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Abstract. We show that any n-dimensional subspace of B(H) is [
√

2n]-
reflexive, where [t] denotes the largest integer that is less than or equal to
t ∈ R. As a corollary, we prove that if ϕ is an elementary operator on a
C∗-algebra A with minimal length l, then ϕ is completely positive if and
only if ϕ is max{[

p
2(l − 1)], 1}-positive.

Keywords: Reflexivity of subspace, separating vector, complete positivity.

MSC (2000): Primary 47L30, 47L50; Secondary 47B47.

1. INTRODUCTION

Throughout this paper, let H be a complex separable Hilbert space, B(H) the
set of all bounded linear operators on H, F (H) the set of finite rank operators
on H, and Fn(H) the set of operators with rank at most n. For T ∈ B(H), let
R(T ) denote the range of T . For any subspace S ⊆ B(H), define ref(S) = {T ∈
B(H) : Tx ∈ clin(Sx), for any x ∈ H}, where clin denotes norm closed linear
span. S is called reflexive if ref(S) = S. Define S(n) = {S(n) ∈ B(H(n)) : S ∈ S},
where H(n) is the direct sum of n copies of H and S(n) is the direct sum of n
copies of S acting on H(n). S is called n-reflexive if S(n) is reflexive in B(H(n)).
A vector x ∈ H is called a separating vector of S if the map Ex : S → Sx, S ∈ S
is injective. Let sep(S) denote the set of all separating vectors of S in H. The
local dimension of S, denoted by k(S), is defined by k(S) = max

x∈H
{dim clin(Sx)};

clearly k(S) 6 dimS. If dimS < ∞, it is not hard to see that sep(S) 6= ∅ if and
only if k(S) = dimS.

The notion of reflexivity was first introduced by Halmos ([7]) for subalgebras
of algebra B(H). Loginov and Shulman ([14]) extended reflexivity to subspaces of
B(H) which are not necessarily algebras. Reflexive subspaces have been useful in
the analysis of operator algebras ([9], [10], [11]). A natural extension of the notion
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of reflexivity is n-reflexivity. It has been considered, for example, in [1], [10], [15].
In [12], Larson proved that if S is a finite dimensional subspace of B(H), then
ref(S(n)) = S(n) +ref(S(n)∩F (H(n))). It follows immediately that S is n-reflexive
if and only if S ∩F (H) is n-reflexive. Hence, we are only interested in which finite
dimensional subspaces of F (H) are n-reflexive.

In [15], Magajna stated the following question:

For each positive integer n, determine the smallest k = k(n) such that all
n-dimensional subspaces of B(H) are k-reflexive.

In that paper, he proved k(n) 6 n. In [13], the first author improved the
result and proved that if S is an n-dimensional subspace, then S is ([n

2 ] + 1)-
reflexive. Hence k(n) 6 [n

2 ]+1. In this paper, our main result is Theorem 2.14. It
states that if S is an n-dimensional subspace of B(H), then S is [

√
2n]-reflexive.

Example 2.15 shows that [
√

2n] is the smallest integer such that all n-dimensional
subspaces of B(H) are [

√
2n]-reflexive. Thus Theorem 2.14 and Example 2.15

provide the answer to Magajna’s question. The proof of Theorem 2.14 will be
prepared by a number of auxiliary steps, and we need to consider the local di-
mensions of subspaces. The method used in Theorem 2.14 can also be used to
improve Theorem 3.6 in [2]. As an application of our main result, we prove that
if ϕ is an elememtary operator on a C∗-algebra A with minimal legth l, then ϕ is
completely positive if and only if ϕ is max{[

√
2(l − 1)], 1}-positive.

2. REFLEXIVITY OF FINITE DIMENSIONAL SUBSPACES

In the following, we always assume that S is a subspace of B(H), dimS < ∞,
and S ⊆ F (H) unless stated otherwise. Before we prove our main result, we need
several lemmas and propositions.

Lemma 2.1. ([4]) The set sep(S) is an open subset of H.

Lemma 2.2. ([4]) The set sep(S) is either empty or dense in H.

