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ABSTRACT. Let A be a simple unital AT algebra of real rank zero and Inn(A)
the group of inner automorphisms of A. In the previous paper we have shown
that the natural map of the group Inn(A) of approximately inner automor-
phisms into Ext(K1(A), Ko(A)) ®Ext(Ko(A), K1(A)) is surjective; the kernel
of this map includes the subgroup of automorphisms which are homotopic
to Inn(A). In this paper we consider the quotient of Inn(A) by the smaller
normal subgroup AInn(A) which consists of asymptotically inner automor-
phisms and describe it as OrderExt(Ki(A),Ko(A)) & Ext(Ko(A), Ki(A)),
where OrderExt(Ki(A),Ko(A)) is a kind of extension group which takes into
account the fact that Ko(A) is an ordered group and has the usual Ext as a
quotient.
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1. INTRODUCTION

An automorphism « of a unital C*-algebra A is called inner if there is a unitary
u € A such that a(a) = Adu(a) = uau*, a € A. We denote by Inn(A) the group
of inner automorphisms of A, which is a normal subgroup of the group Aut(A)
of all automorphisms of A. The topology on Aut(A) is determined by pointwise
convergence on A. The closure Inn(A) of Inn(A4) in Aut(A) is, by definition, the
group of approximately inner automorphisms.

There are two distinguished normal subgroups of Inn(A) containing Inn(A).
One is the group HInn(A) of automorphisms which are homotopic to Inn(A4), i.e.,
a € HInn(A) if and only if there is a continuous map a. : [0,1] — Inn(A) such
that

ap € Inn(4), o1 =a.
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The other is the group Alnn(A) of asymptotically inner automorphisms, i.e., a €

AInn(A) if and only if there is a continuous map «. : [0,1] — Inn(A) and a
continuous map u. : [0,1) — U(A) with U(A) the unitary group of A such that

ar = Adu, forte[0,1), oy = .
It is easy to show that they are indeed normal subgroups and that
Inn(A4) € Alnn(A4) C HInn(A) C Inn(A).
In this paper we describe the quotient
Tnn(A)/Alnn(A)

in terms of K-theoretic data when A is a simple unital AT algebra of real rank
Z€ero.

Recall that a unital C*-algebra A is said to be a unital AT algebra if it is
expressible as the inductive limit of T algebras, i.e., finite direct sums of matrix
algebras over C(T), with unital embeddings. Note that a unital AT algebra A is
stably finite and we denote by T4 the convex set of tracial states of A.

Let A be a simple unital AT algebra of real rank zero and o € Inn(4). (In
this case a € Aut(A) belongs to Inn(A) if and only if a, = id on K.(4) ([7]).)
The mapping torus of « is the C*-algebra:

M, ={zx € C[0,1]® A; a(x(0)) = z(1)}.
The suspension of A, SA, is identified with the ideal of M:
SA={x e C[0,1] ® A; z(0) =0==z(1)}.
From the short exact sequence:
0—SA— M, — A—0,

one obtains the usual six-term exact sequence in K-theory, which, since a € Inn(A),
splits into two short exact sequences:

0 — Ki(4) — Kit1(Ma) — Ki1(A) — 0

for i = 0,1, where K;11(SA) has been identified with K;(A). Let 7;(a) denote the
class of this sequence in Ext(K;11,K;(A4)) and let 1 denote the map of Inn(A) into

@ Ext(Ki+1(A),K;(A4))

defined by o — (no(a), m («)), which is a group homomorphism. (By using KK the-
ory and the universal coefficient theorem ([13]), n(«) is also described as KK (a) —
KK(id).) In the previous paper ([11]) we showed that 7 induces a surjective ho-
momorphism:

Tnn(A)/HInn(A) — Ext(K; (A), Ko(A)) & Ext(Ko(A), K1 (A)).

To state the main result of this paper we proceed to describe a natural map
R, of K1(M,) into Aff(T4), which is the real Banach space of affine continuous
functions on the compact tracial state space T4 of A. Note that, since we assume
that A has real rank zero, Ty is isomorphic to the state space of Ko(A) ([1]). If
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u € M, is a unitary given as a piecewise smooth function of [0,1] into A, then

R ([u]) is defined by
. 1
Ra §;I/FT dt
0

for 7 € T4. The map R, is a group homomorphism of K;(M,) into Aff(T4) and
extends the natural map D of Ko(A) into Aff(T4) when Ky(A) is regarded as a
subgroup of K; (M,).

We take the set of pairs (E, R) where E is an abelian group such that

0 — Ko(4) - E LK (4) —0
and R is a homomorphism:
R:E — Aff(Ta)

such that Rot = D. We can form a group OrderExt(K;(A),Ko(A)) from this set
in much the same way as we do Ext(K;(A),Ko(A)) from the set of E alone. From
the previous paragraph we can associate 7jp(a) € OrderExt(K;(A),Ko(A)) with
each a € Inn(A) and show that 7 is a homomorphism. Our main result is

Tnn(A)/AInn(A) = OrderExt(K; (A), Ko(A)) @ Ext(Ko(A), K1 (A))

where the isomorphism is induced by the map a — (7p(a),m(«)) (see Theo-
rem 4.4).
In Section 2 we will define OrderExt(K;(A), Ko(A)) and the homomorphism

7 : Inn(A) — OrderExt(K;(A),Ko(A4)) @ Ext(Ko(A), K1 (A))
in detail and in Section 3 we will show that
ker7 = Alnn(A).

In Section 4 we will show that 7 is surjective; thus proving the main result.

2. ORDEREXT

Let A be a simple unital C*-algebra and let T4 be the set of tracial states of A.
Let o € Inn(A) and let M, be the mapping torus of a. For a unitary u € M,
such that ¢ — u(t) is (piecewise) C! and for 7 € T4, we define

2mi

1
1
T(u) = — [ T(a(t)u(t)”)dt.
/

In [16] this is denoted by A, (u). Since 7(a(t)u(t)*) = —7(u(t)i(t)*), it follows
that 7(u) € R. If u,v € M, are C'-unitaries, we obtain that

T(uv) = 7(u) + 7(v).
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If h = h* € M, is C", then we have for u = it
1
(w) = [ 7o) = r(h(V) - 7(h(0) =0,
0

where we have used that 7o« = 7, which follows since o € Inn(A). Thus it follows
that 7(u) is constant on each connected component of the C'-unitary group of M,,.
By taking the matrix algebras over M, and using the density of C'-unitaries in
the unitary group, we obtain a homomorphism 7 : K;(M,) — R by [u] — 7(u) for
each 7 € Ts. Since 7 € T4 — 7(u) is affine and continuous, we thus obtain:

LEMMA 2.1. For any o € Inn(A) there exists a homomorphism
Ry Ki(My) — Aff(T»)
defined by Ro([u])(T) = 7(u), which is called the rotation map for a.
Since a, = id on K;(A), we have the short exact sequence:
0 — Ko(A) 2= K (M) 2 Ky (A) — 0
from the short exact sequence of C*-algebras:
0— SA—5 M, - A—0.

