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THE K-GROUPS OF C(M)×θ Zp FOR CERTAIN PAIRS (M, θ)
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Abstract. Let M be a connected, compact metric space with dim M 6
2p−1 (p > 2 is a prime) and let θ be a homeomorphism of M to itself with pe-

riod p. Suppose that dim Mθ 6 2, H2(Mθ, Z) ∼= 0 and that
2p−1L
j=0

Hj(M/θ, Z)

is finitely generated and torsion-free; H0(Mθ, Z) is finitely generated. If θ is
regular and H2j+1(M/θ, Z) ∼= 0, 1 6 j 6 p − 1 or θ is strongly regular and
Mθ is connected, then

K0(C(M)×θ Zp) ∼= K0(M/θ)⊕
p−2M
j=0

H0(Mθ, Z)

K1(C(M)×θ Zp) ∼= K−1(M/θ)⊕
p−2M
j=0

H1(Mθ, Z).

The result leads us to compute some interesting examples when M is a sphere
or a torus.

Keywords: K-groups of C∗-algebras, crossed product of C∗-algebras, stable
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0. INTRODUCTION

In many situations, we need to compute the K-groups of the crossed product
C(M) ×θ G, where M is a compact Hausdorff space and G is a locally compact
group such that g → θg is the action of G on M . So far, there are many results
about the computation of Ki(C(M) ×θ G), i = 0, 1 such as P-V sequence for
C(M) ×θ Z (cf. [1]), Phillips’ Theorem for C(M) ×θ G here G is a finite group
such that G acts on M freely (cf. [17]) and so on. In [15], Paschke considered the
simplest crossed product C(M)×θ Z2 and he established a simple exact sequence
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of Ki(C(M) ×θ Z2), i = 0, 1. Inspired by Paschke’s work, we try to generalize
it from C(M) ×θ Z2 to C(M) ×θ Zp, where p > 2 is a prime. But we find it is
impossible to exert his idea in our framework. We have to find another way to
compute the K-groups of C(M) ×θ Zp while some restrictions on the pair (M, θ)
are needed.

The paper consists of four sections. In Section 1, we will show when the
natural homomorphism iD(M,θ) : U(D(M, θ)) → K1(D(M, θ)) is isomorphic. We
will be devoted to establish some exact sequences about U -groups and Û -groups
in Section 2. All these lead us to handle the K1-group of C(M)×θ Zp for certain
pairs (M, θ). We will compute the K0-group of C(M)×θZp under some restrictions
to the pair (M, θ) in Section 3. In the final section we will give some interesting
examples of computing Ki(C(M)×θ Zp), i = 0, 1 when M is a sphere or a torus.

Throughout the paper, we let Hk(X, Z) denote the kth Čech cohomology
group of the compact Hausdorff space X and let K−i(X) (respectively K̃−i(X))
denote the (respectively reduced) K−i-group of the compact Hausdorff space X
(i = 0, 1). It is well-known that if

⊕
j>0

Hj(X, Z) is torsion-free, then so is K0(X)⊕

K−1(X) and K0(X)⊕K−1(X) ∼=
⊕
j>0

Hj(X, Z) (cf. [5]).

We write KerΦ (respectively Im Φ) to denote the kernel (respectively the
range) of the homomorphism Φ between groups (or rings).

For convenience, we assume that throughout the paper the pair (M, θ) sat-
isfies following conditions:

(1) M is a locally compact metric space with dim M 6 2p− 1 (here p > 2 is
a prime);

(2) θ is a self-homeomorphism of M with period p.

1. PRELIMINARIES

Let A be a C∗-algebra with unit 1. We denote by U(A) the group of unitary
elements of A and U0(A) the connected component of the unit 1 in U(A). The
quotient group U(A) = U(A)/U0(A) whose multiplication is given by [a][b] = [ab]
is called the U -group, where [a] stands for the equivalence class of a in U(A) about
U0(A). According to [1], there is a canonical homomorphism iA : U(A)→ K1(A)
given by iA([a]) = [diag (a, 1n)] ∈ U(Mm(A)) for each m > n where Mm(A) is the
matrix algebra of order m over A.

For the C∗-algebra A with unit 1, we regard Lg n(A) as the set of all n-tuples
(a1, . . . , an) from An which generate A as a left ideal. Set (cf. [18], [19])

Sn(A) =
{

(a1, . . . , an)
∣∣∣ n∑

k=1

a∗kak = 1
}

tsr(A) = min{n | Lg n(A) is dense in An}
csr(A) = min{n | U0(Mn(A)) acts transitively on Sm(A), ∀m > n}
gsr(A) = min{n | U(Mn(A)) acts transitively on Sm(A), ∀m > n}.
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If A has no unit, we put U(A) = U(A+), tsr(A) = tsr(A+), csr(A) = csr(A+) and
gsr(A) = gsr(A+) where A+ is obtained from A by adjoining the unit 1.

The computation of the above functions of C∗-algebras is very interesting but
sometimes is very difficult. However, if A is a purely infinite simple C∗-algebra,
tsr(A), csr(A) and gsr(A) are completely determined by Rieffel and the author
(cf. [18], [24], [25]). From [18], Theorem 2.9 from [19], [10] and Proposition 3.10
from [21] we have:

Lemma 1.1. Let A be a C∗-algebra and X be a compact Hausdorff space.
(i) gsr(A) 6 csr(A) 6 tsr(A) + 1;
(ii) if csr(A) 6 2, then iA is surjective;
(iii) if gsr(C(S1)⊗A) 6 2, then iA is injective;
(iv) csr(C(X)) = min{n | H2n−1(X, Z) ∼= 0}.

Remark 1.2. In fact, the author has found an equivalent condition that
makes iA injective (cf. Theorem 2.4 from [25]).

For the pair (M, θ), set Mk = {x ∈ M | θk(x) = x} and Mθ = M1. Clearly,
Mθ ⊂ Mk. On the other hand, Mk ⊂ Mθ when p = 2 or 3. If 3 6 k 6 p − 1,
there are two integers n1, n2 such that n1p + n2k = 1 (for (p, k) = 1)). Thus
θ = θn1pθn2k = θn2k and Mk ⊂Mθ. So Mθ = Mk, k = 2, . . . , p− 1.