Let M be a closed subspace of H and P be the orthogonal projection of
H onto M . Define SM = {S ∈ S : R(S) ⊆ M}. Let Sc

M be any vector space
complement of SM in S. Define P⊥Sc

M = {P⊥S : S ∈ Sc
M}.

Proposition 2.3. k(SM ) + k(P⊥Sc
M ) 6 k(S).

Proof. If P⊥Sc
M = 0, it is obvious that k(SM ) 6 k(S). If SM = 0, it follows

that Sc
M = S and

k(P⊥Sc
M ) = max

x∈H
{dim[P⊥Sx : S ∈ Sc

M ]} 6 max
x∈H

{dim clin(Sx)} = k(S).

Now suppose k(SM ) = m 6= 0 and k(P⊥Sc
M ) = l 6= 0. Let x0 ∈ H be a separating

vector of span{S1, . . . , Sm} ⊆ SM . Similarly, there exist P⊥T1, . . . , P
⊥Tl ∈ Sc

M

such that span{P⊥T1, . . . , P
⊥Tl} has a separating vector. By Lemmas 2.1 and 2.2,

we can choose y ∈ H with ‖y‖ small enough so that x0+y is a separating vector for
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span{S1, . . . , Sm} and span{P⊥T1, . . . , P
⊥Tl}. For any λ1, . . . , λm, µ1, . . . , µl ∈ C,

suppose

(2.1) λ1S1(x0 + y) + · · ·+ λmSm(x0 + y) + µ1T1(x0 + y) + · · ·+ µlTl(x0 + y) = 0.

Applying P⊥ to both sides of (2.1), it follows

(2.2) µ1P
⊥T1(x0 + y) + · · ·+ µlP

⊥Tl(x0 + y) = 0.

Since x0 + y is a separating vector of span{P⊥T1, . . . , P
⊥Tl}, we have µ1 = · · · =

µl = 0. Now (2.1) implies λ1 = · · · = λm = 0, since x0 + y is a separating vector
of span{S1, . . . , Sm}. Hence k(S) > k(SM ) + k(P⊥Sc

M ).

Proposition 2.4. If k(SM ) = dimM , then k(SM ) + k(P⊥Sc
M ) = k(S).

Proof. By Proposition 2.3, we only need to prove k(S) 6 k(SM )+k(P⊥Sc
M ).

Suppose that k(SM ) = m and k(P⊥Sc
M ) = l. If m + l = dimS, it is obvious

that k(S) 6 k(SM )+k(P⊥Sc
M ). If m+ l < dimS, and m+ l < n 6 dimS, we take

n linearly independent operators from S in such a way that S1, . . . , Sm1 ∈ SM ,
T1, . . . , Tl1 ∈ Sc

M and m1 + l1 = n. For any nonzero x0 in H, we show that there
are λ1, . . . , λm1 , µ1, . . . , µl1 , not all zero, such that

(2.3) λ1S1x0 + · · ·+ λm1Sm1x0 + µ1T1x0 + · · ·+ µl1Tl1x0 = 0.

If l1 6 l, then m1 > m, and choose µ1 = · · · = µl1 = 0. Since k(SM ) =
m, it follows that there are λ1, . . . , λm1 , not all zero, such that λ1S1x0 + · · · +
λm1Sm1x0 = 0. Suppose that l1 > l. If span{P⊥T1x0, . . . , P

⊥Tl1x0} = (0),
then span{T1x0, . . . , Tl1x0} ⊆ M . Because k(SM ) = dim M , and l1 + m1 = n >

m+l, it follows that there are λ1, . . . , λm1 , µ1, . . . , µl1 , not all zero, satisfying (2.3).
Without loss of generality, we may assume that {P⊥T1x0, . . . , P

⊥Ttx0}, 1 6 t 6 l
is linearly independent, and P⊥Tjx0 ∈ span{P⊥T1x0, . . . , P

⊥Ttx0}, t+1 6 j 6 l1.

