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Abstract. Let W be a Hilbert H∗-module over an H∗-algebra E . We show
that all bounded E-linear operators on W are reduced by a suitable Hilbert
space contained in W . This enables us to describe bounded E-linear operators
by lifting the appropriate results from Hilbert space theory. In particular,
generalized compact E-linear operators are characterized.
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INTRODUCTION

A Hilbert H∗-module W over an H∗-algebra E is a left E-module which possesses
a τ(E)-valued product. In the same time W is a Hilbert space with the inner
product given by the action of the trace on the τ(E)-valued product.

The notion is introduced by Saworotnow in [9] under the name of generalized
Hilbert space. It has been studied by Smith, Molnár, Cabrera, Mart́ınez and
Rodŕıguez and others.

In contrast to the more general Hilbert modules over C∗-algebras two special
features of Hilbert H∗-modules are of particular importance:

— each H∗-module is a Hilbert space by itself,
— each H∗-module has an E-orthonormal basis.
The existence of an orthonormal basis in H∗-modules is proved in [4] (see

also [7]). There is a simple but remarkable idea behind the construction: an or-
thonormal basis consists of so called basic vectors which are supported by minimal
projections in E . As an application, the theory of Hilbert-Schmidt operators on
Hilbert H∗-modules is developed.

In the present paper we discuss bounded E-linear operators on Hilbert H∗-
modules in general.

According to the structural results of Smith our discussion can be essentially
reduced to the case when the underlying H∗-algebra is topologically simple. The
first important step is contained in our Lemma 1.4: each H∗-module over a simple
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H∗-algebra has an orthonormal basis whose all members have the same supporting
minimal projection. This leads to the discovery of a Hilbert space, denoted by We

(see Lemmas 2.7 and 2.8 below) which is contained as a subspace in W . All
bounded E-linear operators are reduced by We. Remarkably, We contains all
information about each bounded E-linear operator on W . It turns out that each
bounded E-linear operator is, roughly speaking, the E-homogenous extension of its
restriction to We. More precisely, our Theorem 2.10 states that the algebra of all
bounded E-linear operators on W and the algebra of all bounded linear operators
on We are naturally isomorphic as C∗-algebras.

This enables us to apply Hilbert space theory by lifting results from the
Hilbert space We to the whole H∗-module W .

In Theorems 2.12 and 2.14 generalized compact E-linear operators are de-
scribed. Also, generalized Fredholm operators are introduced and an analogue of
Atkinson’s theorem is proved.

The paper is organized as follows:
In Section 1 our notation is fixed and some preliminary results are given.

Also, the weak convergence in H∗-modules is briefly discussed.
In Section 2 the associated Hilbert space We is introduced and described.

After that our results on bounded E-linear and generalized compact operators are
given.

1. BASIC NOTIONS AND PRELIMINARY RESULTS

An H∗-algebra E is a complex associative Banach algebra E with involution, whose
underlying Banach space is a Hilbert space (E , 〈 ·|· 〉) which has an involution a 7→
a∗, such that 〈ab|c〉 = 〈b|a∗c〉 = 〈a|cb∗〉 for all a, b, c ∈ E .

A proper H∗-algebra is an H∗-algebra with zero annihilator.
The trace-class in a proper H∗-algebra E is defined as the set τ(E) = {ab :

a, b ∈ E}. It is known that τ(E) is an ideal of E which is a Banach ∗-algebra
under a suitable norm τ(·). The norm τ is related to the given norm ‖ · ‖ on E
by τ(a∗a) = ‖a‖2 for all a ∈ E . There exists a continuous linear form tr on τ(E)
(called the trace) satisfying tr(ab) = tr(ba) = 〈a|b∗〉 for all a, b ∈ E . In particular,
tr(aa∗) = tr(a∗a) = 〈a|a〉 = ‖a‖2 = τ(a∗a), ∀a ∈ E .

A projection is a selfadjoint idempotent e in E ; e is called minimal if e 6= 0
and eEe = Ce.

Each simple H∗-algebra (that is, an H∗-algebra without nontrivial closed
two-sided ideals) contains minimal projections. It is known that all minimal pro-
jections in a simple H∗-algebra have equal norms. Also, we shall need the following
result ([1], Theorem 4.3):

Let E be a simple H∗-algebra and let (eλ), λ ∈ Λ, be any family of minimal
projections in E . Then there exists a family of partial isometries (gλ,µ), λ, µ ∈ Λ,
with the following properties:

(p-i) eλEeµ = Cgλ,µ, ∀λ, µ ∈ Λ;
(p-ii) eλ = gλ,λ, ∀λ ∈ Λ;
(p-iii) gλ,µgµ,ν = gλ,ν , ∀λ, µ, ν ∈ Λ;
(p-iv) gλ,µ = g∗µ,λ, ∀λ, µ ∈ Λ;
(p-v) ‖gλ,µ‖ = ‖gυ,ν‖, ∀λ, µ, υ, ν ∈ Λ.
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Actually, Theorem 4.3 from [1] states that each simple H∗-algebra E is the
full algebra HS(H)α of Hilbert-Schmidt operators on some Hilbert space H of
suitable dimension. Consequently, the set of all minimal projections in E coincides
with the set of all orthogonal projections of rank 1 and all of them have the norm
equals to α for some α > 1.

If a proper H∗-algebra is not simple, then, by Theorem 4.2 from [1], it is the
orthogonal sum E =

⊕
i∈I

Ei where each Ei is a simple H∗-algebra. By the preceding

identification we have E =
⊕
i∈I

HS(Hi)αi .

Let us observe that the family (αi) must be bounded. Indeed, if the family
(αi) contains an unbounded sequence (αik

) an easy argument from Hilbert spaces
(see [6], Problem 41) gives a contradiction with the completeness of E .

