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Abstract. If K, L and M are (closed) subspaces of a Banach space X sat-
isfying K ∩M = (0), K ∨ L = X and L ⊂ M , then P = {(0), K, L, M, X}
is a pentagon subspace lattice on X. If P1 and P2 are pentagons, every (al-
gebraic) isomorphism ϕ : AlgP1 → AlgP2 is quasi-spatial. The SOT-closure
of the fin- ite rank subalgebra of AlgP is {T ∈ AlgP : T (M) ⊆ L}. On
separable Hilbert space H every positive, injective, non-invertible operator
A and every non-zero subspace M satisfying M ∩ Ran(A) = (0) give rise to
a pentagon P(A; M). AlgP(A; M) and AlgP(B; N) are spatially isomorphic
if and only if T Ran(A) = Ran(B) and T (M) = N for an invertible operator
T ∈ B(H). If A(A) is the set of operators leaving Ran(A) invariant, every
isomorphism ϕ : A(A) → A(B) is implemented by an invertible operator T
satisfying T Ran(A) = Ran(B).
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1. INTRODUCTION AND PRELIMINARIES

In abstract lattice theory two five-element lattices, the pentagon and the double
triangle, play special roles. (A lattice is modular if and only if it has no pentagon
sublattice; it is distributive if and only if it has neither a pentagon nor a double
triangle sublattice. See [2].) Each of these lattices consists of a least element 0
and a greatest element 1 together with elements a, b and c satisfying

a ∧ b = b ∧ c = c ∧ a = 0 and a ∨ b = b ∨ c = c ∨ a = 1

in the double triangle, and

a ∧ c = 0, a ∨ b = 1 and b < c

in the pentagon. Double triangle subspace lattices (on reflexive Banach space)
were studied in [13]. Here we turn our attention to pentagons. More precisely, we
study realizations of the pentagon as a lattice P of (closed) subspaces of complex
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Banach space. The study of such realizations was begun by Halmos in 1971 ([6]).
Apart from the facts that reflexive ([6]) and non-reflexive ([15], [19]) pentagon
subspace lattices exist, and that AlgP is always a semisimple Banach algebra ([8],
[17]), not a lot is known about them. Below we present a more systematic study of
them and, not surprisingly, several apparently difficult problems are isolated in the
process. All of these problems concern various non-self-adjoint operator algebras
and the possible existence of algebraic or spatial isomorphisms between them.

Throughout what follows X will denote a non-zero complex Banach space
with (topological) dual X∗. Also, H will denote a non-zero complex Hilbert space
on which the inner-product will be denoted by (· | ·). The notation “⊂” is reserved
for strict set inclusion. The terms “operator” and “subspace” will mean “bounded
linear transformation” and “norm closed linear manifold”, respectively. As usual,
if X1 and X2 are Banach spaces, B(X1, X2) denotes the set of all operators T :
X1 → X2 and B(X,X) is denoted simply by B(X). If L and M are subspaces of X
satisfying L ⊆M , M/L denotes the quotient Banach space with norm ‖x+ L‖ =
inf
y∈L

‖x− y‖ (x ∈M). If n ∈ Z+, X(n) denotes the Banach space consisting of the

direct sum of n copies of X normed by ‖(xi)n
1‖ =

( n∑
i=1

‖xi‖2
)1/2

. The Banach

space X(∞) is defined as
{

(xi)∞1 : xi ∈ X (i ∈ Z+) and
∞∑

i=1

‖xi‖2 < ∞
}

with the

usual operations and norm ‖x‖ =
( ∞∑

i=1

‖xi‖2
)1/2

. If n ∈ Z+∪{∞} and A ∈ B(X),

A(n) denotes the operator on X(n) defined by A(n)(xi)n
i = (Axi)n

1 .
If e, f, g, . . . are vectors of X, then 〈e, f, g, . . .〉 denotes their linear span.

If {Lγ}Γ is a family of subspaces of X,
∨
Γ

Lγ denotes the closed linear span of⋃
Γ

Lγ . For any vectors f ∈ X and e∗ ∈ X∗, e∗ ⊗ f denotes the operator on X

given by (e∗ ⊗ f)x = e∗(x)f (x ∈ X). If T ∈ B(X), T ∗ denotes the adjoint
of T , Ran(T ) denotes the range of T and G(T ) denotes the graph of T , that is
G(T ) = {(x, Tx) : x ∈ X}. Also T |K denotes the restriction of T to the subspace
K. For any non-empty subset Y ⊆ X, Y ⊥ denotes its annihilator, that is, Y ⊥ =
{e∗ ∈ X∗ : e∗(y) = 0, for every y ∈ Y }. For any non-empty subset Z ⊆ X∗,⊥Z
denotes its pre-annihilator, that is, ⊥Z = {f ∈ X : x∗(f) = 0, for every x∗ ∈ Z}.
Then X⊥ = (0), (0)⊥ = X∗ and ⊥(Y ⊥) = Y , for every subspace Y ⊆ X.

A subspace lattice on X is a family L of subspaces of X satisfying

(i) (0), X ∈ L and
(ii)

⋂
Γ

Lγ ∈ L,
∨
Γ

Lγ ∈ L, for every family {Lγ}Γ of elements of L.

For any family F of subspaces of X we define AlgF , as usual, by

AlgF = {T ∈ B(X) : T (L) ⊆ L, for every L ∈ F} .

Then AlgF is a unital algebra and is closed in the strong operator topology. For
any subset A ⊆ B(X) we define Lat A, as usual, by

LatA = {L : L is a subspace of X and T (L) ⊆ L, for every T ∈ A} .
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Then LatA is a subspace lattice. Also, F⊆LatAlgF , A⊆Alg LatA, Alg Lat AlgF
= AlgF and LatAlg LatA = LatA. A subspace lattice L on X is reflexive if
L = LatAlgL, equivalently, if L = Lat A for some subset A ⊆ B(X).

If K and L are non-trivial subspaces of X that are (topologically) comple-
mentary, that is, K∩L = (0) and K∨L = X, then D = {(0),K, L,X} is an atomic
Boolean subspace lattice on X with 2 atoms (K and L); abbreviated 2-atom ABSL.

A subset S of H is an operator range if S = Ran(T ) for some operator
T ∈ B(H). Most of the basic results concerning operator ranges that we use are
to be found in [3]. In particular, Douglas’ theorem ([3], Theorem 2.1) states that,
for every pair A,B of operators on H, Ran(A) ⊆ Ran(B) if and only if A = BC
for some operator C ∈ B(H). It easily follows that an operator T ∈ B(H) maps
Ran(A) into Ran(B) if and only if TA = BS for some operator S. As usual, if M
is a subspace of H, PM denotes the orthogonal projection with range equal to M .
We shall frequently use the following result due to Foiaş ([4]; see also [20], [21]).

Theorem 1.1. ([4]) Let A be a positive operator on H. If the function
ψ : [0, ‖A‖] → R is non-negative, non-decreasing, continuous and concave, then
Ran(ψ(A)) is invariant under every operator on H which leaves Ran(A) invariant.

If A1 and A2 are algebras of operators on the Banach spaces X1 and X2, re-
spectively, A1 and A2 are algebraically isomorphic if there exists a multiplicative,
linear bijection ϕ : A1 → A2. The algebras A1 and A2 are spatially isomorphic
if there exists a bicontinuous bijection T ∈ B(X1, X2) such that TA1T

−1 = A2.
Then the mapping A 7→ TAT−1 is a spatial isomorphism of A1 onto A2, imple-
mented by T .

Let P = {(0),K, L,M,X} be a pentagon subspace lattice on X with L ⊂M
(so K ∩M = (0) and K ∨ L = X). If dimM/L = n is a positive integer we say
that P has gap-dimension n. Otherwise we say that P has infinite gap-dimension.
In Section 2 we discuss how pentagon subspace lattices arise and show that, for
every n ∈ Z+ ∪ {∞}, n > 1, there are both reflexive and non-reflexive pentagons
with gap-dimension equal to n. All pentagons with gap-dimension one are reflexive
([6]; see also [16]). The closure of the finite rank subalgebra of AlgP in the strong
operator topology is shown to be {T ∈ AlgP : T (M) ⊆ L}.

For any pentagons P1 and P2 on Banach spaces X1 and X2, respectively, it is
shown in Section 3 that every algebraic isomorphism ϕ : AlgP1 → AlgP2 is quasi-
spatial (in a sense made precise below). A more general result, at least for reflexive
Banach spaces, is given in [22], but our proof is direct and is unrestricted. It is not
known whether such isomorphisms must be spatial, whether they must preserve
gap-dimension, nor whether they can “switch the types of rank one operators”.

Section 4 is devoted to a study of pentagons on separable Hilbert space H.
More especially, the class of pentagons of the form P(A;M) on H ⊕ H, which
was introduced in [15], is further investigated. Here A ∈ B(H) is a positive,
injective, non-invertible operator and M is a non-zero subspace of H satisfying
M ∩Ran(A) = (0); then P(A;M) = {(0), G(−A), G(A), G(A) + (0)⊕M,H ⊕H}
has gap-dimension equal to dimM . Three operator algebras are associated with
P(A;M), namely, AlgP (A;M), A(A;M) =

{
T ∈ B(H) : TRan(A) ⊆ Ran(A)

and T (M) ⊆M
}

and A0(A;M), the finite rank subalgebra of A(A;M). For each
pair of algebras of the same type, AlgP(A;M), AlgP(B;N), A(A;M), A(B;N)
and A0(A;M), A0(B;N), they are shown to be spatially isomorphic if and only
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if there exists an invertible operator T ∈ B(H) satisfying T Ran(A) = Ran(B)
and T (M) = N . If only one of A,B is compact it is shown that AlgP(A;M)
and AlgP(B;N) cannot even be algebraically isomorphic. An example is given
to show that A0(A;M) and A0(B;N) can be algebraically isomorphic even if
dimM 6= dimN . Whether A(A;M) and A(B;N) can be isomorphic in this case
is not known. Taking M = (0), A(A;M) becomes A(A). The latter type of oper-
ator algebras were introduced and extensively studied in [20]. Finally, we briefly
consider the 2-atom ABSL D(A) = {(0), G(−A), G(A),H ⊕H} associated with
the pentagon P(A;M). Here the algebra A(A) plays a role in determining D(A)
analogous to that played by A(A;M) in determining P(A;M). We extend and
unify earlier results in our last theorem. For example, we show that every alge-
braic isomorphism ϕ : A(A) → A(B) is spatially implemented by some invertible
operator T ∈ B(H) satisfying T Ran(A) = Ran(B).

2. GENERAL COMMENTS

How do pentagon subspace lattices arise? Since they are non-modular, they cer-
tainly do not arise on finite-dimensional spaces. If K and L are subspaces of a
Banach space X satisfying K ∩ L = (0), K ∨ L = X and K + L 6= X, and M is a
non-zero finite-dimensional subspace of X satisfying M ∩ (K +L) = (0), it is eas-
ily shown that P = {(0),K, L, L ∨M,X} is a pentagon on X with gap-dimension
equal to dimM . Conversely, and again easily proved, every pentagon subspace
lattice on X with finite gap-dimension arises in this way.

