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Abstract. Let A be a simple unital AT algebra of real rank zero and Inn(A)
the group of inner automorphisms of A. In the previous paper we have shown
that the natural map of the group Inn(A) of approximately inner automor-
phisms into Ext(K1(A), K0(A))⊕Ext(K0(A), K1(A)) is surjective; the kernel
of this map includes the subgroup of automorphisms which are homotopic
to Inn(A). In this paper we consider the quotient of Inn(A) by the smaller
normal subgroup AInn(A) which consists of asymptotically inner automor-
phisms and describe it as OrderExt(K1(A), K0(A)) ⊕ Ext(K0(A), K1(A)),
where OrderExt(K1(A), K0(A)) is a kind of extension group which takes into
account the fact that K0(A) is an ordered group and has the usual Ext as a
quotient.
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1. INTRODUCTION

An automorphism α of a unital C∗-algebra A is called inner if there is a unitary
u ∈ A such that α(a) = Adu(a) = uau∗, a ∈ A. We denote by Inn(A) the group
of inner automorphisms of A, which is a normal subgroup of the group Aut(A)
of all automorphisms of A. The topology on Aut(A) is determined by pointwise
convergence on A. The closure Inn(A) of Inn(A) in Aut(A) is, by definition, the
group of approximately inner automorphisms.

There are two distinguished normal subgroups of Inn(A) containing Inn(A).
One is the group HInn(A) of automorphisms which are homotopic to Inn(A), i.e.,
α ∈ HInn(A) if and only if there is a continuous map α. : [0, 1] → Inn(A) such
that

α0 ∈ Inn(A), α1 = α .
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The other is the group AInn(A) of asymptotically inner automorphisms, i.e., α ∈
AInn(A) if and only if there is a continuous map α. : [0, 1] → Inn(A) and a
continuous map u. : [0, 1) → U(A) with U(A) the unitary group of A such that

αt = Adut for t ∈ [0, 1), α1 = α .

It is easy to show that they are indeed normal subgroups and that

Inn(A) ⊂ AInn(A) ⊂ HInn(A) ⊂ Inn(A).

In this paper we describe the quotient

Inn(A)/AInn(A)

in terms of K-theoretic data when A is a simple unital AT algebra of real rank
zero.

Recall that a unital C∗-algebra A is said to be a unital AT algebra if it is
expressible as the inductive limit of T algebras, i.e., finite direct sums of matrix
algebras over C(T), with unital embeddings. Note that a unital AT algebra A is
stably finite and we denote by TA the convex set of tracial states of A.

Let A be a simple unital AT algebra of real rank zero and α ∈ Inn(A). (In
this case α ∈ Aut(A) belongs to Inn(A) if and only if α∗ = id on K∗(A) ([7]).)
The mapping torus of α is the C∗-algebra:

Mα = {x ∈ C[0, 1]⊗A; α(x(0)) = x(1)}.
The suspension of A, SA, is identified with the ideal of Mα:

SA = {x ∈ C[0, 1]⊗A; x(0) = 0 = x(1)}.
From the short exact sequence:

0 −→ SA −→Mα −→ A −→ 0,

one obtains the usual six-term exact sequence in K-theory, which, since α ∈ Inn(A),
splits into two short exact sequences:

0 −→ Ki(A) −→ Ki+1(Mα) −→ Ki+1(A) −→ 0

for i = 0, 1, where Ki+1(SA) has been identified with Ki(A). Let ηi(α) denote the
class of this sequence in Ext(Ki+1,Ki(A)) and let η denote the map of Inn(A) into

1⊕
i=0

Ext(Ki+1(A),Ki(A))

defined by α 7→ (η0(α), η1(α)), which is a group homomorphism. (By using KK the-
ory and the universal coefficient theorem ([13]), η(α) is also described as KK(α)−
KK(id).) In the previous paper ([11]) we showed that η induces a surjective ho-
momorphism:

Inn(A)/HInn(A) −→ Ext(K1(A),K0(A))⊕ Ext(K0(A),K1(A)).

To state the main result of this paper we proceed to describe a natural map
Rα of K1(Mα) into Aff(TA), which is the real Banach space of affine continuous
functions on the compact tracial state space TA of A. Note that, since we assume
that A has real rank zero, TA is isomorphic to the state space of K0(A) ([1]). If



The Ext class of an approximately inner automorphism. II 101

u ∈ Mα is a unitary given as a piecewise smooth function of [0, 1] into A, then
Rα([u]) is defined by

Rα([u])(τ) =
1

2πi

1∫
0

τ(u̇(t)u(t)∗) dt

for τ ∈ TA. The map Rα is a group homomorphism of K1(Mα) into Aff(TA) and
extends the natural map D of K0(A) into Aff(TA) when K0(A) is regarded as a
subgroup of K1(Mα).

We take the set of pairs (E,R) where E is an abelian group such that

0 −→ K0(A) ι−→ E
q−→ K1(A) −→ 0

and R is a homomorphism:

R : E −→ Aff(TA)

such that R ◦ ι = D. We can form a group OrderExt(K1(A),K0(A)) from this set
in much the same way as we do Ext(K1(A),K0(A)) from the set of E alone. From
the previous paragraph we can associate η̃0(α) ∈ OrderExt(K1(A),K0(A)) with
each α ∈ Inn(A) and show that η̃0 is a homomorphism. Our main result is

Inn(A)/AInn(A) ∼= OrderExt(K1(A),K0(A))⊕ Ext(K0(A),K1(A))

where the isomorphism is induced by the map α 7→ (η̃0(α), η1(α)) (see Theo-
rem 4.4).

In Section 2 we will define OrderExt(K1(A),K0(A)) and the homomorphism

η̃ : Inn(A) → OrderExt(K1(A),K0(A))⊕ Ext(K0(A),K1(A))

in detail and in Section 3 we will show that

ker η̃ = AInn(A).

In Section 4 we will show that η̃ is surjective; thus proving the main result.

2. ORDEREXT

Let A be a simple unital C∗-algebra and let TA be the set of tracial states of A.
Let α ∈ Inn(A) and let Mα be the mapping torus of α. For a unitary u ∈ Mα

such that t 7→ u(t) is (piecewise) C1 and for τ ∈ TA, we define

τ(u) =
1

2πi

1∫
0

τ(u̇(t)u(t)∗) dt.

In [16] this is denoted by ∆̃τ (u). Since τ(u̇(t)u(t)∗) = −τ(u(t)u̇(t)∗), it follows
that τ(u) ∈ R. If u, v ∈Mα are C1-unitaries, we obtain that

τ(uv) = τ(u) + τ(v).
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If h = h∗ ∈Mα is C1, then we have for u = e2πih

τ(u) =

1∫
0

τ(ḣ(t))dt = τ(h(1))− τ(h(0)) = 0,

where we have used that τ ◦α = τ , which follows since α ∈ Inn(A). Thus it follows
that τ(u) is constant on each connected component of the C1-unitary group of Mα.
By taking the matrix algebras over Mα and using the density of C1-unitaries in
the unitary group, we obtain a homomorphism τ : K1(Mα) → R by [u] 7→ τ(u) for
each τ ∈ TA. Since τ ∈ TA 7→ τ(u) is affine and continuous, we thus obtain:

Lemma 2.1. For any α ∈ Inn(A) there exists a homomorphism

Rα : K1(Mα) −→ Aff(TA)

defined by Rα([u])(τ) = τ(u), which is called the rotation map for α.