After all we conclude: the set Pm(E) of all minimal projections in a proper
H∗-algebra E is bounded.

Definition 1.1. A Hilbert E-module is a left module W over a proper H∗-
algebra E provided with a mapping [·|·] : W × W → τ(E) (called τ(E)-valued
product) which satisfies the following conditions:

(m-i) [αx|y] = α[x|y], ∀α ∈ C, ∀x, y ∈ W ;
(m-ii) [x + y|z] = [x|z] + [y|z], ∀x, y, z ∈ W ;
(m-iii) [ax|y] = a[x|y], ∀a ∈ E , ∀x, y ∈ W ;
(m-iv) [x|y]∗ = [y|x], ∀x, y ∈ W ;
(m-v) ∀x ∈ W , x 6= 0, ∃a ∈ E , a 6= 0, such that [x|x] = a∗a;
(m-vi) W is a Hilbert space with the inner product (x|y) = tr

(
[x|y]

)
.

For the basic facts about Hilbert H∗-modules we refer to [4], [9] and [10]. In
particular, we shall frequently use the following three immediate consequences of
the above definition:

‖x‖2 = tr
(
[x|x]

)
= τ

(
[x|x]

)
∀x ∈ W,∥∥[x|y]

∥∥ 6 τ
(
[x|y]

)
6 ‖x‖ ‖y‖, ∀x, y ∈ W,

‖ax‖ 6 ‖a‖ ‖x‖, ∀a ∈ E , ∀x ∈ W.

Definition 1.2. An element u ∈ W is said to be a basic element if there
exists a minimal projection e ∈ E (called the supporting projection) such that
[u|u] = e. An orthonormal system in W is a family of basic elements (uλ), λ ∈ Λ
satisfying [uλ|uµ] = 0 for all λ, µ ∈ Λ, λ 6= µ. An orthonormal basis in W is an
orthonormal system generating a dense submodule of W .

We recall from [4] (and [7]) that each Hilbert H∗-module contains basic
elements, orthonormal systems and orthonormal bases. Moreover, all orthonormal
bases for W have the same cardinal number called the hilbertian dimension of W
over E and denoted by E-dim W .

If (vλ), λ ∈ Λ, is an orthonormal basis for W then the following two equivalent
conditions are satisfied for each x ∈ W :

x =
∑

λ

[x|vλ]vλ, (Fourier expansion)

[x|x] =
∑

λ

[x|vλ] [x|vλ]∗, (Parseval’s identity).
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In particular, since the trace is continuous, this implies ‖x‖2 =
∑
λ

∥∥[x|vλ]
∥∥2,

∀x ∈ W .
Let us observe that basic elements, in general, do not belong to the unit

sphere because minimal projections may have norm greater then 1. However, the
set of all basic elements in a Hilbert H∗-module must be bounded.

Proposition 1.3 Let W be a Hilbert module over an H∗-algebra E. The
set M(E) of all basic elements in W is bounded.

Proof. Let us denote sup{‖e‖ : e ∈ Pm(E)} = M and take v ∈ M(E),
[v|v] = e ∈ Pm(E). Then ‖v‖2 = tr e = ‖e‖2 6 M2.

Given any orthonormal basis (vλ), λ ∈ Λ, the supporting projections eλ =
[vλ|vλ] are, in general, different. The first remarkable fact we shall prove is that
each Hilbert H∗-module over a simple H∗-algebra possesses an orthonormal basis
(wλ), λ ∈ Λ, such that all its members wλ have the same supporting minimal
projection. First, we need a lemma which slightly improves Lemma 1.3 from [4]
(see also Lemma 1 in [7]).

Lemma 1.4. Let W be a Hilbert H∗-module over an arbitrary H∗-algebra E,
let e ∈ E be a projection (not necessarily minimal) and let x ∈ W be such that
[x|x] = e. Then ex = x.

Proof. [ex− x|ex− x] = e3 − e2 − e2 + e = 0 implies x− ex = 0.

Proposition 1.5. Let W be a Hilbert H∗-module over a simple H∗-algebra
E and let e0 ∈ E be a minimal projection. Then there exists an orthonormal basis
(wλ), λ ∈ Λ for W such that [wλ|wλ] = e0 for all λ ∈ Λ.

Proof. Let (vλ), λ ∈ Λ, be an arbitrary orthonormal basis for W such that
[vλ|vλ] = eλ for all λ ∈ Λ. Let (gλ,µ), λ, µ ∈ Λ′ = Λ ∪ {0}, be the family of
partial isometries satisfying conditions (p-i)–(p-v). Let us define wλ = g0,λvλ,
∀λ ∈ Λ. Obviously, [wλ|wλ] = g0,λ[vλ|vλ]g∗0,λ = g0,λgλ,λgλ,0 = g0,0 = e0 ∀λ ∈ Λ
and [wλ|wµ] = 0 for λ 6= µ.

It remains to show that the orthonormal system (wλ), λ ∈ Λ, generates a
dense submodule of W . Let x ∈ W satisfy [x|wλ] = 0, ∀λ ∈ Λ. Then, for each
λ ∈ Λ, we have [x|g0,λvλ] = 0 ⇒ [x|gλ,0g0,λvλ] = 0 ⇒ [x|eλvλ] = 0. By Lemma
1.4 this implies [x|vλ] = 0, hence x = 0.

Remark 1.6. A Hilbert H∗-module over an H∗-algebra E is said to be
faithful if it has zero annihilator in E . Since the annihilator of a Hilbert H∗-module
is a closed two-sided ideal in E , one can always regard any Hilbert H∗-module as a
faithful H∗-module over the orthogonal complement of its annihilator. Therefore,
all Hilbert H∗-modules can be assumed faithful without loss of generality.

