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Abstract. A semigroup in B(L2(X )) is a collection of operators which is
closed under multiplication. A band will denote a semigroup of idempo-
tents. The question whether a band of infinite-rank operators on an infinite-
dimensional Hilbert space is reducible is still unsolved. Here, a negative
answer to this problem is given as far as decomposability of a band is con-
cerned. Furthermore, conditions leading to decomposability of such bands
are discussed. Also, the structure of a maximal nonnegative band of constant
rank r is given is under special condition.
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INTRODUCTION

In this paper X will be a separable, locally compact Hausdorff space and µ a
Borel measure on X . L2(X ) will denote the Hilbert space of (equivalence classes
of) complex-valued measurable functions on X which are square-integrable relative
to µ and B(L2(X )), the space of all bounded linear operators on L2(X ). We also
assume for simplicity that µ(X ) < ∞. This is not a great restriction and almost
all our considerations will be valid for the case of a σ-finite measure with obvious
modifications.

A function f ∈ L2(X ) is said to be nonnegative (respectively positive),
written f > 0 (respectively f > 0) if µ{x ∈ X : f(x) < 0} = 0 (respectively
µ{x ∈ X : f(x) 6 0} = 0).

A subspace of L2(X ) is a norm-closed linear manifold in L2(X ). A standard
subspace of L2(X ) is a subspace of the form

L2(U) = {f ∈ L2(X ) : f = 0 a.e. on U c}
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for some Borel subset U of X . This space is nontrivial if µ(U) · µ(U c) > 0. An
operator on L2(X ) is said to be decomposable if there exists a nontrivial standard
subspace of L2(X ) invariant under A. This definition is extended in the obvious
manner to define decomposability of a semigroup in B(L2(X )).

A band in B(L2(X )) is a semigroup of idempotents i.e. operators E on L2(X )
such that E = E2.

Suppose X1 and X2 are Borel subsets of X . An operator A from L2(X1) to
L2(X2) is called nonnegative if Af > 0 whenever f > 0 in L2(X1). Similarly, A
is called positive if Af > 0 whenever 0 6= f > 0 in L2(X1). For any function f ,
we define the support of f as supp f = {x ∈ X : f(x) 6= 0}. If f is a member of
L2(X ), then supp f is defined up to a set of measure zero. When no confusion is
likely to arise, we simply write supp f for any f ∈ L2(X ) to mean supp f0, where
f0 is a function representing f .

Triangularizability (simultaneous) of a semigroup means the existence of a
chain C of closed subspaces of H such that:

(a) C is maximal (as a chain of closed subspaces of H); and
(b) every member of C is invariant for S.

For a semigroup S on an infinite dimensional Hilbert space, let Lat′ S denote
the lattice of all standard subspaces which are invariant under every member of S.
By Zorn’s lemma, it can be shown that Lat′ S has a maximal chain. This chain
may be nontrivial invariant or trivial according as S has a nontrivial subspace or
not. Each chain in Lat′ S gives rise to a block triangularization for S and since
the members in the chain are standard subspaces, we shall call it a standard block
triangularization.

Reducibility of semigroups of operators (viz. existence of nontrivial invari-
ant subspaces) has been the subject of study in recent times ([6] and [7]). In this
paper, we aim to study decomposability of nonnegative semigroups (especially
bands) of operators since existence of standard invariant subspaces yield a nice
structure for some special type of bands. Under certain conditions, semigroups of
nonnegative quasinilpotent operators have been proved to be not only decompos-
able but simultaneously triangularizable with a maximal subspace consisting of
standard subspaces ([1]). Even in finite dimensions, where we know that a band
is triangularizable, the structure of bands is still not at all well understood. Some
attempts have been made to study the structure of bands, e.g. in [2] and [3].

The initial results given in this paper are infinite dimensional analogues of
some of the results which led to the decomposability of the nonnegative semi-
groups and in particular nonnegative bands of n × n matrices with entries in R
(or C), mentioned in the paper written by the author ([5]). The possibility that
operators in a band can have infinite rank gives a new perspective to the study
of their decomposability. It is proved that a nonnegative band with each member
having rank greater than one and containing at least one finite-rank operator is
decomposable. An example of a nonnegative band in B(l2) with constant infinite
rank is given which is not decomposable. It is also shown that under the additional
hyphothesis of finiteness, an infinite-rank nonnegative band is decomposable.



Nonnegative bands in infinite dimensions 39

1. PRELIMINARY RESULTS

The following propositions which shall be used in the sequel are stated without
proof.

Proposition 1.1. For any two nonnegative functions f, g in L2(X ),

〈f, g〉 = 0 if and only if µ{supp f ∩ supp g} = 0.

Proposition 1.2. For any f ∈ L2(X ),

f > 0 ⇔ 〈f, g〉 > 0, for all g > 0 in L2(X ).

Proposition 1.3. For any A in B(L2(X )), A > 0 ⇔ A∗ > 0.

Proposition 1.4. Let S be a nonnegative operator on L2(X ) and U, V be
any Borel subsets of X . Then 〈SχU , χV 〉 = 0 if and only if 〈Sf, g〉 = 0 for all
f ∈ L2(U) and for all g ∈ L2(V ).

Proposition 1.5. A nonnegative operator S on L2(X ) is decomposable if
and only if there exists a Borel subset U of X with µ(U) · µ(U c) > 0 such that

〈SχU , χUc〉 = 0.

Remark. The propositions given above for a single nonnegative operator
hold true for semigroups of nonnegative operators on L2(U).

2. DECOMPOSABILITY OF NONNEGATIVE SEMIGROUPS

It was seen in the finite-dimensional case that the existence of common zero entry
in a semigroup of nonnegative matrices led to its decomposability ([5]). In this
section, we aim to establish an analog of this fact for nonnegative semigroups in
B(L2(X )) which shall result into their decomposability. For this, we need a couple
of simple propositions and a lemma.

Proposition 2.1. Let B : L2(X ) → L2(Y) be a nonnegative operator such
that Bf0 = 0 for some f0 > 0 in L2(X ). Then B = 0.

Corollary 2.2. Let B be a nonnegative operator in B(L2(X )). If there
exists a vector h in the kernel of B which is nonzero and nonnegativ, then B is
decomposable.

Proposition 2.3. Let S be a semigroup of nonnegative operators on L2(X ).
Then S is decomposable if and only if S∗ is decomposable.

Lemma 2.4. Let A be a collection of nonnegative vectors in L2(X ). Then
there exists a minimal Borel subset G in X (defined up to a null set) such that all
the vectors in A vanish on Gc.

Proof. Since L2(X ) is a separable metric space, so is A. Let M be a count-
able dense subset of A. Suppose M = {f1, f2, . . .} where f1, f2, . . . are chosen rep-
resentatives of the equivalence classes of functions in M. Consider G =

⋃
i

supp fi.
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Let f ∈ A, then M = A implies that there exists a subsequence {fnk
} in M

such that fnk
→ f pointwise a.e. (cf. [9], p. 68, Theorem 3.12).

By considering G0 =
⋃
k

supp fnk
⊆ G, we can show that A ⊆ L2(G). Also G

has no subset of positive measure on which all the vectors in A vanish. Thus G is
the minimal subset of X , up to a null set, on whose complement all the vectors in
A vanish.

We now prove the main lemma.

Lemma 2.5. Let S be a semigroup of nonnegative operators on L2(X ) with
the property that 〈AχE , χF 〉 = 0 for all A ∈ S, where E,F are Borel subsets of X
with µ(E) · µ(F ) > 0. Then S is decomposable.

