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Let O∞ be the Cuntz algebra ([4]) generated by infinitely many isometries with
orthogonal ranges. The purpose of this paper is to compute several ranks of C∗-
algebras of the form O∞⊗D, with D an arbitrary C∗-algebra. For these algebras,
the original rank, Rieffel’s (topological) stable rank, is not very interesting, at least
if D is unital, since then tsr(O∞ ⊗D) = ∞ by Proposition 6.5 of [21]. Therefore
we will study the real rank ([3]) and the exponential rank and length ([19] and
[22]). It is not a priori evident that these problems are related, or even should
be considered together. However, the results turn out to be similar: both ranks
can be at most 1 more than the corresponding rank of a purely infinite simple C∗-
algebra. Moreover, the proofs use the same key property of O∞ and are similar in
spirit.

Unfortunately, there are very few results giving explicit relations between
the real and exponential ranks.

The exponential length result cel(O∞ ⊗D) 6 2π was promised in [20]. For
the approach used there for the classification of nuclear purely infinite simple
C∗-algebras, it is important to know that there is a finite upper bound L, not
depending on D, for cel(O∞ ⊗ D) for a number of C∗-algebras D. This kind of
condition first appeared in [23], but without the name; Rørdam was evidently
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unaware of [22]. The upper bound L = 3π is much easier to prove than the result
here and suffices for the purposes of [20]. But results of Zhang ([24]) certainly
suggested that the correct answer might be 2π, and we prove that here.

The key property of O∞ is essentially that it has an asymptotically central
embedding in itself. This is a consequence of results of Kirchberg ([9]; proofs in
[10] and in [11]). The following form of this result is convenient for our purposes:

Theorem 0.1. (Kirchberg) There is an isomorphism ϕ : O∞ ⊗O∞ → O∞
such that the homomorphism a 7→ ϕ(1 ⊗ a) is approximately unitarily equivalent
to idO∞ . That is, there is a sequence (zn) of unitaries in O∞ such that we have
lim

n→∞
znϕ(1⊗ a)z∗n = a for all a ∈ O∞.

Proof. This is contained in the proof of Theorem 3.15 of [11]. But it can
easily be derived from that result, as follows: Use it to choose any isomorphism
ϕ : O∞ ⊗ O∞ → O∞, and observe that a 7→ ϕ(1 ⊗ a) and idO∞ are two unital
homomorphisms from O∞ to O∞, hence approximately unitarily equivalent by
Theorem 3.3 of [13].

In fact, there is an asymptotically central embedding of O∞ in any separable
nuclear purely infinite simple C∗-algebra A, but we extend our results to tensor
products with such algebras A by simply observing (Theorem 3.15 of [11]) that
O∞ ⊗A ∼= A.

There are results parallel to those of this paper for C∗-algebras of the form
A⊗C(X), where A is an arbitrary purely infinite simple C∗-algebra, not necessar-
ily nuclear. Results on exponential rank and exponential length of such algebras
appear in Zhang’s paper ([24]). One of Zhang’s results has recently been gener-
alized as follows ([8]): If A is a unital purely infinite simple C∗-algebra, and B is
any unital C∗-algebra, then for any C∗ tensor product we have cel(A⊗B) 6 5π/2
and cer(A ⊗ B) 6 3. Theorem 3.7 of [16] shows that if A is purely infinite and
simple, with K0(A) = 0, then the related invariant C∗ projective length satisfies
cpl(A ⊗ C(X)) 6 3π/2; this invariant is also treated here. Similar results on the
real rank of A⊗ C(X) appear in [14].

As noted above, in our results O∞ may be replaced by any separable nuclear
purely infinite simple C∗-algebra. This, and the other results described above,
suggest the possibility that our estimates hold for A ⊗ B for any purely infinite
simple C∗-algebra A, any C∗-algebra B, and any choice of the C∗ tensor product.
Proving this is expected to be more difficult. Indeed, by Theorem 1.4 of [7],
a nonnuclear purely infinite simple C∗-algebra need not even be approximately
divisible in the sense of [2].

The exponential length cer(A), and the related invariants cel(A), cpr(A), and
cpl(A) have been computed or estimated for many C∗-algebras A, and we refer to
[19] for a recent compilation of the known results (not including that of [8], which
appeared later).

We use the following notation throughout this paper. We let A+ denote
the unitization of A. We use this notation for the C∗-algebra obtained by adding
a new unit even if A is already unital. We let Asa denote the set of selfadjoint
elements of A, and we let K denote the C∗-algebra of compact operators on a
separable infinite dimensional Hilbert space. Moreover, we use without comment
the fact (Theorem 1.4 and Proposition 1.5 of [5]) that if A is a purely infinite
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simple C∗-algebra, then K0(A) is the set of Murray-von Neumann equivalence
classes of nonzero projections in A.

This paper consists of three sections. The first treats real rank, the second
contains various lemmas needed for the result on exponential length, and the third
proves the result on exponential length and uses it to treat exponential rank and
projective length and rank.

1. REAL RANK

In this section, we prove that RR(O∞⊗D) 6 1 for any C∗-algebra D. This is
the best possible general result, since it is easy to see that RR(O∞⊗C([0, 1])) > 1.
Our proof uses two lemmas.