If p is a projection in A, we have that ¢.([p]) = [u] where u € M, is the unitary
defined by

u(t) = ™y + 1 —p.
Thus we obtain:

LEMMA 2.2. For a € Inn(A) the following diagram commutes:

Ko(A) LN K1 (M)
DN\ /" Ra
Aff(Ty)
where D is the homomorphism of Ko(A) into Aff(T4) defined by D([p])(7) = 7(p),

which is called the dimension map for A.
0—Go—E-5G—0

is exact, we denote this short exact sequence by E, the same symbol at the middle.
Let R be a homomorphism of F into Aff(T4) such that Ro: = D. We consider
the set of all pairs (E, R), which we call order-extensions for (G1, Gy).

If (E',R') is another order-extension, we say that (E,R) and (E’,R') are
isomorphic if there is an isomorphism ¢ of E into E’ such that R = R o ¢ and

0 — Gy = E % G — 0
[ Ly [

0—>G0;Elq—>G1—>O
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is commutative. Note that if (E, R) and (E’, R') are isomorphic, E and E’ are
isomorphic as extensions. We define an addition for such pairs by extending that
for extensions as follows. If (E, R) and (E’, R') are given, define

E"={(z,y) e E® E' | q(x) = ¢ (y)}/{((a), = (a)) | a € Go}
Gy — E",  avr—|((a),0)]
" E" — Gy, [(z,y)] — q(z)
R":E" — Aff(T4), |[(z,y)] — R(z)+ R'(y).
It is easy to show that these objects are well defined,

0—Go LB Gy — 0
is exact, and R”o/” = D. The sum of (E, R) and (E’, R’) is defined to be (E”, R").
Again it is easy to show that the isomorphism classes of those orderextensions form
an abelian semigroup. Then the identity element for this semigroup is given by
the isomorphism class [(Ey, Rp)] of the trivial order-extension (Ey, Ry) given by:

Ey=Go® Gy
Lo : Go — Ey, a+— (a,0)
q : By — G1, (a,b)—b
Ry : Ey — Aff(T4), (a,b) — D(a).
The inverse of [(E, R)] is given by [(E’, R')] where
E'=E, /=-, ¢=q, R =-R.

Thus this semigroup is a group, which we denote by OrderExt(G1, Gp). Note that
OrderExt(G1, Go) depends also on the dimension map D : Go — Aff(T4).

LEMMA 2.3. The map
7o : Inn(A) — OrderExt(K;(4),Ko(A))
a— [(Ki(Ma), Ra)]
is a homomorphism.

Proof. By Lemma 2.2, 7)o is well-defined.

Let o, 8 € Inn(A) and (E, R) be the sum of (Ki(M,), Ry) and (K;(Mg), Rg).
We have to show that (E, R) is isomorphic to (Ki(Mag), Rag)-

Let g € K1(M,) and h € K;(Mpg) such that g(g) = ¢(h). Let v € M,, ® M,
and w € M,, ® Mg be unitaries such that [v] = g, [w] = h, and v(0) = w(0). Then
we define a unitary u € M,, ® M,g by

uty = [ 020) 0<t<1/2,
T la(w(2t-1)) 1/2<t< 1.
Then [u] € K1 (M,p) depends only on [v] and [w]. Thus we have a map ¢ from
{(g.h) € Ki(Ma) ® K1(Mp) | q(g9) = q(h)}
to K1 (M,p). It is easy to show that ¢ is a surjective homomorphism and the

kernel of ¢ equals {(:(a),—t(a)) | a € Ko(A)}. Hence ¢ induces an isomorphism
¢ E — Ki1(Mayg). Since

Rap([u]) = Ra([v]) + Rp((w])
for the above u, (E, R) is isomorphic to (K1 (Mag), Rap). 1
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LEMMA 2.4. If (E,R) is an order-extension for (G1,Go) and Range R =

Range D, then

Ly | ker D q«| ker R
0 — ker D |—> ker R ‘—> Gy —0

s exact.

Proof. 1t is obvious that the above sequence is well-defined, the compositions

of two consecutive maps vanish, and it is exact at ker D. Let g € ker R with ¢.(g) =
0. Then there is a ¢’ € Gy such that t.(¢") = g. But, since D(¢') = R(g) = 0,
we have that ¢’ € ker D, which implies that it is exact at ker R. Let g € Gi.

Then there is a ¢’ € E with ¢.(¢’) = ¢g and there must be a ¢”’ € Gy such that
D(g") = R(¢'). Since g«(¢9' — t«(g")) = g and R(g’ — t.(¢"”")) = 0, we have that

g € Range(q.|ker R). 1

PROPOSITION 2.5. If (E, R) is an order-extension for (G1,Gy), the following
conditions are equivalent:
() [(E, R)] = 0;
(i) (a) 0 - Gog — E — Gy — 0 is trivial,
(b) Range R = Range D,
(¢) 0 — ker D — ker R — G1 — 0 is trivial;

(iii) 0 — ker D — ker R — G — 0 is exact and trivial.

Proof. If (Ey, Rp) is the trivial order-extension, it satisfies (ii). Any order-
extension isomorphic to (Fy, Ry) also satisfies (ii). Thus (i) implies (ii).

Suppose that (E, R) satisfies (ii). Note that the sequence in (c) is exact
by Lemma 2.4. By (c) there is a homomorphism v of G; into ker R such that
gov =1id. Hence E = +(Gy) @ v(G1) and R is given by

U(Go) ®v(Gy) — Aff(T4), a+br— D(a).