With K and L as above, if M is an infinite-dimensional subspace satisfying
M ∩ (K + L) = (0) with L +M closed, then again P = {(0),K, L, L ∨M,X} is
a pentagon, this time with infinite gap-dimension. The condition that L +M be
closed cannot be dropped in the preceding statement, as the following example
shows (in it we even have L ∨M = X).

Example 2.1. Let A be a positive, injective, non-invertible operator on
a separable Hilbert space H. Put K = G(−A) and L = G(A). Then K⊥ =
{(Ax, x) : x ∈ H}, L⊥ = {(−Ax, x) : x ∈ H} and K ∩ L = (0), K ∨ L = H ⊕H,
K+L 6= H⊕H. By a result of von Neumann (see [3], Theorem 3.6), there exists a
unitary operator U ∈ B(H) such that Ran(A)∩Ran(B) = (0) where B = UAU∗.
Put M = G(B). Then M⊥ = {(−Bx, x) : x ∈ H} and L ∨M = H ⊕ H. On
the other hand, M ∩ (K + L) = (0), for (x,Bx) = (y + z,−Ay + Az) gives
Bx = A(z − y) ∈ Ran(A) ∩ Ran(B) = (0) so Bx = 0 and x = 0.

Such considerations as immediately above lead quite easily to examples of
pentagon subspace lattices of arbitrary gap-dimension on separable Hilbert space.
Indeed, let A ∈ B(H) be as in the preceding example and let M be a non-zero sub-
space of H satisfying M∩Ran(A) = (0). Since G(A)+(0)⊕H is closed and G(A)∩
(0)⊕H = (0), it follows thatG(A)+(0)⊕M is closed. Clearly

(
(0)⊕M

)
∩

(
G(−A)+

G(A)
)

= (0) so P(A;M) = {(0), G(−A), G(A), G(A) + (0)⊕M,H ⊕H} is a pen-
tagon subspace lattice. The gap-dimension of P(A;M) is dimM and, for any
given A, it can be any positive integer or infinity. One way to see this is as
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follows. Firstly, there exists B ∈ B(H) positive, injective, non-compact and non-
invertible such that Ran(A) ⊆ Ran(B). (If A is non-compact take B = A. Oth-
erwise, if (ei)∞1 is an orthonormal basis of H that diagonalizes A, let B be the
unique operator satisfying Be2i−1 = Ae2i−1, Be2i = e2i, for every i ∈ Z+.) Next,
by von Neumann’s result, there exists a unitary operator V ∈ B(H) such that
Ran(B)∩Ran(V BV ∗) = (0). Since V BV ∗ is not compact, there exists an infinite-
dimensional subspace M∞ ⊆ Ran(V BV ∗) ([3], Theorem 2.5). For any non-zero
subspaceM ⊆M∞ we haveM∩Ran(A) ⊆M∩Ran(B) ⊆ Ran(V BV ∗)∩Ran(B) =
(0), so M ∩Ran(A) = (0). Of course, the dimension of this M can be any positive
integer or infinity.

Later, in Section 4, we will consider, in more detail, those pentagons of the
form P(A;M) described above. This notation was introduced in [15]. It is easily
shown that

AlgP(A;M) =
{(

X + ZA Z
AZA Y +AZ

)
: X, Y, Z ∈ B(H),

Y A = AX and Y (M) ⊆M

}
.

If P = {(0),K, L,M,X} (where L ⊂ M) is a pentagon on a Banach space
X then, of course, P ⊆ LatAlgP. If N ∈ Lat AlgP \ P, then L ⊂ N ⊂M ([16]).
Consequently, every pentagon with gap-dimension one is reflexive. The following
shows how reflexive pentagons of arbitrary gap-dimension, even infinite, can be
constructed.

Proposition 2.2. Let P = {(0),K, L,M,X} be a pentagon subspace lattice
(with L ⊂ M) on a Banach space X with gap-dimension equal to one. Then, for
every n ∈ Z+ ∪ {∞}, P(n) =

{
(0),K(n), L(n),M (n), X(n)

}
is a reflexive pentagon

on X(n) with gap-dimension equal to n.

Proof. It is not difficult to verify that P(n) is a pentagon on X(n) with gap-
dimension n. Since P is reflexive, for every vector y ∈M \ L, the linear manifold
(AlgP)y is dense in M . For every i, j and every A ∈ AlgP the mapping of X(n)

into itself given by (xk)n
1 7→ (δikAxj)n

k=1 defines an element of AlgP(n).
Suppose that P(n) is not reflexive. Then there exists N ∈ LatAlgP(n) such

that L(n) ⊂ N ⊂M (n). Let (yk)n
1 ∈ N \L(n). Then yj 6∈ L, for some j. For every

i and every A ∈ AlgP, (δikAyj)n
k=1 ∈ N . Since (AlgP)yj is dense in M , it follows

that M (n) ⊆ N . This is a contradiction.

The first example of a non-reflexive pentagon (with gap-dimension 2) was
given in [19]. Non-reflexive pentagons on separable Hilbert space of arbitrary
finite gap-dimension are exhibited in [15] and, for each of them, its LatAlg is fully
determined. We now present a simple method by which examples of non-reflexive
pentagons of arbitrary gap-dimension (even infinite) can be obtained.
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Example 2.3. Let A be a positive, injective, non-invertible operator on
a separable Hilbert space H, and let N∞ be an infinite-dimensional subspace
satisfying N∞ ∩ Ran(A1/2) = (0). Let N be a non-zero subspace satisfying N ⊆
N∞ and let y ∈ Ran(A1/2) \ Ran(A). Then (N + 〈y〉) ∩ Ran(A) = (0). For if
x + λy ∈ Ran(A) with x ∈ N , λ ∈ C, then x ∈ N ∩ Ran(A1/2) = (0) so x = 0.
Then λy ∈ Ran(A) gives λ = 0. Thus, using the notation mentioned earlier,
P(A;N + 〈y〉) is a pentagon on H ⊕ H with gap-dimension equal to 1 + dimN
if dimN < ∞ and infinity otherwise. We show that P = P(A;N + 〈y〉) is non-
reflexive by showing that G(A) + (0)⊕ 〈y〉 ∈ LatAlgP.

Let T ∈ AlgP. Then T =
(
X + ZA Z
AZA Y +AZ

)
for some operators X,Y ,

Z ∈ B(H) satisfying Y A = AX and Y (N + 〈y〉) ⊆ N + 〈y〉. Since Y leaves
Ran(A) invariant, it also leaves Ran(A1/2) invariant by Foiaş’ theorem (as stated in
Section 1). So Y y ∈ Ran(A1/2). Since Y also leaves N+〈y〉 invariant, Y y = x+λy,
for some x ∈ N , λ ∈ C. Thus x = Y y − λy ∈ N ∩ Ran(A1/2) = (0), so x = 0.
Hence Y 〈y〉 ⊆ 〈y〉 and it easily follows that T leaves G(A) + (0)⊕ 〈y〉 invariant.

Let P = {(0),K, L,M,X} be a pentagon subspace lattice (as usual, with
L ⊂M) on a Banach spaceX. LetR denote the set of rank one operators of AlgP.
By [16], Lemma 3.1 (see also [11]) the elements of R are of two distinct types. In
fact, R = R− ∪ R+ where we define R− =

{
e∗ ⊗ f : 0 6= f ∈ K, 0 6= e∗ ∈M⊥}

and R+ =
{
g∗ ⊗ h : 0 6= h ∈ L, 0 6= g∗ ∈ K⊥}

. Note that R− ∩ R+ = ∅. If R1,
R2 ∈ R we shall say that R1 and R2 are of the same type if either both belong to
R− or both belong to R+. Otherwise we shall say that R1 and R2 are of different
types.

Theorem 2.4. Let P = {(0),K, L,M,X} be a pentagon subspace lattice on
a Banach space X (with L ⊂ M). Let F , respectively R, denote the set of finite
rank, respectively rank one, operators of AlgP. Then:

(i) for every n ∈ Z+, every element of F of rank n is the sum of n elements
of R;

(ii) the closure of F in the strong operator topology is {T ∈AlgP :T (M)⊆L};
(iii) LatF = LatR = P ∪ {N : N a subspace of X and L ⊂ N ⊂M};
(iv) the strongly closed algebra generated by F and I is Alg LatR.

Proof. (i) Let F ∈ F have rank n ∈ Z+. Since Ran(F ) = F (K + L) ⊆
F (K + L) = F (K) + F (L) ⊆ Ran(F ), Ran(F ) = F (K) + F (L). Assume for
the moment that F (K) 6= (0) and F (L) 6= (0) and let {x1, x2, . . . , xp} and
{y1, y2, . . . , yq} be bases for F (K) and F (L), respectively. Then {x1, x2, . . . , xp, y1,
y2, . . . , yq} is a basis for Ran(F ) and there exist v∗1 , v

∗
2 , . . . , v

∗
p, w

∗
1 , w

∗
2 , . . . , w

∗
q ∈ X∗

such that F =
p∑

i=1

v∗i ⊗ xi +
q∑

j=1

w∗j ⊗ yj . Suppose that v∗i 6∈M⊥. Then v∗i (h) 6= 0

for some vector h ∈M . Now

Fh =
p∑

r=1

v∗r (h)xr +
q∑

j=1

w∗j (h)yj ∈M,
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so
p∑

r=1
v∗r (h)xr ∈ K ∩M = (0) and so v∗i (h) = 0. This contradiction shows that

v∗i ⊗ xi ∈ R (i = 1, 2, . . . , p).
Similarly, if we suppose that w∗j 6∈ K⊥, then w∗j (f) 6= 0 for some f ∈ K.

This leads to
q∑

s=1
w∗s(f)ys ∈ K ∩ L = (0), so w∗j (f) = 0. Again a contradiction.

Thus w∗j ⊗ yj ∈ R (j = 1, 2, . . . , q). Since p+ q = n, the assertion (i) follows.
Obvious modification to the above argument shows that (i) also holds when

F (K) = (0) or F (L) = (0).
(ii) Let E = {T ∈ AlgP : T (M) ⊆ L}. It is clear that E is a strongly closed

subalgebra (even a 2-sided ideal) of AlgP and, since R ⊆ E , we have F ⊆ E by (i).
Hence E contains the strong closure of F . Now D = {(0),K,M,X} is a 2-atom
ABSL on X, so by [1], Theorem 3.1 there exists a net {Fα} of finite rank operators
of AlgD such that Fα → I (strongly). If T ∈ E , then TFα → T (strongly) and
TFα ∈ AlgP. Thus TFα ∈ F and T belongs to the strong closure of F . This
proves (ii).

(iii) This follows from (i) and [16], Proposition 3.2.
(iv) Let A denote the strongly closed algebra generated by F and I. Then

LatA = LatF so A ⊆ Alg LatF = Alg LatR. Let A ∈ Alg LatR. Then, by (iii),
A ∈ AlgP and A(N) ⊆ N for every subspace N of X satisfying L ⊆ N ⊆ M .
It follows that the operator Â : M/L → M/L defined by Â(x + L) = Ax + L

(x ∈ M) leaves every subspace of M/L invariant. Thus Â is scalar, that is, there
exists λ ∈ C such that Ax − λx ∈ L, for every x ∈ M . Thus A − λ ∈ E so, since
E ⊆ A, A = (A− λ) + λ ∈ A. This proves (iv).