We recall from [10] (see also [4]) that for each faithful Hilbert H∗-module over
a proper H∗-algebra E there exists a family (Wi), i ∈ I, of Hilbert H∗-modules,
where each Wi is a Hilbert H∗-module over a simple H∗-algebra Ei (contained as
a minimal two-sided ideal in E), such that W is equal to the mixed product of the
family (Wi), i.e.

W = X
i∈I

Wi =
{
{wi} ∈

∏
i∈I

Wi :
∑
i∈I

‖wi‖2 < ∞
}

.
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Now one can apply Proposition 1.5 in each Wi: there exists an orthonormal basis
(wλ,i), λ ∈ Λ, with the same supporting projections ei ∈ Ei.

In the last part of this section we briefly discuss the weak convergence in
Hilbert H∗-modules.

Definition 1.7. A sequence (or net) (xn) converges weakly to x ∈ W in a
Hilbert H∗-module W if [x|y] = lim

n
[xn|y], ∀y ∈ W . We denote weak convergence

by xn
[w]−→ x.

Remark 1.8. Since the trace is continuous each weakly convergent sequence
in a Hilbert H∗-module W also converges weakly (in the usual sense) in the Hilbert
space (W, ( ·|· )), and therefore it must be bounded.

If (vλ), λ ∈ Λ, is any orthonormal system in W then Parseval’s identity

applied in a closed submodule generated by all vλ’s forces vλ
[w]−→ 0 in the sense of

”vanishing at infinity” (i.e. ∀y, ε > 0 the set
{
λ ∈ Λ :

∥∥[vλ|y]
∥∥ > ε

}
is finite).

Proposition 1.9. Let W be a Hilbert H∗-module. Each bounded sequence
of mutually orthogonal elements in W weakly converges to 0.

Proof. Let (xn) be a sequence in W such that [xn|xm] = 0, ∀n 6= m and
‖xn‖ 6 C, ∀n, for some C > 0. Let Wn be the closed submodule generated

by the element xn and suppose W =
∞⊕

n=0
Wn with W0 denoting the orthogonal

complement of the closed submodule spanned by {xn : n ∈ N}. Now, for an

arbitrary element w = (wn) ∈ W , we have
∞∑

n=0

∥∥[w|xn]
∥∥2 =

∞∑
n=0

∥∥[wn|xn]
∥∥2

6

∞∑
n=0

‖wn‖2‖xn‖2 6 C2
∞∑

n=0
‖wn‖2 = C2‖w‖2.

Remark 1.10. The proof of the above proposition cannot be based on the
direct application of Parseval’s identity to the sequence (xn/‖xn‖). Namely, nei-
ther xn’s, nor their scalar multiples are (in general) basic elements. This becomes
clear through the following phenomenon which serves as a remarkable difference
between Hilbert H∗-modules and Hilbert spaces: the hilbertian dimension of a
submodule Wx generated by an element x can be greater than 1 (even infinite).
In fact, E-dim Wx is equal to the cardinal number of the set J of indices such
that [x|x] =

∑
λ∈J

αλeλ where eλ’s are orthogonal minimal projections in E and

αλ > 0. Namely, x =
∑

λ∈J
α

1/2
λ xλ with respect to the orthonormal system (xλ)λ∈J ,

xλ = α
−1/2
λ eλx.
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2. BOUNDED OPERATORS ON HILBERT H∗-MODULES

Definition 2.1. Let W be a Hilbert module over an H∗-algebra E . An
operator A : W → W is called E-linear if it is linear and satisfies A(ax) = aAx,
∀a ∈ E , ∀x ∈ W . The set of all bounded E-linear operators on W is denoted by
BE(W ).

It is well known ([9]) that each A ∈ BE(W ) has an adjoint A∗ ∈ BE(W ) in
the sense [Ax|y] = [x|A∗y], ∀x, y ∈ W . BE(W ) is a C∗-algebra contained in the
algebra B(W ) of all bounded operators on W .

The strong (respectively weak) convergence of operators on Hilbert H∗-
modules is defined in the standard way. It is easy to see that BE(W ) is also
closed in B(W ) in the strong and weak operator topology, respectively.

Definition 2.2. Let W be a Hilbert H∗-module, let v, w ∈ W be basic
vectors and let the operator Fv,w : W → W be defined with Fv,w(x) = [x|w]v.
The linear span of the set {Fv,w : v, w ∈ W} is denoted by FE(W ) and an operator
A belonging to FE(W ) is called a generalized finite rank operator.

Observe that FE(W ) ⊆ BE(W ) and F ∗
v,w = Fw,v, AFv,w = FAv,w, Fv,wA =

Fv,A∗w, ∀v, w ∈ W , ∀A ∈ BE(W ). Therefore FE(W ) is a selfadjoint two-sided
ideal in BE(W ).

The above definition imitates the definition of Hilbert space finite rank op-
erators, but, as we observed in Remark 1.10, the range of an operator Fx,y may
fail to have finite hilbertian dimension. However, if x ∈ W is a basic element, the
operator Fx,x has a range whose hilbertian dimension is exactly 1. In fact, Fx,x is
the orthogonal projection to the closed submodule Wx generated by x. Of course,
the range of Fx,x regarded as a linear space may still be infinite dimensional. We
shall illustrate this by the following example:

Example 2.3. Let (H, ( ·|· )) be an infinite dimensional Hilbert space and
let HS(H) be the standard H∗-algebra of Hilbert-Schmidt operators on H. Let
us denote by Θx,y the classical rank 1 operator on H: Θx,y(z) = (z|y)x.

