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Abstract. We study finitely generated projective modules over noncom-
mutative tori. We prove that for every module E with constant curvature
connection the corresponding element [E] of the K-group is a generalized
quadratic exponent and, conversely, for every positive generalized quadratic
exponent µ in the K-group one can find a module E with constant curva-
ture connection such that [E] = µ. In physical words we give necessary and
sufficient conditions for existence of 1/2 BPS states in terms of topological
numbers.
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1. INTRODUCTION

In present paper we study projective modules over non-commutative tori. (We al-
ways consider finitely generated projective modules.) Our main goal is to describe
all modules that admit constant curvature connections. It is well known that con-
stant curvature connections correspond to maximally supersymmetric BPS fields
([4]); this means that we give conditions for existence of 1/2 BPS states.

The main results of the paper are formulated in the following theorems.

Theorem Let Aθ be a non-commutative torus. Then for every projective
Aθ-module E with a constant curvature connection the corresponding element of
the group K0(Aθ) is a generalized quadratic exponent. Conversely, if µ is a positive
generalized quadratic exponent in K0(Aθ) then there exists a projective module E
with constant curvature connection such that [E] = µ. (Here [E] stands for the
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K-theory class of E. The definition of generalized quadratic exponent will be given
later.)

Theorem Let Aθ be an irrational non-commutative torus. In this case pro-
jective modules over Aθ which admit constant curvature connection are in one-to-
one correspondence with positive generalized quadratic exponents in K0(Aθ).

This theorem is an immediate consequence of Theorem 1.1 and of the fol-
lowing very strong result by M. Rieffel (see [9]): for irrational non-commutative
torus Aθ the projective modules E and F are isomorphic if and only if the classes
[E], [F ] ∈ K0(Aθ) are equal.

Our main results were formulated and partially proved in [7], Appendix D.
It is assumed in [7] that every linear combination of entries of the matrix θ is
irrational. It is proved that in this case a projective module can be transformed
into a free module by means of complete Morita equivalence iff corresponding K-
theory class is a generalized quadratic exponent. This statement can be used to
prove Theorem 1.1 in the conditions of Appendix D of [7]).

The paper is organized as follows. In the Introduction we remind the main
notions and results we need and explain how we plan to prove the main theorem. In
Section 2 we introduce the notion of generalized quadratic exponent and we study
its properties. Section 3 is about integral generalized quadratic exponents and
finite dimensional representations of rational non-commutative tori. The state-
ments of Section 3 can be derived easily from well known results, but we don’t
know any reference containing them precisely, in the form we need. In Section 4
we present a proof of main results.

Let us remind the definition of a non-commutative torus (see [10a] for more
details). Let L be the lattice Zn in the vector space V ∗ = Rn. Let θ be a real
valued skew-symmetric bilinear form on Rn. We will think about θ as a two-
form, that is an element of Λ2V . The non-commutative torus Aθ is the universal
C∗-algebra generated by unitary operators Uα, α ∈ L obeying relations

(1.1) UαUβ = eπiθ(α,β)Uα+β .

Any element from Aθ can be represented uniquely by a sum a =
∑

α∈L

cαUα, where

cα are complex numbers. Assigning to every a ∈ Aθ the coefficient c0 in the
representation above we obtain a canonical trace τ on Aθ.

Let {ei} be a basis of L. One can say that Aθ is the universal C∗-algebra
generated by unitary operators U1, . . . , Un obeying the relations

(1.2) UiUj = e2πiθ(ei,ej)UjUi.

To check that these two definitions are equivalent one should take Ui = Uei
.

The transformations δkUek
= Uek

, 1 6 k 6 n, δlUek
= 0, k 6= l, 1 6 k,

l 6 n can be regarded as generators of the abelian Lie algebra Lθ of infinitesimal
automorphisms on Aθ. We can naturally identify Lθ with V . Let us remind the
definition of a connection in a Aθ-module following [2] (we do not need the general
notion of connection from [3]). First we need the notion of a smooth part of a
projective module.

Any element from Aθ can be considered as a (generalized) function on the
n-dimensional torus whose Fourier coefficients are cα (see above). The space of
smooth functions on Tn forms a subalgebra of Aθ. We denote it by Aθ

smooth and
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call it the smooth part of Aθ. If E is a projective Aθ-module one can define its
smooth part Esmooth in a similar manner (see [9]). A connection on the projective
module E can be defined as follows:

An Aθ-connection on a right Aθ-module E is a linear map ∇ : Lθ → End CE,
satisfying the condition

∇δ(ea) = (∇δe)a+ e(δ(a)),

where e ∈ Esmooth, a ∈ Asmooth
θ , and δ ∈ Lθ. The curvature Fµ,ν = [∇µ,∇ν ] of

the connection ∇ is considered as a two-form on Lθ with values in EndAθ
E. (Here

EndAθ
E stands for the space of endomorphisms of the Asmooth

θ -module Esmooth

and End CE denotes the space of C-linear endomorphisms of Esmooth.)
We always consider hermitian modules and hermitian connections. This

means that if E is a right Aθ-module it is equipped with an Aθ-valued hermitian
inner product 〈 · , · 〉 (for the detailed list of properties see [1]); all connections that
we will consider should be compatible with this inner product.