Remark 2.5. With notation as in the preceding theorem, by (ii), F is not
strongly dense in AlgP. (In the terminology of [1], p. 20, P does not have the
strong rank one density property.) Even the strongly closed algebraA generated by
F and I need not be AlgP. For, note that A = AlgP if and only if LatAlgP =
LatR. If the gap-dimension of P is greater than one and P is reflexive, then
P = LatAlgP 6= LatR so A 6= AlgP. On the other hand, A = AlgP if P
has gap-dimension one. Other examples in [15] show that it is possible to have
A = AlgP, with P having gap-dimension n, for any integer n > 2.

3. QUASI-SPATIALITY OF ISOMORPHISMS

If X1 and X2 are Banach spaces and A1,A2 are subalgebras of B(X1) and B(X2),
respectively, an algebraic isomorphism ϕ : A1 → A2 is called quasi-spatial if there
exists a closed, densely defined, injective linear transformation T : Dom(T ) ⊆
X1 → X2 with dense range, and with its domain Dom(T ) invariant under ev-
ery element of A1, such that ϕ(A)Tx = TAx, for every x ∈ Dom(T ) and every
A ∈ A1. The notion of quasi-spatiality was introduced in [10], where it is shown
that every algebraic isomorphism ϕ : AlgL1 → AlgL2 is quasi-spatial for any
pair L1,L2 of ABSL’s on Banach space. (For a definition of “ABSL” see [1], p. 5.)
It is also shown in [10] (see also [9]) that such a mapping ϕ need not be spatial.
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The techniques of [10] are used in [22] to show the necessity of quasi-spatiality of
algebraic isomorphisms between the Alg’s of a broader class of subspace lattices,
containing all ABSL’s and all pentagons, at least if the underlying spaces are
reflexive ([22], Theorem 3.3.5, p. 126). We give a more direct proof of this for pen-
tagons below, with no restrictions. The proof is included also for the convenience
of the reader, and because we wish to use aspects of it in the next section.

Recall that an element s of an abstract algebra A is called a single element
of A if asb = 0 and a, b ∈ A implies that either as = 0 or sb = 0. Every rank
one operator is a single element of every operator algebra containing it. (On the
other hand, there are operator algebras containing single elements of rank more
than one, even infinity [5], [12], [18].)

Lemma 3.1. Let P = {(0),K, L,M,X} be a pentagon subspace lattice (with
L ⊂ M) on a Banach space X. Every non-zero single element of AlgP has rank
one.

Proof. Let S ∈ AlgP be non-zero and single. Note that R1AR2 = 0, for
every A ∈ AlgP and every pair R1, R2 of rank one operators of AlgP of different
types (that is, either R1 ∈ R−, R2 ∈ R+ or vice-versa). Suppose that S(K) 6= (0).
Then SR− 6= 0, for some R− ∈ R− so R+S = 0, for every R+ ∈ R+. Thus
Ran(S) ⊆ K so Ran(S) 6⊆ M . Hence R′−S 6= 0, for some R′− ∈ R−, so SR+ = 0,
for every R+ ∈ R+. Thus S(L) = (0). This shows that S(K) = (0) or S(L) = (0).

Now, since Ran(S) is not contained in K ∩M , there exists R ∈ R− ∪ R+

such that RS 6= 0. Since RS has rank one, for every f1, f2 ∈ K there exist
scalars α1, α2, not both zero, such that RS(α1f1 + α2f2) = 0. If 0 6= e∗ ∈ M⊥,
RS(e∗ ⊗ (α1f1 + α2f2)) = 0 so S(α1f1 + α2f2) = 0, since S is single. From this it
follows that dimS(K) 6 1. Similarly dimS(L) 6 1.

Since Ran(S) = S(K + L) ⊆ S(K) + S(L), it follows that S has rank one.

Remark 3.2. In the proof of the preceding lemma we noted that, given
the rank one operators R1 and R2 of AlgP, if they are of different types then
R1AR2 = 0, for every A ∈ AlgP. The converse is also true. Indeed, suppose that
R1, R2 ∈ R−. Then Ri = e∗i ⊗ fi with fi ∈ K, e∗i ∈ M⊥ (i = 1, 2). Since f2 6∈ M
there exists e∗ ∈ M⊥ such that e∗(f2) = 1. Also, e∗1 6∈ K⊥ so there exists f ∈ K
such that e∗1(f) = 1. Then A1 = e∗ ⊗ f ∈ Alg P and R1A1R2 = e∗2 ⊗ f1 6= 0.
Similarly, there exists A2 ∈ AlgP such that R1A2R2 6= 0 if R1, R2 ∈ R+.

Let Pi = {(0),Ki, Li,Mi, Xi} be a pentagon subspace lattice (with Li ⊂Mi)
on a Banach space Xi (i = 1, 2). Let ϕ : AlgP1 → AlgP2 be an algebraic
isomorphism. The property of being single is purely algebraic so is preserved
by algebraic isomorphisms. But, using Lemma 3.1, the set of non-zero single
elements of AlgPi is just Ri, the set of rank one operators of AlgPi (i = 1, 2).
Hence ϕ(R1) = R2. More can be deduced. Using Theorem 2.4 (i) and Lemma 3.1
it follows that ϕ is rank-preserving, that is, rankϕ(F ) = rankF , for every F ∈
AlgP1. Also, since the characterization of rank one operators being of different
types, given in the preceding remark, is also purely algebraic, it follows that either
ϕ preserves the types of rank one operators in the sense that ϕ(R−

1 ) = R−
2 and

ϕ(R+
1 ) = R+

2 , or ϕ switches their types in the sense that ϕ(R−
1 ) = R+

2 and
ϕ(R+

1 ) = R−
2 .
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Question 3.3. If P1 and P2 are pentagon subspace lattices on Banach
spaces can an algebraic isomorphism ϕ : Alg P1 → AlgP2 switch the types of
rank one operators?

Theorem 3.4. Let Pi = {(0),Ki, Li,Mi, Xi} be a pentagon subspace lattice
(with Li ⊂ Mi) on a Banach space Xi (i = 1, 2). Every algebraic isomorphism
ϕ : AlgP1 → AlgP2 is quasi-spatial.

Proof. Let ϕ : AlgP1 → AlgP2 be an algebraic isomorphism. Choose f0 ∈
K1, e∗0 ∈ M⊥

1 such that e∗0(f0) = 1. Then e∗0 ⊗ f0 ∈ R1 and ϕ(e∗0 ⊗ f0) ∈ R2. If
0 6= e∗ ∈M⊥

1 then (e∗0⊗f0)(e∗⊗f0) = e∗⊗f0 so ϕ(e∗0⊗f0)ϕ(e∗⊗f0) = ϕ(e∗⊗f0).
It follows that ϕ(e∗ ⊗ f0) and ϕ(e∗0 ⊗ f0) have the same range. Let b0 span the
range of ϕ(e∗0⊗f0). Then, for every e∗ ∈M⊥

1 there exists a unique vector a∗ ∈ X∗
2

such that ϕ(e∗ ⊗ f0) = a∗ ⊗ b0. This defines a linear mapping S0 : M⊥
1 → X∗

2

given by S0e
∗ = a∗. Thus ϕ(e∗ ⊗ f0) = S0e

∗ ⊗ b0 for every e∗ ∈M⊥
1 .

Similarly, choosing h0 ∈ L1, g0 ∈ K⊥
1 such that g∗0(h0) = 1 and letting

d0 span the range of ϕ(g∗0 ⊗ h0), there exists a linear mapping S0 : K⊥
1 → X∗

2

such that ϕ(g∗ ⊗ h0) = S0g
∗ ⊗ d0, for every g∗ ∈ K⊥

1 . Extend the definition of
S0 to K⊥

1 + M⊥
1 by linearity. Either S0(M⊥

1 ) ⊆ M⊥
2 and S0(K⊥

1 ) ⊆ K⊥
2 if ϕ

preserves the types of rank one operators, or S0(M⊥
1 ) ⊆ K⊥

2 and S0(K⊥
1 ) ⊆ M⊥

2
if it switches them.

A similar argument shows that there exists a linear mapping T0 : K1 +L1 →
K2 + L2 such that ϕ(e∗0 ⊗ f) = S0e

∗
0 ⊗ T0f and ϕ(g∗0 ⊗ h) = S0g

∗
0 ⊗ T0h for every

f ∈ K1, h ∈ L1. Also, T0(K1) ⊆ K2 and T0(L1) ⊆ L2 if ϕ preserves types and
T0(K1) ⊆ L2, T0(L1) ⊆ K2 if it switches them.

Since e∗0 ⊗ f0 is non-zero and idempotent, so is ϕ(e∗0 ⊗ f0). But ϕ(e∗0 ⊗ f0) =
S0e

∗
0 ⊗ T0f0 (since b0 = T0f0). Hence S0e

∗
0(T0f0) = 1. Then, for every e∗ ∈ M⊥

1
and f ∈ K1, we have

ϕ(e∗ ⊗ f) = ϕ
(
(e∗0 ⊗ f)(e∗ ⊗ f0)

)
= ϕ(e∗0 ⊗ f)ϕ(e∗ ⊗ f0)

= (S0e
∗
0 ⊗ T0f)(S0e

∗ ⊗ T0f0) = S0e
∗ ⊗ T0f.

Similarly, ϕ(g∗ ⊗ h) = S0g
∗ ⊗ T0h, for every g∗ ∈ K⊥

1 and h ∈ L1.
Let v∗ ⊗ ω ∈ AlgP1. Then ϕ(v∗ ⊗ ω) = S0v

∗ ⊗ T0ω and (v∗ ⊗ ω)2 =
v∗(ω)(v∗ ⊗ ω) give

(
ϕ(v∗ ⊗ ω)

)2 = S0v
∗(T0ω)ϕ(v∗ ⊗ ω) = v∗(ω)ϕ(v∗ ⊗ ω), so

S0v
∗(T0ω) = v∗(ω). It readily follows that S0v

∗(T0ω) = v∗(ω), for every v∗ ∈
K⊥

1 + M⊥
1 and ω ∈ K1 + L1. From this, it is clear that both S0 and T0 are

injective.
Next, we show that ϕ(A)T0ω = T0Aω, for every A ∈ AlgP1 and every

ω ∈ K1 + L1. Suppose first that 0 6= f ∈ K1. Choose e∗ ∈ M⊥
1 such that

e∗(f) = 1. Then S0e
∗(T0f) = e∗(f) = 1 and

ϕ(A)T0f = ϕ(A)(S0e
∗ ⊗ T0f)T0f = ϕ(A)ϕ(e∗ ⊗ f)T0f

= ϕ(e∗ ⊗Af)T0f = (S0e
∗ ⊗ T0Af)T0f = T0Af.

Similarly, ϕ(A)T0h = T0Ah, for every 0 6= h ∈ L1, and combining these two cases
gives the desired result.

