following estimate for subharmonic functions.

Lemma 4.5. Let u(ξ) be a nonnegative subharmonic function on B0(iβ0, R)
such that

(4.8) u(ξ) 6
1

|Re ξ|
, ξ ∈ B0(iβ0, R), Re ξ 6= 0.

Then there exists C > 0 such that

(4.9) u(ξ) 6
C

|iβ0 − ξ|
, ξ ∈ B0

(
iβ0,

R

2

)
.

Lemma 4.5 is implicit in [14], p. 53–54. Its counterparts for the case of
unit disc can be found in [41], Lemma 5.8 and [36], Lemma 23. Since we do not
know the precise reference for our version of Lemma 4.5 and since we will use
it essentially in further reasonings, we will give the proof modifying arguments
from [14].
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Proof. Choose δ > 0 so that

1
e

+
4e2

πδ
< 1

and v0 > 0 so that

δ
e

e− 1
e−v0 <

R

3
.

For fixed v > v0 set r = δe−v.
Consider ξ0 ∈ B0(iβ0,

R
2 ) such that u(ξ0) = ev for some v > v0. Note that

B(ξ0, r) ⊂ B(iβ0, R). First, we prove the alternative: either the disc B(ξ0, r)
contains iβ0 or there exists ξ1 ∈ B(ξ0, r) such that u(ξ1) > ev+1. Suppose, on the
contrary, that B(ξ0, r) does not contain iβ0 and u 6 ev+1 in B(ξ0, r). Then by
subharmonicity of u in B(ξ0, r) and (4.8) we have

ev 6 u(ξ0) 6
1

πr2

∫ ∫
B(ξ0,r)

u(x + iy) dxdy

6 ev−1 1
πr2

mes{η : u(η) 6 ev−1, η ∈ B(ξ0, r)}

+ ev+1 1
πr2

mes{η : u(η) > ev−1, η ∈ B(ξ0, r)}

6 ev−1 + ev+1 1
πr2

mes
{

η :
1

|Re η|
> ev−1, η ∈ B(ξ0, r)

}
6 ev−1 + ev+1 1

πr2
2e−v+12r = ev−1 +

4e2

πr
.

Thus

ev 6 ev

(
1
e

+
4e2

π

e−v

r

)
= ev

(
1
e

+
4e2

πδ

)
< ev.

The obtained contradiction proves the alternative.
Further, we inductively construct a set {ξn} as follows. If for n ∈ N ∪ {0}

the disc B(ξn0 , δe
−v−n0) contains iβ0, then

|ξ0 − iβ0| 6
n∑

k=0

|ξk − ξk+1| 6 δ
e

e− 1
e−v = δ

e
e− 1

(u(ξ0))−1, ξn+1 = iβ0.

Therefore, u satisfies the estimate (4.9) at ξ0 with C = δ e
e−1 , and we finish the

construction of {ξn}.
If for n ∈ N∪{0} the disc B(ξn, δe−v−n) does not contain iβ0, then, according

to the proved alternative, there is ξ∗ ∈ B(ξn, δe−v−n) such that

u(ξ∗) > ev+n+1, |ξn − ξ∗| 6 δe−v−n.

Put in this case ξn+1 = ξ∗. Note that on every step we have ξn ∈ B(iβ, R) since

|ξn − iβ0| 6
n∑

k=1

|ξk − ξk−1|+ |ξ0 − iβ0|

6
R

2
+

∞∑
k=1

|ξk − ξk−1| 6
R

2
+ δ

e
e− 1

e−v < R.
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If each of the constructed discs B(ξn, δe−v−n), n > 0 does not contain iβ0, then
lim

n→∞
u(ξn) = +∞. So lim

n→∞
ξn = iβ0 and

|ξ0 − iβ0| 6
∞∑

n=0

|ξn − ξn+1| 6 δ
e

e− 1
e−v.

Thus, for every ξ ∈ B0(iβ0,
R
2 ) such that u(ξ) > ev0 , the inequality (4.9) holds

with C = eδ
e−1 .

Observe, that if u(ξ) = ev, v < v0, ξ ∈ B0(iβ0,
R
2 ), then

u(ξ) < ev0 < ev0
R

|ξ − iβ0|
=

ev0R

|ξ − iβ0|
.