Since α∗ = id on Ki(A), we have the short exact sequence:

0 −→ K0(A) ι∗−→ K1(Mα)
q∗−→ K1(A) −→ 0

from the short exact sequence of C∗-algebras:

0 −→ SA ι−→Mα
q−→ A −→ 0.

If p is a projection in A, we have that ι∗([p]) = [u] where u ∈ Mα is the unitary
defined by

u(t) = e2πitp+ 1− p.

Thus we obtain:

Lemma 2.2. For α ∈ Inn(A) the following diagram commutes:

K0(A) ι∗−→ K1(Mα)
D↘ ↙ Rα

Aff(TA)

where D is the homomorphism of K0(A) into Aff(TA) defined by D([p])(τ) = τ(p),
which is called the dimension map for A.

Let Gi = Ki(A). If

0 −→ G0
ι−→ E

q−→ G1 −→ 0

is exact, we denote this short exact sequence by E, the same symbol at the middle.
Let R be a homomorphism of E into Aff(TA) such that R ◦ ι = D. We consider
the set of all pairs (E,R), which we call order-extensions for (G1, G0).

If (E′, R′) is another order-extension, we say that (E,R) and (E′, R′) are
isomorphic if there is an isomorphism ϕ of E into E′ such that R = R′ ◦ ϕ and

0 −→ G0
ι−→ E

q−→ G1 −→ 0
‖ ↓ ϕ ‖

0 −→ G0
ι′−→ E′

q′−→ G1 −→ 0
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is commutative. Note that if (E,R) and (E′, R′) are isomorphic, E and E′ are
isomorphic as extensions. We define an addition for such pairs by extending that
for extensions as follows. If (E,R) and (E′, R′) are given, define

E′′ = {(x, y) ∈ E ⊕ E′ | q(x) = q′(y)}/{(ι(a),−ι′(a)) | a ∈ G0}
ι′′ : G0 −→ E′′, a 7−→ [(ι(a), 0)]

q′′ : E′′ −→ G1, [(x, y)] 7−→ q(x)

R′′ : E′′ −→ Aff(TA), [(x, y)] 7−→ R(x) +R′(y).
It is easy to show that these objects are well defined,

0 −→ G0
ι′′−→ E′′

q′′−→ G1 −→ 0
is exact, and R′′◦ι′′ = D. The sum of (E,R) and (E′, R′) is defined to be (E′′, R′′).
Again it is easy to show that the isomorphism classes of those orderextensions form
an abelian semigroup. Then the identity element for this semigroup is given by
the isomorphism class [(E0, R0)] of the trivial order-extension (E0, R0) given by:

E0 = G0 ⊕G1

ι0 : G0 −→ E0, a 7−→ (a, 0)

q0 : E0 −→ G1, (a, b) 7−→ b

R0 : E0 −→ Aff(TA), (a, b) 7−→ D(a).
The inverse of [(E,R)] is given by [(E′, R′)] where

E′ = E, ι′ = −ι, q′ = q, R′ = −R.
Thus this semigroup is a group, which we denote by OrderExt(G1, G0). Note that
OrderExt(G1, G0) depends also on the dimension map D : G0 → Aff(TA).

Lemma 2.3. The map
η̃0 : Inn(A) −→ OrderExt(K1(A),K0(A))

α 7−→ [(K1(Mα), Rα)]
is a homomorphism.

Proof. By Lemma 2.2, η̃0 is well-defined.
Let α, β ∈ Inn(A) and (E,R) be the sum of (K1(Mα), Rα) and (K1(Mβ), Rβ).

We have to show that (E,R) is isomorphic to (K1(Mαβ), Rαβ).
Let g ∈ K1(Mα) and h ∈ K1(Mβ) such that q(g) = q(h). Let v ∈ Mn ⊗Mα

and w ∈Mn⊗Mβ be unitaries such that [v] = g, [w] = h, and v(0) = w(0). Then
we define a unitary u ∈Mn ⊗Mαβ by

u(t) =
{
v(2t) 0 6 t 6 1/2,
α(w(2t− 1)) 1/2 6 t 6 1.

Then [u] ∈ K1(Mαβ) depends only on [v] and [w]. Thus we have a map ϕ from
{(g, h) ∈ K1(Mα)⊕K1(Mβ) | q(g) = q(h)}

to K1(Mαβ). It is easy to show that ϕ is a surjective homomorphism and the
kernel of ϕ equals {(ι(a),−ι(a)) | a ∈ K0(A)}. Hence ϕ induces an isomorphism
φ : E → K1(Mαβ). Since

Rαβ([u]) = Rα([v]) +Rβ([w])
for the above u, (E,R) is isomorphic to (K1(Mαβ), Rαβ).
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Lemma 2.4. If (E,R) is an order-extension for (G1, G0) and RangeR =
RangeD, then

0 −→ kerD
ι∗| kerD−→ kerR

q∗| kerR−→ G1 −→ 0

is exact.

Proof. It is obvious that the above sequence is well-defined, the compositions
of two consecutive maps vanish, and it is exact at kerD. Let g ∈ kerR with q∗(g) =
0. Then there is a g′ ∈ G0 such that ι∗(g′) = g. But, since D(g′) = R(g) = 0,
we have that g′ ∈ kerD, which implies that it is exact at kerR. Let g ∈ G1.
Then there is a g′ ∈ E with q∗(g′) = g and there must be a g′′ ∈ G0 such that
D(g′′) = R(g′). Since q∗(g′ − ι∗(g′′)) = g and R(g′ − ι∗(g′′)) = 0, we have that
g ∈ Range(q∗| kerR).

Proposition 2.5. If (E,R) is an order-extension for (G1, G0), the following
conditions are equivalent:

(i) [(E,R)] = 0;

(ii) (a) 0 → G0 → E → G1 → 0 is trivial,

(b) RangeR = RangeD,

(c) 0 → kerD → kerR→ G1 → 0 is trivial;

(iii) 0 → kerD → kerR→ G1 → 0 is exact and trivial.

Proof. If (E0, R0) is the trivial order-extension, it satisfies (ii). Any order-
extension isomorphic to (E0, R0) also satisfies (ii). Thus (i) implies (ii).

Suppose that (E,R) satisfies (ii). Note that the sequence in (c) is exact
by Lemma 2.4. By (c) there is a homomorphism ν of G1 into kerR such that
q ◦ ν = id. Hence E = ι(G0)⊕ ν(G1) and R is given by

ι(G0)⊕ ν(G1) → Aff(TA), a+ b 7→ D(a).

Thus (E,R) is isomorphic to the trivial order-extension, i.e., (ii) implies (i).

It follows from Lemma 2.4 that (ii) implies (iii). The converse also follows
from the arguments in the previous paragraph.

Remark 2.6. By the Thom isomorphism ([5]), Ki(Mα) is isomorphic to
Ki+1(A ×α Z) as an abelian group. By extending τ ∈ TA to a tracial state of
A ×α Z and defining a natural map Dα : K0(A ×α Z) → Aff(TA), it follows that
(K1(Mα), Rα) is isomorphic to (K0(A×α Z), Dα) ([5]). See also [6], [12], [1].
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3. ASYMPTOTICALLY INNER AUTOMORPHISMS

From now on we will assume that the C∗-algebra A is a simple unital AT alge-
bra of real rank zero. In this case by Elliott’s result ([7]) A is determined by
(K0(A), [1],K1(A)) up to isomorphism, where K0(A) is a dimension group, K1(A)
is a torsion-free abelian group, and [1] ∈ K0(A)+. Note that the tracial state space
TA of A is identified with the compact convex set of order-preserving homomor-
phisms f : K0(A) → R with f([1]) = 1.