Each of the linear mappings T0|K1, T0|L1, S0|M⊥
1 and S0|K⊥

1 is continuous.
Indeed, by [8] and [17], AlgP2 is semisimple so by Johnson’s theorem ([7]), ϕ is
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automatically continuous in the operator norm. For example, if fn → f with fn,
f ∈ K1, then e∗ ⊗ fn → e∗ ⊗ f in operator norm for every 0 6= e∗ ∈ M⊥

1 . Then
ϕ(e∗ ⊗ fn) → ϕ(e∗ ⊗ f), that is, S0e

∗ ⊗ T0fn → S0e
∗ ⊗ T0f . Hence T0fn → T0f

and T0|K1 is continuous. Similar arguments apply to T0|L1, S0|M⊥
1 and S0|K⊥

1 .
Also, if ϕ preserves types, we have T0(K1) = K2, T0(L1) = L2, S0(M⊥

1 ) = M⊥
2

and S0(K⊥
1 ) = K⊥

2 . For, let 0 6= b ∈ K2. Then S0e
∗
0 ⊗ b = ϕ(e∗1 ⊗ f1) for some

non-zero vectors e∗1 ∈ M⊥
1 , f1 ∈ K1. Thus S0e

∗
0 ⊗ b = S0e

∗
1 ⊗ T0f1 so b ∈ 〈T0f1〉

and b ∈ T0(K1). The other range equalities are proved similarly. On the other
hand, if ϕ switches types, we have T0(K1) = L2, T0(L1) = K2, S0(M⊥

1 ) = K⊥
2

and S0(K⊥
1 ) = M⊥

2 , by a similar argument.
Finally, we show that the closure G(T0) of the graph of T0 is the graph of a

linear transformation T which quasi-spatially implements ϕ. Let D =
{
x ∈ X1 :

(x, y) ∈ G(T0), for some y ∈ X2

}
. Then D is a linear manifold and it is dense in

X1 sinceK1+L1 ⊆ D. Let x ∈ D and suppose that (x, y1), (x, y2) ∈ G(T0) with y1,
y2 ∈ X2. Then, (0, y1 − y2) ∈ G(T0) so there exists a sequence (ωn)∞1 of elements
of K1 +L1 such that ωn → 0 and T0ωn → y1−y2. Now, for every v∗ ∈ K⊥

1 +M⊥
1 ,

S0v
∗(T0ωn) = v∗(ωn) → 0 so S0v

∗(y1−y2) = 0. Since S0(K⊥
1 +M⊥

1 ) = K⊥
2 +M⊥

2

it follows that y1 = y2. Thus G(T0) = G(T ) for some linear transformation
T : D → X2. Since T extends T0 and the latter has dense range, T has dense range.
Also, T is injective. For, suppose that Tx = 0 with x ∈ D. Then (x, 0) ∈ G(T0),
so there exists a sequence (ω′n)∞1 of elements of K1 + L1 such that ω′n → x and
T0ω

′
n → 0. Then, for every v∗ ∈ K⊥

1 + M⊥
1 , S0v

∗(T0ω
′
n) = v∗(ω′n) → 0 so

v∗(x) = 0. It follows that x = 0.
The proof is completed by showing that D is invariant under every element

A of AlgP1 and ϕ(A)Tx = TAx, for every x ∈ D. Given A and x, there exists
a sequence (ω′′n)∞1 of elements of K1 + L1 such that ω′′n → x and T0ω

′′
n → Tx.

Then Aω′′n → Ax and T0Aω
′′
n = ϕ(A)T0ω

′′
n → ϕ(A)Tx. Thus (Aω′′n, T0Aω

′′
n) →

(Ax,ϕ(A)Tx). Hence (Ax,ϕ(A)Tx) ∈ G(T ) and so Ax ∈ D and ϕ(A)Tx = TAx.

Remarks 3.5. (1) It is perhaps worthwhile to comment briefly on the set
of linear transformations that quasi-spatially implement a given algebraic isomor-
phism ϕ between AlgP1 and AlgP2 (with P1,P2 and ϕ as in the statement of
the preceding theorem). Let S0 and T0 be as in the proof of Theorem 3.4. In the
proof, the vectors b0 and d0 are determined only up to non-zero scalar multiples;
so the same is true for S0 on M⊥

1 and S0 on K⊥
1 . This means that T0 on K1

and T0 on L1 are determined only up to non-zero multiples as well. Hence, for
all scalars λ, µ 6= 0, if T ′0 : K1 + L1 → X2 is the linear transformation defined
by T ′0(x+ y) = λT0x+ µT0y then T ′0 has a closed extension which quasi-spatially
implements ϕ.

On the other hand, suppose that T ′ : D′ → X2 quasi-spatially implements
ϕ. Since D′ is dense in X1, for every 0 6= e∗ ∈ M⊥

1 there exists z ∈ D′ such that
e∗(z) = 1. Then, sinceD′ is invariant under every element of AlgP1, (e∗⊗f)z ∈ D′,
for every f ∈ K1, so K1 ⊆ D′. Similarly L1 ⊆ D′, so K1 + L1 ⊆ D′. Let f1 ∈ K1

and e∗1 ∈M⊥
1 satisfy e∗1(f1) = 1. Then, for every x ∈ K1, we have

T ′x = T ′(e∗1 ⊗ x)f1 = ϕ(e∗1 ⊗ x)T ′f1 = (S0e
∗
1 ⊗ T0x)T ′f1 = S0e

∗
1(T

′f1)T0x.
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Thus T ′|K1 = λT0|K1 (with λ = S0e
∗
1(T

′f1)). Similarly T ′|L1 = µT0|L1 for
some scalar µ. Hence T ′ is a closed extension of a transformation of the type T ′0
described above.

(2) If X1 and X2 are reflexive Banach spaces, then P⊥i defined by P⊥i =
{(0),K⊥

i ,M
⊥
i , L

⊥
i , X

∗
i } is a pentagon subspace lattice (with M⊥

i ⊂ L⊥i ) on X∗
i

(i = 1, 2). With ϕ and S0 as in the proof of Theorem 3.4, the mapping ψ :
AlgP⊥1 → AlgP⊥2 defined by ψ(A) = (ϕ(τ−1A∗τ))∗, where τ : X1 → X∗∗

1 is the
canonical embedding, is an algebraic isomorphism. This isomorphism is quasi-
spatially implemented by S where G(S0) = G(S). We leave the verification of
these facts to the reader.

(3) LetX1 andX2 be Banach spaces and let T ∈ B(X1, X2) be a bicontinuous
bijection. For every subset A ⊆ B(X1), Lat(TAT−1) = T (LatA). Also, for every
family F of subspaces of X1, T (AlgF)T−1 = Alg T (F). It follows that, if L1 and
L2 are subspace lattices on X1 and X2, respectively, then T (AlgL1)T−1 = AlgL2

if and only if T (LatAlgL1) = Lat AlgL2. So clearly T (AlgL1)T−1 = AlgL2 need
not imply that T (L1) = L2 (for example, let L1 be a non-reflexive subspace lattice,
let L2 = Lat AlgL1 and T = I). However, for pentagons this implication is valid.

Proposition 3.6. Let Pi = {(0),Ki, Li,Mi, Xi} be a pentagon subspace
lattice (with Li ⊂ Mi) on a Banach space Xi (i = 1, 2). Let T ∈ B(X1, X2) be a
bicontinuous bijection. Then T (AlgP1)T−1 = AlgP2 if and only if T (K1) = K2,
T (L1) = L2 and T (M1) = M2.

Proof. By the remark immediately above we must show that T (LatAlgP1) =
LatAlgP2 if and only if T (K1) = K2, T (L1) = L2 and T (M1) = M2. Clearly,
if the latter condition is satisfied, T (P1) = P2 so LatAlgP2 = LatAlg T (P1) =
LatT (AlgP1)T−1 = T (LatAlgP1).

Conversely, suppose that T (LatAlgP1) = Lat AlgP2. As noted earlier, if
N ∈ LatAlgPi then either N ∈ Pi or Li ⊂ N ⊂ Mi. Since T (L1) ⊂ T (M1) and
each is non-trivial, we must have L2 ⊆ T (L1) ⊂ T (M1) ⊆ M2. Since T (K1) ∩
T (L1) = (0) and L2 ⊆ T (L1), it follows that T (K1)∩L2 = (0). Thus L2 6⊆ T (K1)
so T (K1) = K2. If T (L1) 6= L2 then we would have T−1(L2) ⊂ L1 so, since
T−1(L1) ∈ Lat AlgP1, T−1(L2) = (0). Hence T (L1) = L2. Similarly T (M1) =
M2.

It follows from the preceding proposition that, if there exists a spatial iso-
morphism ϕ : AlgP1 → AlgP2 then the pentagon P1 is reflexive if and only if P2

is. For if T ∈ B(X1, X2) implements ϕ then T (P1) = P2 and T (LatAlgP1) =
LatAlgP2. It is clear that such a (spatial) isomorphism preserves the types of
rank one operators and that its existence implies that P1 and P2 have the same
gap-dimensions. In general, can there exist an algebraic isomorphism between
Alg P1 and AlgP2 if one of the pentagons is reflexive and the other not?
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Question 3.7. Let P1 and P2 be pentagon subspace lattices on Banach
spaces.

(i) Must every algebraic isomorphism between AlgP1 and AlgP2 be spatial?
(ii) If AlgP1 and AlgP2 are algebraically isomorphic must they be spatially

isomorphic?
(iii) If AlgP1 and AlgP2 are algebraically isomorphic must P1 and P2 have

the same gap-dimensions?

We present some results relating to these questions in the next section.

4. PENTAGONS ON HILBERT SPACES

Throughout this section H will denote a separable infinite-dimensional Hilbert
space. We shall consider in more detail pentagons onH⊕H of the form P(A;M) =
{(0), G(−A), G(A), G(A) + (0) ⊕ M,H ⊕ H} where A ∈ B(H) is an arbitrary
positive, injective, non-invertible operator and M is a non-zero subspace (pos-
sibly infinite-dimensional) of H satisfying M ∩ Ran(A) = (0). A description of
AlgP(A;M) was given earlier. Let us now write it as

AlgP(A;M) =

{(
X + ZA Z
AZA Y +AZ

)
: X,Y, Z ∈ B(H), Y ∈ A(A;M)

and Y A = AX

}
where, by definition,

A(A;M) = {T ∈ B(H) : T Ran(A) ⊆ Ran(A) and T (M) ⊆M}.

Much of this section will be concerned with the structure of the unital algebras of
the form A(A;M). (This notation was introduced in [15].) They largely determine
the structures of the Alg’s and the Lat Alg’s of the corresponding pentagons and
are interesting in their own right. For example, if 2 6 dimM = n < ∞, it
is possible to have A(A;M)|M as (i) the algebra of all upper triangular n × n
matrices or (ii) the algebra of all diagonal n× n matrices or (iii) the algebra CIn,
relative to appropriate bases of M ([15]). We let A0(A;M) denote the algebra of
finite rank operators of A(A;M).