If E is endowed with anAθ-connection, then one can define a Chern character

(1.3) ch(E) =
∑
k=0

τ̂(F k)
(2πi)kk!

= τ̂(e
F
2πi ),

where F is the curvature of the connection on E, and τ̂ is the canonical trace on
Â = EndAθ

(E) (we use that Aθ is equipped with a canonical trace τ = c0). One
can consider ch(E) as an element in the Grassmann algebra Λ·(L∗θ) = Λ·(V ∗).
We have a lattice L in V ∗. Thus we can talk about integral elements in Λ·(V ∗)
which are just the elements of Λ·L. In the commutative case ch(E) is integral.
In the non-commutative case this is wrong, but there exists an integral element
µ(E) ∈ Λ·(V ∗) related to ch(E) by the formula (see [5], [9])

(1.4) ch(E) = eι(θ)µ(E).

Here ι(θ) stands for the operation of contraction with θ considered as an element
of Λ2V . In particular, formula (1.4) means that e−ι(θ) ch(E) is an integral element
of Λ·(V ∗). The group ΛevenL can be naturally identified with the group K0(Aθ).
Moreover µ(E) is the class of the module E in the K0(Aθ) group (see [5]).

Let us remind that the element µ ∈ K0(Aθ) is called positive if (eι(θ)µ)(0) > 0
(the zero component is positive). A well known theorem of M. Rieffel (see [9]) says
that if θ is irrational then every positive element of µ is represented by a projective
module over Aθ.

Let E be a projective Aθ-module with a constant curvature connection ∇.
Denote by F the curvature of ∇. Then since F is a 2-form with values in C we
obtain that τ̂(F k) = τ̂(1)F k. The number τ̂(1) is called the dimension of the
module E and we denote it by dE . Then the formula (1.3) becomes

(1.5) ch(E) = dEe
F
2πi .

We see that in this case ch(E) is a quadratic exponent (i.e. an expression of the
form Cea where C is a constant and a ∈ Λ2(V +)). It follows from (1.4) and from
this fact that µ(E) is a generalized quadratic exponent (i.e. a limit of quadratic
exponents). This gives a proof of the first statement of Theorem 1.1. The proof of
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the second statement of this theorem is based on the study of generalized quadratic
exponents in Sections 2 and 3. In Section 3 we will study integral generalized
quadratic exponents keeping in mind that K0(Aθ) is exactly the integral lattice
in Λeven(V ), where V = L∗θ. We will prove some auxiliary technical results saying
that something is rational or integral which we will use in our construction of the
module in Section 4.

In Section 4 we will construct a desired module together with constant cur-
vature connection in four steps.

First we find explicitly the curvature F as a 2-form on Lθ.
Secondly, we construct some spaces of functions on Rp×Zn−2p together with

actions of generators of some non-commutative torus Aθ̃ and constant curvature
connection having the curvature form F . We do not construct an Aθ̃-module at
this step. Moreover, we even will not specify what space of functions we will take.

Thirdly, we will check that our construction in the previous step is just a
particular case of Rieffel’s construction in [9] where he constructs Aθ̃-projective
modules. So we can construct the desired module Ẽ over Aθ̃ using Rieffel’s con-
struction.

Fourthly, we will see that τ = θ − θ̃ is a rational element of Λ2Lθ = Λ2V ∗.
Also, we will use Rieffel’s explicit calculation of [Ẽ] (of the class of Ẽ in K0(Aθ̃) ⊂
Λeven(V )) to find a simple relation between [Ẽ] and µ. Finally, we show that
we can construct a projective module E with constant curvature connection over
Aθ such that [E] = µ by taking E to be a tensor product of Ẽ by some finite
dimensional module M over Aτ .

2. GENERALIZED QUADRATIC EXPONENTS

In this section we introduce generalized quadratic exponents and study their prop-
erties.

Let V be a finite dimensional vector space over R. Let V ∗ be the dual space.
Then the space V ⊕ V ∗ has a natural symmetric bilinear product given by

〈(x1, y1), (x2, y2)〉 = y2(x1) + y1(x2),

where x1, x2 ∈ V and y1, y2 ∈ V ∗. Consider the Clifford algebra Cl(V ⊕ V ∗). It
naturally acts on the vector space Λ·(V ); we denote this action by ρ. Note that
there is a natural inclusion i of V ⊕ V ∗ into Cl(V ⊕ V ∗).

Definition An element q ∈ Λ·(V ) is called a generalized quadratic exponent
if there exists a maximal isotropic subspace U ⊂ V ⊕ V ∗ such that for any x ∈ U
we have ρ(x)q = 0.

