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Abstract. In this paper we develop an overconvergence result in the context
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1. INTRODUCTION

Let µ be a finite, positive Borel measure with compact support K in the complex

plane C and, for 1 6 t < ∞, let P t(dµ) denote the closure of the polynomials in
Lt(dµ). Choose a point from each of the bounded components of C \K, let E be

the set of these points and define ΛE to be the collection of all linear combinations
of functions of the form f(z) = 1

z−a
, where a ∈ E. One can learn much about

(and in many cases completely determine) P t(dµ) by discovering which functions
q in ΛE are also in P t(dµ). If q ∈ P t(dµ) ∩ ΛE, then none of the poles of q are in
abpe(P t(dµ)) (the collection of analytic bounded point evaluations for P t(dµ));

see Lemma 2.1. Indeed, if {pn} is a sequence of polynomials such that pn → q in
Lt(dµ) (as n→ ∞), then pn → q uniformly on compact subsets of abpe(P t(dµ)).
Therefore, abpe(P t(dµ))\K can be thought of as a set of overconvergence (see [13]

and [7] for related work). In many applications, though, we do not need the full
strength of this last result that abpe(P t(dµ)) affords, but instead need an answer

to the question:
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Question 1.1. Which open subsets W of C have the property: If q ∈
P t(dµ) ∩ ΛE, then there exists a sequence {pn} of polynomials such that pn → q
in Lt(dµ) and pn → q uniformly on compact subsets of W ?

In this paper we establish some results (see Theorems 3.1 and 3.2) that
provide a strategy for answering Question 1.1 in a variety of contexts. As a con-
sequence, we gain some rather general qualitative information concerning what it
means for q to be in P t(dµ)∩ΛE (see, e.g., Theorem 3.8). We end the paper with
some consequences and remarks concerning cyclic vectors for the shift on Bergman
spaces.

2. PRELIMINARIES

With µ and P t(dµ) as before, a point z in C is called a bounded point evaluation
for P t(dµ) if there is a positive constant c such that |p(z)| 6 c‖p‖Lt(dµ) for all
polynomials p; the collection of all such points is denoted bpe(P t(dµ)). If z ∈ C

and there are positive constants M and r such that |p(w)| 6 M‖p‖Lt(dµ) when-
ever p is a polynomial and |w − z| < r, then we call z an analytic bounded point
evaluation for P t(dµ); the set of all points z of this sort is denoted abpe(P t(dµ)).
Notice that abpe(P t(dµ)) is an open subset of bpe(P t(dµ)) and, by the Maxi-
mum Modulus Theorem, each component of abpe(P t(dµ)) is simply connected.
If z ∈ bpe(P t(dµ)), then, by the Hahn-Banach and Riesz Representation Theo-
rems, there exists kz in Ls(dµ) ( 1

s
+ 1

t
= 1) such that p(z) =

∫
p(ζ)kz(ζ) dµ(ζ)

for each polynomial p. For f in P t(dµ), define f̂ on bpe(P t(dµ)) by f̂(z) =∫
f(ζ)kz(ζ) dµ(ζ). Observe that f̂ = f a.e. µ on abpe(P t(dµ)) and z 7→ f̂(z)

is analytic on abpe(P t(dµ)). J. Thomson has given a direct sum decomposition
of P t(dµ) that involves the components of abpe(P t(dµ)) (see [18], Theorem 5.8).
Throughout this paper, unless otherwise specified, we let G be a bounded, simply
connected region in C. And, for 1 6 t 6 ∞, we let H t(G) and Lt

a(G) be the
corresponding Hardy and Bergman spaces for G; one may consult [3] and [8] as
references for these spaces. We now state and prove a rather well-known result
concerning point evaluations; we include a proof since it gives the opportunity to
review some useful techniques.

Lemma 2.1. Let µ be a finite, positive Borel measure with compact support
K and suppose λ ∈ C \K. Then the following are equivalent:

(i) λ ∈ abpe(P t(dµ));
(ii) λ ∈ bpe(P t(dµ));
(iii) f(z) := 1

z−λ
/∈ P t(dµ).

Proof. Clearly, (i) implies (ii). Let us now assume that λ ∈ bpe(P t(dµ)).
So, as earlier noted, there exists kλ in Ls(dµ) ( 1

s
+ 1

t
= 1) such that p(λ) =∫

p(ζ)kλ(ζ) dµ(ζ) for every polynomial p. If f(z) = 1
z−λ

were the limit in Lt(dµ)

of a sequence of polynomials {pn}, then we would have

0 =

∫
(z − λ)pn(z)kλ(z) dµ(z) →

∫
kλ(z) dµ(z) = 1
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as n → ∞; an obvious contradiction. Therefore, (ii) implies (iii). Lastly, assume
that f(z) = 1

z−λ
/∈ P t(dµ). So, by the Hahn-Banach and Riesz Representation

Theorems, there exists g in Ls(dµ) ( 1
s

+ 1
t

= 1) such that g⊥P t(dµ) and yet∫ g(ζ)
ζ−λ

dµ(ζ) 6= 0. Let V be the component of C \K that contains λ. Then, the

Cauchy transform ĝ(z) :=
∫ g(ζ)

ζ−z
dµ(ζ), which is defined and analytic in V , is not

identically zero there. So, there exists r > 0 such that {z : |z − λ| 6 r} ⊆ V

and |ĝ(z)| > ε > 0 whenever |z − λ| = r. Observe that if p is any polynomial and

z ∈ V , then p(z)ĝ(z) =
∫ p(ζ)g(ζ)

ζ−z
dµ(ζ). So, if |z−λ| = r, then |p(z)| 6 c‖p‖Lt(dµ),

where c depends only on ε, ‖g‖Ls(dµ) and dist(K, {z : |z − λ| = r}). From the
Maximum Modulus Theorem, it now follows that λ ∈ abpe(P t(dµ)).