Suppose that P⊥Tjx0 =
t∑

i=1

aijP
⊥Tix0, t + 1 6 j 6 l1. Let Bj = Tj −

t∑
i=1

aijTi.

Then Bjx0 ∈ M , t + 1 6 j 6 l1. Since Six0 ∈ M, 1 6 i 6 m1 and dim M = m <

m1 + l1 − l 6 m1 + l1 − t, we may choose λ1, . . . , λm1 and µt+1, . . . , µl1 , not all
zero, such that

(2.4) λ1S1x0 + · · ·+ λm1Sm1x0 + µt+1Bt+1x0 + · · ·+ µl1Bl1x0 = 0.

Hence

(2.5)

λ1S1x0 + · · ·+ λm1Sm1x0 + µt+1

(
Tl1 −

t∑
i=1

ai t+1Ti

)
x0 + · · ·

+ µl1

(
Tl1 −

t∑
i=1

ai l1Ti

)
x0 = 0.

By (2.5), it follows that (2.3) is true.
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Lemma 2.5. ([2]) Let V be a vector space over a field F and let L(V ) be the
set of all linear transformations on V . Suppose S ⊆ L(V ) and dimS is less than
the cardinality of F. Let x be a separating vector of S and W be a linear subspace
of V satisfying Sx∩W = (0). Then for each vector y ∈ V , there is a scalar λ ∈ F
so that y + λx separates S and S(y + λx) ∩W = (0).

Lemma 2.6. If k(S) = k, then there exists an M with dim M = k and
dimSc

M 6 k.

Proof. Since k(S) = k, there exist x0 ∈ H and A1, . . . , Ak ∈ S such that
max
x∈H

{dim clin(Sx)}=dim clin(A1x0, . . . , Akx0)=k. Let M =clin(A1x0, . . . , Akx0),

Ŝ = span{A1, . . . , Ak}, and SM = {S ∈ S : R(S) ⊆ M}. It is enough to prove
S = span{Ŝ ∪ SM}. Since for any S ∈ S, there exist λ1, . . . , λk such that Sx0 =
k∑

i=1

λiAix0. Let S1 = S −
k∑

i=1

λiAi, then S1x0 = 0. If S1 = 0, then S ∈ Ŝ. If

S1 6= 0, we show next that S1 ∈ SM .
If S1 /∈ SM , there exists y ∈ H such that S1y /∈ M = Ŝx0. Let W =

clin(S1y). Then Ŝx0 ∩ W = (0). By Lemma 2.5, there exists λ ∈ C such that
y+λx0 separates Ŝ and Ŝ(y+λx0)∩W = (0). Since S1 6= 0 and S1x0 = 0, it follows
{A1, . . . , Ak, S1} is linearly independent. Let S̃ = span{A1, . . . , Ak, S1}. Next we
prove that y + λx0 separates S̃. For any A ∈ Ŝ, t ∈ C, if (A + tS1)(y + λx0) = 0,
then A(y + λx0) = −tS1y. By Ŝ(y + λx0) ∩W = (0), it follows that t = 0 and
A(y + λx0) = 0. Since y + λx0 is a separating vector of Ŝ, we have A = 0. Hence
y + λx0 separates S̃, which implies k(S) > k + 1, a contradiction.

Definition 2.7. Suppose S is a subspace of B(H). We say S has property
A if for any subspace S1 of S, we have k(S1) > {

√
2 dimS1 − 1/2}, where {t}

denotes the smallest integer that is greater than or equal to t.
We say S has property B if there exists a nonzero subspace M of H such that

k(SM ) = dim M .

Remark 2.8. Clearly if S has property A, then so does any subspace of S.
If S has property B, then so does any subspace of B(H) containing S.

For x, y ∈ H, let x⊗ y denote the rank-one operator u → (u, x)y.

Lemma 2.9. ([8]) Let A,B ∈ B(H) and S = span{A,B}. Then k(S) = 1
if and only if one of the following holds:

(i) dimS = 1;
(ii) there exist x0, x1, x2 ∈ H such that A = x1 ⊗ x0, B = x2 ⊗ x0.