Setting finally C := max( eδ
e−1 , ev0R) in (4.9), we obtain the required estimate.

Proof of Theorem 4.4. We will say that a point iβ ∈ (ia, ib) is singular for the
pair (f+, f−) if there is no neighbourhood Nβ of iβ and a function Fβ analytic in
Nβ such that

Fβ(λ) =
{

f+(λ), λ ∈ Nβ ∩ P+,
f−(λ), λ ∈ Nβ ∩ P− .

Let S be the set of singular points of (f+, f−) in (ia, ib). If S = ∅, then Fβ(λ)
does not depend on β and the conclusion of the theorem holds. Suppose that S is
nonempty.

Fix an arbitrary segment [ic, id] ⊂ (ia, ib), and assume that Sc,d := S ∩ [ic, id]
is nonempty. The set Sc,d is closed by the definition of S. For every n ∈ N, the set

{iβ ∈ [ic, id] : |f(α + iβ)| 6 n, α ∈ (0, 1]}

=
∞⋂

k=1

{
iβ ∈ [ic, id] : |f(α + iβ)| 6 n, α ∈

[1
k

, 1
]}

is also closed by continuity of f. According to (4.7),

Sc,d =
∞⋃

n=1

({iβ ∈ [ic, id] : |f(α + iβ)| 6 n, α ∈ (0, 1]} ∩ S) =
∞⋃

n=1

Sn
c,d,

and by the Baire category theorem, there is an interval (ie, if) ⊂ [ic, id] and n0 ∈ N
such that (ie, if) ∩ Sc,d 6= ∅ and (ie, if) ∩ Sc,d ⊂ Sn0

c,d.

The set (ie, if) \ Sc,d is open, so (ie, if) \ Sc,d =
∞⋃

n=1
(ian, ibn), n ∈ N. Fix

n1 ∈ N. Consider the rectangle Pn1 = (0, 1) × (an1 , bn1), and its half, Pn1,h =
(0, 1)× (an1 ,

1
2 (an1 + bn1)). By assumption, f |∂Pn1,h extends continuously to the

whole ∂Pn1,h. Let g be the solution of the Dirichlet problem in Pn1,h with these
boundary conditions and let u = f − g. Then g is a bounded harmonic function in
Pn1,h and u is a harmonic function in Pn1,h such that u is zero on (ian1 ,

1
2 (ian1 +

ibn1)) and on (ian1 , ian1 +1). Moreover, u is continuous on Pn1,h \ {ian1}. Observe
that the function u can be extended harmonically into the region

R =
{

α + iβ : (α, β) ∈ (−1, 1)×
(3an1 − bn1

2
,
an1 + bn1

2

)}
\ {ian1}.
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By a double application of the Schwartz reflection principle ([8], p. 405), first on
the interval (ian1 ,

1
2 (ian1 + ibn1)), and then on the intervals (ian1 − 1, ian1) and

(ian1 , ian1 + 1), it extends to the harmonic function uc in R\
( 3ian1−ibn1

2 , ian1

)
.

Then setting

uc(ian1 − ix) = −uc(ian1 + ix), x ∈
(
0,

bn1 − an1

2

)
,

we obtain the required extension in view of harmonicity of uc in
(
(−1, 1)×

(an1 ,
an1+bn1

2 )
)
. Denote the obtained extension again by uc.

By construction, ian1 is an isolated singular point of uc (in the usual sense).
Therefore,

(4.10) uc(λ) = u0 log |λ− ian1 |+
∞∑

k=−∞

(u1
k cos kϕ + u2

k sin kϕ)|λ− ian1 |k,

where ϕ ∈ [0, 2π) and the series converges in some B0(ian1 , r) = {λ ∈ C : 0 <
|λ− ian1 | < r} ⊂ R (see, for example, [8], p. 316, Example 11). Since g is bounded
in Pn1,h and (i) holds, the nonnegative subharmonic function |uc(λ)| satisfies the
estimate (4.8) in B0(iβ0, r). Hence it also satisfies (4.9) in B0(iβ0,

r
2 ). Hence in

(4.10): u1
k = u2

k = 0, k 6 −2. Along the ray l0 := {ian1 + t : t > 0}:

lim
λ→ian1

|uc(λ)| = 0, λ ∈ l0.

Therefore, u0 = u1
−1 = 0.