Thus (E, R) is isomorphic to the trivial order-extension, i.e., (ii) implies (i).
It follows from Lemma 2.4 that (ii) implies (iii). The converse also follows

from the arguments in the previous paragraph. 1

REMARK 2.6. By the Thom isomorphism ([5]), K;(M,) is isomorphic to
K;11(A X4 Z) as an abelian group. By extending 7 € T4 to a tracial state of
A X Z and defining a natural map D, : Ko(A X, Z) — Aff(T4), it follows that
(K1(My), Ry) is isomorphic to (Ko(A x4 Z), D) ([5]). See also [6], [12], [1].
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3. ASYMPTOTICALLY INNER AUTOMORPHISMS

From now on we will assume that the C*-algebra A is a simple unital AT alge-
bra of real rank zero. In this case by Elliott’s result ([7]) A is determined by
(Ko(A),[1],K1(A)) up to isomorphism, where Ko(A) is a dimension group, K;(A)
is a torsion-free abelian group, and [1] € Ko(A)™. Note that the tracial state space
T4 of A is identified with the compact convex set of order-preserving homomor-
phisms f : Ko(A) — R with f([1]) = 1.

Let o € Inn(A). We recall that « is asymptotically inner if there exists a
continuous map v : [0,1) — U(A) such that

ala) = tlgr% Advi(a), a€ A

We denote by Alnn(A) the group of asymptotically inner automorphisms of A.
We also recall that 77 is the homomorphism of Inn(A4) into

OrderExt(K;(A),Ko(A)) @ Ext(Ko(A4),K1(A))

defined by a +— mp(a) @ m ().

Before stating the main theorem of this section, let us recall the notion of
Bott element for pairs of almost commuting unitaries in a unital C*-algebra A
([10], [11]): Given u,v € U(A) with [u,v] = uv — vu & 0, we associate B(u,v) €
Ko (A), which is the equivalence class of a projection close to the image of the Bott
projection in My ® C(T?) under the quasi-homomorphism from My ® C(T?) into
M, ® A mapping the two canonical unitaries of C'(T?) into u,v respectively. If
A = M, this can also be given by

1
B(u,v) = %T‘r(logvuv*u*) € Z =Ko(M,),

where log is the logarithm with values in {z; Im(z) € (—m,7)}. (That B(u,v) is
an integer follows from the fact that the determinant of vuv*u* is 1.) We note that
B(u,v) is invariant under homotopy of pairs of almost commuting unitaries and
that B(u,v) = —B(u*,v) = —B(v,u), B(u,v1v2) = B(u,v1) + B(u,vy). We quote
[4] for another characterization of the Bott element, which is used to prove the
following result we will need later: If A is a simple unital AT algebra of real rank
zero and u,v € U(A) satisfy that [u,v] = 0, B(u,v) = 0, Sp(v) is almost dense in
T, and [u] = 0, then there is a path wu, t € [0,1] in U(A) such that [us,v] = 0,
ug = 1, and u; = u.

_THEOREM 3.1. Let A be a simple unital AT algebra of real rank zero and let
a € Inn(A). Then the following conditions are equivalent:
(i) n(a) =0,
(ii) o € AInn(A).
i

Proof of (ii) = (i). Since n is homotopy invariant, n(a) = (no(a), m(a)) =0
in Ext(K1(4),Ko(4)) @ Ext(Ko(A4),K1(4)).
We may suppose that we have a piecewise C! map v of [0, 1) into U(A) such
that
afa) = }m} Adwv(a), a€ A
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Let uw € U(A). We define a unitary u € M, ® My by composing the following

paths:
1 0 —1{u O 1 0 1
[071]9t'_>Rt<0 ’U())Rt (0 1>Rt<0 US)Rt
and
veuvy 0
[0,1) >t~ ( 0 1)
with
afu) 0
(5 )

where

R, — <cos’2rt —singt) .

: s us
sin §t Ccos §t

Then it follows that 7(w(t)a(t)*) = 0 for 7 € T. In particular, Rq([a]) = 0. Since
g«([a]) = [u], the map [u] — [u] defines a homomorphism ¢ of K;(A) into ker R,
such that g, o o = id. This implies that

0 — kerD — ker R, — K;(4) — 0
is exact and trivial, and thus concludes the proof by Proposition 2.5. 1

The rest of this section will be devoted to the proof of (i) = (ii).
Let {A,} be an increasing sequence of T subalgebras of A such that 4; 31

and A= |J A,. We express 4, as

n=1

krn
An =@ Bni ® C(T)
i=1

where B, ; is isomorphic to the full matrix algebra My, ;. By identifying K;(A)
with Z*» in a natural way we obtain a homomorphism K;(A,) into K;(Ap41) as
the multiplication of a matrix y?. We always assume that x(i,j) is big and
IxL (i, 9)]/x% (4, ) is small compared with 1 and that the embedding of A, into
kn
Apy1 is in standard form, i.e., B, = @ Bp; C Bp4+1 and the canonical unitary z,
i=1
of 1® C(T) C A, in B,y1 N B, ®C(T) is a direct sum of elements of the form:
0 i
1 .

1 0
with L = £1; e.g., if X} (i,7) > 0, 2npn+1ipPn; is a direct sum of x;, (4, j) matrices
of the above form with L = 1 in B, 41 N B;, ® C(T)ppy1ipng = Myo .5y ®@ C(T)

([71, [11]).

For eachn=1,2,... let
My, ={xeC[0,1]® A|z(0) € Ay, a(z(0)) = z(1)}.
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Then we obtain the exact sequence of C*-algebras:
0— SA - M,, I A, —0
from which follow the exact sequences of abelian groups:
O — Kl(A) I Ki+1(Ma7n) — K'H—l (An) e O
Since K;(4,,) = Z*», the above extensions are all trivial.

Let R = R, and R, = Ro ju. : Ki(My,) — Aff(T4), where j, is the
embedding of M, , into M,. Since Range D = Range R,,, we obtain by Lem-
ma 2.4 that

0 — ker D 2% ker R,, 2% Ki(A,) —0
is exact. Note that the inductive limit of these extensions is naturally isomorphic
to the exact sequence:

0 — kerD — ker R — K (A4) — 0.
We shall specify a homomorphism ¢,, of K;(A,,) into ker R,, such that
Qnx © pp, = id.
Since a € Inn(A), there exists a u,, € U(A) for each n such that
Oé‘Bn = Adu,|Bn, o(zn) = Adu,(z,),

k"l
where B,, = @ B, ; C A, and z, is the canonical unitary of C(T) C A,,. Define
i=1

1=

1
=1 )A )
hn,z 2ti og a(zn,z) dun(zn,z)

where 2y, ; = 2,Ppn,i +1—pn,; With p, ; the identity of B,, ; and h,, ; = h}, ; is defined
uniquely as ||, ;|| = 0 since a(z, i) Adun(z;, ;) = 1. Define ¢, ; € U(Mam ® Ms)
by composing two paths of unitaries:
[0,1] 3t Re(ul ® DR, (un @ 1) (20 ® 1) (u), @ 1) Re(u, ® 1)R;
and
[0,1] >t e2mithn.i A Un (2n,i) @ 1.
Then we have that R
Qn(gn,i) = Zn,; D 1, Rn([gn,z]) = hn,i»
where Enl € Aff(T,) is defined by
i (1) = T(hny), 7€ Ta.
Since the above procedure applies to a unitary z,p + 1 — p with p a minimal

projection in B, it follows that [(, ;] € K1(M,,,) is divisible by [n,i]. Thus one
obtains a homomorphism ¢,, of K;(A4,) into Kq(M,, ) with g,. 0@ = id by setting

Pn - [Zn,z} L [Cn,i]~
LEMMA 3.2. RangeD is dense in Aff(T4).

