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Abstract. In this paper we extend results on Fredholmness of singular in-
tegral operators with piecewise continuous coefficients in reflexive rearrange-
ment-invariant spaces X(Γ) with nontrivial Boyd indices αX , βX ([22]) to
the weighted case. Suppose a weight w belongs to the Muckenhoupt classes
A 1

αX

(Γ) and A 1
βX

(Γ). We prove that these conditions guarantee the bound-

edness of the Cauchy singular integral operator S in the weighted rearrange-
ment-invariant space X(Γ, w). Under a “disintegration condition” we con-
struct a symbol calculus for the Banach algebra generated by singular inte-
gral operators with matrix-valued piecewise continuous coefficients and get
a formula for the index of an arbitrary operator from this algebra. We give
nontrivial examples of spaces, for which this “disintegration condition” is sat-
isfied. One of such spaces is a Lebesgue space with a general Muckenhoupt
weight over an arbitrary Carleson curve.
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1. INTRODUCTION

The study of singular integral operators (SIO’s) with piecewise continuous (PC)
coefficients in Lebesgue spaces Lp(Γ, w) with power (Khvedelidze) weights w over
Lyapunov curves Γ had been started in the fifties by B.V. Khvedelidze and was
continued in the sixties by H. Widom, I.B. Simonenko, I. Gohberg and N. Krupnik,
and others. The history of this topic and corresponding references can be found,
e.g., in [4], [14], and [25]. The main result of the Fredholm theory for SIO’s
with PC coefficients can be formulated in the geometric language as following.
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The local spectra of SIO’s with PC coefficients have the shape of circular arcs
depending on the exponents of Lebesgue spaces and power weights.

About ten years ago I.M. Spitkovsky considered SIO’s with PC coefficients
in Lebesgue spaces Lp(Γ, w) with arbitrary Muckenhoupt weights w over smooth
curves Γ ([36]). In that case the spectra have the shape of horns depending on
the exponent p of the space and on the indices of powerlikeness (in terminol-
ogy of [4]) of Muckenhoupt weights. In the middle of nineties A. Böttcher and
Yu.I. Karlovich had accomplished the Fredholm theory for the algebra of SIO’s
with PC coefficients in Lebesgue spaces with general Muckenhoupt weights over
arbitrary Carleson curves ([4]). In this general case the local spectra have the
shape of so-called leaves, which are “massive” simply connected sets. So, if we
consider a general Muckenhoupt weight or an arbitrary Carleson curve instead of
a Khvedelidze weight or a Lyapunov curve, then we get massive local spectra of
SIO’s with PC coefficients.

The main tools of investigation in [4] are local principles, techniques of the
Wiener-Hopf factorization and a theory of submultiplicative functions associated
with curves and weights. Note that there is another approach to studying SIO’s
in weighted Lebesgue spaces. This approach is based on the application of the
Mellin transform and techniques of pseudodifferential and limit operators (see [5],
[6], [33] and also [4], Section 10.6). With the help of these methods one can study
SIO’s when the coefficients, the Carleson curve and the Muckenhoupt weight are
slowly oscillating. But, unfortunately, these methods do not allow yet to consider
the general case of arbitrary Carleson curves and Muckenhoupt weights.

The passage from Lebesgue spaces to more general rearrangement-invariant
spaces (briefly r.i. spaces) also evokes the appearance of massive spectra for SIO’s.
Orlicz spaces are the brightest nontrivial example of r.i. spaces. Note that the
scale of Orlicz spaces contains the Lebesgue spaces. In [17] and [20], the author
showed that in the case of arbitrary reflexive Orlicz spaces over Lyapunov curves
the local spectra are horns depending on the interpolation characteristics of the
spaces (the Boyd indices). In the case of logarithmic Carleson curves these horns
metamorphose into spiralic horns depending on the Boyd indices as well as the
spirality indices of curves ([18]).