For the pair (M, θ) with M compact and Mθ 6= ϕ, set M0 = M\Mθ. Then
(M0)θ = ϕ and the one-point compactification M+

0 of M0 is M/Mθ. Now let M/θ
(or M0/θ) denote the orbit space of θ and let P (respectively Q) be the canonical
projective map of M or M0 onto M/θ (or M0/θ) (respectively of M onto M/Mθ).
Identifing Mθ with the closed subset of M/θ, we have P (M)/Mθ

∼= Q(M)/θ̂, where
θ̂ is a self-homeomorphism of Q(M) with period p defined by θ̂(Q(x)) = Q(θ(x)),
θ(∗) = ∗ (∗ = Q(Mθ)) or θ̂(x) = θ(x) for x ∈M0 and θ̂(+) = +.

By Theorem 1.12.7, Theorem 1.7.7 from [6] and the proof of Proposition 2.1
from [23], we have the following:

Lemma 1.3. Let (M, θ) be the pair with M compact. Then dim(M0/θ) =
dim M0, dim(M/θ) = dimM and dim(M/Mθ) 6 dim M .

For the pair (M, θ), the dynamical system (C0(M), θ, Zp) yields a crossed
product C∗-algebra C0(M) ×θ Zp. By 7.6.1 and 7.6.5 of [16], this algebra is ∗-
isomorphic to the C∗-algebra

D(M, θ) =


 f0 f1 · · · fp−1

θ(fp−1) θ(f0) · · · θ(fp−2)
· · · · · · · · · · · ·

θp−1(f1) θp−1(f2) · · · θp−1(f0)

 ∣∣∣∣ f0, . . . , fp−1 ∈ C0(M)


contained in Mn(C0(M)), where θ(f)(x) = f(θ(x)), ∀x ∈M , f ∈ C0(M).
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Lemma 1.4. For the pair (M, θ) with M compact and Mθ 6= ϕ, we have:
(i) every irreducible representation of D(M0, θ) is equivalent to the repre-

sentation πx, where πx(a) = a(x) for some x ∈ M0 and ∀a ∈ D(M0, θ) and
P (x) → [πx] gives a homeomorphism of M0/θ with ̂D(M0, θ) — the spectrum of
D(M0, θ) — where we identify D(M0, θ) with {a ∈ D(M, θ)

∣∣ a|Mθ = 0};
(ii) D(M, θ) is a p-homogeneous algebra which is ∗-isomorphic to C0(M0/θ,

E), where E is a fiber bundle over M0/θ with fiber Mp(C).

Proof. (i) is a combination of Lemma 16 from [8] and 7.7.1 from [16] comes
from the combination of the proof of Theorem 14 from [8] and Theorem 3.2
from [7].

For the pair (M, θ), let Det : Mn(D(M, θ))→ C0(M) denote the determinant
as usual. Set Cθ(M) = {f ∈ C0(M) | θ(f) = f} ∼= C0(M/θ). Let ω = e2πi/p and
put

Ωp =



1√
p

ω√
p · · · ωp−1

√
p

1√
p

ω2
√

p · · · (ω2)p−1
√

p
· · · · · · · · · · · ·
1√
p

ωp−1
√

p · · · (ωp−1)p−1
√

p
1√
p

1√
p · · · 1√

p

 ∈ U(Mn(C)).

Now define the map ρ : Cθ(M)→ D(M, θ) by ρ(f) = Ω∗pdiag (f, 1p−1)Ωp. In terms
of some techniques from linear algebra (or Case 2 from [11]), we have

Lemma 1.5. Let (M, θ) be the pair with M compact. Then:
(i) Det(a) ∈ Cθ(M), ∀a ∈ Mn(D(M, θ)) and Det ◦ ρ = id on Cθ(M);
(ii) ρ is a homomorphism of U(Cθ(M)) to U(D(M, θ));
(iii) for f0, . . . , fp−1 ∈ Cθ(M),

Ωp

 f0 f1 · · · fp−1

fp−1 f0 · · · fp−2

· · · · · · · · · · · ·
f1 f2 · · · f0

Ω∗p = diag
( p−1∑

j=0

ωj(p−1)fj , . . . ,

p−1∑
j=0

ωjfj ,

p−1∑
j=0

fj

)
.

Corollary 1.6. Let (M, θ) be as above and Mθ 6= ϕ. Then the homomor-

phism π : D(M, θ)→
p−1⊕
j=0

C(Mθ) given by

π


 f0 f1 · · · fp−1

θ(fp−1) θ(f0) · · · θ(fp−2)
· · ·

θp−1(f1) θp−1(f2) · · · θp−1(f0)


(x)=

( p−1∑
j=0

ωj(p−1)fj(x), . . . ,
p−1∑
j=0

fj(x)
)
,

induces the following exact sequence of C∗-algebras:

(1.1) 0 −→ D(M0, θ)
l−→ D(M, θ) π−→

p−1⊕
j=0

C(Mθ) −→ 0,

where x ∈Mθ, f0, . . . , fp−1 ∈ C(M) and l is the inclusion map.
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Obviously, replacing M by M+
0 in (1.1), we have the following split exact

sequence:

(1.2) 0 −→ D(M0, θ)
l−→ D(M+

0 , θ̂) π−→ Cp −→ 0.

Here is the main result of the section.

Proposition 1.7. Let (M, θ) be a pair with M compact and Mθ 6= ϕ,
dim Mθ 6 2. Then iD(M0,θ) is isomorphic. In addition, if H2(Mθ, Z) ∼= 0, so
is iD(M,θ).

Proof. By Lemma 1.4 and Lemma 5 (b) from [14]

tsr(D(M0, θ)) =
[
dim(M0/θ)− 1

2p

]
+ 1;

here [x] expresses the least integer > x. So by Lemma 2.4 in [13] and Lemma 1.3,

csr(D(M0, θ) 6 tsr(C([0, 1]⊗D(M0, θ)) = tsr(D(M0 × [0, 1], θ1))

=
[
dim(M0 × [0, 1]/θ1)− 1

2p

]
+ 1 6

[
dim M

2p

]
+ 1 6 2,

where θ1(x, t) = (θ(x), t), x ∈M , t ∈ [0, 1] and (M × [0, 1])θ1 = Mθ × [0, 1].

Using the same method as above, we can conclude that

gsr(C(S1)⊗D(M0, θ)) 6 csr(C(S1)⊗D(M0, θ)) 6

[
dim M × S1

2p

]
+ 1 6 2.