It is well known that H may be regarded as an H∗-module over HS(H).
Given x ∈ H and T ∈ HS(H), Tx is interpreted as the action of T . The HS(H)-
valued product on H is defined by [x|y] = Θx,y. Since trΘx,y = (x|y) we conclude
that the resulting norm on H coincides with the original one.

One can easily see that HS(H)-dim H = 1. Further, Fx,x = I, ∀x ∈ H,
‖x‖ = 1 (I denotes the identity operator on H) and FHS(H)(H) = BHS(H)(H) =
{αI : α ∈ C}.

Definition 2.4. An operator A ∈ BE(W ) is said to be a generalized compact
operator if there exists a sequence of generalized finite rank operators (Fn) such
that lim

n
Fn = A. The set of all generalized compact operators is denoted by

KE(W ).

By definition, KE(W ) = FE(W ) ( denotes the topological closure), thus
KE(W ) is a closed selfadjoint two-sided ideal in BE(W ).
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Remark 2.5. Let W be a Hilbert H∗-module over an H∗-algebra E . Ac-
cording to Remark 1.6, W = X

i∈I
Wi where (Wi), i ∈ I, is a family of Hilbert

H∗-modules, and each Wi is a module over a simple H∗-algebra Ei.
Obviously, Wi = EiW (Ei being canonically embedded in E =

⊕
i∈I

Ei), ∀i ∈ I.

This implies AWi ⊆ Wi, ∀i ∈ I, ∀A ∈ BE(W ). Since the same holds true for A∗

we conclude that each operator A ∈ BE(W ) is reduced by all Wi’s and therefore

BE(W ) =
⊕
i∈I

BEi(Wi) =
{
{Ai} ∈

∏
i∈I

BEi(Wi) : sup
i∈I

‖Ai‖ < ∞
}

.

The obtained decomposition of the C∗-algebra of all bounded E-linear oper-
ators enables us to reduce our discussion to the case of Hilbert H∗-modules over
simple H∗-algebras.

Definition 2.6. Let W be a Hilbert H∗-module over E . For each a ∈ E we
define the left translation La : W → W by Lax = ax, ∀x ∈ W .

Obviously, each La is a bounded linear operator, but it is not E-linear. As
a bounded operator on the Hilbert space (W, ( ·|· )), La has the adjoint operator
L

(∗)
a ; one has actually L

(∗)
a = La∗ .

Each of the operators La commutes with all A ∈ BE(W ) (in fact, an operator
A is E-linear precisely when ALa = LaA is satisfied for all a ∈ E).

In particular, if e ∈ E is a projection then Le is an orthogonal projection
defined on the Hilbert space (W, ( ·|· )). Let us denote We = LeW . The subspace
We is a closed subspace of the Hilbert space (W, ( ·|· )) which reduces each operator
A ∈ BE(W ).

The special case when e is chosen to be a minimal projection will be of
particular importance.

Lemma 2.7. Let W be a Hilbert H∗-module over E and let e be a minimal
projection in E. The We =

{
x ∈ W : [x|x] = λe, λ > 0

}
. If E is a simple

H∗-algebra, then the subspace We generates a dense submodule in W .

Proof. Let x = ey be an arbitrary element in We. Then [x|x] = e[y|y]e = λe
because e is a minimal projection. Conversely, if x ∈ W and [x|x] = λe, λ > 0,
for x′ = λ−1/2x we have [x′|x′] = e. By Lemma 1.4 ex′ = x′ and this implies
x = λ1/2x′ = λ1/2ex′ = ex ∈ We.

If E is a simple H∗-algebra we can choose an orthonormal basis (wλ)λ∈Λ for
W such that [wλ|wλ] = e, ∀λ ∈ Λ, hence wλ ∈ We, ∀λ ∈ Λ (Proposition 1.5).
Now the conclusion follows by applying Fourier expansion with respect to (wλ).

Lemma 2.8. Let W be a Hilbert H∗-module over a simple H∗-algebra E and
let e be a minimal projection in E. Then [x|y] = 1

‖e‖2 (x|y)e for all x, y ∈ We. An
orthonormal system (wλ)λ∈Λ, wλ ∈ We, λ ∈ Λ, is an orthonormal basis for W if
and only if the system (vλ)λ∈Λ, vλ = wλ

‖e‖ , λ ∈ Λ, is an orthonormal basis for the
Hilbert space (We, ( ·|· )).

Proof. Let x, y ∈ We, [x|x] = λe, [y|y] = µe, λ, µ > 0. If we denote x′ =
λ−1/2x, y′ = µ−1/2y then [x′|x′] = [y′|y′] = e and by Lemma 1.4 x′ = ex′, y′ = ey′.
Now, because e is a minimal projection [x′|y′] = [ex′|ey′] = e[x′|y′]e = αe for some
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α ∈ C. This gives [x|y] = λ−1/2µ−1/2[x′|y′] = λ−1/2µ−1/2αe and (x|y) = tr[x|y] =
λ−1/2µ−1/2α tr e = λ−1/2µ−1/2α‖e‖2 wherefore [x|y] = (x|y)e/‖e‖2.

Let us take an orthonormal basis (wλ)λ∈Λ for W such that [wλ|wλ] = e,
∀λ ∈ Λ, and let vλ = wλ/‖e‖, λ ∈ Λ. Obviously, (vλ)λ∈Λ is an orthonormal
system in (We, ( ·|· )). Let x ∈ We be a vector such that (x|vλ) = 0, ∀λ ∈ Λ. In
order to prove that (vλ)λ∈Λ is an orthonormal basis for We it remains to show
that x = 0. Indeed, we also have (x|wλ) = 0, ∀λ ∈ Λ and by the first statement
of the lemma [x|wλ] = 0, ∀λ ∈ Λ. Since (wλ)λ∈Λ is an orthonormal basis for W
we conclude x = 0.