Lemma 1.1. Let A be a unital purely infinite simple C∗-algebra, let p ∈ A
be a projection with p 6= 0, 1, let ε > 0, and let µ ∈ [−1, 1]. Then there is a
continuous function a : [−1, 1] → Asa with the following properties:

(i) ‖a(λ)− λ · 1‖ < ε for all λ ∈ [−1, 1];
(ii) a(λ)2 commutes with p for all λ ∈ [−1, 1];
(iii) pa(λ)2p is invertible in pAp for all λ ∈ [−1, 1];
(iv) a(µ) ∈ C · 1.
Proof. We start by constructing, for given δ > 0, a continuous function

aδ : R → Asa satisfying (ii), (iii), and ‖aδ(λ)− λ · 1‖ 6 4δ for all λ ∈ R, and also
aδ(λ) = λ · 1 for |λ| > 2δ.

Define a piecewise continuous linear function f− : R → R by

f−(λ) =

{
λ, |λ| > 2δ;
−2δ, −2δ 6 λ 6 δ;
4(λ− δ)− 2δ, δ 6 λ 6 2δ.

Then define f+(λ) = −f−(−λ).
Choose a projection q0 ∈ A such that q0 6 1 − p and q0 is homotopic to p.

Set q = 1−q0, which is a projection satisfying q > p and homotopic to 1−p. Then
we can choose a continuous unitary path λ 7→ u(λ) in A, defined for λ ∈ [−δ, δ],
such that u(−δ) = 1 and u(δ)(1− p)u(δ)∗ = q. Extend the definition of u over R
by setting u(λ) = 1 for λ < −δ and u(λ) = u(δ) for λ > δ.

Now define

aδ(λ) = u(λ)[f−(λ)p+ f+(λ)(1− p)]u(λ)∗

for all λ. Clearly aδ is selfadjoint and continuous. Furthermore, from the defini-
tions of f+ and f−, we get aδ(λ) = λ · 1 for |λ| > 2δ. This equation immediately
implies all the other required properties of aδ(λ) for these values of λ. Further-
more, the estimate ‖aδ(λ) − λ · 1‖ 6 4δ, for all λ ∈ R, is immediate from the
easily checked inequalities |f−(λ)− λ| 6 4δ and |f+(λ)− λ| 6 4δ for all λ ∈ R. It
therefore only remains to prove (ii) and (iii) for −2δ 6 λ 6 2δ.

For −2δ 6 λ 6 −δ, we have u(λ) = 1, from which it is clear that already
aδ(λ) commutes with p. Moreover, paδ(λ)p = f−(λ)p = −2δp, from which it is
clear that paδ(λ)2p is invertible in pAp. For δ 6 λ 6 2δ, we have aδ(λ) = 2δq +
f−(λ)(1 − q). Since q > p, clearly aδ(λ) commutes with p, and paδ(λ)2p = 4δ2p,
which is invertible in pAp. Finally, for −δ 6 λ 6 δ, we have f−(λ) = −2δ and
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f+(λ) = 2δ. Therefore aδ(λ)2 = 4δ2 ·1, from which it is clear that aδ(λ)2 commutes
with p and paδ(λ)2p is invertible in pAp. This proves the properties required of aδ.

Now let ε > 0. Set δ = 1
8ε and λ0 = 3δ. If µ > 0, define a(λ) = aδ(λ+ λ0).

For (i), note that

‖a(λ)− λ · 1‖ 6 ‖aδ(λ+ λ0)− (λ+ λ0) · 1‖+ |λ0| 6 4 · ε
8

+
3ε
8
< ε.

Properties (ii) and (iii) follow from the corresponding properties of aδ. For (iv),
note that a(µ) = aδ(µ+ λ0) = (µ+ λ0) · 1 ∈ C · 1 because µ+ λ0 > 2δ. If instead
µ 6 0, define a(λ) = aδ(λ− λ0) to get the same conclusions.

Lemma 1.2. Let D be any C∗-algebra, let a0, a1 ∈ (D+)sa, and let ε > 0.
Then there exist b0, b1 ∈ [(O∞ ⊗D)+]sa such that ‖b0 − 1⊗ a0‖, ‖b1 − 1⊗ a1‖ < ε
and b20 + b21 is invertible.

Proof. By scaling, we may assume without loss of generality that ‖a0‖,
‖a1‖ 6 1. Then there are homomorphisms ϕ0, ϕ1 : C([−1, 1]) → D+ such that,
with f(λ) = λ for all λ, we have ϕ0(f) = a0 and ϕ1(f) = a1. Choose λ0, λ1 ∈ R
such that a0 − λ0 · 1, a1 − λ1 · 1 ∈ Dsa. It follows that ϕj(g) ∈ D exactly when
g(λj) = 0.

Choose nonzero projections p0, p1 ∈ O∞ such that p0 + p1 = 1. Use
Lemma 1.1 to choose d0, d1 ∈ [O∞ ⊗ C([−1, 1])]sa, taking A = O∞, taking ε as
above, taking p to be p0 and p1 respectively, and taking µ to be λ0 and λ1 respec-
tively. Condition (iv) of Lemma 1.1 implies that dj ∈ [O∞ ⊗C0([−1, 1] \ {λj})]+.
Therefore

bj = (idO∞ ⊗ ϕj)(dj) ∈ [(O∞ ⊗D)+]sa.