Proof. We distinguish two cases:
(i) µ(E ∩ F ) = 0;
(ii) µ(E ∩ F ) > 0.
We prove case (i) and show that the second case can be reduced to the first.

In case (i), we can assume with no loss of generality that E ∩ F = ϕ. Thus, we
can write

L2(X ) = L2(E)⊕ L2(F )⊕ L2(G),

where E,F,G can be assumed mutually disjoint with µ(G) > 0. Then, with
respect to some choice of bases for L2(E),L2(F ) and L2(G), every A ∈ S has

the matrix representation

(
A11 A12 A13

A21 A22 A23

A31 A32 A33

)
, where A21 = 0, by hypothesis and

Proposition 1.4.
Let A ∈ S be arbitrary and B ∈ S be fixed, where

B =

(
B11 B12 B13

0 B22 B23

B31 B32 B33

)
.

Then BA ∈ S implies that (BA)21 = 0, and thus

(2.1) B23A31 = 0 for all A ∈ S.

Consider the set

A = {A31(f) : A ∈ S, f ∈ L2(E), f > 0}.

If A31(f) = 0 for all A and for all f > 0 in L2(E), then A31 = 0 for all A, and
so L2(E) is a standard invariant subspace for S. Therefore, we can assume that
there exists at least one A ∈ S and some f ∈ L2(E), f > 0, such that A31(f) 6= 0.

Consider the closed linear span Â of A. Since it is a proper subspace of
L2(G), by Lemma 2.4 we can find a minimal subset G0 of G, up to a null set, on
whose complement all the vectors in Â and hence in A vanish, or equivalently

〈AχE , χG\G0〉 = 0 for all A ∈ S.
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Thus, with respect to the decomposition L2(X ) = L2(E) ⊕ L2(F ) ⊕ L2(G0) ⊕
L2(G \G0), the matrix representation of any A ∈ S is given by

A =

A11 A12 A13 A14

0 A22 A23 A24

A31 A32 A33 A34

0 A42 A43 A44

 .

Consider the new matrix of B with respect to the decomposition above.
Using the facts that BA ∈ S for all A ∈ S and that (BA)21 = 0, we get

(2.2) B23(Â) = 0.

The minimality of G0 implies that there exists f ∈ Â such that supp f = G0; in
other words, f > 0 on G0.

From (2.2), we get B23(f) = 0 where f > 0 in L2(G0).
By Proposition 2.1, B23 = 0. This is true for all B ∈ S. Further, using the

fact that (BA)41 = 0 for all A ∈ S, we get B43 = 0 for all B ∈ S. This shows that
L2(E)⊕ L2(G0) ∈ Lat′ S and hence S is decomposable.

(ii) Next, consider the case when µ(E ∩ F ) > 0. This is subdivided into two

cases according as µ(E∆F ) is zero or positive, where E∆F = (E \ F )
·
∪ (F \ E).

(a) If µ(E∆F ) = 0, then E = F with no loss of generality and we can write
L2(X ) = L2(E)⊕ L2(Ec). Since 〈AχE , χE〉 = 0 for all A ∈ S, every A ∈ S has a

representation A =
(

0 A12

A21 A22

)
with respect to the decomposition above. For a

fixed B ∈ S, (BA)11 = 0 ⇒ B12A21 = 0, where A21 : L2(E) → L2(Ec).
Again by Lemma 2.4, applied to the set A1 = {A21(f) : A ∈ S, f ∈

L2(E), f > 0}, we can find a minimal subset N of Ec having positive measure
such that 〈AχE , χEc\N 〉 = 0 for all A ∈ S where N is the union of the supports of
all vectors in a countable dense subset of the closed linear span Â1 of A1. Then,
with respect to the decomposition

L2(X ) = L2(E)⊕ L2(N )⊕ L2(Ec \ N ),

any A ∈ S has the matrix representation

A =

(
0 A12 A13

A21 A22 A23

0 A32 A33

)
.

For a fixed B ∈ S, (BA)11 = 0 ⇒ B12A21 = 0 and (BA)31 = 0 ⇒ B32A21 = 0,
where A21 : L2(E) → L2(N ).

Now B12(Â1) = 0 = B32(Â1). Following the argument in case (i), by the
minimality of N (or otherwise), we show the existence of a vector g in Â1 such
that g > 0 on N . Therefore, B12(g) = 0 = B32(g).

By Proposition 2.1, B12 = 0 = B32. This is true for all B ∈ S. Thus L2(E)⊕
L2(N ) ∈ LatS and hence S is decomposable.

(b) Next, suppose that µ(E∆F ) > 0, in which case either E \ F or F \ E
must have positive measure. By considering S∗, if necessary, we can assume with
no loss of generality that µ(F \ E) > 0. Then, we can write

L2(X ) = L2(E)⊕ L2(F \ E)⊕ L2(X \ (E ∪ F )),
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where we have 〈AχE , χF\E〉 = 0 for all A ∈ S. With respect to this decomposition,
any A ∈ S has a matrix representation

A =

(
A11 A12 A13

0 A22 A23

A31 A32 A33

)
.

This reduces to case (i) and hence S is decomposable.

Proposition 2.6. If S is an indecomposable semigroup of nonnegative op-
erators in L2(X ), then so is every nonzero ideal of S.

Proof. If J be a nonzero decomposable ideal of S, then there exists a Borel
subset U of X with µ(U) · µ(U c) > 0 such that L2(U) is invariant under every
member of J . This is equivalent to saying that 〈JχU , χUc〉 = 0 for all J ∈ J .
Thus, with respect to the decomposition

(2.3) L2(X ) = L2(U)⊕ L2(U c),

every member J of J assumes the form
(

A B
0 C

)
. Pick a nonzero J of this

form and let S =
(

S11 S12

S21 S22

)
be an arbitrary element of S with respect to the

decomposition (2.3). Then

SJ =
(

S11A S11B + S12C
S21A S21B + S22C

)
.

Since J is an ideal, SJ ∈ J and therefore, we must have

(2.4) S21A = 0.

If A is nonzero, then A being a nonnegative operator on L2(U), there exists a
nonzero, nonnegative function in its range f0, say. There must exist some ε > 0
for which the set E = {x ∈ U : f0(x) > ε} has positive measure. Then χE is a
nonzero characteristic function in L2(U) and is such that f0(x) > εχE(x) for all
x ∈ U i.e., χE 6 αf0, α = 1

ε > 0. From equation (2.4), S21χE 6 αS21f0 = 0
i.e., S21χE = 0. Thus 〈S21χE , χF 〉 = 0 for any Borel subset F in U c of positive
measure. Therefore, with respect to the decomposition

L2(X ) = L2(E)⊕ L2(F )⊕ L2(G),

where G = (U \ E)
·
∪ (U c \ F ), any S ∈ S has the following representation

S =

(
S′11 S′12 S′13
0 S′22 S′23

S′31 S′32 S′33

)
.

Thus 〈SχE , χF 〉 = 0 for all S ∈ S, which implies by Lemma 2.5 that S is decom-
posable which is a contradiction.

Thus assume that A = 0 for all J ∈ J . Then

JS =
(

0 B
0 C

)(
S11 S12

S21 S22

)
=
(

BS21 BS22

CS21 CS22

)
∈ J .
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We have BS21 = 0 = CS21. Since S is indecomposable, we can pick an
element S in S for which S21 6= 0. Then S∗21 is also a nonzero, nonnegative operator
from L2(U c) into L2(U) and we consider (BS21)∗ = S∗21B

∗. As argued above for
A, B∗ being nonzero would imply decomposability of S∗ and consequently of S.
Thus B∗ and consequently B is zero. By a similar reasoning C = 0, in other words,
J = 0, a contradiction. Hence every nonzero ideal of S must be indecomposable.