If the projection of U onto V ∗ is bijective we can represent U as the graph of a
linear operator a : V ∗ → V . The operator a is antisymmetric; it can be considered
as an element of Λ2(V ). The element q can be represented in the form const · ea,
i.e. it is a quadratic exponent. The set of maximal isotropic subspaces we just
considered is dense in the set of all maximal isotropic subspaces; this means that
quadratic exponents are dense in the set of all generalized quadratic exponents.

In the next proposition we will describe all possible generalized quadratic
exponents.
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Proposition Let q ∈ Λ·(V ) be a generalized quadratic exponent. Then there
exists a subspace W ⊂ V , a non-degenerate element q̃1 ∈ Λ2(V/W ) and a non-zero
element w ∈ ΛdimWW such that

q = w ∧ eq1 ,

where q1 ∈ Λ2(V ) is any preimage of q̃1 ∈ Λ2(V/W ) under the natural projection
from Λ2(V ) onto Λ2(V/W ).

Proof. Let U be the maximal isotropic subspace corresponding to q. It is
easy to see that we can choose a basis {ξi} of V and a dual basis {ηi} of V ∗ such

that U is spanned by the vectors η1−
j∑

i=1

a1,iξi, . . . , ηj −
j∑

i=1

aj,iξi, ξj+1, . . . , ξdimW .

Thus, q satisfies the following system of equations:

∂q
∂ξ1

−
( j∑

i=1

a1,iξi

)
∧ q = 0

...
∂q
∂ξj

−
( j∑

i=1

aj,iξi

)
∧ q = 0

ξj+1 ∧ q = 0
...
ξdimW ∧ q = 0.

The partial derivatives in this system are understood as left derivatives in the
sense of superalgebra.

It is easy to see that any solution of this system is of the form

C · ξj+1 ∧ · · · ∧ ξdimW ∧ e

j∑
k=1

j∑
l=1

ak,lξk∧ξl

,

where C is a constant. The proposition follows easily from the above formula. W
is the subspace spanned by ξj+1, . . . , ξdimW and q̃1 is the projection of

j∑
k=1

j∑
l=1

ak,lξk ∧ ξl.

Λ·(V ) is a graded vector space. If q ∈ Λ·(V ) let us denote by q(i) ∈ ΛiV the
projection q on ΛiV .

Corollary Let q be a generalized quadratic exponent. If q(0) is not zero
then there is a non-degenerate element a ∈ Λ2V and a non-zero real number C
such that

q = Cea.

Proof. Immediately follows from Proposition 2.1.

Let b ∈ Λ2(V ∗). Then b acts naturally on Λ·(V ). If we choose a basis {ξi} in
V then we can write the action of b as

∑
k,l

bk,l
∂

∂ξk∂ξl
. Another way of thinking is to

think about b as an element of Cl(V ⊕ V ∗). We have a canonical map from Λ·(V ∗)
to Cl(V ⊕ V ∗) since V ∗ is an isotropic subspace in V ⊕ V ∗. Then the action of b
is simply ρ(b).
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Proposition Let q be a generalized quadratic exponent and b any element
in Λ2(V ∗). Then eρ(b)q is a generalized quadratic exponent.

Proof. We will reduce the proposition to the case where b is decomposable.
Since ρ(b) =

∑
k,l

bk,l
∂

∂ξk∂ξl
in some basis {ξi} of V and the operators ∂

∂ξk∂ξl
commute

it is enough to prove the proposition in the case when ρ(b) = c ∂
∂ξk∂ξl

, where c is a
real number. In this case eρ(b) = 1 + ρ(b).

Our goal is to show that there exists a subspace W̃ ⊂ V ⊕ V ∗ such that for
any x ∈ W̃ we have ρ(x)(q + ρ(b)(q)) = 0.

Let W be a subspace of V ⊕ V ∗ such that if x ∈W then ρ(x)q = 0. We can
choose a basis {v1 + w1, . . . , vk + wk, vk+1, . . . , vdimW } of W , where vi ∈ V ∗ and
wi ∈ V , and the vectors {wi} are linearly independent.

A simple calculation shows that

ρ(vl)(q + ρ(b)(q)) = 0 + ρ(vl)ρ(b)(q) = ρ(b)ρ(vl)(q) = 0,

for l > k. Also, we can easily see that for l < k + 1

ρ(vl+wl)(q+ρ(b)(q))=ρ(vl+wl)ρ(b)(q)=[ρ(vl+wl), ρ(b)](q)+ρ(b)ρ(vl+wl)(q)

=[ρ(wl), ρ(b)](q)=ρ(ι(wl)b)q,

where ι(wl) is plugging the vector wl in the 2-form b. ι(wl)b is an element of V ∗.
Since b2 = 0 we see that 0 = ι(wl)(b2) = 2(ι(wl)b)b. Thus,

ρ(ι(wl)b)q = ρ(ι(wl)b+ (ι(wl)b)b)q = ρ(ι(wl)b)(q + ρ(q)).