Moreover, we can transfer the properties of the dj to (O∞ ⊗D)+ via idO∞ ⊗ ϕj .
So ‖bj − 1⊗ aj‖ < ε, and also

b20 + b21 = (p0 ⊗ 1)b20(p0 ⊗ 1) + ((1− p0)⊗ 1)b20((1− p0)⊗ 1)

+ (p1 ⊗ 1)b21(p1 ⊗ 1) + ((1− p1)⊗ 1)b21((1− p1)⊗ 1)

> (p0 ⊗ 1)b20(p0 ⊗ 1) + (p1 ⊗ 1)b21(p1 ⊗ 1).

Each term in the last expression is invertible in its corner, and p0 + p1 = 1, so it
follows that b20 + b21 is invertible, as desired.

Theorem 1.3. Let D be any C∗-algebra. Then RR(O∞ ⊗D) 6 1.

Proof. Let ϕ : O∞ ⊗O∞ → O∞ and (zn) ∈ O∞ be as in Theorem 0.1, that
is, lim

n→∞
znϕ(1⊗ a)z∗n = a for all a ∈ O∞. Then for any a ∈ (O∞ ⊗D)+ we have

lim
n→∞

(zn ⊗ 1) [(ϕ⊗ idO∞)(1⊗ a)] (zn ⊗ 1)∗ = a

in O∞ ⊗D+. One furthermore checks that

(zn ⊗ 1)
[
(ϕ⊗ idO∞)([O∞ ⊗O∞ ⊗D]+)

]
(zn ⊗ 1)∗ ⊂ (O∞ ⊗D)+.

Let a0, a1 ∈ (O∞ ⊗D)+ be selfadjoint, and let ε > 0. Choose n such that

‖(zn ⊗ 1) [(ϕ⊗ idO∞)(1⊗ aj)] (zn ⊗ 1)∗ − aj‖ <
1
2
ε
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for j = 0, 1. Use Lemma 1.2 to choose selfadjoint elements b0, b1 ∈ (O∞⊗O∞⊗D)+

such that ‖bj − 1⊗ aj‖ < 1
2ε and b20 + b21 is invertible. Set

cj = (zn ⊗ 1) [(ϕ⊗ idO∞)(1⊗ bj)] (zn ⊗ 1)∗.

Then cj ∈ [(O∞ ⊗D)+]sa, c20 + c21 is invertible, and ‖cj − aj‖ < ε for j = 0, 1.

Corollary 1.4. Let A be any separable nuclear purely infinite simple C∗-
algebra, and let D be any C∗-algebra. Then RR(A⊗D) 6 1.

Proof. This follows from the theorem and the isomorphism O∞ ⊗ A ∼= A

([10]; Theorem 3.15 of [11]).

2. APPROXIMATE ABSORPTION

This section contains various lemmas needed for the proof that cel(O∞⊗D) 6 2π.
The last one is an approximate absorption result, in a sense related to that of [12].
We begin by recalling the definition of exponential length ([22]) in a form suitable
for our purposes, and extending it to nonunital C∗-algebras.

Definition 2.1. Let A be a C∗-algebra. Define U(A) = {u ∈ U(A+) :
u−1 ∈ A}. When A is unital, we identify this group with the usual unitary group
of A by sending a unitary u ∈ A to (u, 1) ∈ A+ ∼= A⊕ C. Define U0(A) to be the
connected component of U(A) which contains 1.

If u : [0, 1] → U(A) is a continuous path, then we define its length by

l(u) = lim
P

n∑
j=1

‖u(tj)− u(tj−1)‖,

where the limit is taken over all partitions P = {t0, t1, . . . , tn} of [0, 1] (that is,
0 = t0 < t1 < · · · < tn = 1), ordered by refinement (inclusion). (Compare with
Definition 1.1 of [16].) Now for v ∈ U0(A), define

cel(v) = inf{l(u) : u is a continuous unitary path with u(0) = 1 and u(1) = v},

and set

cel(A) = sup{l(v) : v ∈ U0(A)}.

Proposition 2.9 of [22] shows that this definition of cel(v) agrees with that
of [22]. Therefore our definition of cel(A) agrees with that of [22] for unital A.
For nonunital A, this definition differs from that suggested in Section 6 of [19] and
used in [8] (cel(A) = cel(A+)), but seems more natural.
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Lemma 2.2. Let u and v be continuous unitary paths in a unital C∗-algebra
A, and let ϕ : A→ B be a unital homomorphism. Then:

(i) the path (uv)(t) = u(t)v(t) satisfies l(uv) 6 l(u) + l(v);
(ii) the path u∗(t) = u(t)∗ satisfies l(u∗) = l(u);
(iii) the path ϕ(u)(t) = ϕ(u(t)) satisfies l(ϕ(u)) 6 l(u).