Proposition 2.7. Let S be a collection of nonnegative operators from L2(X )
into L2(Y). Let A and B be nonzero, nonnegative operators in B(L2(Y)) and
B(L2(X )) respectively, satisfying ASB = {0}. Then there exist Borel subsets E ⊆
X and F ⊆ Y with positive measures such that 〈SχE , χF 〉 = 0, for all S ∈ S.

Proof. The hypothesis ASB = {0} gives that

(2.5) 〈ASBf, g〉=0⇒〈SBf, A∗g〉=0 for all f ∈L2(X ) and for all g∈L2(Y).

Now, since B is nonnegative and nonzero, its range must contain a nonzero,
nonnegative element, say f0. Similarly, there exists a nonzero, nonnegative function
g0 in the range of A∗.

Further, f0 being nonnegative and nonzero, we can find Borel subsets E ∈ X
and F in Y of positive measure such that χE 6 αf0 and χF 6 βg0 for some
positive scalars α and β.

For any S ∈ S, since S is a nonnegative operator, we have SχE 6 αSf0. By
the property of monotonicity for integrals,

〈SχE , χF 〉 6 〈αSf0, βg0〉 = αβ〈Sf0, g0〉 = 0 for all S ∈ S (from (2.5))

which proves the proposition.

Corollary 2.8. A nonnegative semigroup of operators in B(L2(X )) is de-
composable if and only if there exist nonzero, nonnegative operators A and B on
L2(X ), not necessarily in S, such that ASB = {0}.

Proof. By the preceding proposition, the condition ASB = {0} implies
〈SχE , χF 〉 = 0 for all S ∈ S and for Borel subsets E,F of X with µ(E) ·µ(F ) > 0.
This gives decomposability of S by Lemma 2.5.

Conversely, suppose S is decomposable. Then, with respect to some decom-
position of L2(X ), every S ∈ S has the matrix representation

S =
(

S11 S12

0 S22

)
.

If with respect to the same decomposition, we define two nonzero, nonnegative
operators

A =
(

0 A12

0 0

)
and B =

(
B11 0
0 0

)
,

then it is easily verified that ASB = 0 for all S ∈ S i.e., ASB = {0}.



44 Alka Marwaha

3. WHEN IS A NONNEGATIVE BAND DECOMPOSABLE?

This section is devoted to studying the decomposability of nonnegative bands in
B(L2(X )). We shall first establish the decomposability of a single nonnegative
idempotent which is already a proven result (cf. Zhong, [10]). We are including
the proof here for the sake of completeness and also because it has a slightly
different approach from Zhong’s and works for a more general class of nonnegative
idempotents.

Lemma 3.1. Let A be a nonnegative idempotent on L2(X ) and let f be a
nonnegative element in the range of A. Fix a nonnegative representative of f (and
still denote it by f). If U = supp f = {x : f(x) > 0}, then L2(U) ∈ Lat A.

Proof. It suffices to prove that 〈AχU , χUc〉 = 0. By hypothesis,

〈Af, χUc〉 = 0 (as Af = f and supp f = U)

⇒ 〈f,A∗χUc〉 = 0 ⇒
∫
U

(A∗χUc)(x)f(x)µ(dx) = 0

⇒ (A∗χUc)(x)f(x) = 0 a.e. on U as A∗ > 0.

But f(x) > 0 a.e. on U. Therefore, (A∗χUc)(x) = 0 ⇒ 〈A∗χUc , χU 〉 = 0 ⇒
〈AχU , χUc〉 = 0 for almost all x ∈ U .

Lemma 3.2. Let A be as in the preceding lemma. If an element f in the
range of A is real, then there exists a nonnegative element h in L2(X ) such that
Ah = 0 and f+ + h, f− + h are in the range of A.

Proof. For the proof see [10].

Lemma 3.3. If an element f in L2(X ) belongs to the range of a nonnegative
idempotent A, then the real part Re f and the imaginary part Im f of f are also
in the range of A.

Proof. This is so because Re f + iIm f = f = Af = A(Re f) + iA(Im f) and
A being nonnegative, it sends real valued functions to real valued functions.

Definition 3.4. By kerA, for any collection A of operators in B(L2(X )),
we mean {f ∈ L2(X ) : Sf = 0 for all S ∈ A}.

Theorem 3.5. Let A be a nonnegative idempotent in B(L2(X )) of rank at
least two. Then A is decomposable.

Proof. If Ah=0 for some nonzero, nonnegative h, then A is zero on L2(supp h)
and is thus decomposable (by Corollary 2.2). Therefore assume that ker A contains
no nonzero, nonnegative element. By Lemma 3.3, if an element is in the range
of A, then so are its real and imaginary parts. Thus, we can obtain a basis of
the range of A consisting of real elements. Further, with our assumption together
with Lemma 3.2, we can obtain a basis of the range of A containing nonnegative
elements.

Since rank A > 2, A has at least two nonnegative, nonzero linearly indepen-
dent elements in its range, say f and g. If either of them is zero on a set of positive
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measure, we are done by Lemma 3.1. Therefore, assume that both f and g are
positive.

Consider the following nonempty subsets of reals S1 = {r : f − rg > 0} and
S2 = {r : f − rg < 0}.

Let r0 = sup S1 and s0 = inf S2. The linear independence f and g ensures
that r0 < s0. We can pick a number p such that r0 < p < s0. Therefore, f−pg 6> 0
and f − pg 6< 0. Hence f − pg is a mixed vector and it is clearly in the range of
A. Existence of such a vector in the range of A gives decomposability of A, for
if u is such that Au = u, u = u+ − u−, u+, u− nonzero, then by Lemma 3.2, we
can find h > 0 in L2(X ), Ah = 0 such that u+ + h and u− + h are in the range
of A. But by our assumption, h = 0. Therefore, u+, u− are in the range of A. By
Lemma 3.1, L2(supp u+) is a nontrivial standard invariant subspace for A. Hence
A is decomposable.

Having established the decomposability of a single nonnegative idempotent
with rank at least two, we now prove that it has a very special standard block
triangularization. This will require a couple of lemmas and some definitions.

Lemma 3.6. An indecomposable, nonnegative rank-one operator on L2(X )
is positive.

Proof. Let A be an indecomposable, nonnegative rank-one operator on L2(X ).
Then A = u ⊗ v, where u, v are nonzero, nonnegative vectors in L2(X ), so that
Af = 〈f, v〉u for all f ∈ L2(X ).

Suppose A is not positive. Then there exists a nonzero, nonnegative vector
f in L2(X ) for which Af is not positive. In other words, the set E = {x ∈ X :
(Af)(x) = 0} has positive measure. Also, if Af = 0, then A ≡ 0 on L2(supp f)
and is thus decomposable (Corollary 2.2) which is not possible. Therefore Af 6= 0.
Now E = {x ∈ X : u(x) = 0} (because Af 6= 0). Since µ(E) > 0, χE is a nonzero,
nonnegative vector and is such that A∗χE = 0. This implies that A∗ ≡ 0 on L2(E)
(by Proposition 2.1). Thus A∗ and consequently A is decomposable which is a
contradiction. Hence A must be positive.

Definition 3.7. A nonnegative semigroup S in B(L2(X )) will be called a
full semigroup if neither kerS nor kerS∗ has a nonzero, nonnegative vector. A
single nonnegative operator is called full if the semigroup generated by it is full.

Definition 3.8. A chain of subspaces of L2(X ) is called maximal if it is
not properly contained in any other chain of subspaces of L2(X ).