Therefore, we see that ρ([vl − ι(wl)b] + wl)(q + ρ(b)q) = 0. Denote by W̃ the
subspace of V ⊕ V ∗ spanned by the vectors [v1 − ι(w1)b] +w1, . . . , [vk − ι(wk)b] +
wk, vk+1, . . . , vdimW . It is easy to check that W̃ is a maximal isotropic subspace
of V ⊕V ∗ and we showed that ρ(x)(q+ ρ(b)q) = 0 for any x ∈ W̃ . Thus, q+ ρ(b)q
is a generalized quadratic exponent.

3. INTEGRAL GENERALIZED QUADRATIC EXPONENTS

In this section we study integral generalized quadratic exponents and we prove a
couple of auxiliary propositions that we will use in our construction.

Let V be a finite dimensional vector space and let L be a lattice in it. Denote
by n the dimension of V . Then V ∼= Rn and L ∼= Zn. We denote the dual lattice
to L by L∗. Obviously L∗ ⊂ V ∗. We call an element of Λ·(V ) integral if it lies in
Λ·L.

Define a subspace Uµ of V ∗ as follows:

Uµ = {x ∈ V ∗ : ι(x)µ = 0}.

Denote by Wµ ⊆ V the orthogonal complement to Uµ.
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Proposition Let µ ∈ Λ·(V ) be an integral generalized quadratic exponent.
Then Lµ = L ∩Wµ is a lattice in Wµ. We can identify ΛdimWµLµ with Z (the
isomorphism is not canonical but it is specified up to a sign). Let α ∈ ΛdimWµLµ

be a volume form (an element that corresponds to 1 under the isomorphism with
Z). Then µ(dimWµ) = Nα, where N is a non-zero integer.

Proof. Let µ ∈ Λ·(V ) be an integral generalized quadratic exponent. Let
k be the largest integer such that µ(k) 6= 0 and for all l > k we have µ(l) =
0. From Proposition 2.1 easily follows that Uµ = {x ∈ V ∗ : ι(x)µ = 0} ={
x ∈ V ∗ : ι(x)µ(k) = 0

}
. Moreover, from Proposition 2.1 it follows that µ(k) is a

decomposable element of Λ·(V ) and that k = dimV − dimUµ = dimWµ. Since
µ is integral µ(k) is also integral. Thus, the subspace Uµ is spanned by Uµ ∩ L∗.
Therefore, Uµ ∩L∗ is a lattice in Uµ. This immediately implies that Lµ = Wµ ∩L
is a lattice in Wµ since Wµ is the orthogonal complement to Uµ.

From the above discussion it is easy to see that ΛdimWµ(Wµ∩L) = ΛdimWµLµ
∼= Z. Since by the definition α corresponds to ±1 under such an isomorphism and
µ(dimWµ) = µ(k) is an integral element we obtain that µ(dimWµ) = Nα for some
integer N .

Under the conditions in the above proposition we can easily find a comple-
ment L̃µ (L̃µ

∼= Zn−dimWµ) to Lµ in L. It is not unique but we do not care
about that. Let Yµ be the subspace of V spanned by L̃µ. Then it is obvious that
V = Wµ ⊕ Yµ and L = Lµ ⊕ L̃µ.

The next results will be used in the construction in Section 4.1. Since they
do not use any theory of non-commutative tori we state them here. But they need
some explanation concerning their origin.

Let µ ∈ Λeven(V ) be an integral generalized quadratic exponent which will
be an element of K0 representing a projective module of Aθ. We can think about
θ as an element of Λ2V ∗. If there exists a projective module E over Aθ with
constant curvature connection such that [E] = µ then by the result of G. Elliott
(see [5]) de

F
2πi = eι(θ)µ, where d is the dimension of the module. θ̃ which satisfies

the conditions of the lemma below will be constructed in Section 4.1.

Lemma Let µ ∈ Λeven(V ) be an integral generalized quadratic exponent. Let
us assume that we fixed the isomorphism between ΛdimWµLµ and Z (see Propo-
sition 3.1) so that µ(dimWµ) = Nα with N being a natural number (here α ∈
ΛdimWµLµ corresponds to 1 in Z). Let θ and θ̃ be elements of Λ2V ∗ such that
θ − θ̃ is zero on V ⊗ Yµ (that is, if Xµ ⊂ V ∗ is the orthogonal complement to Yµ

then θ − θ̃ ∈ Λ2Xµ). Assume that

(3.1) eι(θ)µ = ceι(θ̃)α,

where c is a real number. Then c = N , that is

(3.2) eι(θ)µ = Neι(θ̃)α,

and N(θ − θ̃) is an integral element of Λ2Xµ.
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Proof. Let us denote dimWµ by k. Then formula (3.1) implies that

µ(k) = (eι(θ)µ)(k) = c(eι(θ̃)α)(k) = cα(k).

Thus, c = N and we have proved formula (3.2). From formula (3.2) it easily
follows that

(3.3) µ = Neι(θ̃−θ)α.

This means that µk−2 = Nι(θ̃−θ)α. µk−2 is an integral element. θ̃−θ is in Λ2Xµ

which is dual to Wµ and α is a non-zero element of ΛdimWµWµ. Thus, N(θ̃− θ) is
an integral element of Λ2Xµ.