Proof. Since A is a simple unital AT algebra of real rank zero, it is ap-
proximately divisible ([8]). Thus this is 3.14 (a) of [3]. (A unital C*-algebra is
approximately divisible if it has a central sequence {B,,} of unital C*-subalgebras
with B,, = My@® Mj ([3]). Since A is obtained as the inductive limit of {A,,} all be-
ing T algebras with unital embeddings and the embeddings need to satisfy only the
K-theoretic conditions and the condition of real rank zero ([2]), thanks to Elliott’s
result [7], we can easily arrange the inductive system so that A,,1NA!, D My® M5,
which implies that A is approximately divisible.) &
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Let
0 = mininf{7(p,;); 7 € Ta},
K3
where p,, ; is the identity of B,, ;. Since A is simple, 6, is strictly positive. We

choose the unitary u, € A so that ||h, ;|| < d,. Since Range R,, = Range D, we
have, for any € > 0 with ||k, ;|| + € < J,,, projections p+ € A such that

1ﬁm:D@H*Mw%\W%%<E%W%N+¢

where D is also regarded as a map of the projections into Aff(T4). (First we ap-

[n, ]

proximate hnit /[n, 4] by D(po) with py a projection such that D(py)—hpis /[n, 1] >
0 (or strictly positive), where hy;4+ is the positive part of h, ;. We should note
that ||Tlm+/[n,z]|| < ||hnill/[n,4] and find a projection p_ such that D(p_) =
D(p4) —/ﬁnl/[n,z] ~ /ﬁm_/[n,z]) Since D(p+) < 6,/[n, 3] < D(pn,i)/[n, ], we find
projections e;t+ € p, ;Ap,; N B,, ; such that

hni = D(eiy) = D(ei-), [|D(eix)|| < [[n,i

+e.

Thus, by making ||h,, ;|| small, we can make ||D(e;+)|| arbitrarily small. Then, by
using Lemma 3.4 below, we can find a unitary wy,; € pn,iApn,: N B;w such that
Wn, = Wn,iPn,i + 1 — Pnis Ad wnyi(zn,i) ~ Znis (lIl the order of ||hn71||), kn,i = hnﬂ',
where
1
kni= 7 log Adwp i(2n,i)2 ;-

Let w, = wpi1wWna - - - Wpk, - Note that
a(zn.i) Ad uywy, (Z;:z) = a(zn;)Aduy, (z;;i)Ad Un (2n,s Ad wy, (zf”))
= ¢?mihni Ad un(e_%ikm).
Then composing the two paths:

[0,1] 3t — Aduy, (e 2™ ni) and  [0,1] 3 t — 2™ni Ad w,, (e 2™ Fni)

multiplied with Ad wu,wy, () to the right, we obtain a path U from Ad u,w, (2 ;)
to a(zp,;) such that

1

1 .
— UU)*)dt =0 Ta.
5 [ FO@OU@ =0, ey
0
Since U is in a small neighbourhood of a(z, ;) ~ Adu,wy(2n,), it follows that
the unitary ¢, ; obtained from z,; in the same way as before with u,w, in place
of u,, satisfies

Rn([Cnil) =0. 1

Thus we have shown:
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LEMMA 3.3. Suppose that () = 0. Then for any n and € € (0,1) there
exists a unitary u, € A such that

a|B, = Adun|Bp, ||a(zni) — znill <&  hni=0,

;
where

1 *
hni = 2 log a(zn,i)Ad un(znz)

Hence defining a unitary C,; € My, ® My by composing the two paths:
[0,1] 2t Re(u} @ Ry (Adwn (204) © 1) Re(up, @ 1R,

and
[0,1] 3t ®™ i Ad uy, (2,4) @ 1,

where Ry is defined as before, one can define a homomorphism ¢, of K1(4,) into
ker Ry, by ©([zni]) = [Cnyils t=1,... kn.

LeEMMA 3.4. If e € pniApn: N By, is a projection such that || D(e)|| is
sufficiently small, then for any € > 0 there exists a unitary wi € pp iApn,i N B;w’
such that

[Adwy (zn,i) — znill < 27| D(e)|| +¢, [we] =0, B(wi,zn;) = t[e].
In particular if k+ = (1/27i)log Ad 2y, jw (2, ;), it follows that ke = +D(e).

Proof. To simplify the notation we may suppose that py, ;An,iPn,i N B,’w- to
be A and z,; to be the canonical unitary z; € A; = C(T).

Since the projection e plays a role only through [e], we may suppose that
e € A, for some m > 1. We will later assume that m is sufficiently large. Since
A, — Ap41 are in the standard form, z1py,,; in B,; ® C(T) looks like a direct
sum of elements of the form:

1
€ M, (C(T))
1 0

where Ly = +£1, My > 1 and

ZL = X1 (4,1 ZM Xon1 (4, 1) = [m, 5.

Note that D(e) takes values in the convex hull of
dim(epm,;)

[m, j]
which are all assumed to be much less than 1. Let ¢,, be the maximum of these

km values. Then t,, decreases as m — oo and the limit of ¢,, equals 7(e) for
some 7 € Ty (or |[[D(e)|]). Thus if m is sufficiently large, we may assume that

jzla"'vkma

)
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tm < ||D(e)|| +¢/4m. We can obtain the required unitary w; in B,,; ® C(T) as
the direct sum of elements of the form:

1

stfl

—27iNg

where w = e /Ms and the integers N, are chosen so that

) Ns  dim(eppm;)
ZNS = dim(epm;), T [T]]J

Note that by defining

1 *
kj — % log zlpmjAdwj(lemj)a

the Bott element B(w;, 21Pm;) € Ko(AmpPm;) = Z for the almost commuting pair
Wj, 21Pm; of unitaries in A, pmj = Bm; @ C(T) is equal to

Tr(k;) = Tr(@ %1) = N, = dim(epm;),

where k; € B,,; ® C(T) should be evaluated at some (or any) point of T (see [10],
[11], [4]). This shows that
B(wja lemj) = [epm]]7
and in particular that /Igj = D(epmj)-
If m is sufficiently large or all M, are sufficiently large, we can assume that

N
M,

Thus we obtain the norm estimate

<|[D(e)[| +&/2m.