Proposition 4.1. For every operator algebra on H of the form A(A;M)
described above:

(i) A0(A;M) = {AX(1− PM ) : X ∈ B(H) and X has finite rank};
(ii) for every pair e, f of non-zero vectors of H, e⊗f ∈ A(A;M) if and only

if f ∈ Ran(A) and e ∈M⊥;
(iii) for every n ∈ Z+, every element of A(A;M) of rank n is the sum of n

rank one elements of A(A;M);
(iv) every non-zero single element of A(A;M) has rank one.

Proof. (i) Let F ∈ A0(A;M). Then Ran(F ) = FRan(A) ⊆ F Ran(A) =
F Ran(A) ⊆ Ran(A). Thus F = AX for some operator X ∈ B(H). Since A is
injective, X has finite rank. Since F (M) ⊆ M ∩ Ran(A) = (0), F (M) = (0).
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Thus X(M) = (0) so X(1− PM ) = X. Hence F = AX(1− PM ) and A0(A;M) ⊆
{AX(1 − PM ) : X ∈ B(H) and X has finite rank}. The reverse inclusion is
obvious.

(ii) This follows immediately from (i).
(iii) Let n > 1 and let F ∈ A(A;M) have rank n. Then if {fi}n

1 is a basis

for Ran(F ), fi ∈ Ran(A) for every i and F =
n∑

i=1

ei ⊗ fi for some non-zero vectors

ei ∈ H (i = 1, 2, . . . , n). Since F (M) = (0), ei ∈M⊥ so ei ⊗ fi ∈ A(A;M) by (ii),
for every i = 1, 2, . . . , n.

(iv) Let S ∈ A(A;M) be a non-zero single element. Let f ∈ Ran(A) such
that Sf 6= 0. If e ∈ M⊥ and (Sf |e) = 0, then S∗e = 0. For, if e 6= 0 we
have (e ⊗ f)S(e ⊗ f) = (Sf |e)(e ⊗ f) = 0 so, since S is single, S∗e = 0. Thus
M⊥ ∩ 〈Sf〉⊥ ⊆ kerS∗ so Ran(S) ⊆M + 〈Sf〉. Now S Ran(A) ⊆ Ran(A) ∩ (M +
〈Sf〉) = 〈Sf〉 and Ran(S) = SRan(A) ⊆ S Ran(A) ⊆ 〈Sf〉, so S has rank one.

Theorem 4.2. Let A,B ∈ B(H) be positive, injective, non-invertible op-
erators and let M,N be non-zero subspaces of H satisfying M ∩ Ran(A) = N ∩
Ran(B) = (0). Let P(A;M),P(B;N) be the corresponding pentagons on H ⊕H
(as described above). The following are equivalent:

(i) AlgP(A;M) and AlgP(B;N) are spatially isomorphic;
(ii) A(A;M) and A(B;N) are spatially isomorphic;
(iii) A0(A;M) and A0(B;N) are spatially isomorphic;
(iv) there exists an invertible operator T ∈ B(H) such that T Ran(A) =

Ran(B) and T (M) = N .

Proof. We prove that (i) ⇒ (iv) ⇒ (ii) ⇒ (iii) ⇒ (i).
(i) ⇒ (iv). Suppose that there exists an invertible operator T0 ∈ B(H ⊕

H) such that T0 AlgP(A;M) T−1
0 = AlgP(B;N). By Proposition 3.6, T0 maps

G(−A), G(A) and G(A) + (0) ⊕M onto, respectively, G(−B), G(B) and G(B) +

(0) ⊕ N . It follows that T0 has the form T0 =
(
S + UA U
BUA T +BU

)
, where

S, T, U ∈ B(H) satisfy TA = BS, T (M) ⊆ N . Similarly, T−1
0 has the form

T−1
0 =

(
S̃ + ŨB Ũ
AŨB T̃ +AŨ

)
, where T̃B = AS̃ and T̃ (N) ⊆M .

For every x ∈ H,(
x

−Ax

)
= T−1

0 T0

(
x

−Ax

)
= T−1

0

(
Sx

−BSx

)
=

(
S̃Sx

−AS̃Sx

)
,

so S̃S = 1. For every y ∈ H,(
y

−By

)
= T0T

−1
0

(
y

−By

)
= T0

(
S̃y

−AS̃y

)
=

(
SS̃y

−BSS̃y

)
,

so SS̃ = 1. Thus S is invertible and T̃ TA = T̃BS = AS̃S = A implies that
T̃ T = 1, and T T̃B = TAS̃ = BSS̃ = B implies that T T̃ = 1. Thus T is also
invertible. Also, T̃ (N) ⊆ M gives N ⊆ T (M), so T (M) = N . Since TA = BS,
T Ran(A) = Ran(B).
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(iv) ⇒ (ii). It is easy to verify that TA(A;M)T−1 = A(B;N) if T ∈ B(H)
has properties as described in (iv).

(ii) ⇒ (iii). Obviously, if T ∈ B(H) is invertible and TA(A;M)T−1 =
A(B;N) then TA0(A;M)T−1 = A0(B;N).

(iii)⇒ (i). Let T ∈ B(H) be an invertible operator satisfying TA0(A;M)T−1

= A0(B;N). Let 0 6= f ∈ Ran(A) and 0 6= e ∈ M⊥. Then, by Proposition 4.1
(ii), e ⊗ f ∈ A0(A;M) so T (e ⊗ f)T−1 = T ∗−1e ⊗ Tf ∈ A0(B;N). By the same
proposition, Tf ∈ Ran(B) and T ∗−1e ∈ N⊥. Thus T Ran(A) ⊆ Ran(B) and
T ∗−1M⊥ = (TM)⊥ ⊆ N⊥ so N ⊆ T (M). Similarly, T−1 Ran(B) ⊆ Ran(A) and
M ⊆ T−1(N). Hence T Ran(A) = Ran(B) and T (M) = N . From the former

TA = BS for a unique invertible operator S. The operator T0 =
(
S 0
0 T

)
is invertible and maps G(−A), G(A) and G(A) + (0) ⊕ M onto, respectively,
G(−B), G(B) and G(B) + (0) ⊕ N . By Proposition 3.6, T0 AlgP(A;M)T−1

0 =
AlgP(B;N).

On the Hilbert space H no invertible operator can map the range of a com-
pact operator onto the range of an operator which is not compact. Hence, using
the preceding theorem, to show that, given n ∈ Z+∪{∞} and a specified reflexivity
condition (that is, either reflexive or non-reflexive) there exist pentagons P(A;M)
and P(B;N) on separable Hilbert space, each having gap-dimension n and each
satisfying the specified reflexivity condition, yet whose Alg’s (so whose associ-
ated algebras A(A;M) and A(B;N)) are not spatially isomorphic, it is enough to
provide such examples with A compact and B non-compact.

In Example 2.3 the operator A can be either compact or non-compact and
the dimension of the subspace M can be any positive integer or infinity. In any
case the resulting pentagon is non-reflexive.

Proposition 2.2 provides examples for the reflexive case with one exception.
Indeed, if A is a positive, injective, non-invertible (compact or non-compact) op-
erator on H and e ∈ H is a vector satisfying e 6∈ Ran(A), then P = P(A; 〈e〉) is a
reflexive pentagon on H ⊕H. Thus, by Proposition 2.2, for any n ∈ Z+ ∪ {∞},
P(A(n); 〈e〉(n)) (which can be identified with P(n)) is a reflexive pentagon with
gap-dimension n. For finite n, the operator A(n) is compact if and only if A is.
On the other hand, A(∞) will always be non-compact. An example supplying the
last remaining case immediately follows.

Example 4.3. We show that, on a separable Hilbert space, there exists a
reflexive pentagon P(B;N) with B compact and N infinite-dimensional.

On H = `2(Z+) let S∗ be the backward shift operator. Let 0 < a < 1 and let
A be the positive, injective, compact operator given by A = diag(1, a, a2, a3, . . .)
(with respect to the usual basis). Also, let e ∈ H be the vector e = (1, a, a2, a3, . . .).
Then e 6∈ Ran(A) and S∗A = aAS∗, S∗e = ae.

For every j ∈ Z+, P(aj−1A; 〈e〉) is a pentagon on H⊕H. For every i, j ∈ Z+

let Rij be the operator on H⊕H given by Rij =
(
aS∗ 0
0 ai−jS∗

)
. Then Rij maps

G(−aj−1A), G(aj−1A) and G(aj−1A) + (0) ⊕ 〈e〉 onto, respectively, G(−ai−1A),
G(ai−1A) and G(ai−1A) + (0)⊕ 〈e〉.
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On H = H(∞), let B be the operator B = diag(A, aA, a2A, a3A, . . .). Then
B is positive and injective. Also, B is compact. If F ∈ B(H) is a finite rank
operator then, for every m ∈ Z+,

‖B − diag(F, aF, a2F, . . . , am−1F, 0, 0, . . .)‖ 6 ‖A− F‖+ am

and diag(F, aF, a2F, . . . , am−1F, 0, 0, . . .) has finite rank. Let N be the subspace
of H given by N = 〈e〉(∞) = {(λke)∞1 : (λk)∞1 ∈ l2(Z+)}. Then N ∩Ran(B) = (0),
and so P(B;N) is a pentagon on H ⊕H with infinite gap-dimension.

We show that P = P(B;N) is reflexive. Suppose that it is not. Let L ∈
LatAlgP\P. Then G(B) ⊂ L ⊂ G(B) + (0) ⊕ N . Let y ∈ L, y 6∈ G(B). Then
y = (xk)∞1 ⊕ (ak−1Axk + λke)∞1 where, because y 6∈ G(B), we have λj 6= 0 for
some j > 1. For this j and for every i > 1, the operator R̃ij : H → H which
sends (uk)∞1 ⊕ (vk)∞1 ∈ H ⊕ H to (δikaS∗uj)∞k=1 ⊕ (δikai−jS∗vj)∞k=1, belongs to
AlgP. Hence applying these operators (as i varies) to y and using the fact that
G(B) ⊆ L, we obtain 0 ⊕ (δike)∞k=1 ∈ L, for every i > 1. Thus (0) ⊕ N ⊆ L so
L = G(B) + (0)⊕N . This is a contradiction.

Actually, if in the pentagons P(A;M) and P(B;N) one of the operators
A,B is compact and the other is non-compact, then AlgP(A;M) and AlgP(B;N)
cannot even be algebraically isomorphic as the following shows.

Theorem 4.4. Let A,B ∈ B(H) be positive, injective, non-invertible op-
erators and let M,N be non-zero subspaces of H satisfying M ∩ Ran(A) = N ∩
Ran(B) = (0). Let P(A;M),P(B;N) be the corresponding pentagons on H ⊕H
and let ϕ : AlgP(A;M) → AlgP(B;N) be an algebraic isomorphism. Then:

(i) if ϕ preserves the types of rank one operators, there exists an invertible
operator T ∈ B(H) such that T Ran(A) = Ran(B);

(ii) if ϕ switches the types of rank one operators, there exist operators V,W ∈
B(H), injective on Ran(A) and Ran(B), respectively, such that V Ran(A) =
Ran(B) and W Ran(B) = Ran(A).

