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1. INTRODUCTION AND PRELIMINARIES

In 1958, Drazin ([4]) introduced a pseudoinverse in associative rings and semi-
groups that now carries his name. The inverse was extensively studied and applied
in matrix setting (see the monograph [1] by Campbell and Meyer), as well as in the
setting of bounded linear operators and elements of Banach algebras (see [2] and
[11]). The conventional Drazin inverse was extended to closed linear operators by
Nashed and Zhao in [12]; it exists if and only if 0 is at most a pole of the resolvent
R(λ;A) of the operator A.

The purpose of this paper is to introduce the Drazin inverse AD of a closed
linear operator A on a Banach space X which is defined if 0 is merely an isolated
spectral point of A, and to investigate basic properties of AD. For bounded lin-
ear operators and elements of a Banach algebra such inverse was introduced and
studied by Koliha in [6], and further investigated in [3], [7] and [8].

A special attention is paid to the case when A is the infinitesimal generator
of a C0-semigroup. For this situation an integral representation of AD is derived,
which is then used to study the asymptotic behaviour of the solutions to a singular
and singularly perturbed differential equation in a Banach space.
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For basic concepts of operator theory of closed linear operators we rely
on [15]. By C(X) we denote the space of all closed linear operators A with do-
main and range in a Banach space X; D(A),N (A) and R(A) denote the domain,
nullspace and range of A, respectively. By B(X) we denote the space of all bounded
linear operators defined on all of X. If A ∈ C(X), then ρ(A) denotes the resolvent
set of A and σ(A) the spectrum of A. By isoσ(A) and acc σ(A) we define the
set of all isolated and accumulation spectral points of A. The extended spectrum
of A ∈ C(X) is denoted by σe(A); for λ ∈ ρ(A), R(λ;A) denotes the resolvent
(λI −A)−1 of A.

Let A ∈ C(X) with σ(A) 6= C. A subset σ of σe(A) is called a spectral set
of A if it is both open and closed in the relative topology of σe(A) as a subset
of C ∪ {∞}. Let σ1 be a bounded spectral set of A with the complement σ2 in
σe(A). By Theorem V.9.2 of [15], X is the direct sum X = X1 ⊕ X2 of closed
A-invariant subspaces, so that A = A1 ⊕A2 with respect to this sum, σ(Ai) = σi

for i = 1, 2, and A1 is continuous. The projection P ∈ B(X) with R(P ) = X1 and
N (P ) = X2 is called the spectral projection of A corresponding to σ1.

A singleton {µ} is a spectral set of A if and only if µ is an isolated singularity
of the resolvent R(λ;A) of A. If µ /∈ acc σ(A), then either µ ∈ iso σ(A) or µ is a
resolvent point of A; we extend the concept of the spectral projection in the latter
case by defining P = 0.

The following result from [9] is a generalization of Theorem 1.2 of [5] to closed
operators. It will play an important role in our development of the Drazin inverse
for closed operators.

Theorem (Theorem 1.4 of [9]) Let A be a closed linear operator with do-
main D(A). The point 0 is an isolated spectral point of A if and only if there exists
a nonzero projection P such that:

(i) R(P ) ⊂ D(A);
(ii) PAx = APx for all x ∈ D(A);
(iii) σ(AP ) = {0};
(iv) A + ξP is invertible for some (in fact for all) ξ 6= 0.

An operator P satisfying (i)–(iv) is the spectral projection of A at 0.

Many results of this paper involve interaction between closed and bounded
operators. We set out the relevant properties in the following lemma for future
reference. No proof is given as the arguments are fairly routine.