[Adw;(21pmj) — 21Pmjll < 27| D(e)] + e.

By taking wy = wy +wa+ - - +wy,,, this completes the proof for wy. For w_ we
just replace w in the definition of w; by w = e2miNs/Ms g

By defining ¢,, : K1(A,) — ker R,, as above, we identify ker R,, with ker D &
K;(A4,). We now have to translate the natural map ker R,, — ker R,,11 into the
map ¢, : ker D @ Ky (A,) — ker D @ Ky (An11):

0 — kerD — kerD &) Ki(4,) — Ki(4,) — 0

[ I I Lxn
0 — kerD — kerD &) Ki(Ant1) — Ki(Any1) — O

where we have used that 1),, must be of the form ,,(a,b) = (a + 3 (b), x1(b)).

n
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LEMMA 3.5. If u, is a unitary in A and € € (0,1) such that

-~

a|By, = Aduy|Byp, |a(zn) — Adu,(z)|| <&, hn; =0,

then for anym <n and j=1,...,kn,

(3.1) la(2mg) — Adtn(zmj) | < &,
(3.2) Fomj = 0,

where

1 .
himj = 5108 a(zm;) Adun(2p;)-

Proof. By the assumption on the embedding of A, into A,, (3.1) follows
immediately. Since the homomorphism ¢,, : K;1(A4,,) — ker R,, can be defined on

[2m;] in the canonical way and R, ¢y, ([2m;]) = ?l\mj, (3.2) also follows immediately. i
LEMMA 3.6. The homomorphism 0 : Ki(A,) — ker D is given by
[Zn,i] — B(u:+1um Zn,i)a
where [z,:] = [n,ile; with (e;); the canonical basis for ZF+ = Ky(A,) and
B(u}, 1 Uun, 2n,) is divisible by [n,1i].
Proof. First of all we shall show that D(B(u;,  1tun, 2n,:)) = 0. If we define
the self-adjoint h; € A by

1 *
hl — Tm log Oé(Zn,z)Ad un+1(zn,i)’

1 ,
hy = 7m0 log a(zn,i)Ad un(z,”),

1 * *
hs = 271 log 2p,i Ad (U1 un)(25,4),

then /]';2 =0 and ﬁl =0 by Lemma 3.5 and hence };s = 0 since
Ad unJrl(eQ‘n'ihg) _ 6727rih1 e27rih2.
(One way of proving that 53 = 0 is to take a closed path w of unitaries:
e—67rith1 0 <t < 1/37
U)(t) — 6727rih1627ri(3t71)h2 1/3 <t < 2/3’
e—27rihle27rih2Ad un+1(62ﬂ'i(3t—2)h3) 2/3 < t < 1
in a neighbourhood of 1, and compute for any 7 € Ty,
1

0= 1/27ri/7'(u')(t)w(t)*) dt = —7(h1) + 7(h2) — 7(h3).)
0
We may suppose that w) u, € Ay, N B, for some m > n. In this case
B(us 1 Un, 2n,i) in Ko(Ayy,) is defined by (Terj (hgpmj))j , where hgpm; € Bpm; ®
C(T) is evaluated at a point of T, and 3 = 0 means that for any 7 € T,

Trp,,, (h3pmj)
ZT(pmj) = =0.

j m.J]
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Define a path vy, t € [0,1] of unitaries in A ® Ms by
Then to compute 10 ([2,.:]) we have to calculate

Yo ([znil) = n(lzn.il) — @1 ([2nil)

(3.3)
=[t— Advyt(2ni)] — [t — Advnyre(2n.i)]

in K; (Mg, nt1) where z,; is identified with z,; ® 1 (see 2.8 of [11] for a similar
computation). More precisely, we have to add a short path from Adu,(zn,;)
(respectively Ad unt1(2n,i)) to a(zn,;) to the path t — Adwv, ¢(zn,:) (respectively
t — Adv,y14(2n,)) to get a unitary in My 41 ® Ma and we always understand
the formulae in this way. Note that (3.3) is equal to

[t — Adwni(2ni)Advni1e(2; )]
inK;(SA4) C Ki(Ma,nt1) or, by applying ¢ — Adwv;; 4, which induces the identity
map on K;(SA), to [t — v}, 1 U0 12n,i0), 1Unt1,62, ;- Since
UiVt = (U1 @ DRy (upsru;, © 1Ry (uy @ 1),

the above element is equal to the class of

t = (ungazy sy @ 1) R(ungauy, ® DR (unzn iy, @ 1) Ry(upup gy © DR,
by applying Ad (un112;, ; © 1). Again this is equal to the class of

l— (Uilun+1ZZ,Ml+1un ® 1) Ry (upuni1 ® I)Rt_l(zn,i @ 1)Rt(“:+1un D 1)Rt_1
by applying t — Ad (u) ® u)). More precisely, we have to add a short path
to connect the value at ¢t = 1, u;unﬂz;)iu:_‘_lunzn,i ® 1 to 1. Since uj  ju, €
A, 0 Bl by the assumption, the path can be taken in A,,. The above element in
Ki(SA,,) = Ko(Ay,) is equal to

1
(= 57 T, 1080011550050

J

1
= <2ﬂ_iTer_i IOg(Zn,z‘(U;Hun)z;i(u;“lﬂun)*pmj))

J
= Ba,, (U:H-lum Zn,i)'

Note also that since the non-trivial part of z, ;(u,11un)z;, ; (441 un)* belongs to
Pn,iAmpPn,i N By, ;, each component of By, (U, 1Un, zn,;) is divisible by [n,i]. Then

n,i’ m

we obtain that

wg([znl]) = B(uy 1Un, 2ni), i=1,...ky,

is a well-defined homomorphism of K;(4,,) into ker D C Ko(A4). 1
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LEMMA 3.7. Suppose that fg(«) = 0. Then there exist unitaries u, € A

such that
a|B,, = Aduy,|B,,

la(zm) — Aduy (zm)]| <277, m < n,
B(uy, 4 1Un; 2ni) = 0, 1=1,...,kp,
/Hn’i:()a izl,...,kn7
where )
Py = 3 log oz(zm)Adun(z;’i).