Recently the author found a so-called disintegration condition connecting
the Boyd indices of reflexive Orlicz spaces and the spirality indices ([19]). This
condition implies that the local spectra have the shape of logarithmic leaves. The
results of [19] were extended to the case of reflexive r.i. spaces of fundamental
type with nontrivial Boyd indices ([22]). Note that the results of [19] and [22]
generalize the earlier results of the author ([18], the case of arbitrary reflexive
Orlicz spaces over logarithmic Carleson curves) and the results of A. Böttcher and
Yu.I. Karlovich ([3], the case of Lebesgue spaces over arbitrary Carleson curves).

As we can see from the above mentioned results, general r.i. spaces, or gen-
eral Muckenhoupt weights, or general Carleson curves lead to massive local spectra
of SIO’s with PC coefficients. In this paper we consider these three factors to-
gether. More precisely, we study the Fredholmness of SIO’s with PC coefficients
in weighted rearrangement-invariant spaces (briefly w.r.i. spaces) over Carleson
curves. In this paper we extend results and ideas of [4] and [22] and continue the
investigation of SIO’s in w.r.i. spaces, which was started in [23].

The paper is organized as follows. Section 2 contains necessary preliminaries
on w.r.i. spaces, the Boyd indices αX , βX ([7], [8]) and the Zippin indices pX , qX
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([37]) of r.i. spaces. In Subsection 2.2 we formulate necessary conditions for the
boundedness of the Cauchy singular integral operator S in w.r.i. spaces X(Γ, w).

In Section 3 we consider regular and submultiplicative functions associated
with spaces, curves, and weights. In Subsections 3.1 and 3.2 we formulate defini-
tions of spirality indices of the curve ([4], Section 1.6) and indices of powerlikeness
of the weight ([4], Section 3.6). Also we give examples of curves and weights with
distinct indices. In Subsection 3.3 we study four indicator functions αt, βt (see [4],
Section 3.5) and α∗t , β

∗
t (cf. [23], Subsection 7.2). Their properties and relations

between them follow from the results of [22], Section 5, [23], Section 2 and [4],
Chapters 1 and 3. In Subsection 3.4 we formulate some “disintegration condition”
of indicator functions:

α∗t (Im γ) = αX + αt(Im γ), β∗t (Im γ) = βX + βt(Im γ)

for every γ ∈ C such that a weight |(τ − t)γ |w(τ) belongs to a local analogue
AX(Γ, t) of Muckenhoupt’s type class. In the nonweighted case this condition
follows from the disintegration condition given in [19] and [22].

In Section 4 we investigate singular integral operators associated with the
Riemann boundary value problem. In Subsection 4.1 we formulate two general
theorems which are the main tools for further studies of the SIO’s with PC co-
efficients: an analogue of Simonenko’s factorization theorem (see [34], [35]) and a
local principle. In Subsection 4.2 we formulate necessary conditions for the factor-
izability of local representatives gt,γ of PC coefficients in terms of the indicator
functions α∗t and β∗t . In Subsection 4.3 we prove that if a weight w belongs to
the Muckenhoupt classes A 1

αX

(Γ) and A 1
βX

(Γ), then the operator S is bounded
in a w.r.i. space X(Γ, w). For such weights we obtain sufficient conditions for the
factorizability of gt,γ in terms of the indicator functions αt, βt and Boyd indices.
In Subsection 4.4, using results of Subsections 4.1–4.3, we get a Fredholm criterion
for SIO’s with PC coefficients under the disintegration condition in a reflexive w.r.i
space generated by an r.i. space of fundamental type X(Γ) with nontrivial Boyd
indices αX , βX and a weight w belonging to the Muckenhoupt classes A 1

αX

(Γ) and
A 1

βX

(Γ). In Subsection 4.5 we reformulate this result in the geometric language,
that is, in terms of essential spectrums and leaves.