3. AN OVERCONVERGENCE RESULT

We begin this section with a well-known result concerning analytic bounded point

evaluations. It is a straightforward consequence of Lemma 2.6 in [12].

Theorem 3.1. Let µ be a finite, positive Borel measure with compact sup-

port in C and let K be a compact subset of abpe(P t(dµ)). Then

abpe(P t( dµ|(C \K))) = abpe(P t(dµ)).

Without the assumption that K is a compact subset of abpe(P t(dµ)), the

conclusion of Theorem 3.2 would fail even for some relatively small sets K; see

[4]. Nevertheless, given λ in abpe(P t(dµ)), there are (sometimes quite large) Borel
subsets E of support(µ) that are contained in no compact subset of abpe(P t(µ))
such that λ ∈ abpe(P t( dµ|(C \E))); in the terminology of J. Thomson ([18]), µ|E
(for such E) does not play a vital role in the “sequence of barriers around λ”. Our

next result is the first step in a strategy for discovering such nonessential sets E.

Before we get to this result, we need some more terminology. As is standard in the

literature, we call γ a cross-cut of a region Ω if γ is a Jordan arc (γ : [0, 1] → C)

such that γ(0) and γ(1) are in ∂Ω and γ((0, 1)) ⊂ Ω; we let γ denote both the

Jordan arc and its trace γ([0, 1]). If, in addition, γ is continuously differentiable
and γ′(t) 6= 0 for 0 6 t 6 1, then we call γ a smooth cross-cut of Ω. Our next

result involves certain cross-cuts and subregions of D := {z : |z| < 1} which we

now describe (and illustrate — see figure 1). Let γ be a smooth cross-cut of D

with endpoints a and b (neither of which are equal to 1). Then D\γ is the disjoint

union of two Jordan regions A and B. We assume that γ is chosen so that 0 ∈ A

and 1 ∈ ∂B. Let γo be a smooth cross-cut of B with endpoints a and b and with

the property: There are positive constants ε and M such that

dist(z, γ) > ε|z − a|M |z − b|M

whenever z ∈ γo.
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Figure 1.

Theorem 3.2. With γ, γo, A and B as described above, let µ be a finite,
positive Borel measure with support contained in A∪ (∂D). Let σ denote arclength
measure on γo and let ν = µ|A+ σ. If 0 ∈ abpe(P t(dµ)), then 0 ∈ abpe(P t(dν)).

Proof. By [9], Exercise 2 of Chapter III and a similar argument involving
an appropriately chosen outer function, we may assume that µ|∂D = hdm, where
0 6 h 6 1 and m denotes normalized Lebesgue measure on ∂D. Furthermore,
by Theorem 3.1, we may assume that 0 /∈ support(µ). Therefore, f(z) := 1

z
∈

Lt(dµ) and yet f /∈ P t(dµ). Applying the Hahn-Banach and Riesz Representation
Theorems, there exists g in Ls(dµ) ( 1

s
+ 1

t
= 1) such that g⊥P t(dµ) and yet∫

1
ζ
g(ζ) dµ(ζ) 6= 0. As before, we let ĝ denote the Cauchy transform of g — that

is, ĝ(z) =
∫ g(ζ)

ζ−z
dµ(ζ) — which is defined and analytic off support(µ). Notice

that ∂B consists of two Jordan arcs: γ and an arc of ∂D (with endpoints a and b)
which we call α. Let W denote the Jordan region whose boundary consists of γo

along with α. Now, by our choice of γo, there exist ε > 0 and a positive integer
N such that

dist(z, γ) > ε|z − a|N |z − b|N

for all z in γo. Observe that go(z) := ε(z − a)N (z − b)Ng(z) satisfies:

(i) go ∈ Ls(dµ);
(ii) go⊥P t(dµ);
(iii)

∫
1
ζ
go(ζ) dµ(ζ) 6= 0; and

(iv) ĝo|γo ∈ L∞( dσ).

So, by replacing g with go if necessary, we may assume that ĝ|γo ∈ L∞( dσ).

Claim. ĝ|W ∈ Hs(W ).

By [11], Corollaire, ĝ|W ∈ Hp(W ) for 0 < p < 1. Since ĝ ∈ L∞( dσ), our
claim will be established if we show that the nontangential boundary values of ĝ|W
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on α are in Ls(dm). Now if ξ is in the relative interior of α, then, for 0 < r < 1
sufficiently near 1, rξ ∈ W . Since ĝ|(C \ D) ≡ 0, we have (for such r) that

ĝ(rξ) = ĝ(rξ) − ĝ
(ξ
r

)
=

∫
g(ζ)

(
1

ζ − rξ
−

1

ζ − ξ
r

)
dµ(ζ)

=

∫

A∩D

g(ζ)