Conversely, let us take an orthonormal basis (vλ)λ∈Λ for the Hilbert space
(We, ( ·|· )), and define wλ = ‖e‖vλ, ∀λ ∈ Λ. It follows immediately that (wλ)λ∈Λ

is an orthonormal system in W . Let W ′ be the closed submodule of W generated
by all wλ, λ ∈ Λ. We have to show that W ′ = W . Let us suppose W ′ 6= W . Then
W ′⊥ 6= {0} and by Proposition 1.7 from [4] there exists a basic element v0 ∈ W ′⊥

with supporting projection e0 ∈ E . As in the proof of Proposition 1.5 we can find
a partial isometry g0,e such that for w0 = g0,ev0 6= 0 we have [w0|w0] = e. This
implies w0 ∈ We and, on the other hand, [w0|wλ] = g0,e[v0|wλ] = 0, ∀λ ∈ Λ. This
gives (w0|wλ) = (w0|vλ) = 0 for all λ ∈ Λ, which is impossible because (vλ)λ∈Λ is
an orthonormal basis for We and w0, being a basic element, is not 0.

Corollary 2.9. Let W be a Hilbert H∗-module over a simple H∗-algebra
E and let e be an arbitrary minimal projection in E. Then E-dim W = dim We.

As we mentioned before, the Hilbert space We reduces all operators A ∈
BE(W ). In this way, for any A ∈ BE(W ), the induced operator Â ∈ B(We),
Â = A|We : We → We is well defined.

Theorem 2.10. Let W be a Hilbert H∗-module over an H∗-algebra E.
(i) If E is simple and e ∈ Pm(E), then the map ϕ : BE(W ) → B(We),

ϕ(A) = Â is an isomorphism of C∗-algebras. The map ϕ also preserves the strong
and weak convergence of operators, respectively.

(ii) If E is not a simple H∗-algebra then there exists a family (Wei
), i ∈ I,

of Hilbert spaces such that BE(W ) and
⊕
i∈I

B(Wei
) are isomorphic C∗-algebras.

Proof. (i) Obviously, the map ϕ is a morphism of C∗-algebras. It is injective
because W = span{EWe}. Therefore, ϕ is an isometry. By definition, ϕ preserves
strong convergence. The weak convergence of operators is preserved under ϕ
because the trace is continuous.

To prove the surjectivity let us fix an orthonormal basis (wλ)λ∈Λ for W
such that [wλ|wλ] = e, ∀λ ∈ Λ. According to Lemma 2.8 the system (vλ)λ∈Λ,
vλ = wλ/‖e‖, λ ∈ Λ, is an orthonormal basis for We. Let T ∈ B(We) be arbitrarily
chosen. For x ∈ We we have x =

∑
λ∈Λ

(x|vλ)vλ and Tx =
∑

λ∈Λ

(x|vλ)Tvλ. For each

finite set of indices S ⊂ Λ let us define TS ∈ B(We), TSx =
∑

λ∈S

(x|vλ)Tvλ, and

AS ∈ FE(W ) ⊆ BE(W ), ASw =
∑

λ∈S

[w|wλ]Twλ. Then

ASvµ =

{ 0, if µ 6∈ S;∑
λ∈S

[vµ|wλ]Twλ = [vµ|wµ]Twµ = eTvµ = Tvµ, if µ ∈ S;
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(for the last equality we used the fact that Tvµ ∈ We, so Tvµ = eTvµ). This shows
ϕ(AS) = ÂS = TS for each finite set of indices S ⊂ Λ.

Now, let us observe that the net (TS) converges strongly to T in B(We).
Therefore it remains to prove the existence of a strong limit of the net (AS) in
BE(W ). Then the conclusion will follow from the uniqueness of the strong limit
since the strong convergence is preserved under the action of ϕ.

It is clear that
∑

λ∈Λ

[w|wλ]Twλ exists for all w ∈ We. The limit also exists for

all elements of the form aw, a ∈ E , w ∈ We (since a 7→ aw is a continuous map)
and for all their finite sums.

Now we can apply the standard argument: the net (AS) converges strongly
on a dense subset span{EWe} of W and ‖AS‖ = ‖ϕ(AS)‖ = ‖TS‖ 6 ‖T‖, for all
finite sets S ⊂ Λ. This ensures that there exists A ∈ BE(W ) such that Ax =∑
λ∈Λ

[x|wλ]Twλ for all x ∈ W .

(ii) By Remark 2.5, BE(W ) =
⊕
i∈I

BEi(Wi) where Wi is a Hilbert H∗-module

over a simple H∗-algebra Ei, for each i ∈ I. In each Ei one can chose a minimal
projection ei. Let Wei

be the Hilbert space associated to each Wi. Now, it is clear
that

ϕ :
⊕
i∈I

BEi
(W ) →

⊕
i∈I

B(Wei
), ϕ({Ai}) = {ϕi(Ai)}

(here ϕi denotes the isomorphism from the first part of the proof) is an isomor-
phism.

Remark 2.11. Let us observe that part (i) from the preceding proof actually
shows that ϕ is a homeomorphism with respect to the strong operator topologies.
In particular, a net (Aj) converges strongly to A in BE(W ) if and only if Ax =
lim

j
Ajx, ∀x ∈ We.

We also note the following consequence of the above theorem: if E is a simple
H∗-algebra then ϕ(FE(W )) = F(We) and ϕ(KE(W )) = K(We) where F(We) and
K(We) denote the ideal of finite rank operators on We and the ideal of compact
operators on We, respectively.