If C is any chain of subspaces and M ∈ C, then we define M− to be the
closed linear span of all those members of C which are properly contained in M.
It is not difficult to see ([8]) that a subspace chain is maximal if and only if

(i) C is closed under arbitrary spans and intersections,
(ii) for each M in C, M	M− is at most one-dimensional.

A maximal chain C is said to be continuous if M = M− for each M in C,
in other words, C has no gaps in it.
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Definition 3.9. A collection of operators S in B(L2(X )) is said to have a
continuous standard triangularization if

(i) LatS contains a continuous maximal chain, say C,
(ii) each member of C is a standard subspace.

Example 3.10. For t ∈ [0, 1], the multiplication operator M : L2[0, 1] →
L2[0, 1] defined by (Mf)(t) = tf(t) is a nonnegative operator. For any α ∈ [0, 1],
define Mα = {f ∈ L2[0, 1] : f(t) = 0, ∀t > α}. Then {Mα : α ∈ [0, 1]} is a
maximal subspace chain which is continuous and consists of standard invariant
subspaces for M . Thus M has a continuous standard triangularization and since
M = M∗, so does M∗.

Example 3.11. Let H = L2[0, 1]⊕ L2[0, 1] and define E : H → H by

E =
(

M M
I −M I −M

)
,

where M is the preceding multiplication operator and I −M : L2[0, 1] → L2[0, 1]
is the multiplication operator by 1− t. Then E is a nonnegative idempotent and

E∗ =
(

M I −M
M I −M

)
.

Let Nα = Mα ⊕Mα for α ∈ [0, 1]. Then using the fact that {Mα : α ∈ [0, 1]} is
maximal, it is not hard to prove that {Nα : α ∈ [0, 1]} is a maximal subspace chain
inH which is continuous. Also it consists of standard invariant subspaces for E and
E∗. Thus E and E∗ have a simultaneous continuous standard triangularization.

Lemma 3.12. Let A in B(L2(X )) and B in B(L2(Y)) be nonzero, nonnega-
tive operators such that neither ker A nor ker B∗ has a nonzero, nonnegative vector.
If S : L2(Y) → L2(X ) is a nonnegative operator such that ASB = 0, then S = 0.

Proof. Suppose SB is nonzero. Then SB : L2(Y) → L2(X ) is a nonzero,
nonnegative operator. Therefore, there exists a nonzero, nonnegative vector f in
L2(Y) such that SBf is nonzero, nonnegative. Write g = SBf . Then Ag =
0 which implies that ker A has a nonzero, nonnegative vector, a contradiction.
Therefore, we must have SB = 0 which gives that B∗S∗ = 0. If S is nonzero,
S∗ is nonzero but then ker B∗ has a nonzero, nonnegative vector, a contradiction.
Hence, we have S = 0.

Theorem 3.13. (a) Let A be a nonnegative idempotent on L2(X ) with rank
r which is full.

(i) If r is finite, then there exists a decomposition

L2(X ) = L2(X1)⊕ · · · ⊕ L2(Xr)

with respect to which

A =


A1

A2

. . .
Ar

 ,

where each Ai : L2(Xi) −→ L2(Xi) is a positive idempotent of rank one.
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(ii) If r = ∞, then with respect to some direct sum decomposition

L2(X ) = L2(Y1)⊕ L2(Y2), A =
(

E 0
0 F

)
,

where E and F have the following descriptions: If E 6= 0, then L2(Y1) =
N⊕

i=1

L2(Zi)

for some N 6 ∞, where L2(Zi) are standard subspaces of L2(X ) which are reduc-
ing under A, and E : L2(Y1) → L2(Y1) has the block diagonal form

E1

E2

. . .
Ei

. . .


with each Ei : L2(Zi) → L2(Zi) being a positive idempotent of rank one.

If F 6= 0, then F and F ∗ have a simultaneous continuous standard triangu-
larization.

(b) In general, if A is not full, then there exists a decomposition of L2(X ),
say

L2(X ) = L2(W1)⊕ L2(W2)⊕ L2(W3),

where L2(Wi) (i = 1, 2, 3) are standard invariant subspaces of L2(X ) such that
with respect to this decomposition

A =

(
0 XE XEY
0 E EY
0 0 0

)
,

where E : L2(W2) → L2(W2) is an idempotent of the form in (i) or (ii) according
as rank of A is finite or infinite.

Proof. (a) (i) When r is finite, we prove the result by induction on r. If
r = 1, then Lemma 3.6 applies. Let r > 1, then we know that A is decomposable
and therefore, there exists a Borel subset U ⊆ X with µ(U) · µ(U c) > 0 such that
with respect to

L2(X ) = L2(U)⊕ L2(U c), A =
(

A1 X
0 A2

)
,

where with no loss of generality, we can assume that A1 and A2 are nonzero.
Now A2 = A implies that A1X + XA2 = X. Then A1XA2 = 0. Since A is full,
ker A1 and ker A∗

2 have no nonzero, nonnegative vector. Therefore, by Lemma 3.12,
X = 0. Thus

A =
(

A1 0
0 A2

)
.

Since A1 and A2 are nonzero, their ranks are less than r and both are full because
A is full. Hence induction applies and we obtain the desired result.

(ii) If r is infinite, A is certainly decomposable. Let C be a maximal chain
in Lat′ A. Our first claim is that each gap in the chain is reducing for A. Let
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N 	M be a gap where M ⊂ N in C. Consider the block triangularization of A
with respect to the following decomposition of L2(X ),

L2(X ) = M⊕ (N 	M)⊕ (L2(X )	N ),

being

A =

(
A11 A12 A13

0 A22 A23

0 0 A33

)
.

If we first regard A as the 2×2 block matrix
(

A0 X0

0 B0

)
, where A0 =

(
A11 A12

0 A22

)
,

X0 =
(

A13

A23

)
, B0 = A33; then, as shown in part (i), the fullness of A gives X0 = 0,

i.e., A13 = 0 = A23.
By a similar argument, we can show that A12 = 0 = A13. Therefore

A =

(
A11 0 0
0 A22 0
0 0 A33

)
.

This shows that N 	M is reducing, which proves our claim.
Also, the maximality of C implies that the compression of A to each gap,

if nonzero, must be an indecomposable (and thus positive) idempotent of rank
one. Further, because of separability of L2(X ), there can only be countably many
reducing gaps. Thus, after a permutation of basis, we can obtain a decomposition

L2(X ) = L2(Y1)⊕ L2(Y2)

with respect to A =
(

E 0
0 F

)
, where L2(Y1) =

N⊕
i=1

L2(Zi), {L2(Zi)}N
i=1, N 6 ∞

being a collection of reducing subspaces of A and E : L2(Y1) → L2(Y1) has the
block diagonal form as mentioned in the statement of the theorem. The fullness of
A makes both L2(Y1) and L2(Y2) reducing standard subspaces. Further, since all
the gaps have been absorbed in L2(Y1), the operators F and F ∗ are continuously
triangularizable and since this triangularization results from a maximal chain of
standard subspaces, we can say that F and F ∗ have a simultaneous continuous
standard triangularization.

(b) Here, we consider the general case when A is not full.
Suppose A is the collection of all nonzero, nonnegative vectors in kerA. By

Lemma 2.4, we can find a minimal subset G in X , defined up to a null set, on
whose complement all the vectors in A vanish. This gives the existence of a vector
f in A such that G = supp f and so A ≡ 0 on L2(G).