In Section 5 we construct a symbol calculus for the Banach algebra U of SIO’s
with matrix-valued piecewise continuous coefficients using the results of Section 4.
The symbol calculus is obtained with the help of the Allan-Douglas local principle
(see, e.g., [4], Chapter 8) and the two projections theorems (see [11], [15] and also
[4], Chapter 8). Finally, we give a formula for the index of an arbitrary operator
A ∈ U in terms of its symbol.
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2. SPACES, CURVES, AND WEIGHTS

2.1. Weighted rearrangement-invariant spaces. For a general discussion
of r.i. spaces, see C. Bennett and R. Sharpley ([1]), S.G. Krein, Ju.I. Petunin, and
E.M. Semenov ([28]), J. Lindenstrauss and L. Tzafriri ([30]). All basic facts used
are collected in [22], Sections 1 and 2.

Let Γ be a Jordan (i.e., homeomorphic to a circle) rectifiable curve with
the Lebesgue length measure |dτ |. Let X(Γ) be an r.i. space over Γ and X ′(Γ)
its associate space. A function w : Γ → [0,∞] is referred to as a weight if w is
measurable and the set w−1({0,∞}) has measure zero. Let X(Γ, w) be the set of
all measurable functions f such that fw ∈ X(Γ), which is equipped with the norm

‖f‖X(Γ,w) := ‖fw‖X(Γ).

Such a normed space X(Γ, w) is called a weighted rearrangement-invariant space
(or, briefly, w.r.i. space). It is not difficult to see that if w ∈ X(Γ) and w−1 ∈
X ′(Γ), then X(Γ, w) is a Banach function space (for the definition, see [1], Sec-
tion 1.1), and its associate space is the Banach function space X ′(Γ, w−1) with
the norm ‖f‖X′(Γ,w−1) = ‖fw−1‖X′(Γ). From the Hölder inequality for Banach
function spaces it follows that if w ∈ X(Γ) and w−1 ∈ X ′(Γ), then

(2.1) L∞(Γ) ⊂ X(Γ, w) ⊂ L1(Γ).

2.2. Generalization of the Muckenhoupt condition. The Cauchy singular
integral of a function f ∈ L1(Γ) is defined by

(2.2) (Sϕ)(t) := lim
R→0

1
πi

∫
Γ\Γ(t,R)

f(τ) dτ
τ − t

, t ∈ Γ,

where Γ(t, R) := {τ ∈ Γ : |t−τ | < R} is the portion of the curve Γ from the disk of
radius R centered at the point t ∈ Γ. A nice discussion of the problem concerning
the existence of the Cauchy singular integral is in Dynkin’s survey ([9]). Recall
that the Cauchy singular integral exists for almost all t ∈ Γ. In this subsection we
formulate necessary condition for the boundedness of the operator S in weighted
rearrangement-invariant spaces.

Fix t ∈ Γ. For a weight w : Γ → [0,∞], put

Bt,R(w) :=
1
R
‖wχΓ(t,R)‖X(Γ)‖w−1χΓ(t,R)‖X′(Γ),

where χΓ(t,R) is the characteristic function of the portion Γ(t, R). Consider the
following classes of weights (cf. [2]):

AX(Γ, t) :=
{
w : sup

R>0
Bt,R(w) <∞

}
, AX(Γ) :=

{
w : sup

t∈Γ
sup
R>0

Bt,R(w) <∞
}
.

Obviously, AX(Γ) ⊂ AX(Γ, t) for each t ∈ Γ. If X(Γ) is a Lebesgue space
Lp(Γ), 1 < p < ∞, then AX(Γ) is the Muckenhoupt class Ap(Γ), i.e., the class
of weights w such that

sup
t∈Γ

sup
R>0

(
1
R

∫
Γ(t,R)

wp(τ)|dτ |
)1/p( 1

R

∫
Γ(t,R)

w−q(τ)|dτ |
)1/q

<∞,
1
p

+
1
q

= 1.
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For a detailed discussion of Muckenhoupt weights on curves, see, e.g., [4]. For
different generalizations of the Muckenhoupt class Ap(Γ) in settings of Orlicz and
r.i. spaces, see, e.g., [2], [12], [26].

Using Hölder’s inequality, it is easy to see that w ∈ AX(Γ, t) implies

(2.3) CΓ,t := sup
R>0

|Γ(t, R)|
R

<∞.