(
1

ζ − rξ
−

1

ζ − ξ
r

)
dµ(ζ) +

∫

∂D

g(ζ)Prξ(ζ)ζh(ζ) dm(ζ),

where Prξ denotes the Poisson kernel on ∂D for evaluation at rξ. Therefore, by

Fatou’s Theorem, ĝ(rξ) → g(ξ)ξh(ξ) as r → 1−. Since 0 6 h 6 1, it follows that

g(ξ)ξh(ξ) ∈ Ls(dm) and so our claim holds. Let g̃ denote the boundary values of
ĝ on ∂W ; so g̃ = ĝ on γo and g̃(ξ) = g(ξ)ξh(ξ) for ξ in α. So if β is a Jordan curve
that traverses ∂W once in the counterclockwise direction, then, by our claim and
Cauchy’s Theorem,

ĝ(z) =
1

2πi

∫

β

g̃(ζ)

ζ − z
dζ

if z ∈ W , and

0 =
1

2πi

∫

β

g̃(ζ)

ζ − z
dζ

if z ∈ C \W ; we may assume that (for 0 6 t 6 1
2 ) β(t) = γo(1 − 2t). Therefore,

if we let τ = γo
−1 and define κ a.e. ν by: κ = g on A, and κ(ζ) = 1

2πi ĝ(ζ)
|τ ′(ζ)|
τ ′(ζ)

for ζ in γo, then we have: κ ∈ Ls(dν), κ̂|(C \ D) ≡ 0 and so κ⊥P t(dν)) and
yet, κ̂(0) = ĝ(0) 6= 0. By the proof of Lemma 2.1, we can now assert that
0 ∈ abpe(P t(dν)).

The first of the next two lemmas has its counterpart in the literature (cf.
[16]); let us review our notation. If G is any bounded region in C, then H∞(G)
denotes the collection of bounded analytic functions on G, N (G) denotes the
Nevanlinna class of G and L1

a(G) denotes the collection of functions f that are
analytic in G and that satisfy

∫
G

|f | dm2 <∞, where m2 is area measure on C. For

0 < r < 1, we let Wr := {z : |z − r| < 1 − r}.

Lemma 3.3. If f ∈ L1
a(D), then f |Wr ∈ N (Wr) for 0 < r < 1.

Proof. For z in D and 0 < ρ < 1 − r, let ∆(z) = {w : |w − z| < 1 − |z|} and
let Γρ = {z : |z − r| = ρ}. If z ∈ D and f ∈ L1

a(D), then

|f(z)| 6
1

π(1 − |z|)2

∫

∆(z)

|f | dm2 6
1

π(1 − |z|)2

∫

D

|f | dm2.

Evidently, sup
{ ∫

Γρ

log+ |f(z)| | dz| : 0 < ρ < 1−r
}
<∞ and so f |Wr ∈ N (Wr).
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Lemma 3.4. If 0 < ρ < 1 and 0 6≡ f ∈ L1
a(Wρ), then, for each r (ρ < r < 1),

there exists fr 6≡ 0 in H∞(D) such that |fr(z)| 6 |f(z)| for all z in Wr.

Proof (Sketch). Choose r (ρ < r < 1) and then select s and t such that
ρ < t < s < r. By Lemma 3.3, f |Wt ∈ N (Wt) and so, if {zn} is an enumeration of
the zeros of f in Ws(⊆Wt), then

∑
n

((1− t)−|zn− t|) <∞. Now, from elementary

geometric considerations, there is a positive costant M such that 1−|z| 6 M((1−
t)−|t−z|) for all z in Ws. Therefore,

∑
n

(1−|zn|) <∞ and hence {zn}is a Blaschke

sequence; let B be the associated Blaschke product and let fo = f
B

.

Let T be the Möbius transformation from H∧+ := {ζ : =(ζ) > 0} onto D

given by T (ζ) = ζ−i
ζ+i and let ϕ be the Möbius transformation given by ϕ(z) =

T
(
T−1(z) − is

1−s

)
(= (2−s)z−s

sz+(2−3s) ); let ψ = ϕ−1. Notice that ϕ maps Ws onto D

and ϕ(1) = 1. Now (fo ◦ ψ)|D ∈ N (D) and fo ◦ ψ has no zeros in D. Therefore,
(fo ◦ ψ)|D = (FhSµ)/Sν , where Fh is an outer function and both Sµ and Sν are
singular inner functions. Let h∗ be defined a.e. m (normalized Lebesgue measure
on ∂D) by h∗(ζ) = min(h(ζ), 1) and let Fh∗ be the corresponding outer function.
For w in D, we let Pw(·) denote the Poisson kernel on ∂D for evaluation at w.
Carrying Pw(·) to H+ by composition with T , one can find a constant c > 1 such
that Pϕ(z)(ζ) 6 cPz(ζ) whenever z ∈ Wr and |ζ| = 1. So, there is a natural
number n such that

|Fn
h∗(z)| 6 |Fh∗(ϕ(z))| 6 |Fh(ϕ(z))| and |Sn

µ(z)| 6 |Sµ(ϕ(z))|

whenever z ∈Wr. Evidently, fr := BFn
h∗Sn

µ satisfies our conclusion.

We are now in a position to give the consequence of (Theorem 3.2) that we
earlier described as an analogue of Theorem 3.1; once again we set the stage. Let
Ω be a subregion of D such that the relative interior of (∂Ω) ∩ (∂D) is nonempty.
Let Γ be a smooth cross-cut of Ω with endpoints a and b in the relative interior
of (∂Ω) ∩ (∂D) such that 0 /∈ Γ, Γ approaches ∂D nontangentially at a and at b,
and (∂Ω) ∩ D has no accumulation point in Γ. Now D \ Γ is the disjoint unoin of
two Jordan regions — let W be the one that does not contain 0, let α = W ∩ (∂D)
and let G = Ω \W .