Similarly, we can find a set G∗ of positive measure such that A∗ ≡ 0 on
L2(G∗). Then, with respect to the decomposition

L2(X ) = L2(G)⊕ L2(X \ (G ∪G∗))⊕ L2(G∗),

A has the representation

(
0 X Z
0 E Y
0 0 0

)
, where E2 = E, X = XE, Y = EY and

Z = XEY .
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Renaming L2(G) = L2(W1), L2(X \ (G ∪ G∗)) = L2(W2) and L2(G∗) =
L2(W3), we obtain the representation of A as described in part (b) of the theorem.
Also, these equations show that E is full and hence it is of the form described in
part (a) of the theorem.

From a single nonnegative idempotent, we now move on to analyze a nonneg-
ative band in B(L2(X )) with more than one element in it. As in the discrete case,
we shall find that if a nonnegative band in B(L2(X )) with rank of each member
being > 1 has even a single member of finite rank, it is decomposable.

Theorem 3.14. Let S be a nonnegative band in B(L2(X )) having at least
one element of finite rank and with rank(S) > 1 for all S in S. Then S is
decomposable.

Proof. Let m = min{rank(S) : S ∈ S}; then m > 1. Let J be the set of all
elements of rank m in S. For any S ∈ S and J ∈ J , rank(SJ) = rank(JS) = m
which implies that SJ, JS ∈ J . Thus J is a nonzero ideal of S.

Now S is decomposable if and only if J is decomposable. Therefore, we can
assume with no loss of generality that S = J so that S has constant rank m.

Select a P ∈ S. Let S be an arbitrary element of S and consider PSP.
This is an idempotent whose range is contained in the range of P and whose null
space contains the null space of P and since rank(PSP ) = m = rank(P ), we have
PSP = P. Thus PSP = {P}.

Since m > 1, by Theorem 3.13, we can find a Borel subset U of X with
positive measure, such that with respect to the decomposition

(3.1) L2(X ) = L2(U)⊕ L2(U c),

P has the matrix representaion
(

P1 X
0 P2

)
, where both P1 and P2 are nonzero.

Pick an arbitrary S in S and let its matrix representation with respect to (3.1)

be
(

S11 S12

S21 S22

)
. Then PSP = P implies that P2S21P1 = 0. By Proposition 2.7,

there exist Borel subsets E,F in U and U c respectively having positive measures
such that

〈S21χE , χF 〉 = 0.

Finally, with respect to the decomposition

L2(X ) = L2(E)⊕ L2(F )⊕ L2(G),

where G = (U \E)∪ (U c \F ), every S ∈ S has the following matrix representation

S =

(
S′11 S′12 S′13
0 S′22 S′23

S′31 S′32 S′33

)
.

This shows that 〈SχE , χF 〉 = 0 for all S ∈ S. Hence, by Lemma 2.5, S is decom-
posable.
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Theorem 3.15. Let S be a nonnegative band in B(L2(X )) such that rank(S)

> 1 for all S in S and S has at least one element of finite rank. Then any maximal

standard block triangularization of S has the property that the compression of S to

each nonzero gap constitutes a nonnegative band with at least one element of rank

one in it.

Proof. Same as in the finite-dimensional case ([5]).

In the Theorem 3.14, we saw that the decomposability of a band in which

every member has rank > 1 and which has at least one finite-rank member reduced

to the decomposability of a constant-rank band. The most pertinent question to

be asked after this is:

Question 3.16. Is every constant-rank nonnegative band decomposable?

The answer to the question above is in the negative if the rank is one. A

simple example is the band
{(

1 1
0 0

)
,

(
0 0
1 1

)}
. If the constant rank is greater

than one, then we know that the band is decomposable ([5]). This completes our
analysis of the problem in finite dimensions. For a nonnegative band in B(L2(X )),

we have seen in the proof of Theorem 3.14 that with constant finite rank greater

than one, the band is decomposable. Now, the natural question which occurs is

whether a constant infinite-rank nonnegative band is decomposable? The answer
is a resounding no as we illustrate through a counter example in B(l2).

Example 3.17. There exists an indecomposable nonnegative band in B(l2)

in which every member has infinite rank.

Proof. For each integral i, define an operator Si as follows

Si =

Ti

Ti

. . .

 ,

where Ti is a 2i×2i block with each entry equal to 1/2i. Let S = {S0, S1, S2, . . .}. It

is easily verified that for i 6 j, SiSj = Sj and SjSi = Sj . Thus S is a nonnegative

band where each Si is of infinite rank. Suppose S has a common zero entry, say
(Si)αβ = 0 for all Si ∈ S. Now, we can find i and ji 6 j such that α 6 2i and
β 6 2j . But then Sj will have the entry (Si)αβ in its first diagonal block Tj which is

positive. Thus S cannot have a common zero entry and hence is indecomposable.
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4. THE STRUCTURE OF NONNEGATIVE, CONSTANT FINITE-RANK BANDS

We saw in the previous section that constant-rank bands play a significant role
in ascertaining the decomposability of nonnegative bands. It would be therefore
interesting to study their structure completely which will be our task in this sec-
tion. It is a generalization of the same in the finite-dimensional case. We already
know that an infinite-rank nonnegative band may not be decomposable; therefore
we shall restrict ourselves to nonnegative bands with constant finite rank.

Lemma 4.1. If S is a band in B(L2(X )) of nonnegative operators with con-
stant finite rank r, then S has a standard block triangularization with r nonzero
diagonal blocks, each block constituting an indecomposable band of rank-one oper-
ators. Furthermore, no two consecutive diagonal blocks are zero. Therefore, if k
is the total number of diagonal blocks, then k 6 2r + 1.

Proof. The proof runs exactly on the same lines as for the finite-dimensional
case ([5]).

Lemma 4.2. Let S be a nonnegative full band of rank-one operators. Then
S is indecomposable.

Proof. Same as for the finite-dimensional case ([5]).

Theorem 4.3. Let S be a band of nonnegative operators in B(L2(X )) with
constant finite rank r.

(i) If S is full, then there exists a decomposition

L2(X ) = L2(X1)⊕ L2(X2)⊕ · · · ⊕ L2(Xr),

with respect to which every member S of S is of the form


S1

S2

. . .
Sr

 ,

where each Si = {Si ∈ L2(Xi) : S ∈ S} is an indecomposable band of rank-one
operators.

(ii) In general, there exists a decomposition

L2(X ) = L2(X ′
1)⊕ L2(X ′

2)⊕ L2(X ′
3),

with respect to which every member S of S is of the form

(
0 XE XEY
0 E EY
0 0 0

)
,

where X, Y are nonnegative operators on suitable spaces. Furthermore, the diago-
nal blocks in S0 = {E : S ∈ S} constitute a band of the form in case (i).

Proof. (i) The proof is exactly as in the finite-dimensional case ([5]).
(ii) Now, let us consider the general case. SupposeA is the collection of all the

nonzero, nonnegative vectors in kerS. Just as in the proof of Theorem 3.13 (b),
we can find sets G and G∗ of positive measure such that S ≡ 0 on L2(G) and
S∗ ≡ 0 on L2(G∗).

Then, with respect to the decomposition

L2(X ) = L2(G)⊕ L2(X \ (G ∪G∗))⊕ L2(G∗),
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every member S in S has the form

(
0 X Z
0 E Y
0 0 0

)
, where E2 = E, X = XE,

Y = EY , and Z = XEY .
These equations show that the set S0 = {E : S ∈ S} of the middle diagonal

blocks is such that neither S0 nor S∗0 have any nonzero, nonnegative vectors in
their null spaces and thus S0 is of the form in part (i) of the theorem.

Remark 4.4. If in the statement of the theorem above, S is taken to be a
maximal band, then it is readily observed that the bands Si must be maximal. In
part (ii), S0 and the collection of all X, Y are maximal too.