We say that Γ is a locally Carleson curve at the point t ∈ Γ, if (2.3) holds. Analo-
gously, if w ∈ AX(Γ), then

(2.4) CΓ := sup
t∈Γ

CΓ,t <∞.

A rectifiable curve Γ is said to be Carleson curve if (2.4) is satisfied. In this case
the constant CΓ,t (respectively, CΓ) is referred to as the local Carleson constant
at the point t (respectively, the (global) Carleson constant).

Theorem 2.1. ([22], Theorem 3.2, Lemma 3.3) If the Cauchy singular inte-
gral generates a bounded linear operator S in a w.r.i. space X(Γ, w), then w ∈ X(Γ)
and w−1 ∈ X ′(Γ). Moreover, w ∈ AX(Γ).

It is well known that for Lebesgue spaces Lp(Γ), 1 < p < ∞, the reverse
implication is also true (see, e.g., [4], Theorem 4.15). So, the operator S is bounded
in a weighted Lebesgue space Lp(Γ, w), 1 < p <∞, if and only if w belongs to the
Muckenhoupt class Ap(Γ).

We need the following useful property of weights from the introduced gener-
alization of the Muckenhoupt class.

Lemma 2.2. (i) If w1, w2 ∈ AX(Γ, t), then for every θ ∈ [0, 1] we have
wθ

1w
1−θ
2 ∈ AX(Γ, t).
(ii) If w1, w2 ∈ AX(Γ), then for every θ ∈ [0, 1] we have wθ

1w
1−θ
2 ∈ AX(Γ).

Proof. (i) Suppose w1, w2 ∈ AX(Γ, t), then w1, w2 ∈ X(Γ) and w−1
1 , w−1

2 ∈
X ′(Γ). From [28], Section 2.2, Property 6 it follows that for every θ ∈ [0, 1] and
R > 0,

‖wθ
1w

1−θ
2 χΓ(t,R)‖X(Γ) 6 ‖w1χΓ(t,R)‖θ

X(Γ)‖w2χΓ(t,R)‖1−θ
X(Γ),

‖w−θ
1 w

−(1−θ)
2 χΓ(t,R)‖X′(Γ) 6 ‖w−1

1 χΓ(t,R)‖θ
X′(Γ)‖w

−1
2 χΓ(t,R)‖1−θ

X′(Γ).

Consequently, Bt,R

(
wθ

1w
1−θ
2

)
6

[
Bt,R(w1)

]θ[
Bt,R(w2)

]1−θ for θ∈ [0, 1] and R > 0.
From the latter inequality we obtain wθ

1w
1−θ
2 ∈ AX(Γ, t). Statement (ii) is proved

analogously.

2.3. Submultiplicative functions. Following [4], Section 1.4, we say that a
function % : (0,∞) → (0,∞] is regular if it is bounded in some open neighborhood
of the unity. A function % : (0,∞) → (0,∞] is said to be submultiplicative if
%(x1x2) 6 %(x1)%(x2) for all x1, x2 ∈ (0,∞). It is easy to show that if % is
regular and submultiplicative, then % is bounded away from zero in some open
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neighborhood of the point 1. Moreover, in this case %(x) is finite for all x ∈ (0,∞).
Given a regular submultiplicative function % : (0,∞) → (0,∞), one defines

α(%) := sup
x∈(0,1)

log %(x)
log x

, β(%) := inf
x∈(1,∞)

log %(x)
log x

.

Clearly, −∞ < α(%) and β(%) < +∞. The quantities α(%) and β(%) are called the
lower and upper indices of the regular submultiplicative function %, respectively.

Theorem 2.3. (see, e.g., [28], Chapter 2, Theorem 1.3 or [4], Theorem 1.13)
If % : (0,∞) → (0,∞) is regular and submultiplicative, then

α(%) = lim
x→0

log %(x)
log x

, β(%) = lim
x→∞

log %(x)
log x

,

and −∞ < α(%) 6 β(%) < +∞.