Lemma Let A ∈ C(X) and B ∈ B(X). Then the following are true:
(i) A + B ∈ C(X) and D(A + B) = D(A).
(ii) If R(B) ⊂ D(A), then AB ∈ B(X).
(iii) If R(B) ⊂ D(A), ABx = BAx for all x ∈ D(A) and A is invertible,

then A−1B = BA−1 in B(X).
(iv) Let 0 ∈ iso σ(A) and P be the spectral projection of A corresponding to

0. Then R(P ) ⊂ D(An) for all n > 1. If R(B) ⊂ D(A) and ABx = BAx for all
x ∈ D(A), then BP = PB.

Convention Let A ∈ C(X) and B ∈ B(X) with R(B) ⊂ D(A). For the
sake of brevity we will write in the sequel

AB = BA to mean ABx = BAx for all x ∈ D(A).
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2. THE DRAZIN INVERSE FOR CLOSED LINEAR OPERATORS

We start with a definition of the Drazin inverse of a closed operator that subsumes
the conventional Drazin inverse defined by Nashed and Zhao (Definition 2.1, [12]).

Definition Let A ∈ C(X). An operator B ∈ B(X) is called a Drazin
inverse of A if R(B) ⊂ D(A), R(I −AB) ⊂ D(A), and

(2.1) BAB = B, AB = BA, σ(A(I −AB)) = {0}.

The Drazin index i(A) is defined to be i(A) = 0 if A is invertible, i(A) = q if A
is not invertible and A(I − AB) is nilpotent of index q, and i(A) = ∞ otherwise.
(The index is well defined since there is at most one operator B ∈ B(X) satisfying
(2.1) — see (2.3).) An operator A ∈ C(X) that possesses a Drazin inverse is called
Drazin invertible, and its Drazin inverse is denoted by AD.

Lemma Let A ∈ C(X) be Drazin invertible with a Drazin inverse B ∈ B(X).
Then the operator P = I −AB is a continuous projection such that:

(i) AP = PA;
(ii) R(P ) ⊂ D(An) for all n > 1.

Proof. From BAB = B we obtain (AB)2 = ABAB = AB, which implies
P 2 = P .

If y ∈ D(A), then ABy = y − Py ∈ D(A); by the second condition in (2.1),

APy = A(y −ABy) = A(y −BAy) = (I −AB)Ay = PAy.

This proves (i).
Suppose that y = Px ∈ D(An−1) for some n > 2. Then Py = y, and by (i),

Ay = APy = PAy ∈ D(A),

which implies y ∈ D(An). The result follows by induction.

We give some necessary and sufficient conditions for A ∈ C(X) to possess a
Drazin inverse.

Theorem The following conditions on A ∈ C(X) are equivalent:
(i) A ∈ C(X) is Drazin invertible;
(ii) 0 /∈ acc σ(A);
(iii) A = A1 ⊕ A2, where A1 is bounded and quasinilpotent and A2 is closed

and invertible.

Proof. Suppose that 0 is not an accumulation point of σ(A). If 0 ∈ ρ(A),
then A is invertible, and A−1 is a Drazin inverse of A. Suppose that 0 ∈ σ(A).
Then 0 ∈ iso σ(A), and the spectral projection P of A corresponding to 0 satisfies
conditions (i)–(iv) of Theorem 1.1 with ξ = 1. Set B = (A + P )−1(I − P ). Since
D(A + P ) = D(A), R(B) = R((A + P )−1(I − P )) ⊂ D(A). The commutativity
condition of (2.1) is clear.

Further, AB = A(I−P )(A+P )−1 = (A+P )(I−P )(A+P )−1 = I−P , and
ABA = (A+P )−1(I−P )2 = (A+P )−1(I−P ) = B. Finally, AP is quasinilpotent,
that is, σ(A(I −AB)) = {0}. Hence B satisfies (2.1).
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Conversely, suppose that B is a Drazin inverse of A, and set P = I−AB. By
Lemma 2.2, the operator P = I−AB is a continuous projection satisfying the com-
mutativity condition of Theorem 1.1. Further, AP = A(I−BA) is quasinilpotent.
We need to verify that A + P ∈ C(X) is invertible. We have

(2.2) (A + P )(B + P ) = AB + AP + PB + P = I − P + AP + P = I + AP,

and (B +P )(A+P )x = (I +AP )x for all x ∈ D(A). Since I +AP is an invertible
operator, so is A + P . By Theorem 1.1, 0 /∈ acc σ(A). We observe that, for any
ξ 6= 0, (A + ξP )B = I − P , which implies B = (A + ξP )−1(I − P ).