Let α ∈ Inn(A). We recall that α is asymptotically inner if there exists a
continuous map v : [0, 1) → U(A) such that

α(a) = lim
t→1

Ad vt(a), a ∈ A.

We denote by AInn(A) the group of asymptotically inner automorphisms of A.
We also recall that η̃ is the homomorphism of Inn(A) into

OrderExt(K1(A),K0(A))⊕ Ext(K0(A),K1(A))

defined by α 7→ η̃0(α)⊕ η1(α).
Before stating the main theorem of this section, let us recall the notion of

Bott element for pairs of almost commuting unitaries in a unital C∗-algebra A
([10], [11]): Given u, v ∈ U(A) with [u, v] ≡ uv − vu ≈ 0, we associate B(u, v) ∈
K0(A), which is the equivalence class of a projection close to the image of the Bott
projection in M2 ⊗ C(T2) under the quasi-homomorphism from M2 ⊗ C(T2) into
M2 ⊗ A mapping the two canonical unitaries of C(T2) into u, v respectively. If
A = Mn, this can also be given by

B(u, v) =
1

2πi
Tr(log vuv∗u∗) ∈ Z = K0(Mn),

where log is the logarithm with values in {z; Im(z) ∈ (−π, π)}. (That B(u, v) is
an integer follows from the fact that the determinant of vuv∗u∗ is 1.) We note that
B(u, v) is invariant under homotopy of pairs of almost commuting unitaries and
that B(u, v) = −B(u∗, v) = −B(v, u), B(u, v1v2) = B(u, v1)+B(u, v2). We quote
[4] for another characterization of the Bott element, which is used to prove the
following result we will need later: If A is a simple unital AT algebra of real rank
zero and u, v ∈ U(A) satisfy that [u, v] ≈ 0, B(u, v) = 0, Sp(v) is almost dense in
T, and [u] = 0, then there is a path ut, t ∈ [0, 1] in U(A) such that [ut, v] ≈ 0,
u0 = 1, and u1 = u.

Theorem 3.1. Let A be a simple unital AT algebra of real rank zero and let
α ∈ Inn(A). Then the following conditions are equivalent:

(i) η̃(α) = 0,
(ii) α ∈ AInn(A).

Proof of (ii) ⇒ (i). Since η is homotopy invariant, η(α) = (η0(α), η1(α)) = 0
in Ext(K1(A),K0(A))⊕ Ext(K0(A),K1(A)).

We may suppose that we have a piecewise C1 map v of [0, 1) into U(A) such
that

α(a) = lim
t→1

Ad vt(a), a ∈ A.
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Let u ∈ U(A). We define a unitary û ∈ Mα ⊗M2 by composing the following
paths:

[0, 1] 3 t 7→ Rt

(
1 0
0 v0

)
R−1
t

(
u 0
0 1

)
Rt

(
1 0
0 v∗0

)
R−1
t

and

[0, 1) 3 t 7→
(
vtuv

∗
t 0

0 1

)
with

1 7→
(
α(u) 0

0 1

)
,

where

Rt =
(

cos π2 t − sin π
2 t

sin π
2 t cos π2 t

)
.

Then it follows that τ( ˙̂u(t)û(t)∗) = 0 for τ ∈ TA. In particular, Rα([û]) = 0. Since
q∗([û]) = [u], the map [u] 7→ [û] defines a homomorphism ϕ of K1(A) into kerRα
such that q∗ ◦ ϕ = id. This implies that

0 −→ kerD −→ kerRα −→ K1(A) −→ 0

is exact and trivial, and thus concludes the proof by Proposition 2.5.

The rest of this section will be devoted to the proof of (i) ⇒ (ii).
Let {An} be an increasing sequence of T subalgebras of A such that A1 3 1

and A =
∞⋃
n=1

An. We express An as

An =
kn⊕
i=1

Bn,i ⊗ C(T)

where Bn,i is isomorphic to the full matrix algebra M[n,i]. By identifying Ki(A)
with Zkn in a natural way we obtain a homomorphism Ki(An) into Ki(An+1) as
the multiplication of a matrix χin. We always assume that χ0

n(i, j) is big and
|χ1
n(i, j)|/χ0

n(i, j) is small compared with 1 and that the embedding of An into

An+1 is in standard form, i.e., Bn =
kn⊕
i=1

Bni ⊂ Bn+1 and the canonical unitary zn

of 1⊗ C(T) ⊂ An in Bn+1 ∩B′n ⊗ C(T) is a direct sum of elements of the form:
0 zLn+1
1 ·

. . . . . .
1 0


with L = ±1; e.g., if χ1

n(i, j) > 0, znpn+1 ipnj is a direct sum of χ1
n(i, j) matrices

of the above form with L = 1 in Bn+1 ∩ B′n ⊗ C(T)pn+1 ipnj ∼= Mχ0
n(i,j) ⊗ C(T)

([7], [11]).
For each n = 1, 2, . . . let

Mα,n = {x ∈ C[0, 1]⊗A | x(0) ∈ An, α(x(0)) = x(1)}.
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Then we obtain the exact sequence of C∗-algebras:

0 −→ SA ιn−→Mα,n
qn−→ An −→ 0

from which follow the exact sequences of abelian groups:
0 −→ Ki(A) −→ Ki+1(Mα,n) −→ Ki+1(An) −→ 0.

Since Ki(An) ∼= Zkn , the above extensions are all trivial.
Let R = Rα and Rn = R ◦ jn∗ : K1(Mα,n) → Aff(TA), where jn is the

embedding of Mα,n into Mα. Since RangeD = RangeRn, we obtain by Lem-
ma 2.4 that

0 −→ kerD ιn∗−→ kerRn
qn∗−→ K1(An) −→ 0

is exact. Note that the inductive limit of these extensions is naturally isomorphic
to the exact sequence:

0 → kerD → kerR→ K1(A) → 0.
We shall specify a homomorphism ϕn of K1(An) into kerRn such that

qn∗ ◦ ϕn = id.
Since α ∈ Inn(A), there exists a un ∈ U(A) for each n such that

α|Bn = Adun|Bn, α(zn) ≈ Adun(zn),

where Bn =
kn⊕
i=1

Bn,i ⊂ An and zn is the canonical unitary of C(T) ⊂ An. Define

hn,i =
1

2πi
log α(zn,i)Adun(zn,i)∗

where zn,i = znpn,i+1−pn,i with pn,i the identity of Bn,i and hn,i = h∗n,i is defined
uniquely as ‖hn,i‖ ≈ 0 since α(zn,i)Adun(z∗n,i) ≈ 1. Define ζn,i ∈ U(Mα,n ⊗M2)
by composing two paths of unitaries:

[0, 1] 3 t 7→ Rt(u∗n ⊕ 1)R−1
t (un ⊕ 1)(zn,i ⊕ 1)(u∗n ⊕ 1)Rt(un ⊕ 1)R−1

t

and
[0, 1] 3 t 7→ e2πithn,iAdun(zn,i)⊕ 1.