Thus iD(M0,θ) is isomorphic by Lemma 1.1.
Since dim Mθ 6 2 and H3(Mθ × S1, Z) ∼= H3(Mθ, Z) ⊕ H2(Mθ, Z) ∼= 0, we

have csr(C(Mθ)) 6 2 and csr(C(Mθ × S1)) 6 2 by Lemma 1.1. Thus by Corol-
lary 1.6 and Lemma 2 from [12],

csr(D(M, θ)) 6 max
{

csr(D(M0, θ)), csr
( p−1⊕

j=0

C(Mθ)
)}

6 2

and also gsr(C(S1)⊗D(M, θ)) 6 csr(C(S1)⊗D(M, θ)) 6 2. Therefore iD(M,θ) is
an isomorphism.
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2. THE COMPUTATION OF K1(D(M, θ)) FOR CERTAIN (M, θ)

For the pair (M, θ) with M compact, set

Û(D(M, θ)) = {u ∈ U(D(M, θ)) | Det(u) = 1},

Û(D(M0, θ)) = {u ∈ U((D(M0, θ))+) | Det(u) = 1}

and let Û0(D(M, θ)) (respectively Û0(D(M0, θ))) denote the connected component
of 1 in Û(D(M, θ)) (respectively Û(D(M0, θ))), where we identify (D(M0, θ))+
with the C∗-algebra {a ∈ D(M, θ) | a(x) ≡ constant, x ∈ Mθ}. Obviously,
Û0(D(M, θ)) (respectively Û0(D(M0, θ))) is a normal subgroup of Û(D(M, θ)) (re-
spectively Û(D(M0, θ))). Thus

Û(D(M, θ)) = Û(D(M, θ))/Û0(D(M, θ))

Û(D(M0, θ)) = Û(D(M0, θ))/Û0(D(M0, θ))

become groups under the multiplication 〈uv〉 = 〈u〉〈v〉, where 〈u〉 represents the
equivalence class of u in Û(D(M, θ)) about Û0(D(M, θ)) (respectively Û(D(M0, θ))
about Û0(D(M0, θ))). Let 〈1〉 denote the unit of Û(D(M, θ)) or Û(D(M0, θ)).

Lemma 2.1. For the pair (M, θ) with M compact, the sequence of groups

(2.1) 〈1〉 −→ Û(D(M, θ))
j−→ U(D(M, θ)) −→ Det∗ −→ U(Cθ(M)) −→ 0

is split exact; here j(〈a〉) = [a], a ∈ Û(D(M, θ)) and Det∗([u]) = [Det(u)], u ∈
U(D(M, θ)).

Proof. Since Det∗(j(〈a〉)) = 0 when a ∈ Û(D(M, θ)), we get that Im j ⊂
Ker Det∗. Let [u] ∈ KerDet∗, i.e., [Det(u)] = 0 in U(Cθ(M)). Then there is a real
continuous function h on M such that θ(h) = h and Det(u) = e2πih. Put

v = u diag (e−2πih/p, . . . , e−2πih/p) ∈ U(D(M, θ)).

Then v ∈ Û(D(M, θ)) and j(〈v〉) = [v] = [u] in U(D(M, θ)). So Im j = KerDet∗.
Now suppose that u ∈ Û(D(M, θ)) with j(〈u〉) = [1], where [1] is the unit

of U(D(M, θ)). Then Det(u) ≡ 1 and there is a path ut in U(D(M, θ)) such that
u0 = 1 and u1 = u. Put vt = utρ(Det(u∗t )), 0 6 t 6 1. Then Det(vt) ≡ 1, v0 = 1
and v1 = u by Lemma 1.3. Therefore 〈u〉 = 〈1〉, i.e., j is injective. From Det◦ρ = id
on U(Cθ(M)), we have Det∗ ◦ ρ∗ = id on U(Cθ(M)) where ρ∗([f ]) = [ρ(f)],
∀f ∈ U(Cθ(M)).

Thus we have proven that (2.1) is split exact.

Assume that M is compact and Mθ 6= ϕ. In terms of Corollary 1.6, we can

define a homomorphism τ : Û(D(M, θ))→
p−2⊕
j=0

U(C(Mθ)) for x ∈Mθ by

τ

 f0 f1 · · · fp−1

θ(fp−1) θ(f0) · · · θ(fp−2)
θp−1(f1) θp−1(f2) · · · θp−1(f0)

(x)=
(p−1∑

j=0

ωj(p−1)fj(x), . . . ,
p−1∑
j=0

ωjfj(x)
)
.
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Lemma 2.2. Assume that M is compact and Mθ 6= ϕ. The sequence of
groups

(2.2) Û(D(M0, θ))
l∗−→ Û(D(M, θ)) τ∗−→ U

( p−2⊕
j=0

C(Mθ)
)

is exact in the middle, where τ∗(〈u〉) = [τ(u)], u ∈ Û(D(M, θ)) and l∗(〈a〉) = 〈a〉,
a ∈ Û(D(M0, θ)).

Proof. Let u ∈ U((D(M0, θ))+) with Det(u) ≡ 1. Then u(x) ≡ λ1, ∀x ∈Mθ

and λp = 1. It follows that τ(u) = (λ, . . . , λ). This implies that τ∗ ◦ l∗ =
[ p−2⊕

j=0

1
]

=

0, i.e., Im l∗ ⊂ Ker τ∗.

On the other hand, for v in Û(D(M, θ)) with τ(v) ∈
p−2⊕
j=0

U0(C(Mθ)), there

are real functions h0, . . . , hp−2 in C(Mθ) such that τ(v) = (e2πih0 , . . . , e2πihp−2).
Pick real functions h̃0, . . . , h̃p−2 ∈ Cθ(M) such that h̃j |Mθ = hj , 0 6 j 6 p − 2.
Put

v1 = v Ω∗pdiag
(

e−2πĩh0 , . . . , e−2πĩhp−2 , e
2πi

p−2∑
j=0

h̃j
)

Ωp.

Then v1 ∈ Û(D(M0, θ)) (i.e., v1 ∈ Û(D(M, θ)) and v1(x) = 1, x ∈ Mθ) and
l∗(〈v1〉) = 〈v1〉 = 〈v〉 ∈ Ker τ∗.

In order to see when τ∗ is surjective or l∗ is injective in (2.2), we need to
introduce the following:

Definition 2.3. For the pair (M, θ) with M compact and Mθ 6= ϕ, we
say that θ is strongly regular if there is hθ ∈ C(M) such that θ(hθ) = ωhθ and
Mθ = {x ∈ M | hθ(x) = 0}; θ is called to be regular if given f0, . . . , fp−1 ∈
U(C(Mθ)) there are F0, . . . , Fp−1 ∈ Cθ(M) and Gθ ∈ C(M) such that Fj |Mθ = fj ,

0 6 j 6 p− 2, θ(Gθ) = ωGθ and
∣∣∣ p−2∏

j=0

Fj(x)
∣∣∣ + |Gθ(x)| 6= 0, ∀x ∈M.