Theorem 2.10 enables us to investigate E-linear operators by applying the
standard Hilbert space theory. The procedure is simple and efficient: for an oper-
ator A in BE(W ) one should take ϕ(A), then derive the suitable result and finally
lift the obtained conclusion back to BE(W ).

As an example, we briefly comment the Hilbert-Schmidt class in BE(W ).
Hilbert-Schmidt operators on H∗-modules are introduced in [4]. An operator A ∈
BE(W ) is said to be Hilbert-Schmidt if there is an orthonormal basis (wλ)λ∈Λ for
W such that

∑
λ∈Λ

‖Awλ‖2 = ‖A‖22 is finite. It is shown in [4] that the number ‖A‖22
is independent of the particular choice of the basis (wλ)λ∈Λ. Further, the class of
all Hilbert-Schmidt operators on W denoted by HSE(W ) serves as a selfadjoint
two-sided ideal in BE(W ) which is an H∗-algebra with the inner product (A|B) =∑
λ∈Λ

(Awλ|Bwλ). Finally, ∀A ∈ HSE(W ), ‖A‖ 6 ‖A‖2, FE(W ) ⊆ HSE(W ), and

each A in HSE(W ) can be obtained as the limit of a sequence of generalized finite
rank operators in the norm ‖ · ‖2.



132 Damir Bakić and Boris Guljaš

Now, Theorem 2.10 (together with Lemma 2.8) implies that A ∈ HSE(W )
if and only if the operator ϕ(A) belongs to the standard Hilbert-Schmidt class on
the Hilbert space We (or

⊕
i∈I

B(Wei
)).

Also, if E is simple we get ‖A‖2 = ‖e‖ ‖ϕ(A)‖2. It should be observed that
this equality is independent on the particular choice of minimal projections in E
because they all have the same norm. The presence of the factor ‖e‖ in the above
equality comes from the fact that the basic vectors in W do not generally belong
to the unit sphere in W : if [wλ|wλ] = e then ‖wλ‖ = ‖e‖.

If the underlying H∗-algebra E is not simple, then using part (ii) of Theorem
2.10, we conclude ‖A‖2 6

(
sup

e∈Pm(E)

‖e‖
)
‖ϕ(A)‖2.

Finally, we note that ‖A‖ 6 ‖A‖2 for all A ∈ HSE(W ) implies FE(W ) ⊆
HSE(W ) ⊆ KE(W ).

We are going to describe generalized compact operators in some more de-
tails. First we note (immediately from Theorem 2.10 and Corollary 2.9) that,
if E- dim W < ∞, then FE(W ) = KE(W ) = BE(W ). In the following we shall
therefore assume E- dim W = ∞.

It is well known that an operator A on a Hilbert space is compact if and
only if, for each sequence (xn) weakly converging to 0, lim

n
Axn = 0 is satisfied.

Moreover, A is compact if and only if it satisfies lim
n

Avn = 0 for each orthonormal

sequence (vn) ([5] or [2]).
One may ask if generalized compact operators are also characterized by these

properties.

Let (xn) be an arbitrary sequence in a Hilbert H∗-module such that xn
[w]→ 0.

If F is an arbitrary operator in FE(W ) then obviously lim
n

Fxn = 0. Consequently,
each generalized compact operator A, being a limit of a sequence of generalized
operators of finite rank, also satisfies lim

n
Axn = 0.

To prove the converse we shall use Theorem 2.10. We also need the following
fact from Hilbert space theory:

Let {Hi}, i ∈ I, be a family of Hilbert spaces. An operator {Ai} ∈
⊕
i∈I

B(Hi)

⊆ B
( ⊕

i∈I

Hi

)
is compact if and only if the following two conditions are satisfied:

Ai ∈ K(Hi), ∀i ∈ I,

lim
i
‖Ai‖ = 0 (i.e. the family (‖Ai‖) vanishes at infinity).

Theorem 2.12. Let W be a Hilbert H∗-module and A ∈ BE(W ). The
following conditions are mutually equivalent:

(i) A ∈ KE(W ).

(ii) lim
n

Axn = 0 for each sequence (xn) in W such that xn
[w]−→ 0.

(iii) lim
n

Axn = 0 for each bounded sequence (xn) of mutually orthogonal
elements in W .

(iv) lim
n

Axn = 0 for each orthonormal sequence (xn) in W .
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Proof. (i) ⇒ (ii) is already noted in the preceding discussion. The implica-
tions (ii) ⇒ (iii) ⇒ (iv) are trivial (see Propositions 1.3 and 1.9).

For the proof of (iv) ⇒ (i) suppose first that the underlying H∗-algebra is
simple. Let A satisfy (iv). Using Theorem 2.10 (i) we see that the same is true for
ϕ(A) ∈ B(We). Therefore ϕ(A) is compact, and by Remark 2.11, A ∈ KE(W ).

For the proof of (iv) ⇒ (i) in the general case let

ϕ :
⊕
i∈I

BEi(Wi) →
⊕
i∈I

B(Wei), ϕ({Ai}) = {ϕi(Ai)}

be the isomorphism from Theorem 2.10 (ii) and let A = {Ai} be given. For an
index j ∈ I the operator Aj ∈ BEj

(Wj) also satisfies (iv), so by the first part of
the proof Aj ∈ KEj (Wj). Consequently, ϕj(Aj) ∈ K(Wej ). We also claim that
lim

i
‖ϕi(Ai)‖ = 0.