2.4. Boyd and Zippin indices. The idea of using indices of some submulti-
plicative functions for the description of properties of Orlicz spaces goes back to
W. Matuszewska and W. Orlicz, 1960. Matuszewska-Orlicz indices were general-
ized by D.W. Boyd and M. Zippin to the case of rearrangement-invariant spaces
(for the history and precise references, see [31]).

Let X(Γ) be an r.i. space over Γ generated by a rearrangement-invariant
function norm ρ. By the Luxemburg representation theorem ([1], Chapter 2, The-
orem 4.10), there is a unique rearrangement-invariant function norm ρ over [0, |Γ|]
with the Lebesgue measure m such that ρ(f) = ρ(f∗) for all non-negative and a.e.
finite measurable functions f defined on Γ. Here f∗ denotes the non-increasing
rearrangement of f (see e.g. [1], p. 39). The r.i. space over the measure space
([0, |Γ|],m) generated by ρ is called the Luxemburg representation of X(Γ) and is
denoted by X. For each x > 0, let Ex denote the dilation operator defined on
X by

(Exf)(t) :=
{
f(xt), xt ∈ [0, |Γ|]
0, xt 6∈ [0, |Γ|] , t ∈ [0, |Γ|].

For every x > 0, the operator E1/x is bounded on X ([1], p. 165), and we
denote its norm by

hX(x) := ‖E1/x‖B(X),

where B(X) is the Banach algebra of the bounded linear operators on X.
For each t ∈ [0, |Γ|], let E be a measurable subset of Γ with |E| = t, χE the

characteristic function of E, and let

ϕX(t) := ‖χE‖X(Γ).

The function ϕX so defined is called the fundamental function of X(Γ). Given the
fundamental function ϕX of X(Γ), put

MX(x) := lim sup
t→0

ϕX(xt)
ϕX(t)

, x ∈ (0,∞).

The functions hX ,MX are non-decreasing, regular and submultiplicative (see [1],
Section 3.5 and [31], Section 4). The indices of the submultiplicative function hX
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are called the Boyd indices of the r.i. space X ([7], [8]), and the indices of the
submultiplicative function MX are called the Zippin (or fundamental) indices of
the r.i. space X ([37]). The Boyd and Zippin indices of the r.i. space X will be
denoted by

αX := α(hX), βX := β(hX); pX := α(MX), qX := β(MX),

respectively. Generally, one can prove (see, e.g., [31], Section 4) that

(2.5) 0 6 αX 6 pX 6 qX 6 βX 6 1.

An r.i. space X(Γ) is said to be of fundamental type ([10]) if its Boyd and Zippin
indices coincide:

αX = pX , βX = qX .

For the Lebesgue spaces Lp(Γ), 1 6 p 6 ∞, all indices are equal to 1/p. Less trivial
examples of r.i. spaces of fundamental type are Orlicz spaces ([10] and [31]).

Recall the definition of Orlicz spaces (see, e.g., [1], [27], [31]). A convex and
continuous function Φ : [0,∞) → [0,∞), for which Φ(0) = 0, Φ(t) > 0 for t > 0,
and

lim
t→0

Φ(t)
t

= lim
t→∞

t

Φ(t)
= 0,

is called an N -function. For a measurable function f : Γ → C define the functional

NΦ(f) :=
∫
Γ

Φ(|f(τ)|)|dτ |.

The set of all measurable functions f , for which there exists a λ = λ(f) > 0 such
that NΦ(f/λ) <∞, is called the Orlicz space. This space is denoted by LΦ(Γ).

Example 2.4. Let k > 0 and p > 1 +
√

2k. Set

m :=

[
1
2π

log
k
√

2
p− 1− k

√
2

]
+ 1,

where [r] denotes the integral part of r ∈ R. The N -function

Φ(t) :=
{
tp, t ∈ [0, exp(exp(2πm))],
tp+k sin(log log t), t ∈ (exp(exp(2πm)),∞),

generates the Orlicz space LΦ(Γ) with the Boyd indices

αLΦ =
1

p+
√

2k
, βLΦ =

1
p−

√
2k
.