Thus we have proved the equivalence of (i) and (ii). The equivalence of (ii)
and (iii) follows from Theorem V.9.2 of [15].

From the preceding proof we obtain a useful explicit formula for the Drazin
inverse AD in terms of the spectral projection P of A at 0, and a proof of uniqueness
of AD:

(2.3) AD = (A + ξP )−1(I − P ) for any ξ 6= 0.

We also observe that P = I −AAD.
If A = A1⊕A2 is the decomposition of a Drazin invertible operator A ∈ C(X)

described in the preceding theorem, then

(2.4) AD = 0⊕A−1
2 .

Indeed,

AD = (A + P )−1(I − P ) = ((A1 + I)−1 ⊕A−1
2 )(0⊕ I) = 0⊕A−1

2

by (2.3) with ξ = 1.
As a final result of this section we give a representation of the Drazin inverse

in terms of the holomorphic calculus for a closed linear operator (see [15]) and a
resulting expression for the spectrum of AD.

Theorem If A ∈ C(X) is Drazin invertible, then

AD = f(A),

where f is a function holomorphic in an open neighborhood of σe(A) equal to 0 in
an open neighborhood of 0 and at ∞, and to λ−1 for all λ in an open neighborhood
of σ(A)\{0}. If i(A) > 0, then

σ(AD) = {0} ∪ {λ−1 : λ ∈ σ(A) \ {0}}.

Proof. We assume that 0 ∈ iso σ(A). The spectral projection P of A cor-
responding to 0 can be expressed as P = h(A), where h is a holomorphic func-
tion equal to 1 in an open neighborhood of 0 and to 0 in an open neighbor-
hood of σe(A) \ {0}. According to (2.3), the Drazin inverse is given by AD =
(A+P )−1(I−P ) = f(A), where f(λ) = (λ+h(λ))−1(1−h(λ)). From this expres-
sion for f we glean that f(λ) = 0 in an open neighborhood of 0 and f(λ) = λ−1

in an open neighborhood of σe(A) \ {0}.
By the spectral mapping theorem (Theorem V.9.5, [15]), σ(f(A))=f(σe(A)).

If ∞ ∈ σe(A), then f(∞) = 0, otherwise σe(A) = σ(A).
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3. PROPERTIES OF THE DRAZIN INVERSE

This section studies properties of the Drazin inverse for closed linear operators. For
the bounded case we recover many of the results of [6]. However, not all properties
of the Drazin inverse for bounded linear operators find their counterpart in the
closed operator theory, as witnessed by Theorem 3.4 and Examples 3.5 and 3.6.
In [12], the Drazin inverse Ad of a closed linear operator A is defined for the case
when A has a finite index i(A), and several properties of Ad are stated without
proof. Clearly, if Ad exists, then so does AD, and Ad = AD. Theorems 2.3 and
2.4 generalize Theorems 2.3 and 2.6 of [12], respectively. Further, Theorems 2.5
and 2.9 of [12] are recovered from Theorems 3.2 and 3.3, respectively. We give full
proofs of these results.

We begin with the Laurent series expansion for the resolvent of A in a punc-
tured neighborhood of an isolated spectral point of A.

Theorem Let A ∈ C(X). If A is Drazin invertible, then there exists a
punctured neighborhood ∆ of 0 such that

(3.1) R(λ;A) =
∞∑

n=0

λ−n−1AnP −
∞∑

n=0

λn(AD)n+1, λ ∈ ∆,

where P = I −AAD is the spectral projection of A corresponding to 0.

Proof. Follows from Theorems 2.3, 1.1 and from the equation
(λI −A)x = (λI −AP )Px + (λI − (A + P ))(I − P )x

valid for all x ∈ D(A) and all λ in some punctured neighborhood ∆ for which
λI − (A + P ) is invertible. Then

R(λ;A) = (λI −AP )−1P + (λI − (A + P ))−1(I − P )

=
∞∑

n=0

λ−n−1AnP −
∞∑

n=0

λn((A + P )−1(I − P ))n+1.