Proof. These are immediate from the following three estimates:
‖u(s)v(s)− u(t)v(t)‖ 6 ‖u(s)− u(t)‖ ‖v(s)‖+ ‖u(t)‖ ‖v(s)− c(t)‖

= ‖u(s)− u(t)‖+ ‖v(s)− v(t)‖,
and
‖u(s)∗ − u(t)∗‖ = ‖u(s)− u(t)‖ and ‖ϕ(u(s))− ϕ(u(t))‖ 6 ‖u(s)− u(t)‖.

Lemma 2.3. Let A be a purely infinite simple separable C∗-algebra, and
let B be a hereditary subalgebra of the function algebra C([0, 1], A). Let evt :
C([0, 1], A) → A be evaluation at t ∈ [0, 1], and assume that evt(B) ⊂ A is nonzero
and nonunital for all t. Then there is an isomorphism ϕ : B → C([0, 1], A ⊗K)
which has the form ϕ(b)(t) = ϕt(b) for isomorphisms ϕt : evt(B) → A⊗K.

Proof. By Proposition 2.6 of [12], B has an increasing approximate identity
(pn) consisting of projections. We may assume strict inequality at zero: 0 <
p1(0) < p2(0) < · · ·. We now claim that there exist projections qn ∈ B such that

0 = q0 < p1 < q1 < p2 < q2 < · · ·
and [qn+1 − qn] = 0 in K0(C([0, 1], A)). The qn are constructed by induction,
starting with q0 = 0. Assume qn−1 has been chosen. Standard methods provide a
unitary u ∈ C([0, 1], A+) such that u(0) = 1 and upnu

∗ and upn+1u
∗ are constant

projections in C([0, 1], A), with values pn(0) and pn+1(0). Since A is purely infinite
and simple, there exists a projection f ∈ A with pn(0) < f < pn+1(0) and [f ] =
[qn−1(0)] in K0(A). (We actually have [qn−1(0)] = 0.) Regard f as a constant
projection in C([0, 1], A) and define qn = u∗fu. Note that qn ∈ B because qn 6
pn+1 and pn+1 ∈ B. This completes the induction step and proves the claim.

Clearly (qn) is again an increasing approximate identity of projections for B.
Since A is purely infinite and simple, there are partial isometries vn ∈ A such that

vnv
∗
n = qn(0)− qn−1(0) and v∗nvn = q1(0).

Standard methods now give partial isometries wn ∈ C([0, 1], A) such that
wnw

∗
n = qn − qn−1 and w∗nwn = q1.

Since B is hereditary, we actually have wn ∈ B.
Let (ejk) be a system of matrix units for K. Then the formula ψ(a⊗ ejk) =

wjaw
∗
k defines an isometric isomorphism

∞⋃
n=1

q1C([0, 1], A)q1 ⊗Mn →
∞⋃

n=1

qnC([0, 1], A)qn

which extends by continuity to an isomorphism ψ : q1C([0, 1], A)q1 ⊗ K → B.
(Recall that (qn) is an approximate identity for B.) Now

q1C([0, 1], A)q1 ∼= C([0, 1], q1(0)Aq1(0))
via a unitary equivalence of q1 with a constant projection, and q1(0)Aq1(0)⊗K ∼=
A⊗K. We therefore obtain an isomorphism σ : q1C([0, 1], A)q1 → C([0, 1], A⊗K),
and we can take ϕ = σ ◦ ψ−1.
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Lemma 2.4. Let p1, . . . , pn be mutually orthogonal projections in O∞ ⊗
C(S1). Then there exist mutually orthogonal projections q1, . . . , qn ∈ O∞ and
a unitary z ∈ O∞ ⊗ C(S1) such that z(qj ⊗ 1)z∗ = pj for j = 1, . . . , n.

Proof. By considering p1, . . . , pn, 1−
n∑

j=1

pj , we reduce to the case
n∑

j=1

pj = 1.

Now identify O∞⊗C(S1) with the algebra of continuous functions from S1 to O∞,
and set qj = pj(1). If zj ∈ O∞ ⊗ C(S1) satisfies zjz

∗
j = pj and z∗j zj = qj ⊗ 1,

then the unitary z =
n∑

j=1

zj will satisfy the conclusion of the lemma. It therefore

suffices to prove, for a single projection p ∈ O∞ ⊗ C(S1), that p is Murray-von
Neumann equivalent to p(1)⊗ 1.

Standard methods give a continuous path t 7→ wt of unitaries in O∞, defined
for t ∈ [0, 1], such that w0 = 1 and wtp(1)w∗t = p(exp(2πit)) for all t. Then w1

commutes with p(1), so p(1)w1p(1) is a unitary in p(1)O∞p(1). The unitary group
of this algebra is connected, so there is a continuous path t 7→ ct of unitaries in
p(1)O∞p(1), defined for t ∈ [0, 1], such that c0 = p(1) and c1 = p(1)w1p(1). Set
z(exp(2πit)) = wtp(1)c∗t for t ∈ [0, 1]. Our choices ensure that z is well defined
and continuous, and defines an element z ∈ O∞ ⊗ C(S1) such that zz∗ = p and
z∗z = p(1)⊗ 1.

The following lemma is the analog in our situation of Lemma 6 of [17], itself
a generalization of Lemma 1.7 of [5].