In Theorem 4.7, we prove the converse of part (i) of the preceding theorem
to obtain a characterization of maximal, nonnegative, constant-rank bands which
are full. This will require a couple of lemmas, which may also be of independent
interest.

Lemma 4.5. Let S be a nonnegative, indecomposable semigroup in B(L2(X ))
and f be a nonzero, nonnegative vector in L2(X ). Let A be the set of all nonneg-
ative linear combinations of the members of {Sf : S ∈ S}. Then A contains a
positive vector in L2(X ).

Proof. Since L2(X ) is separable, so is the set Sf . Therefore, let M =
{S1f, S2f, . . .} be a countable dense subset of Sf , where S1f, S2f, . . . are the
chosen representatives of the equivalence classes of functions in M. Write U =⋃
i

suppSif. Then the function g defined by

g =
S1f

‖S1f‖
+

1
2

S2f

‖S2f‖
+

1
22

S3f

‖S3f‖
+ · · ·

is a nonegative vector in A with support U ; in other words, g > 0 in L2(U). We
shall prove that g is the desired positive vector in L2(X ), for which we need to
show that U = X (up to a null set).

By construction, g = 0 a.e. on U c. This implies that Sif = 0 a.e. on U c for
every i, since each Sif is nonnegative. By the density of M in Sf , Sf = 0 a.e. on
U c for every S ∈ S, and thus

(4.1) Sg =
SS1f

‖S1f‖
+

1
2

SS2f

‖S2f‖
+

1
22

SS3f

‖S3f‖
+ · · · = 0 a.e. on U c for every S ∈ S.

Our claim is that L2(U) is invariant under S. Since S is indecomposable,
this will prove that L2(U) = L2(X ). We prove this considering two possibilities:
(i) g is bounded below on U , and (ii) g is not bounded below on U .

In case (i), there exists a nonnegative, nonzero scalar α such that g(x) > α
a.e. on U . Let E = {x ∈ U : g(x) > α}, then µ(Ec ∩ U) = 0. Also

g(x) > αχE(x) for all x ∈ U, i.e. χE 6
1
α

g.

For any S ∈ S, SχE 6 1
αSg. Using (4.1), we obtain SχE = 0 a.e. on U c for all

S ∈ S, i.e., L2(U) is invariant under S.
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If g is not bounded below on U , we can write U as a disjoint union of the
sets Un, where

Un =
{

x ∈ U :
1

n + 1
< g(x) 6

1
n

}
.

Now, g is bounded below on each Un. Just as in case (i), we obtain 〈SχUn
, χUc〉

= 0 for all S ∈ S. But χU = ΣχUn . This will give 〈SχU , χUc〉 = 0 and we are in
case (i).

Lemma 4.6. Suppose S is a direct sum of r nonnegative, indecomposable
semigroups S1,S2, . . . ,Sr so that each member of S has a block diagonal repre-

sentation


S1

S2

. . .
Sr

 , where Si ∈ Si, i = 1, . . . , r with respect to some

decomposition of L2(X ), say

L2(X ) = L2(X1)⊕ · · · ⊕ L2(Xr).

Then every M ∈ Lat′ S is of the form M =
r⊕

i=1

εiL2(Xi), where each εi is either

0 or 1.

Proof. Obviously, L2(Xi) ∈ Lat′ S for every i = 1, . . . , r. Further, each Si

being indecomposable, L2(Xi) is a minimal standard subspace in Lat′ S in the
sense that S has no nonzero standard invariant subspace properly contained in
it. Now let M ∈ Lat′ S, where M = L2(U) for some Borel subset U of X of
positive measure. We first show that if a nonzero, nonnegative f is in M such
that supp f = Xi for some i, then L2(Xi) ⊆ M. Suppose µ(U c ∩ Xi) > 0. Now
f ∈ M implies that f = 0 a.e. on U c, and, in particular, f = 0 a.e. on U c ∩ Xi

which is contained in Xi i.e., f is zero a.e on a subset of Xi of positive measure
which is not possible as supp f = Xi. Therefore, we must have µ(U c∩Xi) = 0 and
this proves that Xi ⊆ U up to a null set, and we are done.

Next, observe that we can write

M = L2(U1)⊕ · · · ⊕ L2(Ur),

where Ui = U ∩Xi. Let fi = χUi
; then the vector f = (0 . . . fi . . . 0)T ∈M and

by our assumption Sf ∈ M where Sf =
{
(0 . . . Sfi . . . 0)T : S ∈ Si

}
. Define

εi =
{ 0 if fi is zero,

1 if fi is nonzero. To complete the proof, we must show that whenever

εi = 1, we have L2(Xi) ⊆M. Now Si is a band acting on L2(Xi) and fi ∈ L2(Ui).
By Lemma 3.14, we obtain a positive vector, say gi, in L2(X ) which is also a limit
of nonnegative linear combinations of the members of {Sifi}. Consider the vector
g = (0 . . . gi . . . 0)T. Then g ∈M and supp g = Xi. Therefore, by what we have
proved above, we obtain L2(Xi) ⊆M.
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Theorem 4.7. A direct sum of r maximal, indecomposable, nonnegative
rank-one bands is a maximal band of constant rank r.

Proof. For r = 1, the result is obvious. Therefore let r > 1. Suppose S1,
S2, . . . , Sr are r maximal, indecomposable, nonnegative rank-one bands and con-

sider their direct sum. Every member S of S is of the form


S1

S2

. . .
Sr

 ,

where Si ∈ Si, i = 1, 2, . . . , r. Also suppose that this representation of the mem-
bers of S is with respect to the decomposition

L2(X ) = L2(X1)⊕ L2(X2)⊕ · · · ⊕ L2(Xr),

where X1, . . . ,Xr are Borel subsets of X of positive measure.
If S is not maximal, then let S ′ be a band properly containing S and having

constant rank r. Now observe that S is a full band. Therefore, S ′ is full too. By
part (i) of Theorem 4.3, S ′ is a direct sum of r rank-one, indecomposable, nonneg-
ative bands, say, S ′1,S ′2, . . . ,S ′r. Now, Lat′ S ′ ⊆ Lat′ S. By the previous lemma,
the cardinality of both Lat′ S and Lat′ S ′ is the same which is 2r. Therefore, we
must have Lat′ S = Lat′ S ′. Thus we can rearrange the spaces L2(Xi) in the direct
sum above to obtain a new decomposition of L2(X ) so that Si ⊆ S ′i. But since
the bands Si are maximal, we have S ′i = Si for each i. Hence S is maximal.

Theorem 4.3 and the Remark 4.4 can be combined to give the following
characterization of maximal nonnegative bands of constant finite rank.

Theorem 4.8. Let S be a nonnegative band in B(L2(X )) of constant finite
rank r.

(i) If S is full, then S is maximal if and only if

S =




S1

S2

. . .
Sr

 : Si ∈ Si, i = 1, 2, . . . , r

 ,

where Si is a maximal rank-one indecomposable band for each i.
(ii) In general, if S is maximal, then

S =

{(
0 XE XEY
0 E EY
0 0 0

)
: E ∈ S0, X ∈ X , Y ∈ Y

}
,

where S0 is a direct sum as in part (i) and X ,Y are the entire sets of nonnegative
operators on appropriate spaces.

We shall see in Theorem 5.6 in the next section that in special cases, a
nonnegative band with constant infinite rank is decomposable.
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5. SOME CONDITIONS LEADING TO DECOMPOSABILITY OF INFINITE-RANK,

NONNEGATIVE BANDS

Definition 5.1. Suppose {Mi}i∈I and {Nj}j∈J are collections of mutually
orthogonal subspaces of L2(X ) whose direct sum equals L2(X ). Then {Mi}i is
said to be a refinement of {Nj}j if each Nj can be expressed as a direct sum of a
(finite or infinite) subcollection of {Mi}i.