(Note that by Lemma 2.2, AnP is defined and bounded for all n > 1.)

Theorem Let A ∈ C(X) be Drazin invertible and let B ∈ B(X) be such that
R(B) ⊂ D(A) and AB = BA. Then ADB = BAD in B(X).

Proof. Let P be the spectral projection of A at 0. By Lemma 1.2 (iv),
BP = PB in B(X). Hence

ADB = (A + P )−1(I − P )B = B(A + P )−1(I − P ) = BAD

by (2.3) and Lemma 1.2 (iii).

Theorem Let A ∈ C(X) be Drazin invertible. Then, for each n > 1, An is
Drazin invertible, and (An)D = (AD)n.

Proof. Let A = A1 ⊕ A2 with A1 (bounded) quasinilpotent and A2 (closed)
invertible (see Theorem 2.3 (iii)). Then An = An

1 ⊕An
2 , for n = 1, 2, . . ., where An

1
is quasinilpotent and An

2 invertible. Hence An is Drazin invertible by Theorem 2.3,
and

(An)D = 0⊕ (An
2 )−1 = 0⊕ (A−1

2 )n = (0⊕A−1
2 )n = (AD)n

for any n > 1.
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Theorem Let A ∈ C(X) be Drazin invertible with the Drazin index i(A) > 0.
Then AD is Drazin invertible if and only if σ(A) is bounded.

Proof. By Theorem 2.4, σ(AD) = {0} ∪ {λ−1 : λ ∈ σ(A) \ {0}}. According
to Theorem 2.3, the operator AD is Drazin invertible if and only if there exists a
punctured neighborhood {λ : |λ| < r} of 0 disjoint with σ(AD). This occurs if and
only if σ(A) is contained in {λ : |λ| 6 r−1}.

We give an example of an operator for which AD is not Drazin invertible
with i(A) = ∞ and with the “worst scenario” spectrum.

Example Consider the space `1 with a generic element x = (ξ1, ξ2, ξ3, . . .).
The operator A1 on `1 defined by

A1x =
(
0, ξ1,

1
2
ξ2,

1
3
ξ3, . . .

)
belongs to B(`1), and is quasinilpotent but not nilpotent.

The right shift T2x = (0, ξ1, ξ2, ξ3, . . .) on `1 is an injective bounded linear
operator with σ(T2) = {λ : |λ| 6 1}. Its algebraic inverse A2 is a closed linear
operator with the domain D(A2) = {x ∈ `1 : ξ1 = 0}; A2 is invertible in C(`1)
with A−1

2 = T2 and σ(A2) = {λ : |λ| > 1}.
Define A = A1 ⊕ A2 on X = `1 ⊕ `1. Then A ∈ C(X), σ(A) = {0} ∪ {λ :

|λ| > 1}, A is Drazin invertible with AD = 0 ⊕ T2 and i(A) = ∞. But AD is not
Drazin invertible since σ(AD) = {λ : |λ| 6 1}, and 0 is not an isolated spectral
point of A.

In contrast with the unbounded case, the relation between a bounded op-
erator and its Drazin inverse is more symmetrical. According to Theorem 5.2 of
[6], if A ∈ B(X) is Drazin invertible with i(A) > 0, then AD is also Drazin in-
vertible, both operators have the same spectral projection corresponding to 0, and
i(AD) = 1. In addition, (AD)D = A if and only if i(A) = 1 (Theorem 5.3 of [6]).
For a Drazin invertible closed operator A with Drazin invertible AD, the spectral
projections of A and AD at 0 need not be the same. This is demonstrated in the
following example.

Example Let A1 be as in Example 3.5, and let T2 be defined on `1 by

T2x =
(
ξ1, 0,

1
2
ξ2,

1
3
ξ3, . . .

)
.