Lemma 2.5. Let D be a unital C∗-algebra, let v ∈ D be unitary, let λ1, . . . , λn

∈ S1 be distinct, and let ε > 0. Let u0 ∈ O∞ be any unitary with sp(u0) = S1.
Then there exist nonzero mutually orthogonal projections q1, . . . , qn ∈ O∞ and uni-
taries w, z ∈ O∞⊗D such that ‖u0⊗v−w‖ < ε and the projections pj = z(qj⊗1)z∗
satisfy pjw = wpj = λjpj.

Proof. It suffices to prove this with D = C(S1) and v given by v(ζ) = ζ
for ζ ∈ S1. (For D and v arbitrary, consider the image of everything under the
homomorphism a⊗ f 7→ a⊗ f(v) from O∞⊗C(S1) to O∞⊗D.) By the previous
lemma, in this case we need only find w with ‖u0 ⊗ v − w‖ < ε and nonzero
orthogonal projections p1, . . . , pn ∈ O∞⊗C(S1) such that pjw = wpj = λjpj ; the
existence of the qj and of z will then be automatic.

Choose nonzero positive continuous functions h1, . . . , hn ∈ C(S1) whose sup-
ports are disjoint and contained in the sets {ζ ∈ S1 : |ζ − λj | < ε0}. We show
below that there is a nonzero projection pj in the hereditary subalgebra Bj of
O∞ ⊗ C(S1) generated by hj(u0 ⊗ v). As in [17], the proof of Lemma 1.7 of [5]
will then show that, if ε0 is chosen sufficiently small, then the unitary part of the
polar decomposition of(

1−
n∑

j=1

pj

)
(u0 ⊗ v)

(
1−

n∑
j=1

pj

)
+

n∑
j=1

λjpj

is the required w.
We now find pj . IdentifyO∞⊗C(S1) with the algebra of continuous functions

from [0, 1] to O∞ which take the same value at 0 and 1, in such a way that v
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becomes v(t) = exp(2πit). Let Ej ⊂ O∞ ⊗ C([0, 1]) be the hereditary subalgebra
of O∞ ⊗ C([0, 1]) generated by hj(u0 ⊗ v), so that Bj = Ej ∩ [O∞ ⊗ C(S1)]. Let
evt : O∞ ⊗ C([0, 1]) → O∞ be evaluation at t. Then evt(Ej) is the hereditary
subalgebra of O∞ generated by evt(hj(u0 ⊗ v)) = hj(exp(2πit)u0). Note that for
every t this subalgebra is nonunital and nonzero. Lemma 2.3 therefore implies
that Ej

∼= O∞ ⊗ C([0, 1])⊗K. Moreover, the special form of the isomorphism in
that lemma shows that there is an automorphism αj of O∞ ⊗ C([0, 1])⊗K such
that the image of Bj is

Cj = {b ∈ O∞ ⊗ C([0, 1])⊗K : b(1) = αj(b(0))}.

It suffices to find a nonzero projection in Cj . Let f ∈ O∞⊗K be any nonzero
projection with [f ] = 0 in K0(O∞ ⊗ K). Then also αj(f) 6= 0 and [αj(f)] = 0
in K0(O∞ ⊗K). So f and αj(f) are homotopic and this homotopy is the desired
nonzero projection in Cj .

Lemma 2.6. Let A be a unital C∗-algebra, let a ∈ A be selfadjoint with
sp(a) ⊂ [α, β], and let n ∈ N. Let b ∈Mn+1(A) be the diagonal matrix

b = diag
(
α, α+

β − α

n
, α+

2(β − α)
n

, . . . , β
)
,

and let a0 = diag(a, 0, . . . , 0). Then there exist a projection p and a unitary u in
Mn+1(A) such that

upu∗ = diag(1, 0, . . . , 0), ‖pb− bp‖ 6
β − α

2n
, upbpu∗ = a0,

and∥∥∥u(1− p)b(1− p)u∗ − diag
(
0, α+

β − α

n
, α+

2(β − α)
n

, . . . , β
)∥∥∥ 6

β − α

n
.

Much more general results are now known, involving homomorphisms from
commutative C∗-algebras in place of selfadjoint elements. (See for example [6].)
But this lemma has the advantage of being explicit (which will make the proof of
the next lemma easier), and most of the work has already been done.

Proof of Lemma 2.6. All but the last of the four conclusions is in Lemma 2.4
of [18]. For the last one, we reduce as there to the case handled in the proof of
that lemma (α = 0, β = 1, A = C(T ) with T ⊂ [0, 1], and a(t) = t). With p(t) as
there, for

t ∈
[ l − 1

n
,
l

n

]
and λ = n

(
t− l − 1

n

)
∈ [0, 1],

and with e being the rank one projection

e(t) =
(

λ −
√
λ(1− λ)

−
√
λ(1− λ) 1− λ

)
∈M2,

a computation shows that

[1−p(t)]b(t)[1−p(t)] = diag
(
0,

1
n
, . . . ,

l − 2
n

)
⊕

( l − λ

n

)
e(t)⊕diag

( l + 1
n

, . . . , 1
)
.
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It is easy to choose u(t) to conjugate this element to

diag
(
0, 0,

1
n
,
2
n
, . . . ,

l − 2
n

,
l − λ

n
,
l + 1
n

, . . . , 1
)
,

which differs by at most 1
n from

diag
(

0,
1
n
,
2
n
,
3
n
, . . . ,

l − 1
n

,
l

n
,
l + 1
n

, . . . , 1
)
.