Theorem 3.5. With Ω and G as described above, choose f in L1
a(Ω) (f 6≡ 0)

and define µ and η by: dµ = |f | dm2|Ω and η = µ|G. If 0 ∈ abpe(P t(dµ)), then
0 ∈ abpe(P t(dη)).

Proof. By our hypothesis, we may construct two other smooth cross-cuts γ
and γo of Ω, each with endpoints a and b, and having the properties:

(i) both γ and γo have nontangential approach to ∂D at a and at b;
(ii) γ ∩W = {a, b} = γo ∩W ;
(iii) any two of Γ, γ and γo form a positive angle at a and at b,
(iv) γo is a cross-cut of the Jordan region V whose boundary is γ∪Γ, V ⊂ Ω

and 0 /∈ V ; see figure 2.

Let E be the Jordan region whose boundary is α∪γ and let µo = µ|(Ω \E)+

(µ|E )̂, where (µ|E )̂ denotes the sweep of µ|E to ∂E. Then, by our hypothesis and
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the definition of the sweep (see [8], Chapter V, Section 9), 0 ∈ abpe(P t dµo). So,
we can apply Theorem 3.2 to get that 0 ∈ abpe(P t(dν)), where ν = µ|(Ω \E) +
µo|γ + σ and σ denotes arclength measure on γo. For z in G, let rz = dist(z, ∂G)
and let ∆z = {ζ : |ζ − z| < rz}. If z ∈ G and p is a polynomial, then p(z)f(z) =

1
πr2

z

∫
∆z

pf dm2 and so there is a positive constant c (independent of p and z) such

that |p(z)|t|f(z)|t 6
c

πtr2t
z

∫
G

|p|t dµ. Moreover, by our construction, there exists

ε > 0 such that rz > ε|z − a| |z − b| whenever z ∈ (γ ∪ γo) \ {a, b}. Therefore, by
Lemma 3.4, we can find g in H∞(D) (g 6≡ 0) such that

(3.1) |p(z)|t|g(z)|t 6

∫

G

|p|t dµ

whenever z ∈ (γ ∪ γo) \ {a, b} and p is a polynomial.

Claim. 0 ∈ abpe(P t(|g|t dν)).

To establish this claim, first observe that we may assume that g(0) 6= 0
and so there exists δ, 0 < δ < 1, and λ > 0 such that |g(ζ)| > λ whenever
|ζ| < δ. Since 0 ∈ abpe(P t(dν)), there exists r, 0 < r < 1 and M > 0 such that
|p(ζ)|t 6 M‖p‖t

Lt(dν) whenever |ζ| < r and p is a polynomial; we may assume that

δ 6 r. Therefore, |p(ζ)|t 6 M
λt ‖pg‖t

Lt(dν) whenever |ζ| < δ and p is a polynomial;

evidently our claim holds. Notice that, for any polynomial p,∫

Ω\E

|p|t|g|t dµ 6 ‖g‖t
∞

∫

Ω\E

|p|t dµ and, by (3.1),

∫

γ∪γo

|p|t|g|t dν 6 ν(γ ∪ γo)

∫

G

|p|t dµ.

0

b

a

γ
γ

0

Γ

Figure 2.

Since Ω\E ⊆ G, we can now apply our claim to get that 0 ∈ abpe(P t(dη)).



70 John Akeroyd and Kifah Alhami

Remark 3.6. The role of D in Theorem 3.5 can be assumed by any Jordan
region U . Indeed, if Ω ⊆ U , f ∈ L1

a(Ω) and ϕ is a conformal mapping from D ont U ,
then, under a change of variables, |f | dm2|Ω corresponds to |f◦ϕ| |ϕ′|2 dm2|ϕ−1(Ω)
and clearly (f ◦ ϕ)(ϕ′)2 ∈ L1

a(ϕ−1(Ω)). Using this and the fact that ϕ−1 extends
to a homeomorphism between U and D that is uniformly approximable by poly-
nomials on U , the result of Theorem 3.5 carries over (with ϕ(0) in place of 0).

In some of the subsequent applications of Theorem 3.5 we restrict our at-
tention to regions called crescents and do so primarily to minimize the technical
details.

Definition 3.7. Let B and U be Jordan regions such that B ⊆ U and
B ∩ (∂U) is a single point. Then the region Ω := U \ B is called a crescent and
the point B ∩ (∂U) is called the multiple boundary point (mbp) of Ω.

If Ω = U \B is a crescent, µ is a finite positive Borel measure with support
in Ω and b ∈ B, then R(Ω) ⊆ P t(dµ) (R(Ω) is the uniform closure in C(Ω) of the
rational functions with poles off Ω) if and only if z 7→ 1

z−b
∈ P t(dµ). Our next

result addresses this point and, in part, justifies the title of this paper.

Theorem 3.8. Let Ω = U \B be a crescent with mbp equal to λ, let dµ =
|f | dm2|Ω, where f ∈ L1

a(Ω), and select b in B. Then the following are equivalent:
(i) R(Ω) ⊆ P t(dµ);
(ii) z 7→ 1

z−b
∈ P t(dµ);

(iii) there is a sequence {pn} of polynomials such that pn converges to 1
z−b

in Lt(dµ) and uniformly on Ω \ V (as n→ ∞) for any neighborhood V of λ.