Then we have that
qn(ζn,i) = zn,i ⊕ 1, Rn([ζn,i]) = ĥn,i,

where ĥn,i ∈ Aff(TA) is defined by

ĥn,i(τ) = τ(hn,i), τ ∈ TA.
Since the above procedure applies to a unitary znp + 1 − p with p a minimal
projection in Bn, it follows that [ζn,i] ∈ K1(Mα,n) is divisible by [n, i]. Thus one
obtains a homomorphism ϕn of K1(An) into K1(Mα,n) with qn∗ ◦ϕ = id by setting

ϕn : [zn,i] 7−→ [ζn,i].
Lemma 3.2. RangeD is dense in Aff(TA).
Proof. Since A is a simple unital AT algebra of real rank zero, it is ap-

proximately divisible ([8]). Thus this is 3.14 (a) of [3]. (A unital C∗-algebra is
approximately divisible if it has a central sequence {Bn} of unital C∗-subalgebras
with Bn ∼= M2⊕M3 ([3]). Since A is obtained as the inductive limit of {An} all be-
ing T algebras with unital embeddings and the embeddings need to satisfy only the
K-theoretic conditions and the condition of real rank zero ([2]), thanks to Elliott’s
result [7], we can easily arrange the inductive system so that An+1∩A′n ⊃M2⊕M3,
which implies that A is approximately divisible.)
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Let
δn = min inf

i
{τ(pn,i); τ ∈ TA},

where pn,i is the identity of Bn,i. Since A is simple, δn is strictly positive. We
choose the unitary un ∈ A so that ‖hn,i‖ < δn. Since RangeRn = RangeD, we
have, for any ε > 0 with ‖hn,i‖+ ε < δn, projections p± ∈ A such that

1
[n, i]

ĥn,i = D(p+)−D(p−), ‖D(p±)‖ < 1
[n, i]

(‖hn,i‖+ ε),

where D is also regarded as a map of the projections into Aff(TA). (First we ap-
proximate ĥni+/[n, i] byD(p+) with p+ a projection such thatD(p+)−ĥni+/[n, i] >
0 (or strictly positive), where hni+ is the positive part of hn,i. We should note
that ‖ĥni+/[n, i]‖ 6 ‖hn,i‖/[n, i] and find a projection p− such that D(p−) =
D(p+)− ĥn,i/[n, i] ≈ ĥni−/[n, i].) Since D(p±) < δn/[n, i] 6 D(pn,i)/[n, i], we find
projections ei± ∈ pn,iApn,i ∩B′n,i such that

ĥn,i = D(ei+)−D(ei−), ‖D(ei±)‖ < ‖hn,i‖+ ε.

Thus, by making ‖hn,i‖ small, we can make ‖D(ei±)‖ arbitrarily small. Then, by
using Lemma 3.4 below, we can find a unitary wn,i ∈ pn,iApn,i ∩ B′n,i such that
wn,i = wn,ipn,i+1−pn,i, Adwn,i(zn,i) ≈ zn,i, (in the order of ‖hn,i‖), k̂n,i = ĥn,i,
where

kn,i =
1

2πi
log Adwn,i(zn,i)z∗n,i.

Let wn = wn1wn2 · · ·wnkn
. Note that

α(zn,i)Adunwn(z∗n,i) = α(zn,i)Adun(z∗n,i)Adun(zn,iAdwn(z∗n,i))

= e2πihn,iAdun(e−2πikn,i).

Then composing the two paths:

[0, 1] 3 t 7−→ Adun(e−2πitkn,i) and [0, 1] 3 t 7−→ e2πithn,iAdun(e−2πikn,i)

multiplied with Adunwn(zn,i) to the right, we obtain a path U from Adunwn(zn,i)
to α(zn,i) such that

1
2πi

1∫
0

τ(U̇(t)U(t)∗)dt = 0, τ ∈ TA.

Since U is in a small neighbourhood of α(zn,i) ≈ Adunwn(zn,i), it follows that
the unitary ζn,i obtained from zn,i in the same way as before with unwn in place
of un satisfies

Rn([ζn,i]) = 0.

Thus we have shown:
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Lemma 3.3. Suppose that η̃0(α) = 0. Then for any n and ε ∈ (0, 1) there
exists a unitary un ∈ A such that

α|Bn = Adun|Bn, ‖α(zn,i)− zn,i‖ < ε, ĥn,i = 0,

where

hn,i =
1

2πi
log α(zn,i)Adun(z∗n,i).

Hence defining a unitary ζn,i ∈Mα,n ⊗M2 by composing the two paths:

[0, 1] 3 t 7→ Rt(u∗n ⊕ 1)R−1
t (Adun(zn,i)⊕ 1)Rt(un ⊕ 1)R−1

t

and
[0, 1] 3 t 7→ e2πithn,iAdun(zn,i)⊕ 1,

where Rt is defined as before, one can define a homomorphism ϕn of K1(An) into
kerRn by ϕ([zn,i]) = [ζn,i], i = 1, . . . , kn.

Lemma 3.4. If e ∈ pn,iApn,i ∩ B′n,i is a projection such that ‖D(e)‖ is
sufficiently small, then for any ε > 0 there exists a unitary w± ∈ pn,iApn,i ∩B′n,i
such that

‖Adw±(zn,i)− zn,i‖ < 2π‖D(e)‖+ ε, [w±] = 0, B(w±, zn,i) = ±[e].

In particular if k± = (1/2πi) log Ad zn,iw±(z∗n,i), it follows that k̂± = ±D(e).

Proof. To simplify the notation we may suppose that pn,iAn,ipn,i ∩ B′n,i to
be A and zn,i to be the canonical unitary z1 ∈ A1 = C(T).

Since the projection e plays a role only through [e], we may suppose that
e ∈ Am for some m > 1. We will later assume that m is sufficiently large. Since
An ↪→ An+1 are in the standard form, z1pmj in Bmj ⊗ C(T) looks like a direct
sum of elements of the form:

0 zLs
mj

1 ·
. . .

1 0

 ∈MMs
(C(T))

where Ls = ±1, Ms � 1 and∑
s

Ls = χ1
m1(j, 1),

∑
s

Ms = χ0
m1(j, 1) = [m, j].

Note that D(e) takes values in the convex hull of

dim(epmj)
[m, j]

, j = 1, . . . , km,

which are all assumed to be much less than 1. Let tm be the maximum of these
km values. Then tm decreases as m → ∞ and the limit of tm equals τ(e) for
some τ ∈ TA (or ‖D(e)‖). Thus if m is sufficiently large, we may assume that
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tm < ‖D(e)‖ + ε/4π. We can obtain the required unitary wj in Bmj ⊗ C(T) as
the direct sum of elements of the form:

1
ω

ω2

. . .
ωMs−1


where ω = e−2πiNs/Ms and the integers Ns are chosen so that∑

Ns = dim(epmj),
Ns
Ms

≈ dim(epmj)
[m, j]

.

Note that by defining

kj =
1

2πi
log z1pmjAdwj(z∗1pmj),

the Bott element B(wj , z1pmj) ∈ K0(Ampmj) = Z for the almost commuting pair
wj , z1pmj of unitaries in Ampmj = Bmj ⊗ C(T) is equal to

Tr(kj) = Tr
( ⊕

s

Ns
Ms

1s
)

=
∑

Ns = dim(epmj),

where kj ∈ Bmj ⊗C(T) should be evaluated at some (or any) point of T (see [10],
[11], [4]). This shows that

B(wj , z1pmj) = [epmj ],

and in particular that k̂j = D(epmj).
If m is sufficiently large or all Ms are sufficiently large, we can assume that

Ns
Ms

< ‖D(e)‖+ ε/2π.

Thus we obtain the norm estimate

‖Adwj(z1pmj)− z1pmj‖ < 2π‖D(e)‖+ ε.