Along the ray lπ
2

:= {ian1 + it : t > 0}:

lim
λ→ian1

|uc(λ)| = 0, λ ∈ lπ
2
.

So u2
−1 = 0, and uc is thus harmonic in R ∪ {ian1}. Since the solution of the

considered Dirichlet problem in Pn1,h is unique, u = 0, and f = g is bounded in
Pn1,h. As (ie, if) ∩ Sc,d ⊂ Sn0

c,d,

sup
Pn1,h

|f(α + iβ)| 6 max(n0,m), m := max
[1+ian,1+ibn]

|f(α + iβ)|,

by the maximum principle for harmonic functions. Repeating the same reasonings
for the other half of the rectangle Pn1 , and then for all the rectangles Pn, n > 1,
we obtain

sup{|f(α + iβ)| : (α, β) ∈ (0, 1)× (e, f)} 6 max(n0,m).

Under the last condition, Theorem 2.4 implies that there is a function F analytic
in (−1, 1)× (e, f) such that

F (α + iβ) =
{

f+(α + iβ), (α, β) ∈ (0, 1)× (e, f);
f−(α + iβ), (α, β) ∈ (−1, 0)× (e, f).

On the other hand, (ie, if)∩S 6= ∅ by our construction; a contradiction. Thus, for
arbitrary [ic, id] ⊂ (ia, ib), we obtain S ∩ [ic, id] = ∅. Therefore, S = ∅.
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Remark 4.6. Observe that Theorem 3.4 can be deduced from Theorem 4.4.
However, we prefered a more explicit proof of Theorem 3.4 since it allows us to
formulate various Hilbert space stability conditions depending on the concrete
situation.

To obtain the Banach space analogue of Theorem 3.4, we need to combine
both Theorem 4.4 and Lemma 2.5.

Theorem 4.7. Let (T (t))t>0 be a bounded C0-semigroup in a Banach space
X with generator A. If for every β0 ∈ R there exist ε > 0 and a dense set M :=
M(β0, ε) in X such that for every x ∈ M :

(4.11) lim
α→0+

αR2(α + iβ, A)x = 0, β ∈ (β0 − ε, β0 + ε),

then (T (t))t>0 is stable.

(As in Theorem 3.4, the existence of the limit in (4.11) for all x ∈ X and
fixed β ∈ (β0−ε, β0+ε)∩−iσ(A) would contradict the spectral mapping theorem.)

Proof. Let β0 ∈ R be fixed, and let (S(t))t∈R be the limit isometric C0-group
corresponding to (T (t))t>0 with generator B. For any x ∈ M , y∗ ∈ Y ∗ consider
the analytic functions

f±(±α + iβ) = y∗
(
R(±α + iβ, B)j(x)

)
in the rectangles P+

β0
= (0, 1) × (β0 − ε, β0 + ε), P−β0

= (−1, 0) × (β0 − ε, β0 + ε)
respectively. By Lemma 2.7,

|f+(α + iβ)− f−(−α + iβ)| 6 ‖R(α + iβ, B)j(x)−R(−α + iβ, B)j(x)‖ ‖y∗‖
6 6α‖j‖ ‖R2(α + iβ, A)x‖ ‖y∗‖, (α, β) ∈ P+

β0
.

Hence, by the assumption,

lim
α→0+

|f+(α + iβ)− f−(−α + iβ)| = 0, β ∈ (β0 − ε, β0 + ε).

Moreover, since the C0-group (S(t))t∈R is isometric,

|f±(±α + iβ)| 6 ‖y∗‖ ‖j(x)‖
α

, (α, β) ∈ P+
β0

.

Thus, f(α+iβ) := f+(α+iβ)−f−(−α+iβ) satisfies the conditions of Theorem 4.4
in P+

β0
.