Proof. As we indicated just before the statement of Theorem 3.9, the equiv-
alence of (i) and (ii) is well-known; we nevertheless outline the argument. Clearly
(i) implies (ii). Conversely, if 1

z−b
∈ P t(dµ), then, since 1

z−b
∈ L∞(dµ), we have:

1
(z−b)n ∈ P t(dµ) for n = 1, 2, 3, . . .. From Runge’s Theorem it now follows that

R(Ω) ⊆ P t(dµ). Trivially, (iii) implies (ii); what remains to be shown is the con-
verse of this. Now, by Remark 3.6, we may assume that U = D, and indeed that
b = 0 and that λ = 1. Our proof involves a thickening of Ω; as before, if r < 1, then
we let Wr = {z : |z − r| < 1 − r}. Let g be a homeomorphism from {z : |z| 6 2}
onto {z : |z| 6 2} such that g(D) = g(D), g(0) = 0, g(1) = 1 and g(B) = W 1

4

;

therefore, g(Ω) = D \ W 1

4

. Let E = W 1

5

\ W 1

3

, let F = W− 1

2

\ W 1

8

and (for

n = 1, 2, 3, . . .) let En = E ∩
{
z : |z − 1| > 1

n

}
and let Fn = F ∩ {z : |z − 1| > 1

n
}.

Let Ωn = Ω∪g−1(En ∪Fn), let In = Ωn \g−1(En) and let Jn = Ω\g−1(En ∪Fn);
notice that Ωn, In and Jn are crescents and 0 /∈ Ωn. Define µn with support in
Ωn by µn = µ +m2|g−1(En ∪ Fn). If 1

z
/∈ P t( dµn), then, by [1], Theorem 3.12,

D ⊆ abpe(P t( dµn)). So, by Theorem 3.1, D ⊆ abpe(P t( dµn|In)). We now apply
Theorem 3.5 to get that 0 ∈ abpe(P t( dµn|Jn)). It follows that 0 ∈ abpe(P t(dµ))
and hence, by Lemma 2.1, 1

z
/∈ P t(dµ). But this contradicts our assumption in

(ii). So, we conclude that 1
z
∈ P t( dµn). Hence, we can find a polynomial pn such

that ‖ 1
z
−pn‖Lt( dµn) <

1
n
. Evidently, {pn} converges to 1

z
in Lt(dµ). Furthermore,

for any r > 0, there exists n such that Ω \ {z : |z − 1| < r} is a compact subset of
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Ωn (⊆ Ωm for m = n, n+ 1, n+ 2, . . .). So, from our definition of µn, we also have
that {pn} converges to 1

z
uniformly on Ω \ V for any neighborhood V of 1. This

completes our proof.

4. CYCLIC VECTORS

If T is a bounded linear transformation on a Banach space B, x ∈ B and the
linear span of {T n(x) : n = 0, 1, 2, . . .} is dense in B, then x is called a cyclic
vector for T and T is said to be cyclic (on B). If G is a bounded region in C and
1 6 t < ∞, then the shift Mz on Lt

a(G), defined by Mz(f) = zf , is a bounded
linear transformation. If, in addition, G is simply connected, then Mz on Lt

a(G)
might be cyclic; which, in this setting, would mean that there exists f in Lt

a(G)
such that {pf : p is a polynomial} is dense in Lt

a(G). For which G is Mz on Lt
a(G)

cyclic? This question has been addressed in the contexts of the Bergman space
Lt

a(G) and the Hardy space H t(G) (see [3], [2] and [17]), though only for a very
limited collection of regions G. In a somewhat different direction, it was shown
in [3] (via a change of variables argument suggested by P. Bourdon) that if Mz

on H2(G) is cyclic, then Mz on L2
a(G) is also cyclic. This change of variables

argument, however, does not guarantee a bounded cyclic vector for Mz on L2
a(G).

In Theorem 4.11 we improve upon this result and show that if Mz on Ht(G) is
cyclic, then Mz on Lt

a(G) has a bounded cyclic vector. Prior to any of this it was
shown (see [6], Corollary 3.4) that if 1 is a cyclic vector for Mz on L2

a(G), then 1
is a cyclic vector for Mz on H2(G). Could it in fact be true that if Mz on L2

a(G)
is cyclic, then Mz on H2(G) is cyclic; completing an equivalence? This question
is hard to answer (it remains open) in large part because, if f is a cyclic vector
for Mz on L2

a(G), then f ◦ ϕ (ϕ is a conformal mapping from D onto G) could
have a variety of forms. This is in contrast with Mz on H2(G), where f is a cyclic
vector only if f ◦ ϕ is an outer function. So, it would be helpful to know that if
Mz on L2

a(G) is cyclic, then there is a cyclic vector f such that f ◦ ϕ is an outer
function. Using Theorem 3.8, we take a step in this direction; first, though, we
need to lay some groundwork. For the remainder of this paper, unless otherwise
specified, we let G be a bounded, simply connected region in C. We also let P
denote the collection of polynomials. Our next result follows immediately from
the fact that P ⊂ L∞(G).