Obviously, if θ is strongly regular, then θ must be regular. Some conditions
under which θ is regular or strongly regular will be given in Section 4.

Proposition 2.4. For the pair (M, θ) with M compact and Mθ 6= ϕ, τ∗ is
surjective if θ is regular and l∗ is injective if θ is strongly regular.

Proof. Assume that θ is regular. Then for f0, . . . , fp−2 ∈ U(C(Mθ)) there
are F0, . . . , Fp−2 ∈ Cθ(M) and Gθ ∈ C(M) such that Fj |Mθ = fj , 0 6 j 6 p− 2,
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θ(Gθ) = ωGθ and
∣∣∣ p−2∏

j=0

F (x)j

∣∣∣ + |Gθ(x)| 6= 0, ∀x ∈M . Set

(2.3) A = Ω∗p



F0 ωGθ

. . . . . . 0
. . . . . .0 Fp−2 ωp−1Gθ

G
∗(p−1)
θ 0 · · · 0

p−2∏
j=0

F ∗j




1
. . .

1
a

Ωp,

where a(x) =
(∣∣∣ p−2∏

j=0

Fj(x)
∣∣∣2 + |Gθ(x)|2(p−1)

)−1

, x ∈ M . Since θ(Gθ) = ωGθ,

θ(G∗θ) = ωG∗θ, θ(Fj) = Fj , 0 6 j 6 p − 2, we conclude that a ∈ Cθ(M) and
A ∈ D(M, θ) with Det(A) ≡ 1. Put u = A(A∗A)−1/2. Then u ∈ Û(D(M, θ)) and
τ(u) = (f0, . . . , fp−2) since θ(Gθ) = ωGθ indicates that Gθ|Mθ = 0.

Now suppose that θ is strongly regular, i.e., there is hθ ∈ Cθ(M) such that
Mθ = {x ∈ M | hθ(x) = 0}. Let u ∈ Û((D(M, θ))+) with u(x) ≡ 1, ∀x ∈ Mθ

and l(u) ∈ Û0(D(M, θ)) and let ut be a path in Û(D(M, θ)) such that u0 = 1
and u1 = u and let τ(ut)(x) = (g0,t(x), . . . , gp−2,t(x)), 0 6 t 6 1, x ∈ Mθ. Then
gj,0|Mθ = gj,1|Mθ ≡ 1, gj,t ∈ U(C(Mθ)) and t→ gj,t is continuous, 0 6 j 6 p− 2.
Regarding gj,t as the functions in C(Mθ × S1), j = 0, . . . , p − 2, we can pick
Gj,t in Cθ(M) such that t → Gj,t is continuous and Gj,t|Mθ = gj,t, Gj,0 = Gj,1,
j = 0, . . . , p− 2, t ∈ [0, 1]. Put

(2.4) At = Ω∗p


G0,t ωhθ 0

0
Gp−2,t ωp−1hθ

h
∗(p−1)
θ 0 · · · 0

p−2∏
j=0

G∗j,t




1
. . .

1
at

Ωp

and Bt = A−1
0 At, 0 6 t 6 1, where at(x) =

(∣∣∣ p−2∏
j=0

Gj,t(x)
∣∣∣2 + |hθ(x)|2(p−1)

)−1

,

x ∈M . Then Det(At) = Det(Bt) ≡ 1, A0 = A1, At(x) = ut(x), x ∈Mθ, t ∈ [0, 1].
Set ct = B−1

t ut and vt = ct(c∗t ct)−1/2, 0 6 t 6 1. Then v0 = 1, v1 = u, Det(vt) ≡ 1
and vt(x) ≡ 1, x ∈Mθ, t ∈ [0, 1]. So 〈u〉 = 〈1〉 in Û(D(M0, θ)), i.e., l∗ is injective.

Corollary 2.5. For the pair (M, θ) with M compact and Mθ 6= ϕ,

Û(D(M+
0 , θ̂)) ∼= Û(D(M0, θ)), U(D(M+

0 , θ̂)) ∼= U(D(M0, θ)).

Proof. It is easy to check that U(D(M+
0 , θ̂)) ∼= U(D(M0, θ)) by (1.2) and the

definition of U -group.
Since (M/Mθ)θ̂

= {∗}, it follows from Lemma 2.2 that l∗ : Û(D(M0, θ)) →
Û(D(M+

0 , θ̂)) is surjective. Now in (2.4) we set hθ = 0 and Gj,t = gj,t(Mθ),
0 6 j 6 p− 2, t ∈ [0, 1]. Then we can conclude that l∗ is injective.
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Theorem 2.6. For the pair (M, θ) with M compact, Mθ 6= ϕ, dim Mθ 6 2
and H2(Mθ, Z) ∼= 0, if one of following conditions holds:

(i) θ is strongly regular and
p−1⊕
j=0

H2j+1(M/θ, Z), K−1(M/θ) and K−1(M+
0 /θ̂)

are all finitely generated and torsion-free;
(ii) θ is regular and H2j+1(M/θ, Z) ∼= 0, 1 6 j 6 p − 1 and H1(M/θ, Z) is

finitely generated, then

K1(D(M, θ)) ∼= K−1(M/θ)⊕
p−2⊕
j=0

H1(Mθ, Z).

Proof. By Proposition 1.7 and Corollary 10.9.6 from [4],

(2.5)
U(D(M0, θ)) ∼= K1(D(M0, θ)) ∼= K1(D(M0, θ)⊗K)

∼= K1(C0(M0/θ)⊗K) ∼= K−1(M+
0 /θ̂),

where K is the algebra of compact operators on l2. Since dim Mθ 6 2, it follows
from the exact sequence of Čech cohomology groups (cf. [21])

(2.6) → Hj−1(M/θ, Z) −→ Hj−1(Mθ, Z) −→ Hj(M+
0 /θ̂, Z) −→ Hj(M/θ, Z)→

and H2(Mθ, Z) ∼= 0 that H2j+1(M+
0 /θ̂, Z) ∼= H2j+1(M/θ, Z), 1 6 j 6 p − 1.

Noting that U(C
θ̂
(M+

0 )) ∼= U(C(M+
0 /θ̂)) ∼= H1(M+

0 /θ̂, Z) by Proposition 3.10
from [21], we get that by Corollary 2.5, Lemma 2.1 and (2.5),

(2.7)
Û(D(M+

0 , θ̂))⊕ U(C
θ̂
(M+

0 )) ∼= Û(D(M0, θ))⊕H1(M+
0 /θ̂, Z)

∼= U(D(M+
0 , θ̂)) ∼= U(D(M0, θ)) ∼= K−1(M+

0 /θ̂).