Proof. By the assumption and Proposition 2.5, the sequence of trivial exten-
sions:

0 — kerD — kerD @ Ki(4,) I Kl(A) — 0

[ [ L xh,
0 — kerD — kerD & Ki(Any1) 28 Ki(Appr) — O
| | / l l

defines the trivial extension in Ext(K;(A), ker D). Hence we have a homomorphism
hY 1 Kq(A,) — ker D for each n such that

?/12 = ho h0+1X7L
(To see this we denote by E the inductive limit of the middle terms, and by ¢
a homomorphism of K;(A) into F such that qp = id. If £, denotes the natural
homomorphism of K;(A,,) into ker D & K; (A,,) composed with ker D ®K;(4,) —
E, 9 is given by 90 = &, — &ui1xh. We set hY = &, — ¢, where ¢, is the
homomorphism K;(A,) — K;(A4) composed with ¢ : K1 (A) — E. Then it follows
that

hY — R Xy = &n — @n — Ent1Xn + Pnt1Xe = &n — Ensixh = Y0,

where we have used that ¢,, = ©,11x%.)
Since hO(e) € ker D, where (e!)F, is the canonical basis for Z*» = K, (A,,),
we can find projections ey € py iApn; N By, ; such that

[, il (ef) = lefy] — [ef]

and || D(el, )| is arbitrarily small. (We find a positive g € Ko(A) with || D(g)]|
sufficiently small and then find projections ey, such that [e" ] = [n,4](g + hS(e}'))

and [e" ] = [n,i]g.) Then, by Lemma 3.4, we find a unitary w, € AN B!, such
that

[wn] =0, B(wn, 2n) = —[efy] + [ef-] = =[n, d]hp (e])
and ||[wy, zn]|| is arbitrarily small for ¢ = 1,...,k,. Since

B +172’nz ZB +1pn+1,jazn,ipn+1,j)
= z X (3, D[, ) B(w 41, 2n41,5)/ [0+ 1, ]

= ZX'IL j? TL 7’ n+1( n+1) [n, Z]h%+1X}L(€?)7
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we have that
B(wy, Uy 1 UnWr, Zni) = 0.
Since D(B(wn, #n,;)) = 0, we have that ki =0 for k; = (1/2mi) log 2 i Adwn (2}, ;),

and hence that h; = 0 for h; = (1/2ni) log a(2p,i)Ad upwy(z;, ;). Thus by replac-
ing u, by u,w,, we have the conclusion. 1

Note that the exact sequence
0 — Ki(4) — Ko(My) — Ko(4) — 0

is obtained as the inductive limit of
0 — Ki(4) — KoMan) — Ko(A4,) — 0

|| lwn lX?x
0 — K1|(|A) — Ko(Mant1) — Ko(4p41) — 0.
! l

By defining a homomorphism ¢, : Ko(A4,) — Ko(Ma,,) just as in Lemma 3.3, we
identify Ko(Ma,,,) with K; (4)®Ko(A,) and find a homomorphism ¢, : Ko(4,,) —
K;(A) as in the following diagram:

| [ b S L xn 1
0 — K1 (A) — Kl(A) D KO (A7z+1) — KO (An+1) — 0.
| I / ! !

LEMMA 3.8. The homomorphism 1} : Ko(A,) — Kq(A) is given by
[pn,i] = [U:L+1unpn,i]

where [py, ;] = [n, ile; with (e;) the canonical basis for ZF» =Ko (A,,) and [u} unpn,i)
is divisible by [n,1].

Proof. As in the proof of Lemma 3.6 we have to decide
(3.4) [t = Ad v t(pn,i)] — [t = Advntr,e(pn,i)]

in Ko(My,nt1), where p,,; denotes p,; &0 in A ® My. (Note that Ad uy,(pn,) =
a(pni) and Aduyy1(Pni) = Pni-) Note that the identification of K;(A) with
Ko(SA) is done in such a way that [u,] corresponds to

[t — Adv, (10 0)]—[(10)]
([1], 8.2.2). Since
[t Ad vt (p)] = [t — Adva (18 0)] — [t — Advno(1 = pus)],
(3.4) equals
[t — Advn (1®0)] — [t — Ad (vnt(1 — Pryi) + Vnt1,ePn,i) (1 & 0)]
= [un] = [un(1 = Pn,i) + Unt1Pn] = [y 41 UnPn i),
where we have used the fact that

t—= (1= pni) @ (1= a(Pni)) + Vngi1,t(Pnyi ® (pni))
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is a path of unitaries from 1 @ 1 to

*

(un(1 _pn,i) + un-&-lpn,i) 83 (un(l - O‘(pn,i)) + U:;_;,_la(pn,i)). 1
LEMMA 3.9. Suppose that 1j(c) = 0. Then there is a unitary u, € A for each
n such that

a|Bn = Aduy By,  |la(zm) — Adug(zm)]| < 27", m < n,

B(u;kz—i-luna Zn,i) =0, [urz-klunpn,i] =0, hn,i =0
fori=1,... ky,, where
1
hni=—
™ o
Proof. Comparing with Lemma 3.7, the newly appeared conditions are only

log a(zn,i)Ad un (2, ;)

[u;+1unpn,i] =0.

We will find a unitary w,, € ANB], such that [wy,, z,] = 0 and the above conditions
are satisfied by replacing all u,, by u,w,. With the condition [wy1, 2n4+1] =0, it
follows that [wy41, 2,] = 0 and that the other conditions are preserved.