Proof. By Theorem 3.4, ϕ is quasi-spatial. As in the proof of that theorem
(particularized to the present situation) there exists a linear transformation T0

mapping G(−A) + G(A) injectively onto G(−B) + G(B) with both T0|G(−A)
and T0|G(A) continuous. Put T0|G(A) = T+ and T0|G(−A) = T−. Noting that
G(±A) + (0) ⊕ H = H ⊕ H, T± can be extended to be operators on H ⊕ H by
defining each of them to be zero on (0)⊕H. Now T± ∈ B(H ⊕H) must have the

forms T− =
(
P 0
R 0

)
and T+ =

(
Q 0
S 0

)
. For every x, y ∈ H,

T0

(
x

−Ax

)
= T−

(
x

−Ax

)
=

(
P 0
R 0

) (
x

−Ax

)
=

(
Px
Rx

)
,

and

T0

(
y
Ay

)
= T+

(
y
Ay

)
=

(
Q 0
S 0

) (
y
Ay

)
=

(
Qy
Sy

)
,

so

T0

(
x+ y

−Ax+Ay

)
=

(
Px+Qy
Rx+ Sy

)
.
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Now
(
A 1
A2 A

)
∈ AlgP(A;M) and

(
B 1
B2 B

)
∈ AlgP(B;N). Let

ϕ

(
A 1
A2 A

)
=

(
X ′ + Z ′B Z ′

BZ ′B Y ′ +BZ ′

)
,

where X ′, Y ′, Z ′ ∈ B(H), Y ′B = BX ′ and Y ′(N) ⊆ N . Let(
B 1
B2 B

)
= ϕ

(
X + ZA Z
AZA Y +AZ

)
,

where X,Y, Z ∈ B(H), Y A = AX and Y (M) ⊆M . Then, for every x, y ∈ H,(
X ′ + Z ′B Z ′

BZ ′B Y ′ +BZ ′

)
T0

(
x+ y

−Ax+Ay

)
= T0

(
A 1
A2 A

) (
x+ y

−Ax+Ay

)
,

and(
B 1
B2 B

)
T0

(
x+ y

−Ax+Ay

)
= T0

(
X + ZA Z
AZA Y +AZ

) (
x+ y

−Ax+Ay

)
.

Case (i). Suppose that ϕ preserves the types of rank one operators. Then
T0G(−A) = G(−B) and T0G(A) = G(B) so R = −BP and S = BQ. Clearly P
and Q are invertible operators. The two equations above become, respectively,(

X ′Px+ (X ′ + 2Z ′B)Qy
−BX ′Px+B(X ′ + 2Z ′B)Qy

)
=

(
2QAy

2BQAy

)
and (

2BQy
2B2Qy

)
=

(
PXx+Q(X + 2ZA)y

−BPXx+BQ(X + 2ZA)y

)
.

Since these are true for every x, y ∈ H, then X ′ = 0, Z ′BQ = QA, X = 0 and
QZA = BQ. Thus AQ−1 = WB and BQ = V A where W = Q−1Z ′ and V = QZ.
Then WBQ = WVA = A so WV = 1, and V AQ−1 = VWB = B so VW = 1.
Hence T = V is invertible and T Ran(A) = Ran(B).

Case (ii). Suppose that ϕ switches the types of rank one operators. Then
T0G(−A) = G(B) and T0G(A) = G(−B). In this case R = BP and S = −BQ,
and P,Q are again invertible. We get(

(X ′ + 2Z ′B)Px+X ′Qy
B(X ′ + 2Z ′B)Px−BX ′Qy

)
=

(
2QAy

−2BQAy

)
and (

2BPx
2B2Px

)
=

(
PXx+Q(X + 2ZA)y

BPXx−BQ(X + 2ZA)y

)
.

It follows that X ′ = −2Z ′B, X ′Q = 2QA, X = −2ZA and PX = 2BP . Hence
V A = BP and WB = AQ−1 with V = −PZ and W = −Q−1Z ′. Clearly V and
W are injective on Ran(A) and Ran(B), respectively, and V Ran(A) = Ran(B),
W Ran(B) = Ran(A).
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Remarks 4.5. (1) With A,B as in the statement of the preceding theorem,
if V ∈ B(H) is an operator, injective on Ran(A) and satisfying V Ran(A) =
Ran(B), it need not be true that V is invertible. In fact, V need not even be
injective (on H). An example of this is given in the proof of Proposition 4.11.

(2) Let P(A;M) and P(A;N) be pentagons on H ⊕H (as described at the
beginning of this section). Suppose that there exists an operator range, S say,
which is invariant under every operator which leaves Ran(A) invariant, and which
satisfiesM ⊆ S, N 6⊆ S. Then AlgP(A;M) and AlgP(A;N) (and soA(A;M) and
A(A;N)) cannot be spatially isomorphic. If they were, then by Theorem 4.2, there
would exist an invertible operator T ∈ B(H) such that T Ran(A) = Ran(A) and
T (M) = N . But since this T leaves Ran(A) invariant, N = T (M) ⊆ T (S) ⊆ S, so
N ⊆ S. The next two propositions follow from this observation and Example 2.3.

Proposition 4.6. For every positive, injective, non-invertible operator A ∈
B(H) and every integer n > 2, there exists a sequence (P(A;Mk))∞1 of non-
reflexive pentagons, each having gap-dimension n, no two of whose Alg’s are spa-
tially isomorphic.

Proof. Let A and n > 2 be given. Let y ∈ Ran(A1/2)\Ran(A). Let (Nk)∞1
be a sequence of (n − 1)-dimensional subspaces satisfying Nk ∩ Ran(A2−k

) = (0)
and Nk ⊆ Ran(A2−k−1

) for every k > 1. Let Mk = Nk + 〈y〉 (k > 1). Then, for
every k > 1, as in Example 2.3, P(A;Mk) is a non-reflexive pentagon on H ⊕H

with gap-dimension n. Let k > ` > 1. Then Ran(A2−`−1
) ⊆ Ran(A2−k

) so,
although M` ⊆ Ran(A2−`−1

), Mk 6⊆ Ran(A2−`−1
). (In fact Mk ∩ Ran(A2−`−1

) ⊆
Mk ∩ Ran(A2−k

) = 〈y〉.) Moreover, by Foiaş’s theorem, Ran(A2−`−1
) is invariant

under every operator which leaves Ran(A) invariant. Hence AlgP(A;M`) and
AlgP(A;Mk) are not spatially isomorphic by the preceding remark.

Proposition 4.7. For every positive, injective, non-invertible operator A ∈
B(H) there exists a sequence (P(A;Kk))∞1 of pentagons each having gap-dimension
one (so reflexive), no two of whose Alg’s are spatially isomorphic.

Proof. Let A be given. For each k > 1 choose a vector ek ∈ H satisfying
ek 6∈ Ran(A2−k+1

), ek ∈ Ran(A2−k

). Put Kk = 〈ek〉 (k > 1). Then, for every
k > 1, P(A;Kk) is a pentagon on H ⊕H with gap-dimension one. If k > ` > 1,
then e` ∈ Ran(A2−`

) and ek 6∈ Ran(A2−`

). By Foiaş’s theorem and our earlier
remark, AlgP(A;K`) and AlgP(A;Kk) are not spatially isomorphic.

On a more positive note, however, we have the following.

Proposition 4.8. Let A ∈ B(H) be a positive, injective, non-invertible
operator. Let e, f ∈ H satisfy e 6∈ Ran(A), f 6∈ Ran(A) and let P(A; 〈e〉) and
P(A; 〈f〉) be the corresponding pentagons. If e and f are linearly dependent modulo
Ran(A), then AlgP(A; 〈e〉) and AlgP(A; 〈f〉) are spatially isomorphic.

Proof. Let e, f be linearly dependent modulo Ran(A). By Theorem 4.2 it
is enough to show that there exists an invertible operator T ∈ B(H) such that
T Ran(A) = Ran(A) and T 〈e〉 = 〈f〉. If e and f are linearly dependent we can
take T = I. Suppose that e and f are linearly independent. There exist non-
zero scalars α, β such that αe + βf ∈ Ran(A). We can assume that α = 1. Let
e+ βf = Ah.
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Now (1−E)f 6= 0 where E = P〈e〉. Put g = (ae+ b(1−E)f)/(a‖e‖2) where
a = β‖(1− E)f‖2 and b = −(‖e‖2 + β(e|f)). Put R = g ⊗ h. Note that

(Ah|ae+ b(1− E)f) = (e+ βf |ae+ b(1− E)f)

= a‖e‖2 + βa(f |e) + βb‖(1− E)f‖2

= −ab+ βb‖(1− E)f‖2

= −b(a− β‖(1− E)f‖2) = 0.

Thus (Ah|g) = 0 so RAR = 0. Put T = 1 − AR and S = 1 − RA. Then T
and S are invertible with T−1 = 1 + AR and S−1 = 1 + RA. Also TA = AS
so T Ran(A) = Ran(A). Since Te = e − ARe = e − (e|g)Ah = e − Ah = βf ,
T 〈e〉 = 〈f〉.

What precisely is the analogue of Theorem 4.2 for algebraic, as opposed to
spatial, isomorphisms is not yet clear. However, we do have the following.

Theorem 4.9. Let A,B ∈ B(H) be positive, injective, non-invertible op-
erators and let M,N be non-zero subspaces of H satisfying M ∩ Ran(A) = N ∩
Ran(B) = (0). Let P(A;M),P(B;N) be the corresponding pentagons on H ⊕H.
Concerning the following three statements, (i) ⇒ (ii) and (ii) ⇒ (iii).

(i) AlgP(A;M) and AlgP(B;N) are algebraically isomorphic by an iso-
morphism that preserves the types of rank one operators.

(ii) A(A;M) and A(B;N) are algebraically isomorphic.
(iii) A0(A;M) and A0(B;N) are algebraically isomorphic.

Proof. (i) ⇒ (ii). Suppose that there exists an algebraic isomorphism ϕ :
AlgP(A;M) → AlgP(B;N) that preserves the types of rank one operators.
Note that, for the pentagon P(A;M) and with the obvious notation, R−

A ={(
−RA R
ARA −AR

)
: R = e⊗ f with 0 6= f ∈ H and 0 6= e ∈M⊥

}
. Also note that

{T ∈ AlgP(A;M) : TF = 0, for every F ∈ R−
A} is the set

{(
ZA Z
AZA AZ

)
:

Z ∈ B(H)
}

. Similar notes apply to P(B;N). Since ϕ(R−
A) = R−

B , it follows that

ϕ maps the set
{(

ZA Z
AZA AZ

)
: Z ∈ B(H)

}
onto the set

{ (
Z ′B Z ′

BZ ′B BZ ′

)
: Z ′

∈ B(H)
}

.

Let Y ∈ A(A;M). Then Y A = AX for a unique operator X ∈ B(H), and(
X 0
0 Y

)
∈ AlgP(A;M). Thus, there exist unique operators X ′, Y ′, Z ′ ∈ B(H)

with Y ′ ∈ A(B;N) and Y ′B = BX ′, such that

ϕ

(
X 0
0 Y

)
=

(
X ′ + Z ′B Z ′

BZ ′B Y ′ +BZ ′

)
.