Then T2 ∈ B(`1) and σ(T2) = {0, 1}. The operator T2 is injective, and its algebraic
inverse A2 is a closed linear operator with the domain D(A2) = R(T2); A2 is
invertible in C(`1) with A−1

2 = T2 and σ(A2) = {1}.
Let A = A1 ⊕ A2 on X = `1 ⊕ `1. Then A ∈ C(X), σ(A) = {0, 1} and A

is Drazin invertible with AD = 0 ⊕ T2 and i(A) = ∞. Since σ(AD) = {0, 1}, AD

itself is Drazin invertible. Let P = I ⊕ 0 be the spectral projection of A at 0. We
observe that AD + P = I ⊕ T2 is not invertible in B(X) and, by Theorem 1.1, P
is not the spectral projection of AD.
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Theorem Let T ∈ C(X) and S ∈ B(X) be such that T is Drazin invertible,
S quasinilpotent, R(S) ⊂ D(T ) and TS = ST . Then the operator T + S ∈ C(X)
is Drazin invertible with

(3.2) (T + S)D = (T + S + P )−1(I − P ),

where P is the spectral projection of T corresponding to 0.

Proof. Let T = T1 ⊕ T2 (relative to X = X1 ⊕X2) be the decomposition of
a Drazin invertible operator T described in Theorem 2.3 (iii). By Lemma 1.2 (iv),
SP = PS. Then S = S1⊕S2 relative to X = X1⊕X2 with Si quasinilpotent and
TiSi = SiTi for i = 1, 2. Hence

T + S = (T1 + S1)⊕ (T2 + S2)

is Drazin invertible in view of Theorem 2.3 since T1 + S1 is quasinilpotent and
T2 + S2 = T2(I + T−1

2 S2) invertible. We note that P is the spectral projection of
T + S at 0, and hence T + S + P = (T1 + S1 + I)⊕ (T2 + S2) is invertible. Finally,

(T + S + P )−1(I − P ) = 0⊕ (T2 + S2)−1 = (T + S)D

as I − P = 0⊕ I.

The proofs of the following two theorems are omitted since they are similar
to the proofs of Theorems 5.6 and 5.5 in [5] (plus some consideration of domains).

Theorem Let T ∈ C(X), S ∈ B(X) be Drazin invertible operators such that
R(S) ⊂ D(T ) and TS = ST = 0. Then (T + S)D exists and

(3.3) (T + S)D = TD + SD.

Theorem Let T ∈ C(X), S ∈ B(X) be Drazin invertible operators such that
R(S) ⊂ D(T ) and TSx = STx for all x ∈ D(T ). Then the operator TS ∈ B(X)
is Drazin invertible, and

(TS)D = TDSD.

We close this section with an important decomposition of a Drazin invertible
operator.

Theorem An operator A ∈ C(X) is Drazin invertible if and only if there
exist C ∈ C(X) and Q ∈ B(X) such that:

(i) D(C) = D(A) and C is Drazin invertible with i(C) 6 1;
(ii) Q ∈ B(X) is quasinilpotent and R(Q) ⊂ D(A);
(iii) A = C + Q and CQ = QC = 0.

Then CD = AD and such a decomposition is unique.

Proof. Suppose first that (i)–(iii) hold. Then Q is Drazin invertible with
QD = 0, and we can apply Theorem 3.8 to conclude that A is Drazin invertible
with AD = CD + QD = CD. If P is the spectral projection of A, then, according
to Theorem 1.1, AP is quasinilpotent and A + P invertible. Then PC = CP =
AP −QP is quasinilpotent (the sum of commuting quasinilpotent operators), and
C + P = A + P −Q = (A + P )(I − (A + P )−1Q) is invertible; hence P is also the
spectral projection of C by Theorem 1.1. According to Theorem 2.3 we can write
A = A1⊕A2 relative to X = X1⊕X2; then C = C1⊕C2 relative to X = X1⊕X2

with C2 invertible and with C1 = 0 since i(C) 6 1. From QP = PQ we obtain
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Q = Q1 ⊕ Q2 relative to X = X1 ⊕ X2. Then 0 = CQ = 0 ⊕ C2Q2, and the
invertibility of C2 implies Q2 = 0. Consequently,

C = 0⊕A2, Q = A1 ⊕ 0,

which shows that the decomposition is unique.
Conversely, suppose that A is Drazin invertible. By Theorem 2.3, A =

A1 ⊕ A2, where A1 is (bounded) quasinilpotent and A2 (closed) invertible. Set
C = 0⊕A2 and Q = A1⊕ 0. The spectral projection of A at 0 is P = I ⊕ 0. Then
C is Drazin invertible and P is the spectral projection of C corresponding to 0.