Assume that (i) is satisfied. Then by Theorem 1.6.6 from [1] and (2.7),

Û(D(M0, θ)) ∼=
p−1⊕
j=1

H2j+1(M+
0 /θ̂, Z) ∼=

p−1⊕
j=1

H2j+1(M/θ, Z)

and hence by Proposition 2.4,

Û(D(M, θ)) ∼= Û(D(M0, θ))⊕ U
( p−2⊕

j=0

C(Mθ)
)

∼=
p−1⊕
j=1

H2j+1(M/θ, Z)⊕
p−2⊕
j=0

H1(Mθ, Z).

Furthermore, by Proposition 1.7 and Lemma 2.1,

K1(D(M, θ)) ∼= U(D(M, θ)) ∼= Û(D(M, θ))⊕ U(Cθ(M))

∼= Û(D(M, θ))⊕H1(M/θ, Z) ∼= K−1(M/θ)⊕
p−2⊕
j=0

H1(Mθ, Z).
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Suppose that (ii) is satisfied. Then H2j+1(M+
0 /θ̂, Z) ∼= 0, 1 6 j 6 p− 1 and

H1(M+
0 /θ̂, Z) is finitely generated by (2.6) and csr(C(M+

0 /θ̂)) 6 2 by Lemma 1.1.
So K−1(M+

0 /θ̂) ∼= U(C(M+
0 /θ̂)) ∼= H1(M+

0 /θ̂, Z) by Lemma 1.1 and Proposi-
tion 3.10 from [21]. Thus Û(D(M0, θ)) ∼= 0 by (2.7). Consequently, by Proposition
2.4, Lemma 2.1 and Proposition 1.7,

K1(D(M, θ)) ∼= U(D(M, θ)) ∼= H1(M/θ, Z)⊕
p−2⊕
j=0

H1(Mθ, Z)

∼= K−1(M/θ)⊕
p−2⊕
j=0

H1(Mθ, Z).

3. THE COMPUTATION OF K0(D(M, θ)) FOR CERTAIN (M, θ)

Let A be a unital C∗-algebra. For the projection e ∈ Mn(A), we write [e] to
denote the von Neumann-Murray equivalence class of diag (e, 0) in Mm(A) for
some m > n. Thus K0(A) = {[e]− [f ] | e ∈ Mn(A), f ∈ Mm(A) are projections}.
By Corollary 1.6, the pair (M, θ) with M compact and Mθ 6= ϕ raises following
six-term exact sequence of K-groups (cf. Theorem 9.3.1 from [1])

(3.1)

K0(D(M0, θ))
l∗−→ K0(D(M, θ)) π∗−→ K0

( p−1⊕
j=0

C(Mθ)
)

x∂2

y∂1

K1

( p−1⊕
j=0

C(Mθ)
)

π∗←− K1(D(M, θ)) l∗←− K1(D(M0, θ)).

Here ∂1 is the exponential map and ∂2 is the index map.
Let (M, θ) be the pair such that M is compact, dim Mθ 6 2 and H2(Mθ, Z) ∼=

0, H0(Mθ, Z) ∼= Zk (1 6 k <∞). Then K0(C(Mθ)) ∼= H0(Mθ, Z) by Theorem 1.2
from [22] and there exist k connected closed subsets A1, . . . , Ak in Mθ such that

Mθ =
k⋃

j=1

Ai and Ai ∩ Aj = ϕ, i 6= j. Set hj(x) = 1 when x ∈ Aj and hj(x) = 0

when x ∈Mθ/Aj , 1 6 j 6 k. Choose real functions ĥ1, . . . , ĥk in Cθ(M) such that
k∑

j=0

ĥj = 1 and ĥj |Mθ = hj , 1 6 j 6 k. Put

es,t = [(

s︷ ︸︸ ︷
0, . . . , 0, ht,

p−1−s︷ ︸︸ ︷
0, . . . , 0)] ∈ K0

( p−1⊕
j=0

(C(Mθ)
)
, 0 6 s 6 p− 1, 1 6 t 6 k.

Then {es,t | 0 6 s 6 p − 1, 1 6 t 6 k} forms a basis for K0

( p−1⊕
j=0

C(Mθ)
)

and ∂1

can be defined as

(3.2) ∂1(es,t) = [e2πîhtPs ] = [1− Ps + e2πîhtPs]
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by 9.3.2 from [1], where Ps = Ω∗p diag (

s︷ ︸︸ ︷
0, . . . , 0, 1,

p−1−s︷ ︸︸ ︷
0, . . . , 0)Ωp is a projection in

D(M, θ), 0 6 s 6 p− 1, t = 1, . . . , k. (Note that PsPt = 0, s 6= t,
p−1∑
s=0

Ps = 1.)

Lemma 3.1. Suppose that M is compact and Mθ 6= ϕ. Then for each f ∈
U(C(Mθ)), there is F ∈ Cθ(M) such that F |Mθ = f and |F (x)| 6 1, ∀x ∈M .

Proof. Let G ∈ Cθ(M) such that G|Mθ = f . Set ZG = {x ∈M | G(x) = 0}.
Since ZG is closed in M and ZG ∩Mθ = ϕ, θ(ZG) = ZG, it follows that there is a
continuous function h0 : M → [0, 1] such that h0|ZG = 1 and h0|Mθ = 0.

Set h(x) = 1
p

p−1∑
j=0

h0(θj(x)), x ∈ M. It is easy to check that θ(h) = h, 0 6

h 6 1 and h|ZG = 1, h|Mθ = 0. Therefore F (x) = (|G(x)|+ h(x))−1G(x) verifies
the assertion.

Now let (M, θ) be a pair with M compact and Mθ 6= ϕ, dim Mθ 6 2.
Then U(C(Mθ)) ∼= K1(C(Mθ)) via iC(Mθ) by Lemma 1.1. Let f0, . . . , fp−1 ∈

U
( p−1⊕

j=0

C(Mθ)
)
. Then there exist F0, . . . , Fp−1 ∈ Cθ(M) such that Fj |Mθ = fj

and rj(x) = |Fj(x)| 6 1, j = 0, . . . , p− 1, x ∈M by Lemma 3.1. Thus

w =


p−1∑
j=0

FjPj i
p−1∑
j=0

√
1− r2

j Pj

i
p−1∑
j=0

√
1− r2

j Pj

p−1∑
j=0

F ∗j Pj

 ∈ U(M2(D(M, θ))

and π2(w) = diag ((f0, . . . , fp−1), (f∗0 , . . . , f∗p−1)). So by 8.3.1 from [1], ∂2 can be
expressed as

(3.3) ∂2([(f0, . . . , fp−1)]) =




p−1∑
j=0

r2
j Pj −i

p−1∑
j=0

√
1− r2

j FjPj

i
p−1∑
j=0

√
1− r2

j F ∗j Pj

p−1∑
j=0

(1− r2
j )Pj


−[q1].