This defines a mapping θ : A(A;M) → A(B;N) given by θ(Y ) = Y ′. This
mapping is clearly linear. We show that it is an algebraic isomorphism.
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θ is injective: Let θ(Y ) = 0. Then ϕ

(
X 0
0 Y

)
=

(
Z ′B Z ′

BZ ′B BZ ′

)
, for

some Z ′ ∈ B(H). But
(

Z ′B Z ′

BZ ′B BZ ′

)
= ϕ

(
ZA Z
AZA AZ

)
, for some Z ∈ B(H).

Hence, since ϕ is injective, Z = 0 and Y = AZ = 0.
θ is multiplicative: Let Y1, Y2 ∈ A(A;M). Then

ϕ

((
X1 0
0 Y1

) (
X2 0
0 Y2

))
= ϕ

(
X1X2 0

0 Y1Y2

)
=

(
∗ Z ′′′

∗ θ(Y1Y2) +BZ ′′′

)
and

ϕ

(
X1 0
0 Y1

)
ϕ

(
X2 0
0 Y2

)
=

(
X ′ + Z ′B Z ′

BZ ′B θ(Y1) +BZ ′

) (
∗ Z ′′

∗ θ(Y2) +BZ ′′

)
=

(
∗ X ′Z ′′ + 2Z ′BZ ′′ + Z ′θ(Y2)
∗ θ(Y1)θ(Y2) + 2BZ ′BZ ′′ + θ(Y1)BZ ′′ +BZ ′θ(Y2)

)
.

Thus Z ′′′ = X ′Z ′′ + 2Z ′BZ ′′ + Z ′θ(Y2) and θ(Y1Y2) = θ(Y1)θ(Y2) − B(X ′Z ′′ +
2Z ′BZ ′′+Z ′θ(Y2))+2BZ ′BZ ′′+θ(Y1)BZ ′′+BZ ′θ(Y2) = θ(Y1)θ(Y2)−BX ′Z ′′+
θ(Y1)BZ ′′ = θ(Y1)θ(Y2), since θ(Y1)B = BX ′.

θ maps onto A(B;N): Let Y ′ ∈ A(B;N). Then Y ′B = BX ′ for a unique
operator X ′ ∈ B(H), and there exist operators X,Y, Z ∈ B(H) with Y ∈ A(A;M)

and Y A = AX such that ϕ
(
X + ZA Z
AZA Y +AZ

)
=

(
X ′ 0
0 Y ′

)
. Now

ϕ

(
X + ZA Z
AZA Y +AZ

)
= ϕ

(
X 0
0 Y

)
+ ϕ

(
ZA Z
AZA AZ

)
=

(
∗ Z ′′

∗ θ(Y ) +BZ ′′

)
+

(
∗ Z ′′′

0 BZ ′′′

)
=

(
∗ Z ′′ + Z ′′′

∗ θ(Y ) +B(Z ′′ + Z ′′′)

)
,

so Z ′′ + Z ′′′ = 0 and θ(Y ) = Y ′.
Thus θ : A(A;M) → A(B;N) is an algebraic isomorphism.
(ii) ⇒ (iii). Let θ : A(A;M) → A(B;N) be an algebraic isomorphism.

By Proposition 4.1 (iii) and (iv), the algebra A0(A;M) has a purely algebraic
description as a subset of A(A;M), namely, A0(A;M) = {F ∈ A(A;M) : F is a
finite sum of single elements}. A similar comment applies to A0(B;N) as a subset
of A(B;N). Hence θ(A0(A;M)) = A0(B;N).

Remarks 4.10. (1) With (i), (ii) and (iii) the statements in the preceding
theorem, it is not known whether the implications (iii) ⇒ (ii) and (ii) ⇒ (i) are
always valid. Neither is it known, despite Theorem 3.4 and Proposition 4.1 (iii)
and (iv), whether every algebraic isomorphism θ : A(A;M) → A(B;N) must be
quasi-spatial.

(2) In connection with Question 3.7 raised earlier, and with the valid im-
plication (i) ⇒ (ii) of the preceding theorem in mind, it would be interesting to
know whether dimM must equal dimN if A(A;M) and A(B;N) are algebraically
isomorphic; they need not be if only their finite rank subalgebras are isomorphic.
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Proposition 4.11. There exist positive, injective, non-invertible operators
A,B ∈ B(H) and subspaces M,N of H with dimM = 2 and dimN = 1 such
that M ∩Ran(A) = N ∩Ran(B) = (0) with the algebras A0(A;M) and A0(B;N)
algebraically isomorphic.

Proof. Let (en)∞1 be an arbitrary fixed orthonormal basis for H. Let S be
the forward shift operator with respect to this basis. Let S1 be a proper dense
operator range not containing e1. Then S1 = Ran(A) for some positive, injective,
non-invertible operator A ∈ B(H). Now S∗S1 = Ran(S∗A) is proper and dense.
For, AS is injective and if Ran(S∗A) = H, then SS∗S1 = SH = 〈e1〉⊥ ⊆ S1 + 〈e1〉
(using SS∗ = 1−P〈e1〉), so H = S1 + 〈e1〉. This would contradict the fact that S1

is of infinite codimension in H ([3], p. 262). Thus S∗ Ran(A) = Ran(B) for some
positive, injective, non-invertible operator B ∈ B(H). Of course kerS∗ = 〈e1〉.
Let M be any 2-dimensional subspace satisfying e1 ∈M,M ∩ Ran(A) = (0). Put
N = S∗(M). Then dimN = 1. Also N ∩Ran(B) = (0). For, let x ∈ N ∩Ran(B).
Then x = S∗y = S∗z with y ∈M and z ∈ Ran(A). Then z − y ∈ kerS∗ = 〈e1〉 ⊆
M so z ∈M ∩ Ran(A) = (0) and z = 0. Then x = S∗z = 0.

Now consider the mapping θ : A0(A;M) → B(H) given by θ(X) = S∗XS.
This mapping is clearly linear. Note that, for every F ∈ A0(A;M), Fe1 = 0 and
Ran(F ) ⊆ Ran(A).

θ is multiplicative: Let X,Y ∈ A0(A;M). Then θ(X)θ(Y ) = S∗XSS∗Y S =
S∗X(1− P〈e1〉)Y S = S∗XY S = θ(XY ).

θ is injective: Let Z ∈ A0(A;M) and suppose that θ(Z) = 0. Then S∗ZS = 0
so (1 − P〈e1〉)Z(1 − P〈e1〉) = 0 = (1 − P〈e1〉)Z. Hence Ran(Z) ⊆ 〈e1〉. But
Ran(Z) ⊆ Ran(A) as well, so Z = 0.

θ maps A0(A;M) into A0(B;N): Let X ∈ A0(A;M). Then Ran(θ(X)) =
Ran(S∗XS) ⊆ S∗ Ran(X) ⊆ S∗ Ran(A) = Ran(B). Also,

θ(X)(N) = S∗XS(N) = S∗XSS∗(M) = S∗X(1− P〈e1〉)(M)

= S∗X(M) = S∗(0) = (0).

Since θ(X) clearly has finite rank, it follows by Proposition 4.1 that θ(X) ∈
A0(B;N).

θ maps A0(A;M) onto A0(B;N): Let Y ′ ∈ A0(B;N). Then Y ′ = BZ ′ for
some finite rank operator Z ′ ∈ B(H) satisfying Z ′(N) = (0). Let Q be the unique
operator satisfying S∗A = BQ. If Qx = 0, then S∗Ax = 0 so Ax ∈ kerS∗ = 〈e1〉.
But Ax ∈ Ran(A) as well, so Ax = 0 and x = 0. Thus Q is injective. Since it is
easily shown that Ran(Q) = H, Q is invertible. Then AQ−1Z ′S∗ has finite rank,
has range contained in Ran(A) and AQ−1Z ′S∗(M) = AQ−1Z ′(N) = (0). Thus
AQ−1Z ′S∗ ∈ A0(A;M). Also, θ(AQ−1Z ′S∗) = S∗AQ−1Z ′S∗S = S∗AQ−1Z ′ =
BZ ′ = Y ′.

Thus θ : A0(A;M) → A0(B;N) is an algebraic isomorphism.
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We conclude by briefly considering the 2-atom ABSL D(A) associated with
the pentagon P(A;M). By definition

D(A) = {(0), G(−A), G(A),H ⊕H} .

It is easily shown that

AlgD(A)=
{(

X + ZA Z
AZA Y +AZ

)
: X,Y, Z∈B(H), Y ∈A(A) and Y A=AX

}
,

where the unital algebra A(A) is defined by

A(A) = {T ∈ B(H) : T Ran(A) ⊆ Ran(A)} .

Analogously, we let A0(A) denote the algebra of finite rank operators of A(A).
The operator algebras of the form A(A) (with A ∈ B(H) a positive, injective and
non-invertible operator) were introduced, and extensively studied, in [20]. For
Boolean algebras of the form D(A) the theory is much closer to being complete.
For example, every algebraic isomorphism ϕ : AlgD(A) → AlgD(B) is spatial
([14]). (This result has been extended to arbitrary 2-atom ABSL’s on separable
Hilbert spaces ([22]).) The results presented in the theorem below should be
compared with the analogous results that we have obtained for pentagons above.

Proposition 4.12. For every operator algebra on H of the form A(A) de-
scribed above:

(i) A0(A) = {AX : X ∈ B(H) and X has finite rank};
(ii) for every pair e, f of non-zero vectors of H, e⊗ f ∈ A(A) if and only if

f ∈ Ran(A);
(iii) for every n ∈ Z+, every element of A(A) of rank n is the sum of n rank

one elements of A(A);
(iv) every non-zero single element of A(A) has rank one.

A proof of this proposition follows immediately by taking M = (0) in the
proof of Proposition 4.1.

We thank H. Radjavi for assisting in observing statement (i)(b) in the follow-
ing theorem. The theorem is a significant strengthening of the main result of [23].

Theorem 4.13. Let A,B be positive, injective, non-invertible operators on
the separable Hilbert space H. Let D(A),D(B) be the corresponding 2-atom Boolean
algebras on H ⊕ H, and let A(A),A(B) and A0(A),A0(B) be the corresponding
operator algebras on H, as described above. Then:

(i) for each pair of algebras
(a) AlgD(A), AlgD(B),
(b) A(A), A(B),
(c) A0(A), A0(B),

every algebraic isomorphism between them is spatial;
(ii) for each pairs described in (i), the algebras are algebraically isomorphic

if and only if there exists an invertible operator T ∈ B(H) such that T Ran(A) =
Ran(B);

(iii) for each pairs (b) and (c) described in (i), every invertible operator
T ∈ B(H) satisfying T Ran(A) = Ran(B) spatially implements an algebraic iso-
morphism from the first onto the second. Conversely, every algebraic isomorphism
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from the first onto the second is spatially implemented by such an invertible oper-
ator T ;

(iv) if S, T, U ∈ B(H) are operators with S, T and S + 2UA invertible and
with TA = BS, then each of the operators T+

0 , T
−
0 ∈ B(H ⊕H) given by

T±0 =
(
±(S + UA) U
±BUA T +BU

)
is an invertible operator which spatially implements an algebraic isomorphism from
AlgD(A) onto AlgD(B). Conversely, every algebraic isomorphism from AlgD(A)
onto AlgD(B) is spatially implemented by an operator of the form T+

0 or T−0 .