By taking w+ = w1 +w2 + · · ·+wkm , this completes the proof for w+. For w− we
just replace ω in the definition of wj by ω = e2πiNs/Ms .

By defining ϕn : K1(An) → kerRn as above, we identify kerRn with kerD⊕
K1(An). We now have to translate the natural map kerRn → kerRn+1 into the
map ψn : kerD ⊕K1(An) → kerD ⊕K1(An+1):

0 → kerD → kerD ⊕ K1(An) → K1(An) → 0
‖ ‖ ψ0

n ↙ ↓ χ1
n ↓ χ1

n
0 → kerD → kerD ⊕ K1(An+1) → K1(An+1) → 0

where we have used that ψn must be of the form ψn(a, b) = (a+ ψ0
n(b), χ

1
n(b)).
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Lemma 3.5. If un is a unitary in A and ε ∈ (0, 1) such that

α|Bn = Adun|Bn, ‖α(zn)−Adun(zn)‖ < ε, ĥn,i = 0,

then for any m 6 n and j = 1, . . . , km,

‖α(zmj)−Adun(zmj)‖ < ε,(3.1)

ĥmj = 0,(3.2)

where
hmj =

1
2πi

log α(zmj)Adun(z∗mj).

Proof. By the assumption on the embedding of Am into An, (3.1) follows
immediately. Since the homomorphism ϕn : K1(An) → kerRn can be defined on
[zmj ] in the canonical way andRnϕn([zmj ]) = ĥmj , (3.2) also follows immediately.

Lemma 3.6. The homomorphism ψ0
n : K1(An) → kerD is given by

[zn,i] 7−→ B(u∗n+1un, zn,i),

where [zn,i] = [n, i]ei with (ei)i the canonical basis for Zkn = K1(An) and
B(u∗n+1un, zn,i) is divisible by [n, i].

Proof. First of all we shall show that D(B(u∗n+1un, zn,i)) = 0. If we define
the self-adjoint hi ∈ A by

h1 =
1

2πi
log α(zn,i)Adun+1(z∗n,i),

h2 =
1

2πi
log α(zn,i)Adun(z∗n,i),

h3 =
1

2πi
log zn,iAd (u∗n+1un)(z

∗
n,i),

then ĥ2 = 0 and ĥ1 = 0 by Lemma 3.5 and hence ĥ3 = 0 since

Adun+1(e2πih3) = e−2πih1e2πih2 .

(One way of proving that ĥ3 = 0 is to take a closed path w of unitaries:

w(t) =

 e−6πith1 0 6 t 6 1/3,
e−2πih1e2πi(3t−1)h2 1/3 6 t 6 2/3,
e−2πih1e2πih2Adun+1(e2πi(3t−2)h3) 2/3 6 t 6 1

in a neighbourhood of 1, and compute for any τ ∈ TA,

0 = 1/2πi

1∫
0

τ(ẇ(t)w(t)∗) dt = −τ(h1) + τ(h2)− τ(h3).)

We may suppose that u∗n+1un ∈ Am ∩ B′n for some m > n. In this case
B(u∗n+1un, zn,i) in K0(Am) is defined by

(
TrBmj

(h3pmj)
)
j
, where h3pmj ∈ Bmj ⊗

C(T) is evaluated at a point of T, and ĥ3 = 0 means that for any τ ∈ TA,∑
j

τ(pmj)
TrBmj

(h3pmj)
[m, j]

= 0.
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Define a path vnt, t ∈ [0, 1] of unitaries in A⊗M2 by

vnt = Rt(u∗n ⊕ 1)R−1
t (un ⊕ 1).

Then to compute ψ0
n([zn,i]) we have to calculate

(3.3)
ψ0
n([zn,i]) = ϕn([zn,i])− ϕn+1([zn,i])

= [t 7→ Ad vn,t(zn,i)]− [t 7→ Ad vn+1,t(zn,i)]

in K1(Mα,n+1) where zn,i is identified with zn,i ⊕ 1 (see 2.8 of [11] for a similar
computation). More precisely, we have to add a short path from Adun(zn,i)
(respectively Adun+1(zn,i)) to α(zn,i) to the path t 7→ Ad vn,t(zn,i) (respectively
t 7→ Ad vn+1,t(zn,i)) to get a unitary in Mα,n+1 ⊗M2 and we always understand
the formulae in this way. Note that (3.3) is equal to

[t 7→ Ad vn,t(zn,i)Ad vn+1,t(z∗n,i)]

in K1(SA) ⊂ K1(Mα,n+1) or, by applying t 7→ Ad v∗n+1,t, which induces the identity
map on K1(SA), to [t 7→ v∗n+1,tvn,tzn,iv

∗
n,tvn+1,tz

∗
n,i]. Since

v∗n+1,tvn,t = (u∗n+1 ⊕ 1)Rt(un+1u
∗
n ⊕ 1)R−1

t (un ⊕ 1),

the above element is equal to the class of

t 7→ (un+1z
∗
n,iu

∗
n+1 ⊕ 1)Rt(un+1u

∗
n ⊕ 1)R−1

t (unzn,iu∗n ⊕ 1)Rt(unu∗n+1 ⊕ 1)R−1
t

by applying Ad (un+1z
∗
n,i ⊕ 1). Again this is equal to the class of

t 7→ (u∗nun+1z
∗
n,iu

∗
n+1un ⊕ 1)Rt(u∗nun+1 ⊕ 1)R−1

t (zn,i ⊕ 1)Rt(u∗n+1un ⊕ 1)R−1
t

by applying t 7→ Ad (u∗n ⊕ u∗n). More precisely, we have to add a short path
to connect the value at t = 1, u∗nun+1z

∗
n,iu

∗
n+1unzn,i ⊕ 1 to 1. Since u∗n+1un ∈

Am ∩B′n by the assumption, the path can be taken in Am. The above element in
K1(SAm) = K0(Am) is equal to(

− 1
2πi

TrBmj
log(u∗nun+1z

∗
n,iu

∗
n+1unzn,ipmj)

)
j

=
(

1
2πi

TrBmj log(zn,i(u∗n+1un)z
∗
n,i(u

∗
n+1un)

∗pmj)
)
j

= BAm
(u∗n+1un, zn,i).

Note also that since the non-trivial part of zn,i(u∗n+1un)z
∗
n,i(u

∗
n+1un)

∗ belongs to
pn,iAmpn,i∩B′n,i, each component of BAm

(u∗n+1un, zn,i) is divisible by [n, i]. Then
we obtain that

ψ0
n([zn,i]) = B(u∗n+1un, zn,i), i = 1, . . . , kn,

is a well-defined homomorphism of K1(An) into kerD ⊂ K0(A).
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Lemma 3.7. Suppose that η̃0(α) = 0. Then there exist unitaries un ∈ A
such that

α|Bn = Adun|Bn,
‖α(zm)−Adun(zm)‖ < 2−n, m 6 n,
B(u∗n+1un, zn,i) = 0, i = 1, . . . , kn,
ĥn,i = 0, i = 1, . . . , kn,

where
hn,i =

1
2πi

log α(zn,i)Adun(z∗n,i).

Proof. By the assumption and Proposition 2.5, the sequence of trivial exten-
sions:

0 −→ kerD −→ kerD ⊕ K1(An)
qn−→ K1(An) −→ 0

‖ ‖ ψ0
n ↙ ↓ χ1

n ↓ χ1
n

0 −→ kerD −→ kerD ⊕ K1(An+1)
qn+1−→ K1(An+1) −→ 0

‖ ‖ ↙ ↓ ↓
defines the trivial extension in Ext(K1(A), kerD). Hence we have a homomorphism
h0
n : K1(An) → kerD for each n such that

ψ0
n = h0

n − h0
n+1χ

1
n.