3.1. Modules over the rational non-commutative tori. Let us assume
that the conditions of Lemma 3.2 are satisfied. We denote θ−θ̃ by τ . Let us remind
the definition of Aτ : Aτ is a universal C∗ algebra having unitary generators Uβ ,
where β ∈ L, obeying the relations

Uβ1Uβ2 = eπiτ(β1,β2)Uβ1+β2 .

We can reformulate this definition in a slightly different way. Let β1, . . . , βn (where
n = dimV ) be a basis of a free Z module L. Aτ is a universal C∗ algebra having
unitary generators Ui, 1 6 i 6 n, obeying the relations

UiUj = e2πiτ(βi,βj)UjUi.

It is obvious that the two definitions are equivalent.

Proposition Under the conditions of Lemma 3.2 there exists an N dimen-
sional module M over Aτ .

Proof. Since Nτ is an integral form and we have a freedom in choosing a
basis {βi} of L, we can choose it so that

Nτ(β2i−1, β2i) = q1q2 · · · qi,
τ(βk, βl) = 0 unless k = 2i− 1 and l = 2i or k = 2i and l = 2i− 1,

where q1, q2, . . . are integers (see [6]) and moreover the basis {βi} respects the
decomposition of L into Lµ ⊕ L̃µ. In this basis the algebra Aτ is generated by
unitary generators Ui obeying the relations

(3.5) U2i−1U2i = e2πi
q1···qi

N U2iU2i−1

(all other generators commute). Note that it may happen that there exists an
integer m such that if i > m then all qi are zero.

So we see that our algebra Aτ is a tensor product of algebras Aτ i, where
Aτ i is generated by two unitary generators U2i−1 and U2i obeying relations (3.5)
or Aτ i is generated by only one unitary generator (this is the case when i >

m, in particular if βi ∈ L̃µ). Thus it is enough to show that we can construct
finite dimensional modules Mi over Aτ i such that (dimM1)(dimM2) · · · divides N .
Indeed, in such case we can take M to be the direct sum of M1 ⊗M2 ⊗ · · · taken

N
(dimM1)(dimM2)··· times.
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If Aτ i is generated by one unitary generator then it has a 1-dimensional
module over it, Ui acts by 1. We choose Mi to be this module in this case.

If Aτ i is generated by two unitary generators U2i−1 and U2i obeying rela-
tions (3.5) then it has a module of dimension N

GCD(N,q1···qi)
, where GCD stands

for greatest common divisor. We choose Mi to be a module of the dimension
N

GCD(N,q1···qi)
.

Thus, it is enough to show that Nm

GCD(N,q1)···GCD(N,q1···qm) divides N , where
m is the number of tori Aτ i generated by two generators. Therefore it is enough
to prove that GCD(N,q1)···GCD(N,q1···qm)

Nm−1 is an integer.

Lemma
GCD(N, q1) · · ·GCD(N, q1 · · · qm)

Nm−1

is an integer if
q21q2
N

,
q31q

2
2q3

N2
, . . . ,

qm
1 q

m−1
2 · · · qm
Nm−1

are integers.

Proof. Denote by ai = GCD(N,q1···qi)
GCD(N,q1···qi−1)

and bi = qi/ai. Then we can write
qm
1 q

m−1
2 · · · qm = (am

1 a
m−1
2 · · · am)(bm1 b

m−1
2 · · · bm). We will prove by induction

that ak
1ak−1

2 ···ak

Nk−1 are integers. The initial case k = 1 is obvious. For k > 1 we have

ak
1a

k−1
2 · · · ak

Nk−1
=
ak−1
1 ak−2

2 · · · ak−1

Nk−2

(a1 · · · ak

N

)
.

ak−1
1 ak−2

2 ···ak−1

Nk−2 is an integer by induction hypothesis and we also know that N
a1···ak

are relatively prime with b1, · · · bk. But on the other hand

qk
1q

k−1
2 · · · qk
Nk−1

=
ak−1
1 ak−2

2 · · · ak−1

Nk−2

(a1 · · · ak

N

) (
bk1b

k−1
2 · · · bk

)
.

Thus, ak−1
1 ak−2

2 ···ak−1

Nk−2 (a1···ak

N ) is an integer.

To prove the proposition it is enough to show that

q21q2
N

,
q31q

2
2q3

N2
, . . . ,

qm
1 q

m−1
2 · · · qm
Nm−1

are all integers. Let {γi} be a basis of V ∗ dual to {βi}. We know that µ = Neι(τ)α
is an integral element of Λeven(V ). Denote by k the dimension of Wµ as before.
Then, α = ±β1 ∧ β2 ∧ · · · ∧ βk and the numbers〈
γ3∧· · ·∧γk, Nι(τ)α

〉
,
〈
γ5∧· · ·∧γk, N

(ι(τ))2

2
α
〉
, . . . ,

〈
γ2m+1∧· · ·∧γk, N

(ι(τ))m

m!
α
〉

are integers. A straightforward calculation shows that〈
γ2j+1 ∧ · · · ∧ γk, yN

(ι(τ))j

j!
α
〉

= ±q
j
1q

j−1
2 · · · qj
N j−1

.