In the definition above, {Nj}j is called a coarsening of {Mi}i.

Definition 5.2. A nonnegative operator A in B(L2(X )) will be called non-
degenerate if A is full and there is no continuous part in any maximal chain in
Lat′ A.

Lemma 5.3. Let A be a full nonnegative idempotent in B(L2(X )), and C
any maximal chain in Lat′ A. Then there cannot be any nontrivial gaps in C with
corresponding compressions of A equal to zero. If A is nondegenerate, then it can
be expressed as a direct sum of countably many positive idempotents of rank one.

Proof. Let A and C be as described in the statement. It was shown in the
proof of Theorem 3.13 that each nontrivial gap in C is a reducing subspace for A
and thus the compression to any such gap cannot be zero for this will contradict the
fullness of A. In fact each nonzero compression to a gap is a positive idempotent of
rank one. Again by Theorem 3.13, if A is nondegenerate, then it is a direct sum of
positive idempotents of rank one which are countable because of the separability
of L2(X ).

Lemma 5.4. If A,B are positive operators on L2(X ) and S is a nonzero,
nonnegative operator on L2(X ), then ASB is positive.

Proof. Let f be a nonzero, nonnegative vector in L2(X ). Since B is positive,
Bf > 0. Also, S being nonzero and nonnegative, SBf 6= 0 (by Proposition 2.1).
Thus 0 6= SBf > 0 because S > 0. But A is positive. Therefore, A(SBf) > 0
which implies that ASB is positive.

Lemma 5.5. Let A be a nondegenerate idempotent on L2(X ) such that with
respect to some decomposition

L2(X ) = L2(X1)⊕ L2(X2)⊕ L2(X3)⊕ · · · , A =

A11 A12 A13 · · ·
A21 A22 A23 · · ·
...

...
...

. . .

 ,

where each Aij is either zero or positive. Then A has a block diagonalization with
positive diagonal blocks with respect to some decomposition

L2(X ) = L2(W1)⊕ L2(W2)⊕ · · · ,

where the collection {L2(Wi)}i is a coarsening of the collection {L2(Xi)}i.

Proof. If rank(A) = 1, then the fullness of A implies that A is positive
and therefore {L2(Xi)}i itself is the required coarsening. Therefore, assume that
rank(A) > 1 in which case A is decomposable. Thus it has a nontrivial invariant
standard subspace, say L2(Y), where Y is a Borel subset of X such that µ(Y) ·
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µ(Yc) > 0. We can assume, with no loss of generality, that the sets Xi are disjoint

so that X =
·⋃
i

Xi. Now we can write Y = Y1

·
∪ Y2

·
∪ · · ·, where Yi = Y ∩ Xi.

Let J = {j ∈ N : µ(Yj) > 0}. Then J is nonempty, for otherwise L2(Y) =
{0}. We rearrange {Xi} to obtain

X =
( ·⋃

j∈J

Xj

)
∪
( ·⋃

j 6∈J

Xj

)
.

Suppose A =
(

E F
G H

)
with respect to

(5.1) L2(X ) = L2
( ·⋃

j∈J

Xj

)
⊕ L2

( ·⋃
j 6∈J

Xj

)
.

We shall prove that G = 0. Clearly, any vector in L2(Y) is of the form
(

f
0

)T

,

for some f ∈ L2
( ·⋃

j∈J

Xj

)
with respect to (5.1). Since for each i ∈ J , µ(Yi) > 0,

we can select a nonzero, nonnegative function fi in L2(Xi) with supp fi = Yi such

that

 f1

f2
...

T

is a vector in L2
( ·⋃

j∈J

Xj

)
=
⊕
j∈J

L2(Xj). Write f =

 f1

f2
...

T

. Now

A

(
f
0

)
=
(

E F
G H

)(
f
0

)
=
(

Ef
Gf

)
∈ L2(Y)

by the invariance of L2(Y). The form of vectors in L2(Y) gives that Gf = 0. LetG11 G12 · · ·
G21 G22 · · ·

...
...

. . .

 be the block matrix form of G :
⊕
j∈J

L2(Xj) →
⊕
j 6∈J

L2(Xj).

Now Gf = 0 implies that Gi1f1 + Gi2f2 + · · · = 0 for each i = 1, 2, . . . , which by
nonnegativity of Gij further implies that Gijfj = 0 for each i, j = 1, 2, . . .. If Gij

is nonzero for some (i, j), then it is positive and fj being nonzero, nonnegative,
we shall obtain Gijfj > 0 which is not true. Therefore Gij = 0 for every i, j

and hence G = 0. Thus A =
(

E F
0 H

)
. This shows that

⊕
j∈J

L2(Xj) is invariant

under A. Since A is full, we have F = 0. We now claim that L2(Y) =
⊕
j∈J

L2(Xj).

Working with the same f as above, we have

A

(
f
0

)
=
(

E 0
0 H

)(
f
0

)
=
(

Ef
0

)
∈ L2(Y).

Suppose E :
⊕
j∈J

L2(Xj)→
⊕
j∈J

L2(Xj) has the block matrix form

E11 E12 · · ·
E21 E22 · · ·
...

...
. . .

 .
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Then

Ef =

E11 E12 · · ·
E21 E22 · · ·
...

...

 f1

f2
...

 =

E11f1 + E12f2 + · · ·
E21f1 + E22f2 + · · ·

...

 .

Since A is full, each of its rows contains at least one positive block. This coupled
with the fact that each fi is a nonzero, nonnegative function in L2(Xi), implies that
each component of Ef is a positive function in L2(Xi); in other words, suppEf =
·⋃

j∈J

Xj . But Ef ∈ L2(Y). Therefore, we must have

L2(Y) = L2
( ·⋃

j∈J

Xj

)
=
⊕
j∈J

L2(Xj).

As L2(Y) is nontrivial,
⊕
j 6∈J

L2(Xj) is nontrivial i.e., J is a proper subset of N.

Since A is nondegenerate, by Lemma 5.3 there exists a decomposition of
L2(X ), say

L2(X ) = L2(W1)⊕ L2(W2)⊕ · · · ,

with respect to which A has a block diagonal form

A1

A2

. . .

 , where each

Ai : L2(Wi)→L2(Wi) is a positive idempotent of rank one. Clearly, each L2(Wi) is
a standard subspace invariant under A. Therefore, by what we have proved above,
each L2(Wi) is a direct sum of a subcollection of {L2(Xi)}i. Hence {L2(Wi)}i is
a coarsening of {L2(Xi)}i such that with respect to

L2(X ) = L2(W1)⊕ L2(W2)⊕ · · · ,
A has a block diagonalization with positive diagonal blocks.

Theorem 5.9 below answers Question 3.16 affirmatively under the additional
hypothesis of finiteness; Example 3.17 shows the necessity of this hypothesis. But
we first consider a finite, nonnegative infinite-rank band whose members are non-
degenerate and prove that under this special condition of nondegeneracy, the band
has a block diagonalization.

Theorem 5.6. A nonnnegative finite band in which every member is non-
degenerate and has infinite rank is decomposable. Furthermore, it has infinitely
many mutually orthogonal standard invariant subspaces whose direct sum is L2(X );
equivalently, the band is block diagonalizable.

Proof. Let S be a band with k elements, say S1, S2, . . . , Sk such that each
Si is nondegenerate and is of infinite rank. Consider S1. By Lemma 5.3, there is
a collection {M(1)

i }∞i=1 of standard subspaces of L2(X ) such that with respect to

L2(X ) =
∞⊕

i=1

M(1)
i , S1 =


S

(1)
11

S
(1)
22

. . .
S

(1)
ii

. . .