Lemma 2.10. Suppose dimS = n > 2. If k(S) < {
√

2n− 1/2}, then S has
property B.

Proof. If n = 2, then k(S) = 1. Lemma 2.9 now implies that S has prop-
erty B.

Suppose the statement is true for all S with 2 6 dimS 6 n− 1, n > 3. For
any S with dimS = n, let k(S) = k. By Lemma 2.6, there exists a subspace M of
H such that dim M = k and dimSc

M 6 k.
If SM = S, clearly k(SM ) = k(S) = dim M .
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If SM 6⊆ S, then let P be the orthogonal projection of H onto M . We
have, for any Sc

M , P⊥Sc
M 6= (0), so k(P⊥Sc

M ) > 1. Hence k(SM ) 6 k − 1, by
Proposition 2.3. Since k < {

√
2n−1/2}, we have {

√
2n−1/2}−1 6 {

√
2(n− k)−

1/2}. So k − 1 < {
√

2n − 1/2} − 1 6 {
√

2(n− k) − 1/2}. Hence k(SM ) <

{
√

2(n− k)−1/2} 6 {
√

2 dimSM −1/2}. (Since dimSM +dimSc
M = n, it follows

that dimSM = n − dimSc
M . Since dimSc

M 6 k, it follows dimSM > n − k.) By
the induction hypothesis, SM has property B. It follows that S has property B.

Lemma 2.11. If dimS = n and S has property A then S is [
√

2n]-reflexive,
where [t] denotes the largest integer that is less than or equal to t.

Proof. If n = 1, Lemma 10 from [9] implies that S is reflexive.
Suppose the statement is true for all S with property A and dimS 6 n− 1,

n > 2. Suppose dimS = n, S has property A, and k(S) = k. Since S has
property A, k > {

√
2n − 1/2}. If k = n, then S has a separating vector, so S is

2-reflexive. Hence S is [
√

2n]-reflexive, since n > 2 and [
√

2n] > 2.
Suppose that {

√
2n − 1/2} 6 k 6 n − 1. Let m = [

√
2n]. Since k(S) = k,

there exist x1 ∈ H and {A1, . . . , Ak} ⊆ S such that {Aix1}k
i=1 is a basis of Sx1.

Suppose S = span{A1, . . . , An}. There exists a unique k×n complex matrix (aij)

so that Ajx1 =
k∑

i=1

aijAix1, j = 1, . . . , n, and if j 6 k, ajj = 1 and aij = 0,

i 6= j. Suppose T (m) ∈ ref(S(m)); in the following we prove that T ∈ S. For any
x2, . . . , xm ∈ H, there exist scalars t1, . . . , tn such that

(2.6)

 Tx1
...

Txm

 = t1

 A1x1
...

A1xm

 + · · ·+ tn

 Anx1
...

Anxm

 .

Since Tx1 ∈ span{A1x1, . . . , Anx1}, there exist µ1, . . . , µk such that

(2.7) Tx1 =
k∑

i=1

µiAix1.

By (2.6) and (2.7), we have

(2.8) Txg =
k∑

i=1

µiAixg +
n∑

j=1

tj

(
Aj −

k∑
i=1

aijAi

)
xg, g = 2, . . . ,m.

Let

(2.9) T1 = T −
k∑

i=1

µiAi and Bj = Aj −
k∑

i=1

aijAi.

Note Bj = 0 for j = 1, . . . , k. By (2.8) and (2.9), we have T1x2
...

T1xm

 = tk+1

 Bk+1x2

...
Bk+1xm

 + · · ·+ tn

 Bnx2
...

Bnxm

 .

By the induction hypothesis, we have that span{Bk+1, . . . , Bn} is [
√

2(n− k)]-
reflexive. Since k > {

√
2n − 1/2}, we have [

√
2n] − 1 = m − 1 > [

√
2(n− k)]. It

follows that T1 ∈ span{Bk+1, . . . , Bn}. Therefore T ∈ S.
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Proposition 2.12. If dim clin(SH) = k, then S is k-reflexive.