Fix g ∈ D
(
(β0 − ε, β0 + ε)

)
. If Qg

β0
is the linear bounded operator on Y

defined by (4.2), then y∗(Qg
β0

j(x)) = 0, y∗ ∈ Y ∗, x ∈ M, in view of Theorem 4.4.
The denseness of M in X and the Hahn-Banach theorem imply that Qg

β0
j(x) = 0,

x ∈ X. Since β0 ∈ R and g ∈ D
(
(β0 − ε, β0 + ε)

)
were arbitrary, we obtain

suppQ(·) j(x) = ∅, x ∈ X, were Q(·) is defined by (2.4). Refering as before to
Lemma 2.5, we conclude that (T (t))t>0 is stable.
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Remark 4.8. The proof of Theorem 4.7 shows that Lemma 4.4 is true also
for X-valued functions f±. Note, in connection with Theorem 4.7, that if A is the
generator of a bounded C0-semigroup in X, and for fixed x ∈ X, β0 ∈ R:

(4.12) lim
α→0+

αR2(α + iβ0, A)x = 0,

then the limit in (4.12) exists uniformly in every sector Sξ := {iβ0 + teiϕ : t > 0,
|ϕ| 6 ξ < π

2 }. This can be shown directly by means of the first resolvent identity
and the estimate α‖R(α + iβ, A)‖ 6 C, α > 0, C > 0, with arguments similar to
those of Lemma 2.7.

The conditions for the stability of individual orbits of Banach space semi-
groups are direct consequences of Theorems 4.1, 4.7. They can be obtained anal-
ogously to Corollary 3.10.

Corollary 4.9. Let (T (t))t>0 be a bounded C0-semigroup in a Banach
space X with generator A, and let x ∈ X be fixed. Suppose that one of the following
two conditions holds:

(i) for every β0 ∈ R there is ε(β0) > 0 such that

lim
α→0+

α

β0+ε∫
β0−ε

‖R2(α + iβ, A)x‖dβ = 0;

(ii) for every β ∈ R,

lim
α→0+

αR2(α + iβ, A)x = 0.

Then
lim

t→∞
‖T (t)x‖ = 0.

The next theorem consists of the discrete counterparts of Theorems 4.1
and 4.7.

Theorem 4.10. Let (Tn)n>0 be a bounded semigroup in a Banach space X.
Then the semigroup (Tn)n>0 is stable if one of the following conditions holds:

(i) for every ϕ0 ∈ R there exist ε > 0 and a dense set M := M(ϕ0, ε) such
that for every x ∈ M :

(4.13) lim
r→1+

(r − 1)

ϕ0+ε∫
ϕ0−ε

‖R2(reiϕ, T )x‖dϕ = 0;

(ii) for every ϕ0 ∈ R there exist ε(ϕ0) > 0 and a dense set M := M(ϕ0, ε)
in a Banach space X such that for every x ∈ M :

(4.14) lim
r→1+

(r − 1)R2(reiϕ, T )x = 0, ϕ ∈ (ϕ0 − ε, ϕ0 + ε).

We will give the proof only for the first statement. The proof of the second
statement can be done in a similar way.
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Proof. Suppose (Sn)n∈Z is the limit isometric C0-group corresponding to
(Tn)n>0. Observe that there exists δ > 0 such that for every ϕ0 ∈ R the mapping
λ → eλ is conformal in

Tδ :=
{
λ = reiϕ : e−δ 6 r 6 eδ, ϕ0 − δ 6 ϕ 6 ϕ0 + δ

}
.

Set ε0 = min(ε, δ), where ε is given by (4.13). Then the functions

F±(±α + iβ)y = R(e±α+iβ , S)y, y ∈ Y

are analytic in the open sets P+
ϕ0

= (0, ε0) × (ϕ0 − ε0, ϕ0 + ε0), P−ϕ0
= (−ε0, 0) ×

(ϕ0 − ε0, ϕ0 + ε0) respectively, and satisfy the conditions

(4.15)
‖
(
F+(α + iβ)− F−(−α + iβ)

)
j(x)‖ 6 6(eα − 1)‖R2(eα+iβ , S)j(x)‖

6 6(eα − 1)‖j‖ ‖R2(eαeiβ , T )x‖, (α, β) ∈ P+
ϕ0

, x ∈ X,

(4.16) ‖F±(±α + iβ)y‖ 6
‖y‖
α

, (α, β) ∈ P+
ϕ0

, y ∈ Y.

Suppose (4.13) holds. Fix ϕ0 ∈ R and g ∈ D
(
(ϕ0 − ε0, ϕ0 + ε0)

)
. Define a linear

operator Qg
ϕ0

: Y → Y by the equality

Qg
ϕ0

y := lim
α→0+

ϕ0+ε0∫
ϕ0−ε0

(
F+(α + iβ)− F−(−α + iβ)

)
y g(β) dβ, y ∈ Y.