To prove this, let us suppose the opposite: there exist ε > 0 and a sequence
of indices (jn) such that ‖ϕjn

(Ajn
)‖ > ε. In each Wejn

we can choose a unit vector
vjn

such that ‖ϕjn
(Ajn

)vjn
‖ > ε

2 . Now wjn
= ‖ejn

‖vjn
are basic elements in Wjn

and ‖Ajn
wjn

‖ > ‖ejn
‖ ε

2 > ε
2 (because each projection in an H∗-algebra has norm

not smaller then 1). The obtained sequence (wjn) contradicts the assumption (iv).
From what we just proved follows that ϕ(A) = {ϕi(Ai)} is a compact oper-

ator on
⊕
i∈I

Wei
. It remains to apply once again an easy argument from unordered

summation.
Let ε > 0 be arbitrarily chosen. Since lim

i
‖ϕi(Ai)‖ = 0 the set of indices

{i ∈ I : ‖ϕi(Ai)‖ > ε} is finite; let it be {i1, . . . , in} ⊂ I. Let us define {Ti} ∈⊕
i∈I

B(Wei
) with

Ti =
{

ϕi(Ai), if i ∈ {i1, . . . , in};
0, otherwise.

Obviously, ‖{ϕi(Ai)} − {Ti}‖ = sup
i 6=i1,...,in

‖ϕi(Ai)‖ 6 ε.

Since ϕi(Ai) are compact operators and ϕi(FEi(Wi)) = F(Wei) there exist
Fi ∈ FEi(Wi) such that ‖ϕi(Ai) − ϕi(Fi)‖ < ε, ∀i = i1, . . . , in. If we define
{Fi} ∈

⊕
i∈I

B(Wei) with

Fi =
{

Fik
, if i = ik ∈ {i1, . . . , in};

0, otherwise.

then ‖{Ai}−{Fi}‖ = ‖{ϕi(Ai)}−{ϕi(Fi)}‖ 6 2ε. Since {Fi} is a finite orthogonal
sum of generalized finite rank operators, we conclude that {Fi} ∈ FE(W ) and, by
definition, A = {Ai} ∈ KE(W ).

Remark 2.13. The proof of the above theorem also shows that in the case
of a simple H∗-algebra E an operator A is a generalized compact operator if and
only if the following, weaker condition is satisfied:

(iv′) There exists a minimal projection e in E such that lim
n

Awn = 0 for each

orthonormal sequence (wn) with the common supporting projection e.

The next variant of Theorem 2.10 can be proved in the same way, so we omit
the proof. The corresponding statement for Hilbert space operators is proved in [5].
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Theorem 2.14. Let W be a Hilbert H∗-module and A ∈ BE(W ). The
following conditions are mutually equivalent:

(i) A ∈ KE(W ).

(ii) lim
n

[Axn|xn] = 0 for each sequence (xn) in W such that xn
[w]→ 0.

(iii) lim
n

[Axn|xn] = 0 for each bounded sequence (xn) of mutually orthogonal
elements in W .

(iv) lim
n

[Axn|xn] = 0 for each orthonormal sequence (xn) in W .

The preceding two theorems show that generalized compact operators are
characterized in the standard way. Moreover, they share numerous properties
with the compact operators on Hilbert spaces. As an illustration we will state the
following diagonalization theorem:

Theorem 2.15. Let W be a Hilbert H∗-module and let A ∈ KE(W ) be a
positive operator. Then there exist an orthonormal sequence (wn) in W and a
sequence (λn) of nonnegative real numbers converging to 0 such that

Ax =
∞∑

n=1

λn[x|wn]wn, ∀x ∈ W.

The proof is an easy application of Theorem 2.10 and hence omitted.
A Hilbert space has a countable orthogonal dimension if and only if it is sep-

arable. The same is not true for Hilbert H∗-modules. The hilbertian dimension of
a non separable Hilbert H∗-module W may be countable, even finite (Example 2.3,
provided that the initial Hilbert space is non separable). This enables us to transfer
typical “separable” theorems from Hilbert space theory to (possibly) non separa-
ble Hilbert H∗-modules. Indeed, the necessary condition E-dim W 6 ℵ0 must be
satisfied. As an example we include the Weyl-von Neumann-Berg theorem.

Definition 2.16. Let W be a Hilbert H∗-module over an H∗-algebra E
such that E-dim W = ℵ0. An operator D ∈ BE(W ) is called diagonal if there exist
an orthonormal basis (wn) for W and a sequence of complex numbers (λn) such
that Dwn = λnwn, ∀n.

Theorem 2.17. Let W be a Hilbert H∗-module over an H∗-algebra E such
that E-dim W = ℵ0. Let A ∈ BE(W ) be a normal operator and ε > 0. Then there
exist a diagonal operator D ∈ BE(W ) and T ∈ KE(W ) such that A = D + T and
‖T‖ 6 ε.

Proof. If the underlying H∗-algebra is simple the proof is a direct application
of Berg’s theorem ([3]), Theorem 2.10 (i) and Lemma 2.8.

In the general case we apply the isomorphism from Theorem 2.8 (ii)

ϕ :
⊕
n∈N

BEn
(Wn) →

⊕
n∈N

B(Wen
), ϕ({An}) = {ϕn(An)}.

Now by the first part of the proof for each n we can find Dn and Tn with
‖Tn‖ 6 ε

n .
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Von Neumann’s theorem asserts that for a selfadjoint operator A one can
find a Hilbert-Schmidt perturbation T such that ‖T‖2 < ε. The same is true
for E-linear selfadjoint operators. This is proved by the same argument as above
provided that the operators Tn satisfy ‖Tn‖2 6 ε

2n .
It should be emphasized that in spite of the above theorems (and other

analogies) generalized compact operators cannot map bounded sets into relatively
compact ones. As shown by Example 2.3, this is impossible even in the case of
finite E-dimensional Hilbert H∗-module over a simple H∗-algebra.