(To see this we denote by E the inductive limit of the middle terms, and by ϕ
a homomorphism of K1(A) into E such that qϕ = id. If ξn denotes the natural
homomorphism of K1(An) into kerD⊕K1(An) composed with kerD⊕K1(An) →
E, ψ0

n is given by ψ0
n = ξn − ξn+1χ

1
n. We set h0

n = ξn − ϕn where ϕn is the
homomorphism K1(An) → K1(A) composed with ϕ : K1(A) → E. Then it follows
that

h0
n − h0

n+1χ
1
n = ξn − ϕn − ξn+1χ

1
n + ϕn+1χ

1
n = ξn − ξn+1χ

1
n = ψ0

n,

where we have used that ϕn = ϕn+1χ
1
n.)

Since h0
n(e

n
i ) ∈ kerD, where (eni )

kn
i=1 is the canonical basis for Zkn = K1(An),

we can find projections eni± ∈ pn,iApn,i ∩B′n,i such that

[n, i]h0
n(e

n
i ) = [eni+]− [eni−]

and ‖D(eni±)‖ is arbitrarily small. (We find a positive g ∈ K0(A) with ‖D(g)‖
sufficiently small and then find projections eni± such that [eni+] = [n, i](g+ h0

n(e
n
i ))

and [eni−] = [n, i]g.) Then, by Lemma 3.4, we find a unitary wn ∈ A ∩ B′n such
that

[wn] = 0, B(wn, zn,i) = −[eni+] + [eni−] = −[n, i]h0
n(e

n
i )

and ‖[wn, zn,i]‖ is arbitrarily small for i = 1, . . . , kn. Since

B(w∗n+1, zn,i) =
∑
j

B(w∗n+1pn+1,j , zn,ipn+1,j)

=
∑
j

χ1
n(j, i)[n, i]B(w∗n+1, zn+1,j)/[n+ 1, j]

=
∑
j

χ1
n(j, i)[n, i]h

0
n+1(e

n+1
j ) = [n, i]h0

n+1χ
1
n(e

n
i ),
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we have that
B(w∗n+1u

∗
n+1unwn, zn,i) = 0.

Since D(B(wn, zn,i)) = 0, we have that k̂i = 0 for ki = (1/2πi) log zn,iAdwn(z∗n,i),
and hence that ĥi = 0 for hi = (1/2πi) log α(zn,i)Adunwn(z∗n,i). Thus by replac-
ing un by unwn, we have the conclusion.

Note that the exact sequence

0 −→ K1(A) −→ K0(Mα) −→ K0(A) −→ 0

is obtained as the inductive limit of
0 −→ K1(A) −→ K0(Mα,n) −→ K0(An) −→ 0

‖ ↓ ψn ↓ χ0
n

0 −→ K1(A) −→ K0(Mα,n+1) −→ K0(An+1) −→ 0.
‖ ↓ ↓

By defining a homomorphism ϕn : K0(An) → K0(Mα,n) just as in Lemma 3.3, we
identify K0(Mα,n) with K1(A)⊕K0(An) and find a homomorphism ψ1

n : K0(An) →
K1(A) as in the following diagram:

0 −→ K1(A) −→ K1(A) ⊕ K0(An) −→ K0(An) −→ 0
‖ ‖ ψ1

n ↙ ↓ χ0
n ↓ χ0

n

0 −→ K1(A) −→ K1(A) ⊕ K0(An+1) −→ K0(An+1) −→ 0.
‖ ‖ ↙ ↓ ↓

Lemma 3.8. The homomorphism ψ1
n : K0(An) → K1(A) is given by

[pn,i] 7→ [u∗n+1unpn,i]

where [pn,i]=[n, i]ei with (ei) the canonical basis for Zkn =K0(An) and [u∗n+1unpn,i]
is divisible by [n, i].

Proof. As in the proof of Lemma 3.6 we have to decide

(3.4) [t 7→ Ad vn,t(pn,i)]− [t 7→ Ad vn+1,t(pn,i)]

in K0(Mα,n+1), where pn,i denotes pn,i ⊕ 0 in A⊗M2. (Note that Adun(pn,i) =
α(pn,i) and Adun+1(pn,i) = pn,i.) Note that the identification of K1(A) with
K0(SA) is done in such a way that [un] corresponds to

[t 7→ Ad vn,t(1⊕ 0)]− [(1⊕ 0)]

([1], 8.2.2). Since

[t 7→ Ad vn,t(pn,i)] = [t 7→ Ad vn,t(1⊕ 0)]− [t 7→ Ad vn,t(1− pn,i)],

(3.4) equals

[t 7→ Ad vn,t(1⊕ 0)]− [t 7→ Ad (vn,t(1− pn,i) + vn+1,tpn,i)(1⊕ 0)]

= [un]− [un(1− pn,i) + un+1pn,i] = [u∗n+1unpn,i],

where we have used the fact that

t 7→ vn,t((1− pn,i)⊕ (1− α(pn,i)) + vn+1,t(pn,i ⊕ α(pn,i))
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is a path of unitaries from 1⊕ 1 to

(un(1− pn,i) + un+1pn,i)⊕ (u∗n(1− α(pn,i)) + u∗n+1α(pn,i)).

Lemma 3.9. Suppose that η̃(α) = 0. Then there is a unitary un∈A for each
n such that

α|Bn = Adun|Bn, ‖α(zm)−Adun(zm)‖ < 2−n, m 6 n,

B(u∗n+1un, zn,i) = 0, [u∗n+1unpn,i] = 0, ĥn,i = 0

for i = 1, . . . , kn, where

hn,i =
1

2πi
log α(zn,i)Adun(z∗n,i).

Proof. Comparing with Lemma 3.7, the newly appeared conditions are only

[u∗n+1unpn,i] = 0.

We will find a unitary wn ∈ A∩B′n such that [wn, zn] = 0 and the above conditions
are satisfied by replacing all un by unwn. With the condition [wn+1, zn+1] = 0, it
follows that [wn+1, zn] = 0 and that the other conditions are preserved.

From the assumption that

0 −→ K1(A) −→ K0(Mα) −→ K0(A) −→ 0

is trivial, we have a homomorphism h1
n : K0(An) → K1(A) for each n such that

ψ1
n = h1

n − h1
n+1χ

0
n.

We only have to find a unitary wn ∈ A ∩B′n such that [wn, zn] = 0 and

[wnpn,i] = −[n, i]h1
n(ei), i = 1, . . . , kn.

Since znpn,i in pn,iAmpn,i ∩B′n,i for m > n is a direct sum of elements of the form
0 zLn+1pn,i
1 ·

. . . . . .
1 0


with L = ±1, this follows immediately.