(i) From C = (I−P )A we have D(C) = D(A). Further, CD = 0⊕A−1
2 = AD,

and i(C) = i(0⊕A2) 6 1.
(ii) Since Q = AP = PAP , R(Q) ⊂ R(P ) ⊂ D(A). Also, σ(Q) = σ(A1 ⊕

0) = σ(A1) ∪ σ(0) = {0}.
(iii) Follows from the definition of C and Q.

The operator C from the preceding theorem is called the core part of the
Drazin invertible operator A. Its importance is seen from the following properties:

(3.4) CD = AD, σ(C) = σ(A), R(C) = N(P ), N(C) = R(P ),

where P is the spectral projection of A corresponding to 0. Only the spectral
equality needs to be proved. We observe that, for all λ ∈ C and all x ∈ D(A),

(λI −A)x = (λI − C)(I − P )x + λ(I −Q)Px,

(λI − C)x = (λI −A)(I − P )x + λPx.

Hence λI − A is invertible whenever λ ∈ ρ(C) \ {0}, and λI − C is invertible
whenever λ ∈ ρ(A) \ {0}. Consequently, σ(C) ∪ {0} = σ(A) ∪ {0}. Considering
separately the cases 0 ∈ σ(A) and 0 /∈ σ(A), we conclude that σ(C) = σ(A).

4. C0-SEMIGROUPS AND THE DRAZIN INVERSE
OF THE INFINITESIMAL GENERATOR

First we discuss some facts about C0-semigroup that will be needed in the sequel.

Lemma Let T (t) be a C0-semigroup with the infinitesimal generator A and
let P ∈ B(X) be a projection satisfying the commutativity condition T (t)P =
PT (t) for all t > 0. Then

(4.1) S(t) := T (t) exp(−tP ) = exp(−tP )T (t), t > 0,

is a C0-semigroup with the infinitesimal generator A− P .

Proof. The commutativity in (4.1) holds since exp(−tP ) = I −P + e−tP for
t > 0. A direct verification shows that S(t) is a C0-semigroup. Further, for each
x ∈ D(A),

d
dt

∣∣∣
0
S(t)x =

[ d
dt

∣∣∣
0
T (t)

]
exp(0P )x + T (0)

d
dt

∣∣∣
0
exp(−tP )x = Ax− Px,

which shows that A− P is the infinitesimal generator of S(t).
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We give a representation of the Drazin inverse of the infinitesimal generator.
This result generalizes Theorem 6.3 of [6]. It will be applied to the study of the
asymptotic behaviour of the solutions of a differential equation. In the following,
the convergence of semigroups as t → ∞ is understood in the operator norm
topology.

Theorem Let T (t) be a C0-semigroup with the infinitesimal generator A

such that T (t) → P as t →∞. Then the following are true:
(i) 0 /∈ acc σ(A) and P is the spectral projection of A corresponding to 0;
(ii) there are constants M > 0 and µ > 0 such that ‖T (t)− P‖ 6 Me−µt

for all t > 0;
(iii) for all x ∈ X we have

(4.2)

∞∫
0

T (t)(I − P )xdt = −ADx.

Proof. We observe that P 2 = P . For any t > 0, T (t)P = lim
s→∞

T (t)T (s) =

lim
s→∞

T (t + s) = P ; hence

(4.3) T (t)P = P = PT (t) for all t > 0.

Differentiating this equation at 0, we get APx = PAx = 0 for all x ∈ D(A).
By the preceding lemma, S(t) = T (t) exp(−tP ) is the C0-semigroup generated by
A− P . Expressing the exponential as a series, after a short calculation we obtain

(4.4) T (t) = S(t) + (1− e−t)P and T (t)(I − P ) = S(t)(I − P ).