Proposition 4.1. A function f in Lt
a(G) is a cyclic vector for Mz on Lt

a(G)
if and only if fH∞(G) is dense in Lt

a(G) and

inf
p∈P

∫

G

|p− g|t|f |t dm2 = 0

for each g in H∞(G).

Definition 4.2. A compact subset K of ∂D is called a Carleson set if
m(K) = 0 and

∫
∂D

log(dist(z,K)) dm(z) > −∞.

The following theorem is a consequence of [5], Propositions 1 and 2 and
Theorem.
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Theorem 4.3. A function f is a bounded cyclic vector for Mz on Lt
a(D) if

and only if f = FSν , where F is a bounded outer function and Sν is a singular

inner function such that ν(C) = 0 for every Carleson set C.

For an outline of the proof of the following result, one may consult [16].

Theorem 4.4. (L.I. Hedberg) If G is a bounded region in C such that ∂G
consists of finitely many continua, then H∞(G) is dense in Lt

a(G).

Lemma 4.5. Let E and G be bounded, simply connected regions and let ϕ be
a conformal mapping from E onto G; let ψ = ϕ−1. Then (ψ′)

2

t H∞(G) is dense
in Lt

a(G).

Proof. Since ψ′ is never zero, (ψ′)
2

t is defined and analytic in G. Moreover,∫
G

∣∣(ψ′)
2

t

∣∣t dm2 =
∫
E

|ψ′ ◦ ϕ|2|ϕ′|2 dm2 = m2(E) < ∞. Therefore, (ψ′)
2

t H∞(G) ⊆

Lt
a(G). Now, for any h in H∞(G),

inf
g∈H∞(G)

∫

G

∣∣h− g(ψ′)
2

t

∣∣t dm2 = inf
g∈H∞(G)

∫

E

∣∣(h ◦ ϕ)(ϕ′)
2

t − (g ◦ ϕ)
∣∣t dm2 = 0,

since, by Theorem 4.4, H∞(E) is dense in Lt
a(E). By Theorem 4.4 (once again),

our proof is now complete.

Using Lemma 4.5 and a straightforward change of variables argument, we

have:

Proposition 4.6. Suppose f ∈ H∞(G) and let ϕ be a conformal mapping
from D onto G. Then fH∞(G) is dense in Lt

a(G) if and only if f ◦ϕ is a bounded
cyclic vector for Mz on Lt

a(D).

Our next result is a consequence of work found in [5].

Theorem 4.7. The following are equivalent:

(i) Mz on Lt
a(G) has a Nevanlinna class cyclic vector;

(ii) Mz on Lt
a(G) has a bounded cyclic vector;

(iii) there exists f in H∞(G) such that inf
p∈P

∫
G

|p − h|t|f |t dm2 = 0 for all h

in H∞(G), where f ◦ϕ = FSν (ϕ is a conformal mapping from D onto G), F is a

bounded outer function and Sν is a singular inner function with the property that

ν(C) = 0 for every Carleson set C.

Remark 4.8. If Ω = U \ B is a crescent and b ∈ B, then we may replace

the general h (in H∞(Ω)) that appears in Theorem 4.7 (iii) by just one function,
namely h(z) = 1

z−b
.

Our next result follows from rather standard measure-theoretic methods,

though a detailed proof of it would almost certainly land us in a technical quagmire.

For this reason, we give only the briefest sketch of a proof.
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Theorem 4.9. Let W be Jordan subregion of D and let X = (∂W ) ∩ (∂D).
(i) If Sν is a singular inner function and ν(X) = 0, then there is an outer

function F in H∞(D) such that |F (z)| 6 |Sν(z)| for all z in W .
(ii) If F is an outer function and m(X) = 0, then there is a singular inner

function Sν , where ν(C) = 0 for every Carleson set C, such that |Sν(z)| 6 |F (z)|
for all z in W .

Proof. (Sketch) For z in D we let ζ 7→ Pz(ζ) denote the Poisson kernel on
∂D for evaluation at z. The central ingredient in the proofs of either (i) or (ii) is
the following observation.

Observation. If K is a compact subset of (∂D) \ X , then there are bounds

on |Pz(e
iθ)| and

∣∣∣∂Pz(eiθ)
∂θ

∣∣∣ that are independent of eiθ in K and z in W .

The proof of part (i) reduces to showing that there exists h in L1(dm) (h > 0)
such that

∫
∂D

Pz(ζ) dν(ζ) 6
∫

∂D

Pz(ζ)h(ζ) dm(ζ) whenever z ∈ W . Using our obser-

vation and basic measure-theoretic methods, one can construct such an h syste-
matically over the sets E1 and Ek+1 \ Ek (for k = 1, 2, 3, . . .), where Ek := {ζ :
dist(ζ,X) > 2−k}; h can be chosen to be zero on X . The proof of (ii) requires
an additional ingredient. We first construct a strictly increasing continuous but
singular function f on [0, 1] whose modulus of continuity ωf (δ) is O

(
δ log

(
1
δ

))
and

let µ be the measure whose cumulative distribution function is f (see [14]). For
0 < c 6 1 and 0 6 d 6 1− c, define µc,d on [d, 1− c] by µc,d(B) = µ

(
1
c
(B−d)

)
and

let F be the collection of measures of the form µc,d carried to ∂D under the mapping
s 7→ e2πis. If η ∈ F , then η(C) = 0 for every Carleson set C. Furthermore, F is
weak-star dense in the collection of measures that are absolutely continuous with
respect to m. So we can now proceed, as we did in part (i), to piece-together a
singular measure ν (using the collection F) for which a reverse inequality (to that
of part (i)) holds; ν satisfies ν(C) = 0 for every Carleson set C.