From the assumption that

0 — Ki(4) — Ko(My) — Ko(4) — 0
is trivial, we have a homomorphism Al : Ko(A,) — K;(A) for each n such that

1 1 1 0
wn = hn - hn+1xn'
We only have to find a unitary w, € AN B}, such that [w,, z,] = 0 and
[Wpni] = —[n,ihl(es), i=1,... k.
Since 2Py ;i i Dy i AmPn,i N B;M. for m > n is a direct sum of elements of the form

0 ZrLL+1pn,i
1

1 0
with L = £1, this follows immediately. 1

Proof of (i) = (ii) of Theorem 3.1. Under the assumption (i) we have found a
sequence {u,} of unitaries as in the previous lemma. Now we apply the homotopy
lemma to the pair ), ; UnPn, i, 2nPn,i of unitaries in p,, ; Ap, ;N B, ; ([4], 8.1): From
the conditions

B(uy, Un, 2ni) =0, [ug 1 UnPni] =0
calculated in pn,iApmﬂB;m, that follow since Ky (pn,i Apn 0By, ;) — Ku(pn,iApn.i)
— K, (A) are injective, and the condition [|[uy, , 1un, z,]|| — 0 as n — oo, we obtain
a continuous path vy, ;;; of unitaries in py,_ ; Apy; N B{m- such that

E
Un,i;0 = Pn,iy  Unyi;l = UpUn41Pni

and
max [Vn.ist, 2n.il|| — 0 as n — oc.
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Let vy, = > Un i, and define a continuous path v, of unitaries for ¢ € [1,00) by
i

U1 = U1,
Ungt = UpUni, 0T
for n = 1,2,.... Then since mtax||[vn;t,zm]|| — 0 as n — oo, we obtain that
for any m, tlg& Advi(zm) = a(zm). We also have that for ¢ > m and a € B,,
Adwi(a) = a(a). Thus it follows that for any x € A tlggo Adwvi(xz) = afx). This

completes the proof. 1

4. MAIN THEOREM

PRrROPOSITION 4.1. If ¢ € Hom(K;(A), Aff(T4)), there exists an automor-

phism o € Tnn(A) such that n(c) is trivial and the rotation map Ry : K1(M,) —
Aff(Ty) is given by
Ro(a,b) = D(a) + ¢(b)
for some identification of Ki(My) with Ko(A) @ K1(A4).
To prove this we first prepare:
LEMMA 4.2. If ¢ € Hom(K;(A), Aff(T4)), there exists an inductive system
7k X_li)Zb X_§>st N
whose limit is isomorphic to K;(A) for i = 0,1 and homomorphisms h,, : Zkn —
ZFn+1 such that
|00 Xoon-1(€] 1) = Do XS 0 hna(ef T <27 DoxS, oy (ef7h),
|hn—10 X£72(e?_2) - X?LA ° hn—2(5?_2)‘ < 2_n+3£7_zi2X91,n72(€;}_2)7
Xn (@ 5)] = 2" max(|x;, (4, 7)), 1),

where that |x| < y for z,y € ZF* means that |z;| < y; for all i, (e}); is the

canonical basis for ZF»
ly, =max{[n,j] | j=1,...,kn},
and ([n, j]); € Z*» corresponds to [1] € Ko(A).
Proof. Suppose that we are given inductive systems
zkr X, ke
such that the limit is isomorphic to K;(A) for i = 0,1, and
Y000, ) = 27 max(d G, ) 1),

By passing to a subsequence we construct the homomorphisms h,, with the required
properties.
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Suppose that we have constructed hq, ..., h,_1 and fixed Z*1, ... Z*». Then
we compute £, and find & : Z¥» — Kg(A) such that

X0 (€]) — DE(E})| < 270, DX, (€7).
This is obviously possible by the density of Range D and

inf Dy, (e} :
mf Do n(€f)(7) >0

Then we find an m > n such that Range £ C Range Xgo,m» and 7 : ZF» — Z™ such
that
an L) 7m
£\ 7 Xom
Ko(4)
is commutative. Note
DX X1 (€5 ") = DX2 phn—1(e] ™)
< [ DxoomMxn-1(€] 1) — oxXhon-1(€] )]
+ Xt no1(ef ) = Dx2 phn—1(ef )
k7l
<27t Z DXgo,n(e?NX?l«L—l(i,j” + 27n+1£;i1DXgo,n—1(6?_l)
i=1

<27y DX (X () + 27" DX (€T

< (277 27 L DY (e

< 27n+2€771i1DXgo,n71 (6?71)

Thus by choosing a sufficiently large ¢ > m it follows that
X X1 (€] 1) = Xnhn—1(ef T < 277 F200L xg Ly (e 7).
By taking Z*¢ for ZF»+1 and X27mn for h,, the lemma is proved. &

Proof of Proposition 4.1. By the previous lemma we have the following
diagram:

1
— . Zkn ﬁ) AZES! N e Kl(A)
\ hn \ hn+1
0
N Zk'n, ﬁ) an+1 RN Zk71+2 — e RN KO (A)

with the specified properties. Accordingly, we construct an increasing sequence
{A,} of T algebras such that

1

kn
An = Bn ® O(T)a Bn = @ Bn,ia Bn,i M[Tlﬂ]
=1

and the embeddings of A,, into A, are in the standard form. By Elliott’s theory
([7]), we identify |J A, with A.
n=1
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Define ¢)) : Ki(A,) — Ko(Ant2) by

¢2 = hn-&-lXiL - X70L+1hn-
By the properties specified in Lemma 4.2 we have that
[ )] < 27 X 2,0 (12 ).
Then, by Lemma 3.4 (and its proof), we find a unitary w,; € By,42 N B, such that

Wnj = WnjiPnj +1- Pngj,

1Adwn;(2n;) = 20l < 3r27"FY,

B(wnj, zn5) = —[n, jl¥n(€]).
(Because zp; in Bpy2; ® C(T) is a direct sum of elements of the form as in the
proof of Lemma 3.4 such that the matrix sizes M, are at least 227; hence the error

introduced by choosing N in that proof will be of the order 272".) If w,, denotes
Wy1 W2 * + - Wnik, , then we have that

Wy, € Bpio N B, |[Adw,(2,) — 2 < 372771,
B(wn, an) = f[n,j]d)g(e;-l), [wnpnj] =0.
We define the following two automorphisms 3y, 31 of A by

ﬂo = lim Ad (w2w4 e ’UJQn), ﬂl = lim Ad (w1w3 cee wgn,l).

n—oo

To show the limits exist, note that [wy,,w,] = 0 if [m —n| > 2 and the limits

o
obviously exist on |J Bj,. Since Ad (w,wpt2 - Wntok)(2n) In Ayyopyo is a direct
n=1
sum of elements of the form

L
0 Zn+2k+2

with L = 41, we have that

|Ad (wy, - - - WhgokWntors2)(Zn) — Ad (W - - wpyo ) (2n)]| < w2~ (H2E+D),

Then it also follows that the limits exist on z1, 22,.... Since the same reasoning
applies to the inverses, we have shown that 3y, 31 exist as automorphisms.
Now we shall show that the product Gyf; has the required properties.
By [11], 2.4, the extension n;(/3;)
0 — Ki(A) — Ko(Mp,) — Ko(4) — 0
is trivial for ¢ = 0,1 and the extension 70(5;)
0 — Ko(4) — K1(Mp,) — Ki(A) — 0
is given as the inductive limit of
0 — ZFkn — Ik &) Zk  — 7k 0

X?1+2,n l l ’/’2, / l l

0 —  Zkn+2 —  Zkni2 @ Drnt2 5 ZEatz

! ! Ve ! !
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with n = ¢ (mod 2). Hence 11(8081) = m(Bo) + m(B1) = 0. We will compute
10(Bo) + no(B1) below.