 ,
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where each S
(1)
ii : M(1)

i →M(1)
i is a positive idempotent of rank one.

Next, consider S1S2S1 where

S2 =

S
(2)
11 S

(2)
12 · · ·

S
(2)
21 S

(2)
22 · · ·

...
...

. . .


with respect to the decomposition L2(X ) =

∞⊕
i=1

M(1)
i . Then

S1S2S1 =

S
(1)
11 S

(2)
11 S

(1)
11 S

(1)
11 S

(2)
12 S

(1)
22 · · ·

S
(1)
22 S

(2)
21 S

(1)
11 S

(1)
22 S

(2)
22 S

(1)
22 · · ·

...
...

. . .

 .

By Lemma 5.4, since each S
(1)
ii is positive, an arbitrary block S

(1)
jj S

(2)
jk S

(1)
kk in

S1S2S1 is zero or positive according as S
(2)
jk is zero or nonzero. Now, by hypothesis

S1S2S1 is nondegenerate. Therefore, by Lemma 5.5, there exists a coarsening of
{M(1)

i }∞i=1 which we denote by {M(2)
i }∞i=1 such that with respect to the decompo-

sition L2(X ) =
∞⊕

i=1

M(2)
i , S1S2S1 is a direct sum of positive rank-one idempotents.

Since {M(2)
i }i is a coarsening of {M(1)

i }i, S1 is a direct sum of idempotents which
are full (because each is a direct sum of positive idempotents) with respect to
L2(X ) =

⊕
i

M(2)
i . Suppose

S1 =

S′11
S′22

. . .

 and S2 =

S′′11 S′′12 S′′13 · · ·
S′′21 S′′22 S′′23 · · ·
...

...
...

. . .


with respect to L2(X ) =

⊕
i

M(2)
i so that

S1S2S1 =

S′11S
′′
11S

′
11 S′11S

′′
12S

′
22 · · ·

S′22S
′′
21S

′
11 S′22S

′′
22S

′
22 · · ·

...
...

. . .

 .

Then we know that the nondiagonal blocks are zero and the diagonal blocks are
positive idempotents. But any nondiagonal block is of the form S′iiS

′′
ijS

′
jj for i 6= j.

Since S′ii and S′jj are full, therefore S′iiS
′′
ijS

′
jj = 0 implies that S′′ij = 0. Thus both

S1 and S2 are diagonal with respect to the decomposition L2(X ) =
⊕
i

M(2)
i .

Next, consider (S1S2S1)S3(S1S2S1). As reasoned above, there exists a coars-
ening {M(3)

i }i of {M(2)
i }i such that with respect to the decomposition L2(X ) =⊕

i

M(3)
i , S1, S2, and S3 are diagonal. Proceeding like this, after k steps we shall

arrive at a direct sum decomposition
∞⊕

i=1

M(k)
i of L2(X ) with respect to which each
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Si has zero nondiagonal blocks . This proves that S is decomposable, in fact it is
block diagonalizable with respect to L2(X ) =

⊕
i

M(k)
i .

Next, we prove that a nonnegative finite band with constant infinite rank is
decomposable. For this, we need a couple of lemmas.

Lemma 5.7. If a band S has more than one member, then there exists P ∈ S
such that PSP is a proper subset of S.

Proof. Suppose there is no P in S satisfying the required condition. Then
PSP = S, ∀P ∈ S. If S ∈ S, then S = PS1P for some S1 ∈ S, i.e., PSP =
PS1P = S. This further gives that PSPS = S and SPSP = S, i.e., PS = S =
SP for all P and S in S. Thus S = P for all P, S in S. Hence S is a singleton
which contradicts the hypothesis. Therefore, there exists some P ∈ S such that
PSP is properly contained in S.

Lemma 5.8. If a collection S ⊆ B(L2(X )) contains a member P which is a
full idempotent such that PSP is decomposable, then so is S.

Proof. Since PSP is decomposable, there exists some decomposition of
L2(X ) with respect to which every member T of PSP has the block matrix form(

T11 T12

0 T22

)
. As P is a member of PSP , it also has a block matrix form with

respect to this decomposition, say
(

P1 X
0 P2

)
. But since P is a full idempotent,

by Lemma 3.12, we get X = 0. Now for any S ∈ S, let
(

S11 S12

S21 S22

)
be the block

matrix form of S with respect to the given decomposition. Then

PSP =
(

P1S11P1 P1S12P2

P2S21P1 P2S22P2

)
.

By decomposability of PSP , we have P2S21P1 = 0, ∀S ∈ S. But P1 and P2 are
full because P is full and therefore, by Lemma 3.12 we get S21 = 0, ∀S ∈ S. Hence
S is decomposable.

Theorem 5.9. A nonnegative finite band in which every member has infinite
rank is decomposable.

Proof. Let S be a nonnegative finite band with constant infinite rank. We
shall prove the theorem by induction on |S|, the cardinality of S. Suppose |S| =
n. Assume that every nonnegative band with constant infinite rank which has
cardinality less than n is decomposable.

Consider S. If S is a singleton, then by Theorem 3.5, it is decomposable.
Therefore, assume that |S| > 1. By Lemma 5.7, there exists P ∈ S such that
PSP is a proper subset of S. By Theorem 3.13 (b), P has a block matrix form(

0 XE XEY
0 E EY
0 0 0

)
with respect to some decomposition

L2(X ) = L2(X1)⊕ L2(X2)⊕ L2(X3),



60 Alka Marwaha

where E : L2(X2) → L2(X2) is full. For any S ∈ S, let

(
S11 S12 S13

S21 S22 S23

S31 S32 S33

)
be its

block matrix representation with respect to the above-mentioned decomposition
of the space. Then

PSP =

(
0 XE(S21X+Y S31X+S22+Y S32)E XE(S21X+Y S31X+S22+Y S32)EY

0 E(S21X+Y S31X+S22+Y S32)E E(S21X+Y S31X+S22+Y S32)EY

0 0 0

)
.

Let

T = {E(S21X + Y S31X + S22 + Y S32)E : PSP ∈ PSP}.
Observe that T is a nonnegative band such that |T | 6 |PSP | < |S|. Then by
the inductive hypothesis, T is decomposable. Therefore, there exist Borel subsets
E,F of X with µ(E) · µ(F ) > 0 such that 〈TχE , χF 〉 = 0, ∀T ∈ T . This implies

〈ES21XEχE , χF 〉+〈EY S31XEχE , χF 〉+〈ES22EχE , χF 〉+〈EY S32EχE , χF 〉 = 0,

for all S ∈ S. Since all the operators are nonnegative, this gives 〈ES22EχE , χF 〉 =
0, in other words, the collection {ES22E : S ∈ S} is decomposable. Also this
collection contains E which is a full idempotent. Therefore, by Lemma 5.8, the
collection {

S22 : S =

(
S11 S12 S13

S21 S22 S23

S31 S32 S33

)
∈ S

}
is decomposable. Just as in the proof of Theorem 3.14, we conclude that S is
decomposable.

Corollary 5.10. A finitely generated nonnegative band in which every
member has infinite rank is decomposable.

Proof. This is a consequence of the interesting result on abstract bands due
to Green and Rees ([4]): every finitely generated band is finite.

Corollary 5.11. Every finitely generated nonnegative infinite-rank band S
has the property that any maximal standard block triangularization of S is such
that the compression of S to each nonzero gap constitutes a nonnegative finite band
with at least one element of rank one in it.

Proof. Same as in the finite-dimensional case ([5]).
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