From the proof of Theorem 2.4 and (4.16) it follows that Qg
ϕ0

is bounded. Taking
into account M = X, (4.15) and (4.13), we obtain as in the proof of Theorem 4.1
Qg

ϕ0
j(x) = 0, x ∈ X. Since g ∈ D

(
(ϕ0 − ε0, ϕ0 + ε0)

)
was arbitrary,

(4.17) suppQ(·)j(x) ∩ (ϕ0 − ε0, ϕ0 + ε0) = ∅, x ∈ X,

where Q(·) : D
(
(ϕ0 − ε0, ϕ0 + ε0)

)
→ L(Y ) is defined by (2.4). By Theorem 2.4,

there is a function F analytic in Pϕ0 := (−ε0, ε0)× (ϕ0 − ε0, ϕ0 + ε0) such that

F (α + iβ) =
{

F+(α + iβ), (α, β) ∈ P+
ϕ0

,
F−(α + iβ), (α, β) ∈ P−ϕ0

.

By the choice of ε0, R(λ, S)j(x) is analytic in Tε0 . Now, as ϕ0 ∈ [0, 2π) was
arbitrary, we conclude that R(λ, S)j(x) is a bounded entire function, so j(x) = 0,
x ∈ X. The stability of (Tn)n>0 is proved.

Remark 4.11. It is natural to compare the obtained stability conditions in
a Banach space with the corresponding Hilbert space stability conditions.

Let (T (t))t>0 be a bounded C0-semigroup in a Banach space X with the
generator A. Then for every λ ∈ C with Re λ > 0 the operator A − λI is the
generator of a bounded C0-semigroup. By the Hardy-Landau inequality for such
operators ([23]),

(4.18) ‖(A− λI)x‖2 6 2C(C + 1)‖x‖ ‖(A− λI)2x‖,
where x belongs to the domain D(A2) of A2 and C = sup

t>0

‖T (t)‖. (The inequality

(4.18) was proved in [23] for generators of contraction semigroups. For our case,
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the proof remains essentially the same. Alternatively, see the next paragraph.) If
λ ∈ ρ(A) ∩ {λ ∈ C : Re λ > 0}, then

(4.19) ‖R(λ, A)x‖2 6 2C(C + 1)‖R2(λ, A)x‖ ‖x‖

for x ∈ D(A2), and by continuity for x ∈ X. Hence, in the case X is a Hilbert
space, the stability conditions (4.1), (4.11) are not weaker, than the corresponding
conditions (3.5), (3.7).

Similarly, let T be a linear bounded operator in X such that sup
n>0

‖Tn‖ 6 C.

Then in the equivalent norm ‖x‖1 := sup
n>0

‖Tnx‖, we have ‖T‖1 6 1. So G =

e−iϕ

r T − I, r > 1, ϕ ∈ [0, 2π), is the generator of a contraction C0-semigroup
(eGt)t>0. By the inequality (4.18),∥∥∥∥(

e−iϕ

r
T − I

)
x

∥∥∥∥2

1

6 4
∥∥∥∥(

e−iϕ

r
T − I

)2

x

∥∥∥∥
1

‖x‖1, x ∈ X,

hence
‖R(reiϕ, T )x‖2

1 6 4‖R2(reiϕ, T )x‖1 ‖x‖1.

Thus,

‖R(reiϕ, T )x‖2 6 ‖R(reiϕ, T )x‖2
1 6 4‖R2(reiϕ, T )x‖1 ‖x‖1,

6 4C2‖R2(reiϕ, T )x‖ ‖x‖, r > 1, ϕ ∈ [0, 2π).

Therefore, if X is a Hilbert space, then the stability conditions for the discrete
operator semigroups (4.13), (4.14) are not weaker than (3.18), (3.19) respectively.