Theorem 4.10. Let Ω = U \ B be a crescent and let ϕ be a conformal
mapping from D onto Ω. If Mz on Lt

a(Ω) has a Nevanlinna class cyclic vector,
then there are cyclic vectors f1 and f2 such that f1 ◦ ϕ is an outer function in
H∞(D) and f2 ◦ϕ = Sη is a singular inner function such that η(C) = 0 for every
Carleson set C.

Proof. Mapping by an appropriate choice of Möbius transformation, we may
assume that the mbp of Ω is 1 and that 0 ∈ B. Now if Mz on Lt

a(Ω) has a
Nevanlinna class cyclic vector, then, by Theorem 4.7, there is a cyclic vector f in
H∞(Ω) such that f ◦ ϕ = FSν , where F is an outer function in H∞(D) and Sν

is a singular inner function such that ν(C) = 0 for every Carleson C. Moreover,

inf
p∈P

∫
Ω

∣∣p − 1
z

∣∣t|f |t dm2 = 0. So, by Theorem 3.8, there is a sequence {pn} of

polynomials such that pn converges to 1
z

in Lt(|f |t dm2|Ω) and uniformly on Ω\V
for any neighborhood V of 1 (as n → ∞). Now, since Ω is a crescent, ϕ extends
continuously from D onto Ω. In fact, there are distinct points a and b in ∂D such
that ϕ(a) = ϕ(b) = 1 (the mbp of Ω) and ϕ maps D \ {a, b} univalently onto
Ω \ {1}; we may assume that a = −1 and b = 1. If {rk} is a sequence of real
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numbers such that 0 < r1 < r2 < · · · < rk < rk+1 → 1 as k → ∞, then we

let W ({rk}) = {z : |z| < r1} ∪
∞⋃

k=2

{
reiθ : 0 < r < rk and dist(θ, {0, π}) < π

2k

}
.

Notice that W ({rk}) is a Jordan subregion of D and (∂W ({rk}))∩(∂D) = {−1, 1}.
Recalling that pn converges to 1

z
uniformly on Ω \V for any neighborhood V of 1,

we can apply a Hastings-type argument (see [10], Lemma) to find a sequence {rk}

that converges to 1 quickly enough so that W := W ({rk}) satisfies:

(4.1) lim
n→∞

∫

Ω\ϕ(W )

∣∣∣∣pn −
1

z

∣∣∣∣
t

dm2 = 0.

Now, by Theorem 4.9, there is a bounded outer function Fo and there is a singular

inner function Sµ, where µ(C) = 0 for every Carleson set C, such that |Fo(z)| 6

|Sν(z)| and |Sµ(z)| 6 |F (z)| for all z in W . Define f1 and f2 on Ω by f1 ◦ϕ = FFo

and f2 ◦ ϕ = Sη, where η = ν + µ. By (4.1), Propositions 4.1 and 4.6, and
Theorem 4.3, f1 and f2 are cyclic vectors for Mz on Lt

a(Ω).

The next two results contribute to the theme of this paper and yet their

proofs stand alone and do not involve the notion of overconvergence. The first of

these represents a considerable improvement upon [3], Added in proof.

Theorem 4.11. If Mz on Ht(G) is cyclic, then Mz on Lt
a(G) is cyclic and

has a bounded cyclic vector f such that f ◦ϕ is an outer function; ϕ is a conformal

mapping from D onto G.

Proof. Since Mz on Ht(G) is cyclic, there is a bounded outer function Fo

(Fo 6≡ 0) such that

inf
p∈P

∫

∂D

|p̃ ◦ ϕ− h̃|t · |F̃o|
t dm = 0

for any h in H∞(D), where P denotes the collection of polynomials and h̃ etc.
denotes the nontangential boundary values of h on ∂D. Now |ϕ′|2 dm2 represents

a finite, positive Borel measure on D and so the sweep of this measure to ∂D

(we let µ denote this sweep) satisfies: µ << m; see [8], Chapter V, Section 9.
Hence, there is a bounded outer function F1 (F1 6≡ 0) such that |F1|t dµ 6 dm;
let F = Fo · F1 and let f = F ◦ ϕ−1. Then, for any h in H∞(D), we have:

inf
p∈P

∫

G

|p− h ◦ ϕ−1|t · |f |t dm2 = inf
p∈P

∫

D

|p ◦ ϕ− h|t · |F |t · |ϕ′|2 dm2

6 inf
p∈P

∫

∂D

|p̃ ◦ ϕ− h̃|t · |F̃ |t dµ 6 inf
p∈P

∫

∂D

|p̃ ◦ ϕ− h̃|t · |F̃o|
t dm = 0.

Since {f · (h◦ϕ−1) : h ∈ H∞(D)} is dense in Lt
a(G), we conclude that f is a cyclic

vector for Mz on Lt
a(G).
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As we mentioned earlier, it is part of the literature that 1 is a cyclic vector
for Mz on H2(G) if 1 is a cyclic vector for Mz on L2

a(G); see [6], Corollary 3.4.

With this in mind, it is natural to conjecture:
If Mz on L2

a(G) is cyclic and has a cyclic vector f such that f ◦ϕ is an outer
function (ϕ is a conformal mapping from D onto G), then Mz on H2(G) is cyclic.