Proof. Since dimS = n, S ⊆ F (H), and dim clin(SH) = k, there exists an
orthogonal projection P satisfying dim PH = m < ∞ and PSP = S. So we
may assume that S is a subspace of Mm(C). Let {e1, . . . , ek} be an orthonormal
basis of SCm. Extend this to an orthonormal basis {e1, . . . , ek, ek+1, . . . , em} of
Cm. Clearly S is a subspace of R = {(rij) ∈ Mm(C) : rij = 0, for any i > k}.
It is easy to prove that R∗ is reflexive. Since R∗(k) has a separating vector, it
follows that R∗(k) is elementary, by Proposition 3.2 from [1]. By Proposition 2.10
from [1], it follows that S∗(k) is reflexive. Hence S(k) is reflexive.

Theorem 2.13. If dimS = n, k(S) = k, then S is k-reflexive.

Proof. If S has property A, by Lemma 2.11 we have that S is [
√

2n]-reflexive.
Since k > {

√
2n− 1/2} > [

√
2n], it follows that S is k-reflexive.

Step 1. Suppose S does not have property A. Thus there exists a subspace
S1 of S such that k(S1) < {

√
2n − 1/2}. By Lemma 2.10, S1 has property B.

Hence S has property B.
Step 2. Let M be a maximal subspace of H such that k(SM ) = dim M . Let

P be the orthogonal projection of H onto M .
If SM 6⊆ S, we prove next that P⊥S has property A. If property A fails, then

Step 1 implies that P⊥S has property B. Thus there exists a subspace N of H
such that

(2.10) k((P⊥S)N ) = dim N.

By (2.10), we have N ⊆ P⊥H. Let M̃ = M ⊕N . By Proposition 2.3,

k(S
M̃

) > k((S
M̃

)
M

) + k(P⊥(S
M̃

)c
M

) = k(SM ) + k(P⊥SM̃)

= k(P⊥S
M̃

) + dim M = k((P⊥S)
M̃

) + dim M

= k((P⊥S)N ) + dim M = dim N + dim M = dim M̃.

So k(S
M̃

) = dim M̃ , contradicting the maximality of M .
Suppose dim M = m and dim(P⊥S) = l. Let r = [

√
2l]. We show S is

(m + r)-reflexive by induction on l.
If l = 0, then clin(SH) = M . By Proposition 2.12, it follows S is m-reflexive.
Suppose the statement is true for all dim(P⊥S) 6 l − 1, l > 1. Suppose

dim P⊥S = l. Since S = SM + Sc
M , we have P⊥S = P⊥Sc

M . If {A1, . . . , As}
is a basis of Sc

M , we can easily prove that {P⊥Ai}s
i=1 is linearly independent, so

s = l. If k(P⊥S) = J , then there exists an x1 ∈ H and {A1, . . . , AJ} ⊆ Sc
M

so that {P⊥A1x1, . . . , P
⊥AJx1} is linearly independent. Let {Al+1, . . . , An} be

a basis of SM ; it follows that {A1, . . . , An} is a basis of S. Since P⊥Ajx1 ∈
span{P⊥A1x1, . . . , P

⊥AJx1}, J + 1 6 j 6 n, we have

(2.11) P⊥Ajx1 =
J∑

i=1

aijP
⊥Aix1, J +1 6 j 6 l and P⊥Ajx1 = 0, l+1 6 j 6 n.
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If T ∈ B(H), then T (m+r) ∈ ref(S(m+r)). For any x2, . . . , xm+r ∈ H, there exist
t1, . . . , tn so that

(2.12)

 Tx1
...

Txm+r

 = t1

 A1x1
...

A1xm+r

 + · · ·+ tn

 Anx1
...

Anxm+r

 .

Since Tx1 ∈ span{A1x1, . . . , Anx1}, it follows that P⊥Tx1 ∈ span{P⊥A1x1, . . . ,
P⊥AJx1}. Hence there exist v1, . . . , vJ so that

(2.13) P⊥Tx1 =
J∑

i=1

viP
⊥Aix1.