Thus all numbers qj
1qj−1

2 ···qj

Nj−1 are integers.
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4. PROOF OF THEOREM 1.1

First, let us show that if we have a projective Aθ-module with constant curvature
connection then the corresponding class µ = [E] ∈ K0(Aθ) is a positive generalized
quadratic exponent.

Indeed, we know from formula (1.4) that

µ = [E] = e−ι(θ) ch(E) = eι(−θ) ch(E).

Also, from formula (1.5) we see that

ch(E) = dEe
F
2πi .

Thus ch(E) is a generalized quadratic exponent since F is an element of Λ2V
(recall that V = L∗θ). From Proposition 2.4 it immediately follows that µ is a
generalized quadratic exponent since −θ ∈ Λ2(V ∗). Therefore we have proved
that µ = [E] is a generalized quadratic exponent. It is a positive element of
K0(Aθ) because it represents a genuine Aθ-module. Thus we have proved the
statement of Theorem 1.1 in one direction.

This was the easy part. The hard part is to prove the second half, that
is to show that if µ ∈ K0(Aθ) is a positive generalized quadratic exponent then
there exists a projective module E with a constant curvature connection which
represents the class µ, i.e., µ = [E]. In the next subsection we present an explicit
construction of such a module.

4.1. Construction of an Aθ-module E with constant curvature con-
nection. In this section we will construct explicitly an Aθ-module E with a
constant curvature connection representing µ ∈ K0(Aθ). Assuming that such a
module exists we see that ch(E) = eι(θ)µ is a generalized quadratic exponent (fol-
lows from Proposition 2.4 and the fact that µ is a generalized quadratic exponent).
Moreover, ch(E)(0) > 0 therefore from Corollary 2.3 follows that

ch(E) = eι(θ)µ = dEe
F
2πi ,

where F is the curvature form, and dE is the dimension of the module E. Thus,
reversing the previous arguments it is obvious that it is enough to construct a
projective Aθ-module with constant curvature connection satisfying the following
properties:

a) the curvature form is F ;
b) the dimension of the module is dE .
In Section 3 we defined a subspace Wµ ⊆ V = L∗θ associated with the gen-

eralized quadratic exponent µ. Since µ ∈ K0(Aθ) we see that µ is integral. Thus,
Lµ = L ∩Wµ is the integral lattice in Wµ by Proposition 3.1. As in Section 3 we
denote by k = dimWµ and we choose a complement L̃µ to Lµ in L. Denote by
Yµ the span of L̃µ in V . It is obvious that L∗θ = V = Wµ ⊕ Yµ. Thus, we have a
natural decomposition Lθ = V ∗ = W ∗

µ ⊕ Y ∗
µ . Note that the space Y ∗

µ = Uµ was
defined in Section 3. Since µ(k) = dE(e

F
2πi )(k), k is an even integer, that is k = 2p,

p ∈ Z. Denote by q the rank of the free abelian group L̃µ. We have q = n − 2p,
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where n = dimLθ the dimension of Aθ. Since F p is non-zero it follows that F |W ∗
µ

(F restricted to W ∗
µ) is a non-degenerate 2-form.

4.1.1. Construction of operators ∇x for x ∈ Lθ. Let Heis be the Heisen-
berg algebra generated by the operators ∇x, for x ∈W ∗

µ , which satisfy the relation

[∇x,∇y] = F (x, y),

where x, y ∈W ∗
µ . The algebra Heis has a unique irreducible representation which

can be realized in the space of square integrable functions on Rp. Moreover, the
action of ∇x is given by an operator

(∇x(f))(z) = 2πi〈φ(x), z〉f(z) +
∑

i

ψi(x)
∂f(z)
∂zi

,

where φ : Wµ → (Rp)∗ is some linear map, and ψi : Wµ → R are some linear
functions on W ∗

µ . In particular, we see that these operators preserve the space of
Schwartz functions on Rp.

The above construction provides us with the action of the operators ∇x for
x ∈ W ∗

µ only. First we will extend the above construction to obtain an action of
all operators ∇x, x ∈ Lθ = W ∗

µ ⊕ Y ∗
µ . Then, we will obtain an action of some

non-commutative torus Aθ̃ so that ∇ becomes an Aθ̃-connection.
We extend the space from the space of Schwartz functions on Rp to the space

of Schwartz functions on Rp×L̃µ = Rp×Zq. Denote it by H. If x ∈ Lθ = W ∗
µ⊕Y ∗

µ

we denote by xW the projection of x on W ∗
µ and by xY the projection of x on Y ∗

µ

(obviously x = xW + xY ). We define the action of ∇x on an element f(z, a) ∈ H,
where z ∈ Rp and a ∈ L̃µ, as follows

(4.1) (∇x(f))(z, a) = (∇xW
(f))(z, a) + 2πi〈xY , a〉f(z, a),

where the action of ∇xW
is the same as above (only along z’s). Notice that the

operators ∇x, x ∈ Lθ satisfy the commutation relations

[∇x,∇y] = [∇xW
,∇yW

] = F (xW , yW ) = F (x, y), x, y ∈ Lθ,

since ∇xY
(recall that (∇xY

(f))(z, a) = 2πi〈xY , a〉f(z, a)) commutes with ∇y for
any y ∈ Lθ.