It is well-known, that the condition

(4.20) σp(A∗) ∩ iR = ∅

is necessary for the stability of a C0-semigroup (T (t))t>0 (see, for example, [2]
where this fact is proved by means of Banach limits). Since a stable C0-semigroup
is necessarily bounded, (4.20) is equivalent to

(4.21) lim
α→0+

αR(α + iβ, A)x = 0, x ∈ X,

by the Abel mean ergodic theorem [20], p. 520. Moreover, if a C0-semigroup
(T (t))t>0 is stable, then in view of

α ‖R(α + iβ, A)x‖ 6 α

∞∫
0

e−αt‖T (t)x‖dt, x ∈ X, α > 0,

and the regularity of Abel summation, (4.21) is satisfied uniformly in β from
R. Hence this property is also necessary for the stability of (T (t))t>0 (but it is
not sufficient as Example 1.7 from [21] shows). The next proposition shows that
the stability conditions (3.5), (3.7), (4.1), (4.11) ensure (4.21) uniformly in β on
compacts from R. In view of Remark 4.11, it is sufficient to consider only (3.5),
(3.7). By Heine-Borel arguments it is sufficient to prove the assertion only for
segments.
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Proposition 4.12. Let (T (t))t>0 be a bounded C0-semigroup in a Banach
space X, with generator A. Let x ∈ X, β ∈ R and ε > 0 be fixed. Suppose that
one of the following two conditions holds:

(4.22) lim
α→0+

α

β0+ε∫
β0−ε

‖R(α + iβ, A)x‖2 dβ = 0.

(4.23) lim
α→0+

√
αR(α + iβ, A)x = 0, β ∈ [β0 − ε, β0 + ε].

Then (4.21) holds with fixed x uniformly in β ∈ [β0 − ε, β0 + ε].

Proof. Let β0 ∈ R and x ∈ X be fixed.

1) Suppose (4.22) is true. Consider the rectangle with vertexes in (α
2 +i(β0−

ε)) , (α
2 + i(β0 + ε)) , ( 3α

2 + i(β0 − ε)) , ( 3α
2 + i(β0 + ε)), where α < 2ε.

By subharmonicity of the function ‖R(α + i ·, A)x‖2 in {λ ∈ C : Re λ > 0}
we obtain

(4.24)

πα2

4
‖R(α + iβ, A)x‖2 6

3α
2∫

α
2

β0+ε∫
β0−ε

‖R(a + ib, A)x‖2 db da

6 α sup
a∈[ α

2 , 3α
2 ]

β0+ε∫
β0−ε

‖R(a + ib, A)x‖2 db

= α

β0+ε∫
β0−ε

‖R(a∗(α) + ib, A)x‖2 db

6 2a∗(α)

β0+ε∫
β0−ε

‖R(a∗(α) + ib, A)x‖2 db

for some a∗ ∈
[

α
2 , 3α

2

]
. If (4.22) holds, then the last expression in (4.24) tends

to 0 as α → 0 + . Therefore, α R(α + iβ, A)x → 0, α → 0+ uniformly in β ∈
[β0 − ε, β0 + ε].

2) We can assume without loss of generality that (T (t))t>0 is a contraction
semigroup, so that α‖R(α+iβ, A)‖ 6 1. If (4.23) holds, then α R(α+iβ, A)x → 0,
α → 0+, for every β ∈ [β0 − ε, β0 + ε]. Observe that

1
2n+1

R

(
1

2n+1
+ iβ, A

)
x

=
1

2n+1
R

(
1
2n

+ iβ, A

)
x +

1
22n+2

R

(
1
2n

+ iβ, A

)
R

(
1

2n+1
+ iβ, A

)
x

=
(

1
2
I +

1
2

(
1

2n+1
R

(
1

2n+1
+ iβ, A

)))
1
2n

R

(
1
2n

+ iβ, A

)
x, n ∈ N.
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Therefore,

1
2n+1

∥∥∥∥R

(
1

2n+1
+ iβ, A

)
x

∥∥∥∥ 6
1
2n

∥∥∥∥R

(
1
2n

+ iβ, A

)
x

∥∥∥∥, n ∈ N.

Hence the decreasing sequence
{

1
2n

∥∥R
(

1
2n + i·, A

)
x
∥∥ : n ∈ N

}
of continuous func-

tions on the compact set [β0− ε, β0 + ε] converges to zero. By Dini’s theorem, this
convergence is uniform on [β0 − ε, β0 + ε]. Since for α ∈

[
1

2n+1 , 1
2n

]
:∥∥∥∥αR(α + iβ, A)x− 1

2n
R

(
1
2n

+ iβ, A

)
x

∥∥∥∥
6

(
1
2n
−α

)∥∥∥∥R

(
1
2n

+iβ, A

)
x

∥∥∥∥ ‖αR(α + iβ, A)‖+
(

1
2n
−α

)∥∥∥∥R

(
1
2n

+iβ, A

)
x

∥∥∥∥
6

1
2n

∥∥∥∥R

(
1
2n

+ iβ, A

)
x

∥∥∥∥,

the statement follows.
Note that we used the boundedness of (T (t))t>0 only for the proof of the

second part of the proposition.