In the rest of the paper we briefly discuss generalized Fredholm operators.

Definition 2.18. Let W be a Hilbert H∗-module. The generalized Calkin
algebra CE(W ) is defined as a quotient C∗-algebra BE(W )/KE(W ). The quotient
map is denoted by π.

Definition 2.19. Let W be a Hilbert C∗-module. An operator A ∈ BE(W )
is said to be a generalized Fredholm operator if π(A) is an invertible element in
CE(W ).

We are going to prove Atkinson’s theorem for generalized Fredholm opera-
tors. In the proof we shall need the following well known fact for classical Fredholm
operators:

Let H1,H2 be a Hilbert spaces and A = A1 ⊕ A2 ∈ B(H1) ⊕ B(H2) ⊂
B(H1⊕H2). Then A is a Fredholm operator if and only if A1 and A2 are Fredholm
operators. Moreover, ImA = Im A1 ⊕ Im A2, kerA = kerA1 ⊕ ker A2 and ind A =
ind A1 + indA2.

We also need the following simple lemma.

Lemma 2.20. Let W be a Hilbert H∗-module over a simple H∗-algebra E
and A ∈ BE(W ). Then Im ϕ(A) = e Im A and ker ϕ(A) = e ker A (with e and ϕ
having the same meaning as in Theorem 2.10 (i)).

The proof is straightforward and hence omitted.

Remark 2.21. A similar result can be obtained in the general case. Also,
one can prove

Im A = span{E Im ϕ(A)}, ker A = span{E ker ϕ(A)}.

Theorem 2.22. Let W be a Hilbert H∗-module and A ∈ BE(W ). Then A is
a generalized Fredholm operator if and only if the image of A is a closed submodule
and both E-dim kerA and E-dim kerA∗ are finite.

Proof. Suppose first that the underlying H∗-algebra E is simple. Let e be a
minimal projection in E and let ϕ : BE(W ) → B(We) be the isomorphism from
Theorem 2.10.

Let A be a generalized Fredholm operator. Then there exist an operator
B ∈ BE(W ) and generalized compact operators T1, T2 such that AB − T1 = I
and BA − T2 = I. Since ϕ(KE(W )) = K(We) the operator ϕ(A) is Fredholm.
In particular, ϕ(A) has closed range and finite dimensional kernel and cokernel.
Applying Lemmas 1.4 and 2.20 and Corollary 2.9 to the Hilbert H∗-modules kerA
and kerA∗, respectively, we get E-dim kerA, E-dim kerA∗ < ∞.
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To prove that Im A is closed it is enough to show that A|(ker A)⊥ is bounded
from below. (This is the standard argument for Hilbert space operators and it can
be easily seen that it extends to bounded E-linear operators. Also, the converse
holds true.)

Suppose the opposite. Then there exists a sequence of unit elements (xn) ∈
(ker A)⊥ such that lim

n
Axn = 0. This implies lim

n
A(exn) = 0 and, since (exn) ∈

(ker ϕ(A))⊥ and Im ϕ(A) is closed we obtained a contradiction.
The converse is proved in exactly the same way.
The general case reduces to the previous one by using the isomorphism ϕ

from Theorem 2.10 (ii). It should be noted that an operator {ϕi(Ai)} ∈
⊕
i

B(Wei
)

is Fredholm if and only if each of the operators ϕi(Ai) is a Fredholm operator and
ϕi(Ai) are invertible operators on Wei

for all but finitely many indices i ∈ I.

Definition 2.23. Let W be a Hilbert H∗-module and A ∈ BE(W ) be a
Fredholm operator. The generalized Fredholm index of A is the integer defined by

E-ind(A) = (E- dim kerA) − (E- dim kerA∗).

Concluding remarks. (1) We restricted ourselves to present only a few
basic results on E-linear operators. Clearly, using the same technique (basically
Theorem 2.10), various results from Hilbert spaces can also be extended onto
Hilbert H∗-modules.

As an example let us briefly discuss the spectrum of a bounded E-linear
operator. The spectrum σ(A) of an operator A ∈ BE(W ) is defined in the standard
way. It is equal to the spectrum of A regarded as a bounded operator on the
Hilbert space (W, (·|·)) because the spectrum of an element of a C∗-algebra remains
unchanged when it is calculated in some C∗-subalgebra. Since the map ϕ from
Theorem 2.10 is an isomorphism we also have σ(A) = σ(ϕ(A)). Finally, from
Lemma 2.20 and Corollary 2.9 immediately follows that the same formulae hold
for the point, approximative and continuous spectra, respectively.

(2) However, there are some remarkable differences between the operators
on Hilbert H∗-modules and Hilbert spaces. For example (in contrast to Hilbert
spaces), if w and z are two basic elements in a Hilbert H∗-module W with different
supporting projections then there does not exist an operator U ∈ BE(W ) such that
Uw = z. Consequently, given two orthonormal bases, in general there does not
exists a unitary E-linear operator which maps one of them into another.

(3) The technique used in this paper can also be extended to closed densely
defined E-linear operators on Hilbert H∗-modules. With some additional technical
difficulties similar results are obtained. This will be presented elsewhere.

(4) Altough the results obtained in this paper depend on the special structure
of the underlying H∗-algebra, our main results (Theorems 2.10, 2.12, 2.14, 2.15,
2.17 and 2.22) can be extended to Hilbert C∗-modules over C∗-algebras of compact
operators. This is the contents of our subsequent paper. Moreover, there is some
evidence that these results can be applied in more general Hilbert C∗-modules
using the recent results on extensions of Hilbert C∗-modules.
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