We observe that S(t) → 0 as t →∞. From Proposition 1.2.2 of [13] we can deduce
that there exist constants K > 0, µ > 0 such that ‖S(t)‖ 6 Ke−µt for all t > 0.
Hence ‖T (t)− P‖ = ‖T (t)(I − P )‖ = ‖S(t)(I − P )‖ 6 ‖I − P‖Ke−µt 6 Me−µt

for all t > 0.
By the spectral inclusion from Theorem 2.2.3 of [14], σ(A − P ) lies in the

open left half plane, which shows that A − P is invertible. The conditions of
Theorem 1.1 are satisfied, 0 /∈ acc σ(A), and P is the spectral projection of A

corresponding to 0. According to Theorem 4.2.4 (b) of [14], for all x ∈ X we have

(4.5)

∞∫
0

S(t)xdt = −(A− P )−1x for all x ∈ X,

and, using (2.3) with ξ = −1,

(2.5)

∞∫
0

T (t)(I−P )xdt =

∞∫
0

S(t)(I−P )xdt = −(A−P )−1(I−P )x = −ADx.
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5. APPLICATIONS TO DIFFERENTIAL EQUATIONS

In this section we consider the abstract Cauchy problem for the infinitesimal gen-
erator of a C0-semigroup and its singular perturbation. All functions f are defined
on [0,∞) with values in X. We apply the results of previous sections to obtain a
generalization of asymptotic theorems of Pazy (Chapter 4 of [14]). In particular,
our first theorem generalizes Theorem 4.4.4 of [14].

Theorem Let T (t) be a C0-semigroup with the infinitesimal generator A
such that T (t) → P . Let f be bounded and Lebesgue measurable on [0,∞), and let
Pf be integrable on [0,∞). If lim

t→∞
f(t) = f0, then the mild solution u(t) of the

differential problem

(5.1)
du

dt
= Au(t) + f(t), u(0) = x,

satisfies

(5.2) lim
t→∞

u(t) = Px−ADf0 +

∞∫
0

Pf(s) ds.

Proof. The mild solution to the problem is given by

u(t) = T (t)x +

t∫
0

T (t− s)f(s) ds.

By (4.3), T (t)P = P = PT (t) for all t > 0. Let

u1(t) = P

t∫
0

T (t− s)f(s) ds and u2(t) = (I − P )

t∫
0

T (t− s)f(s) ds.

Then

u1(t) =

t∫
0

PT (t− s)f(s) ds =

t∫
0

Pf(s) ds.

Since Pf is integrable on [0,∞),

lim
t→∞

u1(t) = lim
t→∞

t∫
0

Pf(s) ds =

∞∫
0

Pf(s) ds.

Further,

u2(t) =

t∫
0

T (t− s)(I − P )(f(s)− f0) ds +

t∫
0

T (t− s)(I − P )f0 ds

= v1(t) + v2(t).

By Theorem 4.2 there exist positive constants M,µ such that

‖T (t)(I − P )‖ = ‖T (t)− P‖ 6 Me−µt for all t > 0.
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Write ‖f‖∞ = sup
t>0

‖f(t)‖. Let η > 0 and let t0 be such that ‖f(s)− f0‖ < η if

s > t0. Then

‖v1(t)‖ 6

t∫
0

‖T (t− s)− P‖ ‖f(s)− f0‖ds 6

t∫
0

Me−µ(t−s)‖f(s)− f0‖ds

6

t0∫
0

Me−µ(t−s)2‖f‖∞ ds +

t∫
t0

Me−µ(t−s)η ds

6 2M‖f‖∞ µ−1
(
e−µ(t−t0) − e−µt

)
+ ηMµ−1

(
1− e−µ(t−t0)

)
,

and lim sup
t→∞

‖v1(t)‖ 6 ηMµ−1. Since η > 0 was arbitrary, lim
t→∞

‖v1(t)‖ = 0.