Define

E={(z,y) € Ki(Mp,) ® Ki(Mp,) | q(x) = q(y)}/{(a, —a) | a € Ko(A)}-
If g € Ki(A) is the image of xg,,1 € ZFen+1 define n, : ]?{faurlgexéoyzn+1 —
Kl(Mﬁo) S5 Kl(Mﬁl) by

Mn(9) = (h2n+1(T2n+1), T2nt2) © (0, Tant1),

where the right hand side should be regarded as an element of Ky (Mg, ) ®K; (Mg, ).
Then

Mn+1(9) — 1 (9)
= (hant3(T2nt3) — V9 0(Tant2) — X9nia.2n12h2n+1(T2nt1), 0)
& (_T/’gn+1($2n+1), 0)
= (X3nsshont2(Tant2) — X3n1a.2nr2h2nt1(Tant1), 0)

® (—hant2(Tant2) + Xons2h2nt1(T2n41),0).
Thus (7,,) gives a well-defined homomorphism 7 : K;(A) — E such that ¢gn = id.
This shows that 79(5p/31) = 0.
Let u,, = wpwp—_2---. We take a path v(¢) of unitaries in A ® M from z,;
to Bo(zn;) by composing the following two paths for even m > n:

v1(t) = Re(1 @ um) Ry (205 ® DR(1® uy )R,
and a short path vy from Ad u,,(2n;) to Bo(2n;). For 7 € T4 we want to compute

1
1
27
0
We know the contribution from v; is zero and the contribution from wvs is given by

r(o(t)u(t)*)dt.

k
: : 0 0 1
lim T(B(w;knww:wzx T w:n+2k7 Zny)) =lim7 < Z Xoo,2m+2¢+2¢m+2ixm+2i,n (63‘)> .

k—o0 X
i=1

Thus we obtain that

oo
0 0 1
Rﬁo([v]) = Z DXoo,2m+2i+2¢m+2iXm+2i,n(e?)~
i=1
A similar computation applies to 3;. For an odd n we let m = n—1 for computing
ro = Rg,([v]) and let m = n for computing the corresponding r1, and obtain that

oo
ro+r = ZDXQC,nHJrQ?ﬁ?LHX}zH,n(@?)
i=1
oo
= > (DX%nsivohnritiXnpivin(€]) = DX% nvivihnriXosin(€]))
Xoo,n+z+2 n+l+1Xn+z+1,n j Xoo,n+7,+1 n+ZXn+z,n j
i=1
— 1 Y _ D49 h 1/.n
- QOXoo,n(ej) Xoo,n+1 TL+1Xn(ej )
Under the identification of K;(Mg,s,) with Ko(A) & K;(A) specified above, the

above element corresponds to (—h,11x;,(€}), [2n;]). This implies that Rg,s, sat-
isfies the required properties. 1
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Let @ be the homomorphism of OrderExt(K;(A),Ko(A)) into Ext(K;(A4),
Ko(A)) defined by [(E, R)] — [E]. Then ker @ is the subgroup of the isomorphism

classes of (Ep, R,) where Ej is the trivial extension K;(A) ® Ko(A), and R, :
Ey — Aff(T4) is determined by ¢ € Hom(K;(A), Aff(T4)) as in the previous

proposition:
R, : (a,b) — D(a) + ¢(b).

PROPOSITION 4.3. The following sequences of abelian groups are exact:

0 — ker @ — OrderExt(K; (A), Ko(A)) - Ext(Ky(A), Ko(A)) — 0,
0 — Hom(K;(A),ker D) — Hom(K;(A),Ko(A4))
— Hom(K;(A), Aff(T4)) — ker@ — 0.

Proof. For the first sequence we only have to show that @ is surjective. Given
an extension

0 — Ko(4) — FE — K;(A) — 0,

we regard Ko(A) as a subgroup of E and have to extend D : Ko(A) — Aff(T4) to
a homomorphism R : E — Aff(T,4). This can be done step by step by using the
fact that Aff(Ty) is divisible.

For the second sequence we only have to show that (Ey, R,) and (Eo, Ry)

are isomorphic if and only if ¢ = ¢ 4+ D o h for some h € Hom(K;(A),Ko(4)).
This follows because an isomorphism p : Ey — FEy is given by
w: (a,b) — (a+ h(b),b)
for some h € Hom(K;(A),Ko(A)) with Ryop=R,. 1
THEOREM 4.4. Let A be a simple unital AT algebra of real rank zero, Inn(A)
the group of approximately inner automorphisms of A, and Alnn(A) the group of

asymptotically inner automorphisms of A. Then Alnn(A) is a normal subgroup of
Inn(A) and the quotient Inn(A)/Alnn(A) is isomorphic to

OrderExt(K;(A),Ko(A)) @ Ext(Ko(A4),K1(A))
with isomorphism induced by 1.
Proof. Before Theorem 3.1 we have described the homomorphism
7 : Inn(A) — OrderExt(K;(A4), Ko(A)) ® Ext(Ko(4), K1 (4)),

and showed in Theorem 3.1 that kery7 = Alnn(A). By 3.1 of [11] we have
shown that n = (no,m) = (Q7o,m) is surjective onto Ext(K;(A),Ko(A4)) &
Ext(Ko(A),K;1(A)). By Proposition 4.1 we know that Range? contains ker @,
which shows that 7 is surjective. This completes the proof. 1
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EXAMPLE 4.5. If A is the irrational rotation C*-algebra generated by uni-
taries u, v with wvu*v* = e*™%1 for some irrational number 6 € (0,1), then A is
a simple unital AT algebra of real rank zero by [9], and K;(A4) = Z? and hence
Ext(K;(A),K;+1(A4)) = 0. But since A has only one tracial state and Range D =
Z+0Z, it follows that Hom (K1 (A), Aff(T4)) = R? and OrderExt(K;(A), Ko(A)) =
R?/(Z + 07)? which is isomorphic to Inn(A)/AInn(A). Note also that HInn(A) =
Tnn(A) in this case since the natural T? action on A exhausts all OrderExt.
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