Thus, we have constructed operators ∇x, x ∈ Lθ, which satisfy the desired
commutation relations. Next, we will construct operators acting on the space H
which generate a non-commutative torus Aθ̃ such that

(4.2)
(i) ∇ is an Aθ̃-connection

(ii) θ − θ̃ is an element of Λ2W ∗
µ .

4.1.2. Construction of operators satisfying conditions (4.2). Let us
choose a basis β1, . . . , β2p of Lµ and a basis β2p+1, . . . , β2p+q of L̃µ. We will con-
struct operators Vi, 1 6 i 6 2p+q acting on H which generate a non-commutative
torus Aθ̃ which satisfies conditions (4.2).
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Lemma For 1 6 i 6 2p there exists an operator Ṽi acting on H such that:
(i) (Ṽi(f))(z, a) = e2πiχi(z)f(z + yi, a), where z ∈ Rp, a ∈ L̃µ, for some

yi ∈ Rp and some linear function χi ∈ (Rp)∗;
(ii) [∇x, Ṽi] = 2πi〈x, βi〉Ṽi, for x ∈ Lθ.

Proof. Let us introduce an operator W (y, χ), where y ∈ Rp and χ ∈ (Rp)∗

(W (y, χ)f)(z, a) = e2πiχ(z)f(z + y, a).

A straightforward calculation shows that [∇x,W (y, χ)]W (y, χ)−1 is an operator of
multiplication by a real number and moreover we obtain a non-degenerate pairing
between the spaces W ∗

µ and Rp ⊕ (Rp)∗. Thus, choosing an appropriate element
yi ∈ Rp and χi ∈ (Rp)∗, we can put Ṽi = W (yi, χi).

We define the operators Ṽi for 1 6 i 6 2p as in the above lemma. We define
the operators Ṽi for 2p+ 1 6 i 6 2p+ q acting on H by the formula

(Ṽif)(z, a) = f(z, a− βi).

Lemma For any 1 6 i 6 n = 2p+ q, and any x ∈ Lθ, we have

(4.3) [∇x, Ṽi] = 2πi〈x, βi〉Ṽi.

Proof. For i 6 2p formula (4.3) follows from Lemma 4.1. For i > 2p for-
mula (4.3) follows from an easy straightforward calculation.

It is easy to check that the operators Ṽi are generators of some non-commu-
tative torus. Moreover, these operators satisfy the first condition in (4.2) but they
do not satisfy the second condition. To remedy this we will modify the operators
Ṽi replacing them with operators Vi = e2πili(·)Ṽi.

If l ∈ Y ∗
µ then the operator e2πil(·)Ṽi acts on H by the formula

(e2πil(·)Ṽi(f))(z, a) = e2πil(a)(Ṽi(f))(z, a).

Moreover, we have
[∇x, e2πil(·)Ṽi] = 2πi〈x, βi〉e2πil(·)Ṽi

which follows from an easy straightforward calculation (since the operator e2πil(·)

commutes with the operators ∇x, x ∈ Lθ).

Proposition For 1 6 i 6 2p + q there exists a linear function li ∈ Y ∗
µ on

Yµ such that if we define Vi = e2πili(·)Ṽi then

(4.4) ViVj = e2πiθ̃ijVjVi,

and θ − θ̃ is an element of Λ2W ∗
µ .

Proof. First, it is easy to see that there exists a 2-form σ ∈ Λ2Lθ such that
ṼiṼj = e2πiσij Ṽj Ṽi. An easy calculation shows that the operator e2πil(·) commutes
with the operators Ṽi for i 6 2p. If i > 2p then we have

(Ṽi ◦ e2πil(·)) = e−2πil(βi)(e2πil(·) ◦ Ṽi).
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This gives us that if i, j 6 2p then

(4.5) ViVj = e2πiσijVjVi;

if i 6 2p and j > 2p then

(4.6) ViVj = e2πi(σij+li(βj))VjVi;

and if i, j > 2p then

(4.7) ViVj = e2πi(σij+li(βj)−lj(βi))VjVi.

For 1 6 i 6 2p we define li ∈ Y ∗
µ by the formula

li(βj) = θ(βi, βj)− σij

on the basis {βj}, j > 2p of Yµ. For 2p < i 6 2p + q we define li ∈ Y ∗
µ by the

formula
li(βj) =

1
2
(θ(βi, βj)− σij)

on the basis {βj}, j > 2p of Yµ.
Equations (4.5), (4.6), and (4.7) show that ViVj = e2πiθ(βi,βj)VjVi if either i

or j greater then 2p and ViVj = e2πiσijVjVi if i, j 6 2p. Thus we have constructed
the linear functions li ∈ Y ∗

µ such that the conditions (4.4) are satisfied.