By Theorem 4.2,

lim
t→∞

v2(t) =

t∫
0

T (t− s)(I − P )f0 ds = lim
t→∞

t∫
0

T (τ)(I − P )f0 dτ

=

∞∫
0

T (τ)(I − P )f0 dτ = −ADf0.

Finally,

lim
t→∞

u(t) = lim
t→∞

T (t)x + lim
t→∞

t∫
0

T (t− s)f(s) ds = Px−ADf0 +

∞∫
0

Pf(s) ds.

Next, we derive conditions under which the mild solution of a singularly
perturbed problem has limit as ε → 0+. This result generalizes Theorem 4.4.5
of [14]; see also [10].

Theorem Let T (t) be a C0-semigroup with the infinitesimal generator A
satisfying T (t) → P as t → ∞. Let f be continuous and bounded on [0,∞). The
limit as ε → 0+ of the mild solution uε(t) of the singularly perturbed problem

(5.3) ε
duε(t)

dt
= Auε(t) + f(t), uε(0) = x, ε > 0,

exists if and only if Pf(t) = 0 for all t > 0. If this is the case, then

(5.4) u(t) := lim
ε→0+

uε(t) = Px−ADf(t),

where AD is the Drazin inverse of A. The limit u is a solution of the reduced
equation

(5.5) 0 = Au(t) + f(t), u(0) = Px−ADf(0).
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Proof. The mild solution to (5.3) is given by

uε(t) = Tε(t)x + ε−1

t∫
0

Tε(t− s)f(s) ds,

where Tε(t) = T (t/ε). From (4.3) we deduce that Tε(t)P = P = PTε(t) for all

t > 0. Let

u1ε(t) = ε−1P

t∫
0

Tε(t− s)f(s) ds, u2ε(t) = ε−1(I − P )

t∫
0

Tε(t− s)f(s) ds.

Then u1ε(t) = ε−1
t∫
0

Pf(s) ds, and lim
ε→0+

u1ε(t) exists pointwise for t > 0 if and

only if
t∫
0

Pf(s) ds = 0 for all t > 0; this occurs if and only if Pf(t) = 0 for all

t > 0. Write

u2ε(t) = ε−1

t∫
0

Tε(t− s)(I − P )(f(s)− f(t)) ds + ε−1

t∫
0

Tε(t− s)(I − P )f(t) ds

= v1ε(t) + v2ε(t).

By Theorem 4.2, there are constants M > 0, µ > 0 such that

‖Tε(t)(I − P )‖ = ‖Tε(t)− P‖ 6 Me−µt/ε for all t > 0.

Keep t > 0 fixed. If η > 0, choose t0 ∈ (0, t) such that ‖f(s)− f(t)‖ < η if

t0 6 s 6 t. Similarly as in the preceding proof,

‖v1ε(t)‖ 6 ε−1

t∫
0

Me−µ(t−s)/ε‖f(s)− f(t)‖ds

= ε−1

t0∫
0

Me−µ(t−s)/ε2‖f‖∞ ds + ε−1

t∫
t0

Me−µ(t−s)/εη ds

6 2Mµ−1‖f‖∞
(
e−µ(t−t0)/ε − e−µt/ε

)
+ ηMµ−1(1− e−µ(t−t0)/ε).

Hence lim sup
ε→0+

‖v1ε(t)‖ 6 ηMµ−1. Since η > 0 was arbitrary, we conclude that

lim
ε→0+

‖v1ε(t)‖ = 0.
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Therefore,

lim
ε→0+

v2ε(t) = lim
ε→0+

ε−1

t∫
0

Tε(t− s)(I − P )f(t) ds

= lim
ε→0+

t/ε∫
0

T (τ)(I − P )f(t) dτ

=

∞∫
0

T (τ)(I − P )f(t) dτ = −ADf(t)

by Theorem 4.2. Therefore we conclude that

lim
ε→0+

uε(t) = Px−ADf(t)

if and only if Pf(t) = 0 for all t > 0. Under this assumption we have

Au(t) + f(t) = A(Px−ADf(t)) + f(t) = Pf(t) = 0,

and u(0) = Px−ADf(0), which completes the proof.
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