By (2.11) to (2.13), we have

(2.14) Txg =
J∑

i=1

(
vi −

l∑
j=J+1

tjaij

)
Aixg +

n∑
i=J+1

tiAixg, g = 2, . . . ,m + r.

Let

(2.15)
C = T −

J∑
i=1

viAi, Bj = Aj −
J∑

i=1

aijAi,

J + 1 6 j 6 l, Bj = Aj , l + 1 6 j 6 n.

By (2.14) and (2.15), we have Cx2
...

Cxm+r

 = tJ+1

 BJ+1x2

...
BJ+1xm+r

 + · · ·+ tn

 Bnx2
...

Bnxm+r

 .

Let S̃ = span{BJ+1, . . . , Bn}. Then dim P⊥S̃ 6 l − J and k(S̃M ) = k(SM ) =
dim M . Since P⊥S has property A, we have that J > {

√
2l−1/2}. So m+r−1 >

m + [
√

2(l − J)] > m + [
√

2 dim P⊥S̃]. By the induction hypothesis, we have
C ∈ span{BJ+1, . . . , Bn}. Hence T ∈ span{A1, . . . , An} = S. By Proposition 2.4,
k = k(SM ) + k(P⊥Sc

M ) = m + k(P⊥S). Since P⊥S has property A, k(P⊥S) >
{
√

2l− 1/2}, it follows k > m + {
√

2l− 1/2} > m + [
√

2l]. Hence S is k-reflexive.
If SM = S, then S is k-reflexive by Proposition 2.12.

Theorem 2.14. If dimS = n, then S is [
√

2n]-reflexive.

Proof. If n = 1, 2, 3, Theorem 3 from [13] implies the result. Suppose the
result holds for dimS 6 n − 1, n > 4. Let dimS = n and suppose k(S) = k. If
k 6 [

√
2n], by Theorem 2.13 it follows that S is [

√
2n]-reflexive.

If k > [
√

2n] then k > {
√

2n−1/2}. If k = n, then S is 2-reflexive. Hence S is
[
√

2n]-reflexive. If [
√

2n] < k 6 n−1, using the same argument as in Lemma 2.11,
we have dim span{Bk+1, . . . , Bn} 6 n− k. By the induction hypothesis, it follows
that span{Bk+1, . . . , Bn} is [

√
2(n− k)]-reflexive. Since k > {

√
2n − 1/2}, it

follows that [
√

2n] − 1 > [
√

2(n− k)]. Thus span{Bk+1, . . . , Bn} is ([
√

2n] − 1)-
reflexive, so S is [

√
2n]-reflexive.
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Example 2.15. Let Sk be the set of all k×k upper triangular matrices with
zero trace. We may show dimSk = k(k+1)

2 − 1 and Sk is not (k− 1)-reflexive. For
any positive integer l, one can easily show that there exists a positive integer k
such that

(2.16)
k(k + 1)

2
− 1 6 l <

(k + 1)(k + 2)
2

− 1.

For any positive integer l, choose k such that (2.16) holds and let

m = l −
(

k(k + 1)
2

− 1
)

.

Let S = Sk ⊕ Am, where Am = {diag(a1, . . . , am) : ai ∈ C}. It is easy to prove
that S is not ([

√
2l]− 1)-reflexive.

Remarks 2.16. (i) By Theorem 2.14 and Example 2.15, it follows that
[
√

2n] is the smallest integer such that all n-dimensional subspaces of B(H) are
[
√

2n]-reflexive. Thus we answer a question of Magajna ([15]).
(ii) By the proof of Theorem 2.14, we have that if k(S) > n− 1, then S is 2-

reflexive and that if k(S) > n−4, then S is 3-reflexive. This improves Theorem 3.6
from [2].

In the following, so we give an application of Theorem 2.14.

Theorem 2.17. If Φ(·) =
n∑

i=1

ai(·)bi, {ai}, {bi} are subsets of a C∗-algebra

A, then Φ is completely positive if and only if Φ is max{[
√

2(n− 1)], 1}-positive.

The proof is similar to the proof of Theorem 6 from [13]; we leave it to the
reader.
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