Lemma 3.2. Let the pair (M, θ) satisfy the conditions:
(i) M is connected and compact with Mθ 6=ϕ, dim Mθ 62 and H2(Mθ, Z)∼=0;
(ii) Û(D(M0, θ)) ∼= 0 and H0(Mθ, Z) ∼= Zk.

Then Ker ∂1
∼= Z⊕

p−2⊕
j=0

H0(Mθ, Z).

Proof. Since for t = 1, . . . , k, s1 6= s2, s1, s2 = 0, . . . , p− 1,

(e2πîhtPs1 +1−Ps1)(e
2πîhtPs2 +1−Ps2)

∗ = 1−Ps1 −Ps2 +e2πîhtPs1 +e−2πîhtPs2

is in Û((D(M0, θ))+), and Û(D(M0, θ)) ∼= 0, it follows that in U(D(M0, θ))

[e2πîhtPs1 + 1− Ps1 ] = [e2πîhtPs2 + 1− Ps2 ], s1 6= s2, t = 1, . . . , k
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and hence ∂1(es,t) = [e2πîhtP0 + 1− P0], 0 6 s 6 p− 1, 1 6 t 6 k by (3.2).

Let a ∈ K0

( p−1⊕
j=0

C(Mθ)
)

such that ∂1(a) = 0. Since a can be expressed as

a =
k∑

t=1

p−1∑
s=0

λs,tes,t, λs,t ∈ Z, we obtain that

0 = ∂1(a) =
k∑

t=1

p−1∑
s=0

λs,t[e2πîhtP0 + 1− P0] =
[
e
2πi

k∑
t=1

p−1∑
s=0

λs,tĥt

P0 + 1− P0

]
in U(D(M0, θ)). Consequently,

Det
(

e
2πi

k∑
t=1

p−1∑
s=0

λs,tĥt

P0 + 1− P0

)
= e

2πi
k∑

t=1

p−1∑
s=0

λs,tĥt

∈ U0((Cθ(M0))+)

(here we identify (Cθ(M0))+ with {f ∈ Cθ(M) | f |Mθ ≡ constant}) and there is
a continuous function h : M → R with θ(h) = h and h|Mθ ≡ k0 ∈ Z such that

e
2πi

k∑
t=1

( p−1∑
s=0

λs,t

)
ĥt

= e2πih. Combining this identity with the assumption that M

is connected and h|Mθ ≡ k0, ĥj |Aj = 1, ĥj |Mθ\Aj = 0, j = 1, . . . , k, we have that

there exists n ∈ Z such that
p−1∑
s=0

λs,t = n, t = 1, . . . , k. So

Ker ∂1 =
{

n0

k∑
t=1

e0,t +
k∑

t=1

p−1∑
s=1

ns,t(es,t − e0,t) | n0, ns,t ∈ Z
}

∼= Z⊕
p−2⊕
j=0

H0(Mθ, Z).

Suppose that M is compact, dim Mθ 6 2 and H2(Mθ, Z) ∼= 0, H0(Mθ, Z) ∼=
Zk. Consider the six-term exact sequence of the triple (C0(M0/θ), C(M/θ), C(Mθ))

(3.4)

K0(Cθ(M0))
j1−→ K0(Cθ(M))

j2−→ K0(C(Mθ))x∂0

y∂′0

K1(C(Mθ)) ←− K1(Cθ(M)) ←− K1(Cθ(M0))

where ∂0 is the index map given by

∂0([f ]) =
[[

r2 −i
√

1− r2F
i
√

1− r2F ∗ 1− r2

]]
− [q1] ∈ K0(C0(M0/θ)),

f ∈ U(C(Mθ)), F ∈ Cθ(M) with F |Mθ = f and 0 6 r(x) = |F (x)| 6 1; ∂′0 is
given by ∂′0([ht]) = [e2πîht ], t = 1, . . . , k (see (3.1) and (3.2)).

Analogous to the proof of last paragraph of Lemma 3.2, we have:
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Lemma 3.3. Let (M, θ) be a pair satisfying the following conditions:
(i) M is a connected, compact space with Mθ 6= ϕ;
(ii) dim Mθ 6 2, H2(Mθ, Z) ∼= 0 and H0(Mθ, Z) ∼= Zk.
Then Im j2 = Ker ∂′0 = {n[1] | n ∈ Z}.

For the pair (M, θ) with M compact and Mθ 6= ϕ, define the ∗-homomor-
phism Ψ of Cθ(M0) to D(M0, θ) by Ψ(f) = fPp−1. Then Ψ can be extended to the
homomorphism of (Cθ(M0))+ to (D(M0, θ))+ by Ψ(f) = fPp−1+f(Mθ)(1−Pp−1).

Lemma 3.4. The induced homomorphism Ψ∗ : K0(Cθ(M0))→K0(D(M0, θ))
is isomorphic.

Proof. Simple computation shows that Pp−1D(M0, θ)Pp−1 = {fPp−1 | f ∈
Cθ(M0)}. This means that Ψ is an isomorphism of Cθ(M0) onto Pp−1D(M0, θ)Pp−1.
So, in order to show that Ψ∗ is isomorphic, we need only to prove that the induced
homomorphism k∗ of the inclusion map k : Pp−1D(M0, θ)Pp−1 → D(M0, θ) is an
isomorphism of K0(Pp−1D(M0, θ)Pp−1) to K0(D(M0, θ)).

LetA be the C∗-subalgebra ofD(M0, θ) generated byD(M0, θ)Pp−1D(M0, θ).
Since πx(D(M0, θ)) = Mp(C) by Lemma 1.4 and Mp(C)Pp−1Mp(C) = Mp(C)
(Mp(C) is a simple C∗-algebra), it follows that πx|A is irreducible for every
x ∈ M0 and πx1 |A is not equivalent to πx2 |A when P (x1) 6= P (x2) in M0/θ.
So A = D(M0, θ) by Lemma 11.1.4 from [4], that is, Pp−1 is a full projection in
the sense of [3]. Therefore k∗ is an isomorphism by Corollary 2.6 from [3].