We define the operators Vi as in the above lemma. We easily see that the
operators Vi generate a non-commutative torus Aθ̃, where θ̃(βi, βj) = σij if both
i, j 6 2p and θ̃(βi, βj) = θ(βi, βj) otherwise.

Thus, the operators Vi satisfy the condition (4.2).

4.1.3. Construction of a projective Aθ̃-module. Now we will identify our
construction with the construction given in [9].

Let G be a central extension of the abelian group Rp× L̃µ× (Rp)∗× (Ỹµ/L
∗
µ)

given by the natural pairing between Rp× L̃µ and (Rp)∗×(Ỹµ/L
∗
µ). We see that G

is a Heisenberg group and it acts naturally on H. We denote this representation
by ρ. Moreover, for each Vi there exists a unique element gi ∈ G such that
ρ(gi) = Vi. One can easily recognize the construction of elementary modules over
non-commutative tori in M. Rieffel’s paper ([9]).

Thus, choosing an appropriate space of functions on Rp × L̃µ we get a pro-
jective Aθ̃-module Ẽ with constant curvature connection ∇ such that:

(i) the curvature of ∇ is F ;
(ii) θ − θ̃ is an element of Λ2W ∗

µ .

Next, we would like to find explicitly the class [Ẽ] in K0(Aθ̃). Note that in
our construction of module Ẽ we canonically identified the space Lθ with the space
Lθ̃. Thus, we can think about [Ẽ] as an integral element of ΛevenL∗θ = ΛevenV . To
find the class [Ẽ] we would have to do some calculations. Fortunately, they were
already done by M. Rieffel in [9]. So, we will apply his results to our case.

Let us remind that in paper [9] M. Rieffel introduced a linear map T̃ : Lθ̃ →
Rp×Rq×(Rp)∗. In our notation Lθ̃ is canonically identified with Lθ = V = Wµ⊕Yµ
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and Rq with Yµ. Thus, in our terms we have a linear map T̃ : Wµ ⊕ Yµ →
Rp×Yµ× (Rp)∗ = Rp× (Rp)∗×Yµ. It is easy to see from the explicit construction
of the operators Vi that T̃ maps Wµ to Rp × (Rp)∗, and Yµ to Yµ. Moreover the
restriction of T̃ on Yµ is the identity map.

M. Rieffel found in [9] that

(4.8) [Ẽ] = d

p∏
j=1

Y j ∧ Y j+p,

where d = det(T̃ ) and

(4.9) Y j =
{
T̃−1(ej) for 1 6 j 6 p,
T̃−1(ej−p) for p+ 1 6 j 6 2p;

where {ej} is a basis of Rp and {ej} is the dual basis of (Rp)∗.
Since T̃ is the identity map on Yµ we see that

det(T̃−1) = ±

p∏
j=1

Y j ∧ Y j+p

α
,

where α is the volume form on Wµ (see Proposition 2.2 for the definition of α).
Note, we put a ± sign because we do not want to specify precisely how to pick a
volume form. The lattice Lµ specifies the volume form up to a sign. Later it will
be easy to make the right choice of the sign so that everything would agree with
M. Rieffel’s paper ([9]). We get

d = det(T̃ ) =
1

det(T̃−1)
= ± α

p∏
j=1

Y j ∧ Y j+p

.

Thus we obtain that

(4.10) [Ẽ] = ±α.

4.1.4. Construction of a projective Aθ-module E. From the above results
and Proposition 3.1 we see that if we make the right choice of the sign (so that
[Ẽ] = α) then

(4.11) N =
µ(2p)

α

is a positive integer. Moreover, we have dẼe
F
2πi = eι(θ)µ and de

F
2πi = eι(θ̃)α.

Therefore,

(4.12) eι(θ)µ =
(
dẼ

d

)
eι(θ̃)α.

From equations (4.12) and (4.13) we see that dẼ

d = N .
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One can easily check that the conditions of Lemma 3.2 are satisfied. There-
fore N(θ− θ̃) is an integral element of (Wµ)∗ = Xµ. From Proposition 3.3 follows

that there exists N -dimensional module M over Aθ−θ̃. Denote

(4.13) E = Ẽ ⊗M.

From Proposition 5.4 and Theorem 5.6 in M. Rieffel’s paper ([9]) it follows that
E is a projective module over Aθ (since θ = θ̃ + (θ − θ̃)) with constant curvature

connection with the curvature given by formula Ω = F ⊗ IdM = F and ch(E) =
dim(M)ch(Ẽ). Therefore we see that

ch(E) = Nch(Ẽ) = Neι(θ̃)α = N
( d

dE

)
eι(θ)µ = eι(θ)µ.

Thus we have constructed a projective Aθ-module E with constant curvature con-

nection such that [E] = µ. This finishes the proof of Theorem 1.1
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