Proof of (i)⇒ (ii) of Theorem 3.1. Under the assumption (i) we have found a
sequence {un} of unitaries as in the previous lemma. Now we apply the homotopy
lemma to the pair u∗n+1unpn,i, znpn,i of unitaries in pn,iApn,i∩B′n,i ([4], 8.1): From
the conditions

B(u∗n+1un, zn,i) = 0, [u∗n+1unpn,i] = 0

calculated in pn,iApn,i∩B′n,i, that follow since K∗(pn,iApn,i∩B′n,i) → K∗(pn,iApn,i)
→ K∗(A) are injective, and the condition ‖[u∗n+1un, zn]‖ → 0 as n→∞, we obtain
a continuous path vn,i;t of unitaries in pn,iApn,i ∩B′n,i such that

vn,i;0 = pn,i, vn,i;1 = u∗nun+1pn,i

and
max
t
‖[vn,i;t, zn,i]‖ −→ 0 as n→∞.
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Let vn;t =
∑
i

vn,i;t, and define a continuous path vt of unitaries for t ∈ [1,∞) by

v1 = u1,

vn+t = unvn;t, 0 6 t 6 1

for n = 1, 2, . . . . Then since max
t
‖[vn;t, zm]‖ −→ 0 as n → ∞, we obtain that

for any m, lim
t→∞

Ad vt(zm) = α(zm). We also have that for t > m and a ∈ Bm

Ad vt(a) = α(a). Thus it follows that for any x ∈ A lim
t→∞

Ad vt(x) = α(x). This
completes the proof.

4. MAIN THEOREM

Proposition 4.1. If ϕ ∈ Hom(K1(A),Aff(TA)), there exists an automor-
phism α ∈ Inn(A) such that η(α) is trivial and the rotation map Rα : K1(Mα) →
Aff(TA) is given by

Rα(a, b) = D(a) + ϕ(b)

for some identification of K1(Mα) with K0(A)⊕K1(A).

To prove this we first prepare:

Lemma 4.2. If ϕ ∈ Hom(K1(A),Aff(TA)), there exists an inductive system

Zk1
χi

1−→ Zk2
χi

2−→ Zk3 −→ · · ·

whose limit is isomorphic to Ki(A) for i = 0, 1 and homomorphisms hn : Zkn →
Zkn+1 such that

|ϕ ◦ χ1
∞,n−1(e

n−1
j )−D ◦ χ0

∞,n ◦ hn−1(en−1
j )| < 2−n+1`−1

n−1D ◦ χ0
∞,n−1(e

n−1
j ),

|hn−1 ◦ χ1
n−2(e

n−2
j )− χ0

n−1 ◦ hn−2(en−2
j )| < 2−n+3`−1

n−2χ
0
n,n−2(e

n−2
j ),

|χ0
n(i, j)| > 2n+1 max(|χ1

n(i, j)|, 1),

where that |x| < y for x, y ∈ Zkn means that |xi| < yi for all i, (enj )j is the
canonical basis for Zkn ,

`n = max{[n, j] | j = 1, . . . , kn},

and ([n, j])j ∈ Zkn corresponds to [1] ∈ K0(A).

Proof. Suppose that we are given inductive systems

Zk1
χi

1−→ Zk2 −→ · · ·

such that the limit is isomorphic to Ki(A) for i = 0, 1, and

χ0
n(i, j) > 2n+1 max(|χ1

n(i, j)|, 1).

By passing to a subsequence we construct the homomorphisms hn with the required
properties.
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Suppose that we have constructed h1, . . . , hn−1 and fixed Zk1 , . . . ,Zkn . Then
we compute `n and find ξ : Zkn → K0(A) such that

|ϕχ1
∞,n(e

n
j )−Dξ(enj )| < 2−n`−1

n Dχ0
∞,n(e

n
j ).

This is obviously possible by the density of RangeD and

inf
τ∈TA

Dχ0
∞,n(e

n
j )(τ) > 0.

Then we find an m > n such that Range ξ ⊂ Rangeχ0
∞,m, and η : Zkn → Zm such

that
Zkn

η−→ Zm
ξ ↘ ↙ χ0

∞,m

K0(A)
is commutative. Note

|Dχ0
∞,mηχ

1
n−1(e

n−1
j )−Dχ0

∞,nhn−1(en−1
j )|

6 |Dχ∞,mηχ
1
n−1(e

n−1
j )− ϕχ1

∞,n−1(e
n−1
j )|

+ |ϕχ1
∞,n−1(e

n−1
j )−Dχ0

∞,nhn−1(en−1
j )|

< 2−n`−1
n

kn∑
i=1

Dχ0
∞,n(e

n
i )|χ1

n−1(i, j)|+ 2−n+1`−1
n−1Dχ

0
∞,n−1(e

n−1
j )

< 2−n`−1
n

∑
i

Dχ0
∞,n(e

n
i )χ

0
n−1(i, j) + 2−n+1`−1

n−1Dχ
0
∞,n−1(e

n−1
j )

< (2−n`−1
n + 2−n+1`−1

n−1)Dχ
0
∞,n−1(e

n−1
j )

< 2−n+2`−1
n−1Dχ

0
∞,n−1(e

n−1
j ).

Thus by choosing a sufficiently large ` > m it follows that

|χ0
`,mηχ

1
n−1(e

n−1
j )− χ0

`,nhn−1(en−1
j )| < 2−n+2`−1

n−1χ
0
`,n−1(e

n−1
j ).

By taking Zk` for Zkn+1 and χ0
`,mη for hn, the lemma is proved.

Proof of Proposition 4.1. By the previous lemma we have the following
diagram:

−→ Zkn
χ1

n−→ Zkn+1 −→ · · · −→ K1(A)
↘ hn ↘ hn+1

−→ Zkn
χ0

n−→ Zkn+1 −→ Zkn+2 −→ · · · −→ K0(A)

with the specified properties. Accordingly, we construct an increasing sequence
{An} of T algebras such that

An = Bn ⊗ C(T), Bn =
kn⊕
i=1

Bn,i, Bn,i ∼= M[n,i]

and the embeddings of An into An+1 are in the standard form. By Elliott’s theory

([7]), we identify
∞⋃
n=1

An with A.
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Define ψ0
n : K1(An) → K0(An+2) by

ψ0
n = hn+1χ

1
n − χ0

n+1hn.

By the properties specified in Lemma 4.2 we have that

|ψ0
n(i, j)| < 2−n+1`−1

n χ0
n+2,n(i, j).

Then, by Lemma 3.4 (and its proof), we find a unitary wnj ∈ Bn+2∩B′n such that

wnj = wnjpnj + 1− pnj ,

‖Adwnj(znj)− znj‖ 6 3π2−n+1,

B(wnj , znj) = −[n, j]ψ0
n(e

n
j ).

(Because znj in Bn+2,i ⊗ C(T) is a direct sum of elements of the form as in the
proof of Lemma 3.4 such that the matrix sizes Ms are at least 22n; hence the error
introduced by choosing Ns in that proof will be of the order 2−2n.) If wn denotes
wn1wn2 · · ·wnkn

, then we have that

wn ∈ Bn+2 ∩B′n, ‖Adwn(zn)− zn‖ 6 3π2−n+1,

B(wn, znj) = −[n, j]ψ0
n(e

n
j ), [wnpnj ] = 0.

We define the following two automorphisms β0, β1 of A by

β0 = lim
n→∞

Ad (w2w4 · · ·w2n), β1 = lim
n→∞

Ad (w1w3 · · ·w2n−1).

To show the limits exist, note that [wm, wn] = 0 if |m − n| > 2 and the limits

obviously exist on
∞⋃
n=1

Bn. Since Ad (wnwn+2 · · ·wn+2k)(zn) in An+2k+2 is a direct

sum of elements of the form
0 zLn+2k+2
1 ·

. . . . . .
1 0


with L = ±1, we have that

‖Ad (wn · · ·wn+2kwn+2k+2)(zn)−Ad (wn · · ·wn+2k)(zn)‖ < 3π2−(n+2k+1).