If (T (t))t>0 is a stable C0-semigroup in a Hilbert space, then, using Jensen’s
inequality with the probability measure αe−αt dt, α > 0, we obtain

(α ‖R(α + iβ, A)x‖)2 6

( ∞∫
0

αe−αt‖T (t)x‖dt

)2

6

∞∫
0

αe−αt‖T (t)x‖2 dt

=
α

2π

∞∫
−∞

∥∥∥R
(α

2
+ iβ, A

)
x
∥∥∥2

dβ.

Hence the global condition (3.1) implies that (4.21) is satisfied uniformly in β ∈
R. However, it is not clear how to obtain the property (4.21) “uniform” in all
β ∈ R from the local “integrability“ conditions (3.5), (4.1) or from the “pointwise
convergence” conditions (3.7), (4.11). It would be interesting to know whether
there is a type of asymptotic behaviour of (T (t))t>0, equivalent to the “uniform”
condition (4.21).

5. CONCLUDING REMARKS

We start with an indication of some possible refinements of the statements obtained
in Sections 2 and 3. We will consider only C0-semigroups, although the remarks
(A), (B) below are valid with evident changes for the discrete operator semigroups.

(A) The conditions of all our stability results for a bounded C0-semigroup
(T (t))t>0 could be formulated with the exception of closed countable sets S :=
S(ε, β0) ⊂ (β0 − ε, β0 + ε) (depending on ε, β0) on which we could only require:

(5.1) lim
α→0+

αR(α + iβ, A)x = 0, x ∈ X (x ∈ H), β ∈ S.

For example, the corresponding version of Theorem 4.7 can be stated as
follows.
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Theorem 5.1. Let (T (t))t>0 be a bounded C0-semigroup in a Banach space
X with generator A. If for every β0 ∈ R there exist ε > 0, a closed countable set
S := S(ε, β0) ⊂ (β0 − ε, β0 + ε) and a dense set M := M(β0, ε) ⊂ X such that:

(i) lim
α→0+

αR2(α + iβ, A)x = 0, β ∈ (β0 − ε, β0 + ε) \ S, x ∈ M ;

(ii) lim
α→0+

αR(α + iβ, A)x = 0, β ∈ S, x ∈ X;

then (T (t))t>0 is stable.

In this case, for fixed β0 ∈ R, x ∈ X and corresponding ε := ε(β0), the
reasoning similar to the proof of Theorem 4.7 shows that

Sβ0 := suppQ(·)j(x) ∩ (β0 − ε, β0 + ε) is countable,

where Q(·) is defined by (2.4). Hence, if Sβ0 is nonempty, then it contains an
isolated point β ∈ (β0 − ε, β0 + ε). The local resolvent R(λ, B)j(x) extends an-
alytically into some punctured disc B0(iβ, r). Then by Lemma 4.5, there exists
C > 0 such that

‖R(λ, B)j(x)‖ 6
C

|λ− iβ|
, λ ∈ B0

(
iβ,

r

2

)
.

Hence from the Laurent expansion of R(λ, B)j(x) in B0(iβ, r
2 ) it follows that

lim
α→0

α‖R(α + iβ, B)j(x)‖ = lim
λ→iβ

|λ− iβ| ‖R(λ, B)j(x)‖ > 0.

On the other hand, by resolvent majorization,

α‖R(α + iβ, B)j(x)‖ 6 α‖j‖ ‖R(α + iβ, A)x‖ → 0, α → 0+,

which contradicts the previous inequality, and the observation follows.
Thus, our stability results with the above formulation (A) generalize The-

orem 1.2, Theorem 1.3 and Corollary 1.4 from the Introduction. Indeed, for ev-
ery closed countable set E ⊂ R and every β0 ∈ R there is δ, 0 < δ < ε, such
that Eβ0 := (β0 − δ, β0 + δ) ∩ E is closed and countable. However, the proofs
then are reduced to the study of two parts of supp Qj(x) : Eβ0 \ suppQj(x)
and Eβ0 ∩ supp Qj(x). The study of the second part subsumes implicitly refering
to the previous spectral stability criterias. Is the “distinguishing” of countable
exceptional sets essential and do our integrability conditions (3.5), (4.1) include
Theorem 1.3 or Theorem 1.2, as they are stated in the paper ? This question re-
mained unclear. Despite the fact that Theorem 3.3 gives necessary and sufficient
conditions for the stability of a bounded C0-semigroup in a Hilbert space, we do
not know how to deduce Theorem 1.2 from it directly.