This, of course, would give us the converse to Theorem 4.11 for t = 2. The

following proposition establishes an ever so slightly weaker form of this conjecture.

Proposition 4.12. If Mz on L2
a(G) is cyclic and has a cyclic vector f such

that F := f ◦ ϕ is an outer function and log |F̃ | ∈ L logL(m), then Mz on H2(G)

is cyclic.

Proof. By our assumption that log |F̃ | ∈ L logL(m), we can find a bounded

outer function Fo (Fo 6≡ 0) such that |F̃o(e
iθ)| 6 inf

06r<1
|F (reiθ)| a.e. m; see [19],

Chapter IV, Theorem 5.3. Choose h in H∞(G) and p in P . Let g be a primitive of

h and let q be the primitive of p such that q(ϕ(0)) = g(ϕ(0)). Then, for 0 < s < 1,

∫

∂D

|(q ◦ ϕ)(sζ) − (g ◦ ϕ)(sζ)|2 · |F̃o(ζ)|
2 dm(ζ)

=

∫

∂D

∣∣∣∣

s∫

0

(p ◦ ϕ)(rζ) · ϕ′(rζ) − (h ◦ ϕ)(rζ) · ϕ′(rζ) dr

∣∣∣∣
2

· |F̃o(ζ)|
2 dm(ζ)

6

∫

∂D

1∫

0

|(p ◦ ϕ)(rζ) − (h ◦ ϕ)(rζ)|2 · |ϕ′(rζ)|2 · |F (rζ)|2 dr dm(ζ)

6 C

∫

D

|p ◦ ϕ− h ◦ ϕ|2 · |F |2 · |ϕ′|2 dm2 = C

∫

G

|p− h|2 · |f |2 dm2,

where C is a constant independent of s, p and h. Therefore,
∫

∂D

|(q̃ ◦ ϕ) − g̃ ◦ ϕ|2 · |F̃o|
2 dm 6 C

∫

G

|p− h|2 · |f |2 dm2.

Since {g : g′ ∈ H∞(G)} is dense in H2(G) and f is a cyclic vector for Mz on
L2

a(G), it follows that fo := Fo ◦ ϕ−1 is a cyclic vector for Mz on H2(G).

Remark 4.13. There is another approach to the proof of our conjecture

that is worth mentioning. If F , g ∈ H∞(D), g(0) = 0 and F is an outer function,

then, by Green’s Theorem (see [9], Chapter VI, Section 3),

∫

∂D

|g̃F̃ |2 dm =
2

π

∫

D

|g′F + gF ′|2 · log
( 1

|z|

)
dm2(z).
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Therefore,

{∫

∂D

|g̃|2|F̃ |2 dm

} 1

2

6

√
2

π

({∫

D

|g′F |2 · log
( 1

|z|

)
dm2(z)

} 1

2

+

{∫

D

|gF ′|2 · log
( 1

|z|

)
dm2(z)

} 1

2

)
.

Choosing g to be p ◦ ϕ − h, as in the proof of Proposition 4.12, we see that our
objective is reached if we can find an outer function Fo (Fo 6≡ 0) with the properties
that (for all such g):

(i) |Fo| 6 |F |; and

(ii)

∫

D

|gF ′
o|

2 · log
( 1

|z|

)
dm2(z) 6

∫

D

|g′F |2 dm2(z).

Despite the merits of this Green’s Theorem approach, Proposition 4.12 is
still about the best that the authors have been able to do in this direction; the
validity of our conjecture remains an open question.

Remark 4.14. Assuming that Mz on Lt
a(G) is cyclic, we have no guarantee

that there is a Nevanlinna class cyclic vector; this remains an open question even
for crescents. However, there is an obervation that gets us tantalizingly close to
the converse of Theorem 4.11 (in its full generality). Let Ω be a Jordan subregion
of D such that ∫

∂Ω

log(1 − |z|) dω(z,Ω, zo) > −∞,

where ω(·,Ω, zo) denotes harmonic measure on ∂Ω for evaluation at some point zo
in Ω; of course, (∂D)∩ (∂Ω) might still be quite large under this restriction. Let ϕ
be a conformal mapping from D onto G and let W = ϕ(Ω). If 0 6≡ f ∈ Lt

a(G), then
one can sharpen Lemma 3.4 and argue (using rz) as in the proof of Theorem 3.5 to
produce a bounded outer function Fo (Fo 6≡ 0) such that fo := Fo ◦ ϕ

−1 satisfies:
∫

∂W

|h(ζ)|t|fo(ζ)|
t dω(ζ,W,wo) 6

∫

G

|h|t|f |t dm2

for all h in H∞(G). So, if f is a cyclic vector for Mz on Lt
a(G), then fo is a cyclic

vector for Mz on Ht(W ). This observation suggests the following strategy for the
proof of the converse of Theorem 4.11. Show that if Mz on Lt

a(G) is cyclic, then
one can slightly thicken G (over certain of its boundary points) to a bounded,
simply connected region E so that the relationship of G to E is like that of W to
G as described above and such that Mz on Lt

a(E) is cyclic. This is nothing more
than establishing overconvergence, yet with a mild requirement on the amount of
overconvergence. Whether or not this requirement can be satisfied seems to call
for some delicate estimates that remain beyond the authors’ grasps.
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