Lemma 3.5. Consider a pair with M compact and θ regular, and dim Mθ 6
2. Then Im ∂2 ⊂ Im Ψ∗ and the diagram

(3.5)

K1(C(Mθ))
∂0−→ K0(Cθ(M0))yK Ψ∗

y
K1

( p−1⊕
j=0

C(Mθ)
)

∂2−→ K0(D(M0, θ))

is commutative, where K([f ]) = [(1, . . . , 1, f)], f ∈ U(C(Mθ)).

Proof. The second assertion comes from the definition of K, Ψ∗, ∂2 and ∂0.
Suppose that a = ∂2([f0, . . . , fp−1]) for some f0, . . . , fp−1 ∈ U(C(Mθ)). Since

θ is regular, it follows from (2.3) that there are u0, . . . , up−2 ∈ U(D(M, θ)) such

that π(uj) = (

j︷ ︸︸ ︷
1, . . . , 1, fj ,

p−2−j︷ ︸︸ ︷
1, . . . , 1, f∗j ) ∈

p−1⊕
j=0

U(C(Mθ)), 0 6 j 6 p− 2. So

(3.6)

a = ∂2([(f0, 1, . . . , 1, f∗)]) + · · ·+ ∂2([(1, . . . , 1, fp−2, f
∗
p−2)])

+ ∂2 ◦K([f0 · · · fp−1])

= ∂2 ◦K([f0 · · · fp−1]) + ∂2 ◦ π∗([u0]) + · · ·+ ∂2 ◦ π∗([up−2])

= ∂2 ◦K([f0 · · · fp−1]) = Ψ∗ ◦ ∂0([f0 · · · fp−1]).

(for ∂2 ◦ π∗ = 0 by (3.1)).

The following theorem demonstrates what K0(D(M, θ)) is.
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Theorem 3.6. Let (M, θ) satisfy the following conditions:
(i) M is connected, compact with Mθ 6= ϕ, dim Mθ 6 2, H2(Mθ, Z) ∼= 0;
(ii) K0(C(M/θ)) and H0(Mθ, Z) are all finitely generated and θ is regular;
(iii) Mθ is connected or H2j+1(M/θ, Z) ∼= 0, 1 6 j 6 p− 1.

Then K0(D(M, θ)) ∼= K0(M/θ)⊕
p−2⊕
j=0

H0(Mθ, Z).

Proof. Let {ej}N1 be the sequence of generators in K0(Cθ(M)) other than
[1] such that the set {[1], e1, . . . , et} is independent and {ej}Nj=t+1 is the set of all
torsion elements in {ej}N1 . Thus

(3.7) K0(Cθ(M)) =
{

n[1] +
N∑

j=1

λjej | n, λj ∈ Z
}

.

The proof of the assertion consists of the following steps:

Step 1. We claim that

(3.8) Im j1 = Ker j2 =
{ t∑

j=1

λj(ej − nj [1]) +
N∑

j=t+1

λjej | λj ∈ Z
}

,

where nj [1] = j2(ej), j = 1, . . . , t. Since K0(C(Mθ)) ∼= H0(Mθ, Z) is torsion-free,
j2(ej) = 0, t + 1 6 j 6 N by (3.4). Now, by Lemma 3.3, we can choose nj ∈ Z
such that j2(ej) = nj [1], 1 6 j 6 t. Noting that j2([1]) = [1], we have{

λ1(e1 − n1[1]) + · · ·+ λt(et − nt[1]) +
N∑

j=t+1

λjej | λj ∈ Z
}
⊂ Ker j2.

On the other hand, let a = n[1] +
N∑

j=1

λjej ∈ Ker j2. Then n = −
t∑

j=1

λjnj . Thus

a can be written as

a =
t∑

j=1

λj(ej − nj [1]) +
N∑

j=t+1

λj .

Equation (3.7) is proven.

Step 2. We have that K0(D(M, θ))/Im ∂2
∼= K̃0(M/θ). To do this, we take

ηj ∈ K0(Cθ(M)) such that

(3.9) j1(ηj) = ej − nj [1], 1 6 j 6 t and j1(ηj) = ej , t + 1 6 j 6 N.

Put ξj = Ψ∗(ηj), j = 1, . . . , N . Then we can conclude from the identity Im ∂0 =
Ker j1, Lemma 3.4 and Lemma 3.5 that

(A) λξj 6∈ Im ∂2, ∀λ ∈ Z\{0}, 1 6 j 6 t;
(B) ξj 6∈ Im ∂2 and kjξj ∈ Im ∂2 iff kjej = 0, kj ∈ Z, t + 1 6 j 6 N and

(C) if there exist λ1, . . . , λt ∈ Z such that
t∑

j=1

λjξj ∈ Im ∂2, then λj = 0.
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Now, for each a ∈ Im Ψ∗, there is by Lemma 3.4 and Lemma 3.5 a unique
b ∈ K0(C0(M0/θ)) such that a = Ψ∗(b), since

j1(b) =
t∑

j=1

λj(ej − nj [1]) +
N∑

j=t+1

λjej

for some λ1, . . . , λN ∈ Z by (3.8). Therefore there exists c ∈ K1(C(Mθ)) such

that b−
N∑

j=1

λjηj = ∂0(c) by (3.4) and (3.9) and hence a =
N∑

j=1

λjξj + ∂2(K(c)) by

Lemma 3.5. So from (A), (B), (C) and Lemma 3.4, we obtain that

K0(D(M, θ))/Im ∂2
∼= K̃0(Cθ(M)) ∼= K̃0(M/θ).

Step 3. By (3.1), we have

Kerπ∗ = Im l∗ ∼= K0(D(M0, θ))/Ker l∗ ∼= K̃0(M/θ).

So if Mθ is connected, ∂1 = 0 by (3.2) and furthermore

K0(D(M, θ)) ∼= Kerπ∗ ⊕ Im π∗ ∼= K0(M/θ)⊕ Zp−1;

if H2j+1(M/θ, Z) ∼= 0, 1 6 j 6 p − 1, then by the proof of Theorem 2.6,
U(D(M0, θ)) ∼= 0 and hence by Lemma 3.2,

K0(D(M, θ)) ∼= Kerπ∗ ⊕ Im π∗ ∼= K0(M/θ)⊕
p−2⊕
j=0

H0(Mθ, Z).

4. EXAMPLES

We realize that the notions “regular” or “strongly regular” self-homeomorphism
play a very important role in the computation of Ki(D(M, θ)), i = 0, 1. The
following proposition shows when θ is regular or strongly regular.