Then it also follows that the limits exist on z1, z2, . . .. Since the same reasoning
applies to the inverses, we have shown that β0, β1 exist as automorphisms.

Now we shall show that the product β0β1 has the required properties.
By [11], 2.4, the extension η1(βi)

0 −→ K1(A) −→ K0(Mβi
) −→ K0(A) −→ 0

is trivial for i = 0, 1 and the extension η0(βi)

0 −→ K0(A) −→ K1(Mβi) −→ K1(A) −→ 0

is given as the inductive limit of

0 −→ Zkn −→ Zkn ⊕ Zkn −→ Zkn −→ 0
χ0

n+2,n ↓ ↓ ψ0
n ↙ ↓ ↓

0 −→ Zkn+2 −→ Zkn+2 ⊕ Zkn+2 −→ Zkn+2 −→ 0
↓ ↓ ↙ ↓ ↓
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with n ≡ i (mod 2). Hence η1(β0β1) = η1(β0) + η1(β1) = 0. We will compute
η0(β0) + η0(β1) below.

Define
E = {(x, y) ∈ K1(Mβ0)⊕K1(Mβ1) | q(x) = q(y)}/{(a,−a) | a ∈ K0(A)}.

If g ∈ K1(A) is the image of x2n+1 ∈ Zk2n+1 , define ηn : Rangeχ1
∞,2n+1 →

K1(Mβ0)⊕K1(Mβ1) by
ηn(g) = (h2n+1(x2n+1), x2n+2)⊕ (0, x2n+1),

where the right hand side should be regarded as an element of K1(Mβ0)⊕K1(Mβ1).
Then

ηn+1(g)− ηn(g)

= (h2n+3(x2n+3)− ψ0
2n+2(x2n+2)− χ0

2n+4,2n+2h2n+1(x2n+1), 0)

⊕ (−ψ0
2n+1(x2n+1), 0)

= (χ0
2n+3h2n+2(x2n+2)− χ0

2n+4,2n+2h2n+1(x2n+1), 0)

⊕ (−h2n+2(x2n+2) + χ0
2n+2h2n+1(x2n+1), 0).

Thus (ηn) gives a well-defined homomorphism η : K1(A) → E such that qη = id.
This shows that η0(β0β1) = 0.

Let un = wnwn−2 · · ·. We take a path v(t) of unitaries in A ⊗M2 from znj
to β0(znj) by composing the following two paths for even m > n:

v1(t) = Rt(1⊕ um)R−1
t (znj ⊕ 1)Rt(1⊕ u∗m)R−1

t ,

and a short path v2 from Adum(znj) to β0(znj). For τ ∈ TA we want to compute

1
2πi

1∫
0

τ(v̇(t)v(t)∗)dt.

We know the contribution from v1 is zero and the contribution from v2 is given by

lim
k→∞

τ(B(w∗m+2w
∗
m+4 · · ·w∗m+2k, znj))=lim τ

( k∑
i=1

χ0
∞,2m+2i+2ψ

0
m+2iχ

1
m+2i,n(e

n
j )

)
.

Thus we obtain that

Rβ0([v]) =
∞∑
i=1

Dχ0
∞,2m+2i+2ψ

0
m+2iχ

1
m+2i,n(e

n
j ).

A similar computation applies to β1. For an odd n we let m = n−1 for computing
r0 = Rβ0([v]) and let m = n for computing the corresponding r1, and obtain that

r0 + r1 =
∞∑
i=1

Dχ0
∞,n+i+2ψ

0
n+iχ

1
n+i,n(e

n
j )

=
∞∑
i=1

(
Dχ0

∞,n+i+2hn+i+1χ
1
n+i+1,n(e

n
j )−Dχ0

∞,n+i+1hn+iχ
1
n+i,n(e

n
j )

)
= ϕχ1

∞,n(e
n
j )−Dχ0

∞,n+1hn+1χ
1
n(e

n
j ).

Under the identification of K1(Mβ0β1) with K0(A) ⊕ K1(A) specified above, the
above element corresponds to (−hn+1χ

1
n(e

n
j ), [znj ]). This implies that Rβ0β1 sat-

isfies the required properties.
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Let Q be the homomorphism of OrderExt(K1(A),K0(A)) into Ext(K1(A),
K0(A)) defined by [(E,R)] 7→ [E]. Then kerQ is the subgroup of the isomorphism
classes of (E0, Rϕ) where E0 is the trivial extension K1(A) ⊕ K0(A), and Rϕ :
E0 → Aff(TA) is determined by ϕ ∈ Hom(K1(A),Aff(TA)) as in the previous
proposition:

Rϕ : (a, b) 7→ D(a) + ϕ(b).

Proposition 4.3. The following sequences of abelian groups are exact:

0 −→ kerQ −→ OrderExt(K1(A),K0(A))
Q−→ Ext(K1(A),K0(A)) −→ 0,

0 −→ Hom(K1(A), kerD) −→ Hom(K1(A),K0(A))

−→ Hom(K1(A),Aff(TA)) −→ kerQ −→ 0.

Proof. For the first sequence we only have to show that Q is surjective. Given
an extension

0 −→ K0(A) −→ E −→ K1(A) −→ 0,

we regard K0(A) as a subgroup of E and have to extend D : K0(A) → Aff(TA) to
a homomorphism R : E → Aff(TA). This can be done step by step by using the
fact that Aff(TA) is divisible.

For the second sequence we only have to show that (E0, Rϕ) and (E0, Rψ)
are isomorphic if and only if ϕ = ψ + D ◦ h for some h ∈ Hom(K1(A),K0(A)).
This follows because an isomorphism µ : E0 → E0 is given by

µ : (a, b) 7→ (a+ h(b), b)

for some h ∈ Hom(K1(A),K0(A)) with Rψ ◦ µ = Rϕ.

Theorem 4.4. Let A be a simple unital AT algebra of real rank zero, Inn(A)
the group of approximately inner automorphisms of A, and AInn(A) the group of
asymptotically inner automorphisms of A. Then AInn(A) is a normal subgroup of
Inn(A) and the quotient Inn(A)/AInn(A) is isomorphic to

OrderExt(K1(A),K0(A))⊕ Ext(K0(A),K1(A))

with isomorphism induced by η̃.

Proof. Before Theorem 3.1 we have described the homomorphism

η̃ : Inn(A) → OrderExt(K1(A),K0(A))⊕ Ext(K0(A),K1(A)),

and showed in Theorem 3.1 that ker η̃ = AInn(A). By 3.1 of [11] we have
shown that η = (η0, η1) = (Qη̃0, η1) is surjective onto Ext(K1(A),K0(A)) ⊕
Ext(K0(A),K1(A)). By Proposition 4.1 we know that Range η̃ contains kerQ,
which shows that η̃ is surjective. This completes the proof.
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Example 4.5. If A is the irrational rotation C∗-algebra generated by uni-
taries u, v with uvu∗v∗ = e2πiθ1 for some irrational number θ ∈ (0, 1), then A is
a simple unital AT algebra of real rank zero by [9], and Ki(A) ∼= Z2 and hence
Ext(Ki(A),Ki+1(A)) = 0. But since A has only one tracial state and RangeD =
Z+θZ, it follows that Hom(K1(A),Aff(TA)) ∼= R2 and OrderExt(K1(A),K0(A)) ∼=
R2/(Z + θZ)2 which is isomorphic to Inn(A)/AInn(A). Note also that HInn(A) =
Inn(A) in this case since the natural T2 action on A exhausts all OrderExt.
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