Definition 2.7. Let A be a unital C∗-algebra, x, y ∈ A. Then we say x
is approximately unitarily equivalent to y if for all ε > 0 there is a unitary c ∈ A
such that ‖cxc∗ − y‖ < ε. If x and y are normal with spectrum contained in S,
this is the same as saying that the two homomorphisms from C(S) to A, given by
applying functional calculus to x and y respectively, are approximately unitarily
equivalent in the usual sense. (See for example Definition 1.1 of [12].)

Lemma 2.8. Let D be a unital C∗-algebra, let v ∈ D be unitary, and let
u0 ∈ O∞ be a unitary with sp(u0) = S1. Then the unitary u0 ⊗ v ∈ O∞ ⊗ D is
approximately absorbing in the following sense. Let e ∈ O∞ be a nonzero projection
with [e] = 0 in K0(O∞), let a ∈ (e ⊗ 1)(O∞ ⊗ D)(e ⊗ 1) be selfadjoint, and let
s ∈ O∞ satisfy ss∗ = 1− e and s∗s = 1. Then (s⊗ 1)(u0 ⊗ v)(s⊗ 1)∗ + exp(ia) is
approximately unitarily equivalent to u0 ⊗ v.

Proof. Let e, a and s as in the statement be given, and let ε > 0. First,
note that we may replace u0 ⊗ v by any other unitary w with ‖u0 ⊗ v −w‖ < 1

3ε,
provided we prove that there is a unitary y with

(2.1) ‖y [(s⊗ 1)w(s⊗ 1)∗ + exp(ia)] y∗ − w‖ < 1
3
ε.

Choose α > ‖a‖ with α/(2π) irrational, choose an integer N > 6α exp(α)/ε,
and define λk = exp(iαk/N) for −N 6 k 6 N . Then choose w, z, and qk for
−N 6 k 6 N following Lemma 2.5, except using 1

3ε for ε. Note that the conclusion
of this lemma will still be satisfied if qk is replaced by any smaller projection. We
may therefore reduce the size of qk so as to have [qk] = 0 in K0(O∞) for all k.

Replacing w by z∗wz changes the unitary equivalence classes of neither w
nor (s⊗ 1)w(s⊗ 1)∗ + exp(ia). Therefore we may in fact assume

(2.2) (qk ⊗ 1)w = w(qk ⊗ 1) = λkqk ⊗ 1

for −N 6 k 6 N .
Define ek = qk for k 6= −N , and write q−N = e−N + f with e−N , f nonzero

projections satisfying [e−N ] = [f ] = 0 in K0(O∞). Observe that the unitary
equivalence class of (s ⊗ 1)w(s ⊗ 1)∗ + exp(ia) is unchanged if, for some unitary
z ∈ O∞, we replace e by zez∗, a by (z ⊗ 1)a(z ⊗ 1)∗, and s by zs. We may
therefore assume that e = e−N . The unitary equivalence class is also unchanged
if we replace s by any other isometry with the same range projection. We may
therefore specifically choose s = 1− e−N − f + t, for some t satisfying tt∗ = f and
t∗t = e−N + f . (Such a t exists because [f ] = [e−N + f ] = 0 in K0(O∞).)
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Define e =
N∑

k=−N

ek. Using (2.2), we may write

(2.3) w =
N∑

k=−N

λk(ek ⊗ 1) + λ−N (f ⊗ 1) + w0,

with w0 a unitary in (1− e− f)O∞(1− e− f)⊗D. Also,

(2.4) (s⊗ 1)w(s⊗ 1)∗ =
N∑

k=−N+1

λk(ek ⊗ 1) + λ−N (f ⊗ 1) + w0.

(The difference from w is that the term λ−N (e−N ⊗ 1) is missing.)
Define

b =
N∑

k=−N

(
αk

N

)
ek ⊗ 1 ∈ (e⊗ 1)(O∞ ⊗D)(e⊗ 1).

Lemma 2.6 yields a projection p, a unitary u, and a selfadjoint element b0, all in
(e⊗ 1)(O∞ ⊗D)(e⊗ 1), such that

upu∗ = e−N , ‖pb− bp‖ 6
α

2N
, upbpu∗ = a,

‖b0 − (1− p)b(1− p)‖ 6
α

N
, and ub0u

∗ =
N∑

k=−N+1

αk

N
ek ⊗ 1.

Since λk = exp(iαk/N), we have

exp(i[upbpu∗ + ub0u
∗]) + λ−N (f ⊗ 1) + w0 = (s⊗ 1)w(s⊗ 1)∗ + exp(ia)

by (2.4). The expression on the left is unitarily equivalent to

exp(i[pbp+ b0]) + λ−N (f ⊗ 1) + w0.

Furthermore, from (2.2) and the definition of b, we have

w = exp(ib) + λ−N (f ⊗ 1) + w0.