Proposition 4.1. Let (M, θ) be a pair with M compact and Mθ 6= ϕ. If
(M, θ) satisfies (i) or (ii), then θ is regular and if (M, θ) satisfies (iii), then θ is
strongly regular:

(i) M is a 2-dimensional manifold and θ is self-differomorphic;
(ii) i∗ : H1(M/θ, Z) → H1(Mθ, Z) is surjective, where i∗ is the induced

homomorphism of the inclusion map i : Mθ →M/θ;

(iii) M ⊂ C and the zero-points of hθ(x) =
p−1∑
j=0

ωp−1−jθj(x) is the set Mθ.

Proof. Assume that (i) holds. Let f0, . . . , fp−2 ∈ U(C(Mθ)). Then there
exist H0, . . . ,Hp−2 ∈ C(M) such that Hj |Mθ = fj , 0 6 j 6 p − 2. Set Ĥj =

1
p

p−1∑
k=0

θk(Hj), 0 6 j 6 p − 2. Then Ĥj ∈ Cθ(M) and Ĥj |Mθ = fj , 0 6 j 6 p − 2.

Since M is a compact manifold, we can find differentiable functions H̃0, . . . , H̃p−2 ∈
Cθ(M) such that ‖Ĥj − H̃j‖ < 1/2, 0 6 j 6 p− 2 (cf. Theorem 2.3.3 from [9]).
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Now by Sard’s Theorem (6.1 from [2]), we can choose a regular value aj of
H̃j : M → C such that |aj | < 1/2, 0 6 j 6 p − 2. Set Gj(x) = H̃j(x) − aj ,
0 6 j 6 p− 2, x ∈ M . Then ‖Hj −Gj‖ < 1 and G−1

j (0) is either empty or finite
(by Lemma 5.9 from [2]), 0 6 j 6 p− 2, for dim M = dim C = 2.

Set G(x) =
p−2∏
j=0

Gj(x), x ∈ M . Then G−1(0) is either empty or finite and

θ(G−1(0)) = G−1(0), G−1(0) ∩ Mθ = ϕ. If G−1(0) = ϕ, we take Gθ(x) = 0,
∀x ∈ M ; if G−1(0) finite, we can pick a function K0 on G−1(0) such that
p−1∑
j=0

ωp−1−jK0(θj(x)) 6= 0, ∀x ∈ G−1(0). Let K̃ ∈ C(M) such that K̃|G−1(0) = K0

and set Gθ(x) =
p−1∑
j=0

ωp−1−jK̃(θj(x)), x ∈ M . Then Gθ|G−1(0) = K0 6= 0 and

θ(Gθ) = ωGθ.

Note that ‖Hj − Gj‖ < 1 implies ‖fj − Gj |Mθ‖ < 1, 0 6 j 6 p − 2. Thus
there is hj ∈ C(Mθ) such that fj = ehj Gj |Mθ, 0 6 j 6 p − 2. Let h̃j ∈ Cθ(M)

such that H̃j |Mθ = hj and set Fj = eh̃j Gj , 0 6 j 6 p − 2. Then by the above

argument, Fj |Mθ = fj , 0 6 j 6 p−2 and θ(Gθ) = ωGθ,
∣∣∣ p−2∏

j=0

Fj(x)
∣∣∣+ |Gθ(x)| 6= 0,

∀x ∈M, i.e., θ is regular.
By Corollary VIII. 2 from [10], condition (ii) is equivalent to the statement

“Every f ∈ U(C(Mθ)) has a continuous extension F : M → S1 with θ(F ) = F”.
Take Gθ = 0 in Definition 2.3. We see that θ is regular.

Let hθ be as in condition (iii). Since Mθ = {x ∈ M | hθ(x) = 0} and
θ(hθ) = ωhθ, it follows that θ is strongly regular.

Remark 4.2. It is easy to verify that if p = 2 and M ⊂ C, then condition
(iii) of Proposition 4.1 is satisfied. We see that if dim M 6 1, then condition (ii)
of Proposition 4.1 is also satisfied by Lemma 1.3 and Theorem 3.2.10 from [6].

Example 4.3. Let M = S1×S1 = {(z1, z2)
∣∣ |z1| = |z2| = 1} and θ(z1, z2) =

(z2, z1). Then Mθ = {(z, z) | ∀z ∈ S1} ∼= S1 and θ is regular by Proposition 4.2 (i).
We will show that M/θ ∼= S1 × [0, 1].

Set S = {(z1z2, z1 +z2) | z1, z2 ∈ S1}. Then it is easy to check that M/θ ∼= S
by the homeomorphic map β(〈z1, z2〉) = (z1z2, z1 + z2), where 〈z1, z2〉 = P (z1, z2).

Define the continuous map Γ : S1 × [0, 1] → S by Γ(z, t) = (z2, 2zt). (Here
z1 = (t + i

√
1− t2)z, z2 = (t − i

√
1− t2)z.) Obviously, Γ is injective. Now, for

z1, z2 ∈ S1 there is z ∈ S1 such that z2 = z1z2. Thus

z1 + z2 = z1 + z1z
2 =

{
z(zz1 + zz1) if zz1 + zz1 > 0,
−z(−zz1 − zz1) if zz1 + zz1 < 0.

This implies that Γ is also surjective.
Finally, from Theorem 2.6 and Theorem 3.6, we get that

K0(D(M, θ)) ∼= Z⊕ Z, K1(D(M, θ)) ∼= Z⊕ Z.
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Example 4.4. Let M = S2 = {(x, z) ∈ [−1, 1] × C | x2 + |z|2 = 1} and
θ(x, z) = (x, e2πi/3z). Then Mθ = {(−1, 0), (1, 0)} and θ is regular by Proposi-
tion 4.1 (ii). Define the homeomorphic map β : M0/θ → (−1, 1)× S1 by

β(〈x, z〉) = (x, (1− x2)−
3
2 z3)

where 〈x, z〉 = P (x, z), (x, z) ∈ S2. So M+
0 /θ̂ ∼= ((−1, 1) × S1)+ ∼= (S1 × R1)+.

Since H1(S2, Z) ∼= 0, we have H1(M/θ, Z) ∼= 0 so that K−1(M/θ) ∼= 0. Therefore
K0(M/θ) ∼= Z2 by (3.4). Finally, by Theorem 2.6 and Theorem 3.6,

K0(D(M, θ)) ∼= Z6, K1(D(M, θ)) ∼= 0.
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