In connection with Corollary 1.4 from the Introduction note the following.
(B) Any conditions for the stability of a bounded C0-semigroup (T (t))t>0

can be given in the form:
“There exists a dense set M ∈ X such that for every x ∈ M these conditions

hold for the restriction of (T (t))t>0 to the closed linear span, Xx, of {T (t)x : t >
0}.”

Formally, the form (B) is more general than the initial, but it is not clear
whether these two forms are equivalent.

Further, as an illustration, we will show how to obtain Theorem 1.2 from
Theorems 3.4 and 4.7 in their original formulation.
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Suppose that a bounded C0-semigroup (T (t))t>0 satisfies the conditions of
Theorem 1.2, so σ(A) ∩ iR is countable, and σp(A∗) ∩ iR = ∅. By a variant of the
Mittag-Leffler theorem ([16]),

M :=
⋂
β∈R

Im(A− iβI) is dense in X.

Since lim
α→0+

αR(α + iβ, A)x = 0, β ∈ R, x ∈ M, and sup
α>0

α‖R(α + iβ, A)‖ < ∞, we

have
lim

α→0+
αR(α + iβ, A)x = 0, β ∈ R,

for every x ∈ X. It then follows from [28],

M =
{

x ∈ X : for every β ∈ R, ∃ lim
α→0+

R(α + iβ, A)x
}

.

By Lemma 2.7, for fixed β ∈ R and x ∈ X, the property

(5.2) ∃ lim
α→0+

R(α + iβ, A)x

implies

(5.3) lim
α→0+

αR2(α + iβ, A)x = 0.

Thus,

{x ∈ X : for every β ∈ R lim
α→0+

αR2(α + iβ, A)x = 0} = M = X.

Thus, Theorem 1.2 can be deduced from Theorem 4.7. Taking into account Re-
mark 4.11, we see that Theorem 1.2 also follows from Theorem 3.4 in the Hilbert
space case.

Remark 5.2. R. Chill had a conjecture that (5.2) satisfied for all β ∈ R and
x from a dense set in X implies the stability of a bounded C0-semigroup (T (t))t>0.
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30. Yu.I. Lyubich, Quôck Phóng Vu, Asymptotic stability of linear differential equa-
tions on Banach spaces, Studia Math. 88(1988), 37–42.

31. E. Marschall, Funktionalkalküle für abgeschlossene lineare Operatoren in Ba-
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Birkhäser, Basel 1996.

35. N.K. Nikolski, Lectures on the shift operator. Nonclassical shift, Investigations on
linear operators and theory of functions, Zap. Nauchn. Sem. Leningrad Otdel.
Mat. Inst. Steklov. 65(1976), 103–132.
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87, Birkhäuser, Basel 1993.

38. W. Rudin, Real and Complex Analysis, McGraw-Hill, New York 1966.

39. W. Rudin, Lectures on the Edge of the Wedge Theorem, CBMS Regional Conf. Ser.
in Math., vol. 6, Providence, 1970.

40. B. Sz.-Nagy, C. Foias, Harmonic Analysis of Operators on Hilbert Space, North-
Holland Publishing Co., Akademiai Kiado, Budapest 1970.

41. B.A. Taylor, D.L. Williams, Ideals in rings of analytic functions with smooth
boundary values, Canad. J. Math. 22(1970), 1266–1283.

42. F. Wolf, The Poisson integral. A study in the uniqueness of harmonic functions,
Acta Math. 74(1941), 65–100.

43. F. Wolf, Extension of analytic functions, Duke Math. J. 74(1947), 877–887.

44. F. Vasilescu, Analytic Functional Calculus and Spectral Decompositions, Mathe-
matics and its Applications, Reidel, Dordrecht–Boston, 1982.
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