We want to prove that there is a unitary y satisfying (2.1), and it is clearly enough
to prove

‖ exp(ib)− exp(i[pbp+ b0])‖ <
1
3
ε.

From the choices in the previous paragraph, we have

‖b− (pbp+ b0)‖ 6 ‖b− [pbp+ (1− p)b(1− p)]‖+ ‖(1− p)b(1− p)− b0‖

6 ‖pb(1− p)‖+ ‖(1− p)bp‖+
α

N
6 2‖pb− bp‖+

α

N
6

2α
N
.

Also clearly ‖b‖, ‖pbp+ b0‖ 6 ‖a‖ < α. So Lemma 2.1 of [18] yields

‖ exp(ib)− exp(i[pbp+ b0])‖ 6
2α exp(α)

N
<

1
3
ε,

as desired. (Note that there are misprints in the proof in [18]: the factor ‖a− b‖
was accidentally dropped halfway through the estimates.)
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3. EXPONENTIAL LENGTH AND RELATED INVARIANTS

In this section, we use the lemmas of the previous section to show that the ex-
ponential length of a tensor product with O∞ can be at most 2π. It follows that
the exponential rank can be at most 2 + ε. A similar argument shows that the C∗
projective length and rank [16] of a tensor product with O∞ can be at most π and
2 + ε respectively, the same as for a purely infinite simple C∗-algebra. As noted
after the theorems, these results are essentially the best possible.

Theorem 3.1. Let D be any C∗-algebra. Then cel(O∞ ⊗D) 6 2π.

Proof. We prove that if u ∈ U0((O∞ ⊗ D)+) with u − 1 ∈ O∞ ⊗ D, and
ε > 0, then there is a unitary path t 7→ c(t) from 1 to u of length less than 2π + ε
and satisfying c(t)− 1 ∈ O∞ ⊗D for all t.

We claim that it suffices to prove this for unitaries of the form 1 ⊗ v with
v ∈ U0(D+) satisfying v − 1 ∈ D. To see this, let ϕ : O∞ ⊗ O∞ → O∞ and
zn ∈ U(O∞) be as in Theorem 0.1. For d ∈ (O∞ ⊗D)+ we then have

lim
n→∞

(zn ⊗ 1)(ϕ⊗ idD)+(1⊗ d)(zn ⊗ 1)∗ = d.

Putting d = u, we see that if 1⊗ u ∈ (O∞ ⊗O∞ ⊗D)+ can be connected to 1 by
a path of the required form, then u ∈ (O∞ ⊗D)+ is a limit of unitaries (namely
(zn ⊗ 1)(ϕ ⊗ idD)+(1 ⊗ u)(zn ⊗ 1)∗) which can be connected to 1 by such paths,
and therefore can itself be connected to 1 by such a path. This proves the claim
(with O∞ ⊗D replacing D).

So let v ∈ U0(D+) satisfy v − 1 ∈ D. If sp(v) 6= S1 then functional calculus
yields a selfadjoint h ∈ D with ‖h‖ 6 2π and exp(ih) = v. So certainly cel(1⊗v) 6
2π. Thus, we may assume sp(v) = S1. Choose a unitary u0 ∈ U0(O∞) with
sp(u0) = S1. (It follows from a result on page 61 of [1] that there is a selfadjoint
a ∈ O∞ with sp(a) = [0, 1]. Take u0 = exp(2πia).) Then u0 ⊗ v ∈ U0(O∞ ⊗D+).
We claim that cel(u0 ⊗ v) 6 π, in the algebra O∞ ⊗D+.

Given this claim, we connect 1⊗ v to 1 by a path t 7→ c(t) of length at most
2π + ε and with c(t) − 1 ∈ O∞ ⊗D, as follows. Let π : O∞ ⊗D+ → O∞ be the
homomorphism induced by the standard mapD+ → C, and let ι : O∞ → O∞⊗D+

be the homomorphism ι(a) = a⊗ 1 induced by the standard map C → D+. Since
cel(u0 ⊗ v) 6 π, there is a unitary path t 7→ w(t) in O∞ ⊗ D+ with length
l(w) < π + 1

2ε and with w(0) = 1 and w(1) = u0 ⊗ v. Now define

c(t) = w(t)(ι ◦ π)(w(t)∗).

Lemma 2.2 implies that l(c) < 2π+ε. It is immediate to check that π(c(t)) = 1 for
all t, which implies that c(t) ∈ (O∞ ⊗D)+. Obviously c(0) = 1. Since v − 1 ∈ D,
we have π(1⊗ v) = 1, and thus π(u0⊗ v) = u0. This implies that c(1) = 1⊗ v. So
c is the required path.