Proof. (i) (a) Every algebraic isomorphism between AlgD(A) and AlgD(B)
is spatial by [14], Theorem 2.

(i) (b) Let θ : A(A) → A(B) be an algebraic isomorphism. Our proof that θ
is spatial is similar to the proof of Theorem 3.4. By Proposition 4.12 (iv), θ maps
the set of rank one operators of A(A) onto the set of rank one operators of A(B).
Choose f0 ∈ Ran(A), e0 ∈ H such that (f0|e0) = 1. Then e0 ⊗ f0 ∈ A(A) so
θ(e0 ⊗ f0) = g0 ⊗ h0 for some vectors h0 ∈ Ran(B), g0 ∈ H satisfying (h0|g0) = 1
(since (e0⊗f0)2 = e0⊗f0 implies that (g0⊗h0)2 = g0⊗h0). For every 0 6= e ∈ H,
(e0⊗f0)(e⊗f0) = e⊗f0 so θ(e0⊗f0)θ(e⊗f0) = θ(e⊗f0) and Ran(θ(e⊗f0)) = 〈h0〉.
It follows that there exists an injective linear mapping S : H → H such that
θ(e ⊗ f0) = Se ⊗ h0, for every e ∈ H. Similarly, for every 0 6= f ∈ Ran(A),
ker θ(e0 ⊗ f0) = ker θ(e0 ⊗ f) = 〈g0〉⊥ (since (e0 ⊗ f)(e0 ⊗ f0) = e0 ⊗ f) and it
follows that there exists an injective linear mapping T : Ran(A) → Ran(B) such
that θ(e0 ⊗ f) = g0 ⊗ Tf , for every f ∈ Ran(A).

For every pair of vectors e ∈ H, f ∈ Ran(A) we have (e0⊗f)(e⊗f0) = e⊗f so,
applying θ, θ(e⊗f) = (g0⊗Tf)(Se⊗h0) = Se⊗Tf . Since (e⊗f)2 = (f |e)(e⊗f),
(Tf |Se)(Se⊗ Tf) = (f |e)(Se⊗ Tf) so (Tf |Se) = (f |e).

The mapping S maps onto H. For, let 0 6= g ∈ H. Then g ⊗ h0 ∈ A(B)
so θ(e ⊗ f) = g ⊗ h0 for some e ∈ H, f ∈ Ran(A). Hence Se ⊗ Tf = g ⊗ h0, so
(g0|Tf)Se = g. Similarly, T maps Ran(A) onto Ran(B).

The mapping S is continuous. For this, it is enough to show that S is closed.
Let en → e and Sen → g. Then, for every f ∈ Ran(A), (Tf |Sen) = (f |en) → (f |e)
and (Tf |Sen) → (Tf |g). Thus (Tf |g) = (f |e). Now g = Se′ for some vector e′ so
(Tf |Se′) = (f |e′) = (f |e) and since this is true for every f ∈ Ran(A), e = e′.

For every f ∈ Ran(A) and every e ∈ H, (S∗−1f − Tf |Se) = (S∗−1f |Se) −
(Tf |Se) = (f |e)− (f |e) = 0. Hence S∗−1 is an extension of T to H. Denote this
extension by T so that T = S∗−1.

Let 0 6= f ∈ Ran(A) and X ∈ A(A). Choose e ∈ H such that (f |e) = 1.
Then

θ(X)Tf = θ(X)(Se⊗ Tf)Tf = θ(X)θ(e⊗ f)Tf = θ(X(e⊗ f))Tf

= θ(e⊗Xf)Tf = (Se⊗ TXf)Tf = TXf.

Hence, since Ran(A) is dense in H, θ(X) = TXT−1.
(i) (c) Let θ : A0(A) → A0(B) be an algebraic isomorphism. In A0(A) and

A0(B) every non-zero single element has rank one (again, simply take M = (0)
in the proof of Proposition 4.1). Hence θ maps the set of rank one operators of
A0(A) onto the set of rank one operators of A0(B). As in the proof of (i) (b),
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there exists an invertible operator T ∈ B(H) such that T Ran(A) = Ran(B) and
θ(X) = TXT−1, for every X ∈ A0(A).

(ii) The proofs given above show that, for each of the pairs (i) (b) and (i) (c),
if the algebras are algebraically isomorphic then there exists an invertible operator
T ∈ B(H) such that T Ran(A) = Ran(B).

Let ϕ : AlgD(A) → AlgD(B) be an algebraic isomorphism. We show that,
once again, such an invertible operator T exists (this is proved in [23] but we
shall need the details later). Now ϕ is spatial so, for some invertible operator
T0 ∈ B(H ⊕ H), ϕ(X) = T0XT

−1
0 , for every X ∈ AlgD(A). Since AlgD(B) =

T0 AlgD(A)T−1
0 = Alg(T0D(A)) and every ABSL is reflexive ([6]; see also [16]),

T0D(A) = D(B). Hence either

T0G(−A) = G(−B) and T0G(A) = G(B), or(1)
T0G(−A) = G(B) and T0G(A) = G(−B).(2)

It readily follows that in case (1) T0 has the form T0 =
(
S + UA U
BUA T +BU

)
or, in case (2), the form T0 =

(
−(S + UA) U
−BUA T +BU

)
, where, in each case,

S, T, U ∈ B(H) and TA = BS.
In case (1) the proof that T and S are invertible is exactly the proof of the

first part of Theorem 4.2 taking M = N = (0). Hence T Ran(A) = Ran(B).
Notice also that S+2UA is invertible since T0G(A) = G(B) and, for every x ∈ H,

T0

(
x
Ax

)
=

(
(S + 2UA)x
B(S + 2UA)x

)
.

In case (2) we proceed similarly. The operator T−1
0 has the form T−1

0 =(
−(S̃ + ŨB) Ũ

−AŨB T̃ +AŨ

)
, where S̃, T̃ , Ũ ∈B(H) and T̃B = AS̃. For every x∈H,(

x
Ax

)
= T−1

0 T0

(
x
Ax

)
= T−1

0

(
−Sx
BSx

)
=

(
(S̃ + 2ŨB)Sx
A(S̃ + 2ŨB)Sx

)
,

and(
x

−Ax

)
= T−1

0 T0

(
x

−Ax

)
= T−1

0

(
−(S + 2UA)x
−B(S + 2UA)x

)
=

(
S̃(S + 2UA)x

−AS̃(S + 2UA)x

)
,

so (S̃ + 2ŨB)S = S̃(S + 2UA) = 1. Also, for every y ∈ H,(
y

−By

)
= T0T

−1
0

(
y

−By

)
= T0

(
−(S̃ + 2ŨB)y
−A(S̃ + 2ŨB)y

)
=

(
S(S̃ + 2ŨB)y

−BS(S̃ + 2ŨB)y

)
,

and (
y
By

)
= T0T

−1
0

(
y
By

)
= T0

(
−S̃y
AS̃y

)
=

(
(S + 2UA)S̃y
B(S + 2UA)S̃y

)
,

so S(S̃+2ŨB) = (S+2UA)S̃ = 1. Thus again S and S+2UA are invertible. Also,
(T̃+2AŨ)TA = (T̃+2AŨ)BS = A(S̃+2ŨB)S = A implies that (T̃+2AŨ)T = 1,
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and T (T̃ + 2AŨ)B = TA(S̃ + 2ŨB) = BS(S̃ + 2ŨB) = B implies that T (T̃ +
2AŨ) = 1. Hence T is also invertible and since TA = BS, T Ran(A) = Ran(B).

Conversely, suppose that there exists an invertible operator T ∈ B(H) such
that T Ran(A) = Ran(B). Then TA = BS for a unique invertible operator S. It
is easy to verify that

TA(A)T−1 = A(B), TA0(A)T−1 = A0(B)

and (
S 0
0 T

)
AlgD(A)

(
S 0
0 T

)−1

= AlgD(B)

(the latter is equivalent to
(
S 0
0 T

)
D(A) = D(B)).

(iii) This has already been proved above.
(iv) Because of the proof of (ii) above, it only remains to show that if S, T, U ∈

B(H) are operators with S, T and S + 2UA invertible and with TA = BS, then

T±0 =
(
±(S + 2UA) U
±BUA T +BU

)
are invertible operators which spatially implement algebraic isomorphisms from
AlgD(A) onto AlgD(B). Assume, for a moment, that they are invertible. Then
they implement isomorphisms if and only if T±0 D(A) = D(B) and the latter readily
follows from the facts that, for every x ∈ H,(

S + UA U
BUA T +BU

) (
x

−Ax

)
=

(
Sx

−BSx

)
,

(
S + UA U
BUA T +BU

) (
x
Ax

)
=

(
(S + 2UA)x
B(S + 2UA)x

)
and (

−(S + UA) U
−BUA T +BU

) (
x

−Ax

)
=

(
−(S + 2UA)x
−B(S + 2UA)x

)
,(

−(S + UA) U
−BUA T +BU

) (
x
Ax

)
=

(
−Sx
BSx

)
.

Finally, we prove the invertibility of T+
0 and T−0 .

For T+
0 , define Ũ = −(S + 2UA)−1UT−1, S̃ = S−1 and T̃ = T−1. Then

T̃B = AS̃ and (S + 2UA)ŨB = −UAS̃. Also S̃ + 2ŨB = (S + 2UA)−1, for
(S+ 2UA)(S̃+ 2ŨB) = (S+ 2UA)S̃− 2UAS̃ = 1 + 2UAS̃− 2UAS̃ = 1. It is now
easy to verify that T+

0 S
+
0 = S+

0 T
+
0 = 1, where

S+
0 =

(
S̃ + ŨB Ũ
AŨB T̃ +AŨ

)
.

For T−0 , define Ũ = (S+2UA)−1UT−1, S̃ = S−1−2ŨB and T̃ = T−1−2AŨ.
Then T̃B = AS̃ for, T̃B = T−1B − 2AŨB = AS−1 − 2AŨB = A(S−1 − 2ŨB) =
AS̃. Clearly (S+2UA)ŨB = UAS−1. Also, S̃ = (S+2UA)−1 since (S+2UA)S̃ =
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(S+2UA)(S−1−2ŨB) = 1+2UAS−1−2(S+2UA)ŨB = 1+2UAS−1−2UAS−1 =
1. Since UAS̃ − SŨB = UAS−1 − 2UAŨB − SŨB = UAS−1 − (S + 2UA)ŨB =
UAS−1−UAS−1 = 0, UAS̃ = SŨB. Also, ŨT = S̃U for ŨT = (S+2UA)−1U =
S̃U . It is now easy to verify that T−0 S

−
0 = S−0 T

−
0 = 1, where

S−0 =
(
−(S̃ + ŨB) Ũ

−AŨB T̃ +AŨ

)
.
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