We now prove the claim. We do this by showing that for all ε > 0 there is a
selfadjoint h ∈ O∞⊗D+ such that ‖h‖ 6 π and ‖ exp(ih)−u0⊗ v‖ < ε. Let α 7→
y(α) be any continuous unitary path in O∞⊗D+ with y(0) = 1 and y(1) = u0⊗v.
Choose 0 = α0 < α1 < · · · < αn = 1 such that ‖y(αj) − y(αj−1)‖ < 1

3ε, and set
yj = y(αj). Thus y0 = 1 and yn = u0 ⊗ v. Choose a nonzero projection e ∈ O∞
with [e] = 0 in K0(O∞), and an isometry s with s∗s = 1− e. Choose a projection
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f0 ∈ O∞ with [f0] = −2n[1] in K0(O∞), and define f = f0 ⊕ 12n ∈ M2n+1(O∞).
Then there is a partial isometry t ∈ M2n+1(O∞) with t∗t = f and tt∗ = e ⊕ 0.
Using s and t, we can construct an isomorphism

ψ : (f ⊕ 1)M2n+2(O∞)(f ⊕ 1) → O∞
such that ψ(f) = e and ψ(0⊕ b) = sbs∗ for b ∈ O∞. Define

y = (f0 ⊗ 1)⊕ y0 ⊕ y∗0 ⊕ y1 ⊕ y∗1 ⊕ · · · ⊕ yn−1 ⊕ y∗n−1 ∈ fM2n+1(O∞)f ⊗D.

Then y is unitary, and, by Corollary 5 of [17], y is a limit of elements exp(ia) with a
selfadjoint. Lemma 2.8 therefore shows that yn = u0⊗v is approximately unitarily
equivalent to ψ(y⊕yn). Choose a unitary z such that ‖zψ(y⊕yn)z∗−u0⊗v‖ < 1

3ε.
Since ‖yj − yj−1‖ < 1

3ε we have

‖y ⊕ yn − [(f0 ⊗ 1)⊕ y0 ⊕ y∗1 ⊕ y1 ⊕ y∗2 ⊕ · · · ⊕ yn−1 ⊕ y∗n ⊕ yn]‖ < 1
3
ε.

Since y0 = 1, we obtain, again from Corollary 5 of [17], a selfadjoint element
h0 ∈ (f ⊕ 1)M2n+2(O∞)(f ⊕ 1)⊗D such that

‖ exp(ih0)− [(f0 ⊗ 1)⊕ y0 ⊕ y∗1 ⊕ y∗2 ⊕ · · · ⊕ yn−1 ⊕ y∗n ⊕ yn]‖ < 1
3
ε.

From the proof it is clear that we may require ‖h0‖ 6 π. Then ‖ exp(ih0)−y⊕y0‖ <
2
3ε. Setting h = zψ(h0)z∗, we get ‖ exp(ih)− u0 ⊗ v‖ < ε.

Corollary 3.2. Let A be any separable nuclear purely infinite simple C∗-
algebra, and let D be any C∗-algebra. Then

cel(A⊗D) 6 2π and cer(A⊗D) 6 2 + ε.

Proof. We have O∞⊗A ∼= A ([10]; Theorem 3.15 of [11]). So cel(A⊗D) 6 2π
follows from the theorem. Given this, in the unital case cer(A⊗D) 6 2+ε follows
from Corollary 2.7 of [22]. Since scalars have logarithms in the center of the
algebra, the same argument also proves the nonunital case.

The upper bounds in this result can’t be improved, except possibly by drop-
ping the ε in the estimate on cer(A ⊗D). It was shown in Proposition 10 of [17]
that cer(C(S1)⊗O2) > 2, whence also cel(C(S1)⊗O2) > 2π.

Essentially the same methods enable us to estimate the C∗ projective length.

Theorem 3.3. Let D be any C∗-algebra. Then cpl(O∞ ⊗D) 6 π.

Proof. Using the reasoning of the second paragraph of the proof of Theo-
rem 3.1, we see that it suffices to show that if p, q ∈ D are homotopic projections
and ε > 0, then the projections 1 ⊗ p, 1 ⊗ q ∈ O∞ ⊗ D can be connected by a
continuous path of projections of length less π + ε.

Since p is homotopic to q, there is a unitary v ∈ U0(D+) such that vpv∗ = q.
If sp(v) 6= S1, then we may replace v by λv for a suitable λ ∈ S1 so as to have
−1 /∈ sp(v). Then cel(v) 6 π, so by Theorem 1.9 of [16] the rectifiable distance
from p to q in D is at most π. Therefore the same is true of 1⊗ p and 1⊗ q.

If sp(v) = S1, choose u ∈ U0(O∞) with sp(u0) = S1 as in the proof of
Theorem 3.1. The claim proved in the last three paragraphs of that proof shows
that cel(u0 ⊗ v) 6 π. Since (u0 ⊗ v)(1⊗ p)(u0 ⊗ v)∗ = 1⊗ q, it again follows from
Theorem 1.9 of [16] that the rectifiable distance from 1⊗p to 1⊗q is at most π.
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Corollary 3.4. Let A be any separable nuclear purely infinite simple C∗-
algebra, and let D be any C∗-algebra. Then

cpl(A⊗D) 6 π and cpr(A⊗D) 6 2 + ε.

Proof. Use Theorem 2.4 (1) of [16] in place of [22] in the proof of Corol-
lary 3.2.

Again, the upper bounds in this result can’t be improved, except possibly by
dropping the ε in the estimate on cpr(A ⊗ D). Even for a purely infinite simple
C∗-algebra A, we have cpl(A) = π and cpr(A) = 2. (See Theorem 3.3 of [16].)
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