This is a modification of an example given by K. Lindberg ([29]; see also [32],
Chapter 11).

We will say that the Boyd indices are nontrivial if

0 < αX and βX < 1.

In the case of Orlicz spaces these inequalities are equivalent to the reflexivity of
the space (see, e.g., [10], Theorem 2.2, [18], Theorem 2.4 and [31]). Note that there
are r.i. spaces for which the Boyd and Zippin indices do not coincide, that is, there
exist r.i. spaces of non-fundamental type (see [31] and the references therein).
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3. SUBMULTIPLICATIVE FUNCTIONS ASSOCIATED

WITH SPACES, CURVES, AND WEIGHTS

3.1. Spirality indices. In this subsection we mainly follow [4], Chapter 1. Let
Γ be a Jordan rectifiable curve. Fix t ∈ Γ. We then have

τ − t = |τ − t|ei arg(τ−t), τ ∈ Γ \ {t},

and arg(τ − t) may be chosen to be a continuous function of τ ∈ Γ \ {t}.
Let dt = max

τ∈Γ
|τ − t| and R ∈ (0, dt]. For a continuous function ψ : Γ \ {t} →

(0,∞), define the function (see [4], Chapter 1):

(Wtψ)(x) := lim sup
R→0

max
τ∈Γ

|τ−t|=xR

ψ(τ)

min
τ∈Γ

|τ−t|=R

ψ(τ)
, x ∈ (0,∞).

Consider the continuous function ηt : Γ \ {t} → (0,∞) defined by ηt(τ) :=
e− arg(τ−t). Using the local Carleson constant CΓ,t instead of the Carleson constant
CΓ we obtain the following local version of [4], Lemmas 1.15–1.17.

Lemma 3.1. If Γ is a locally Carleson curve at t ∈ Γ, then the function Wtηt

is regular and submultiplicative.

Under the assumptions of Lemma 3.1, in view of Theorem 2.3, there exist
the spirality indices of the curve Γ at the point t ∈ Γ:

δ−t := α(Wtηt), δ+t := β(Wtηt).

Let Γ be a locally Carleson curve at t ∈ Γ and

(3.1) arg(τ − t) = −δt log |τ − t|+ O(1), τ → t

where δt ∈ R. One can prove (see [4], Chapter 1) that in this case δ−t = δ+t = δt.
A Carleson curve Γ is said to be a logarithmic Carleson curve if it satisfies (3.1)
at each point t ∈ Γ. The simplest examples of logarithmic Carleson curves are
piecewise smooth curves with corners and cusps. For these curves, δt ≡ 0.

Example 3.2. (see [4], Section 1.6) Define arcs Γ1 and Γ2 by

Γ1 := {t} ∪ {τ ∈ C : τ = t+ reiϕ(r), 0 < r 6 1},
Γ2 := {t} ∪ {τ ∈ C : τ = t+ rei(ϕ(r)+b(r)), 0 < r 6 1},

where ϕ(r) = h(log(− log r))(− log r), h(x) = δ + µ sinλx with δ, µ, λ, x ∈ R, the
function b satisfies the following conditions: 0 < b(r) < 2π for r ∈ (0, 1) and
b ∈ C(0, 1] ∩ C1(0, 1), the function rb′(r) is bounded on (0, 1). Then the curve
Γ = Γ1 ∪ Γ2 has the following spirality indices at t:

δ−t = δ − |µ|
√
λ2 + 1, δ+t = δ + |µ|

√
λ2 + 1.
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3.2. Indices of powerlikeness. Let w : Γ → [0,∞] be a weight such that
logw ∈ L1(Γ(t, R)) for every R ∈ (0, dt]. For every x ∈ (0,∞), consider the
function (see [4], Chapter 3):

(Vtw)(x) :=lim sup
R→0

exp
(

1
|Γ(t, xR)|

∫
Γ(t,xR)

logw(τ)|dτ |− 1
|Γ(t, R)|

∫
Γ(t,R)

logw(τ)|dτ |
)
.

Lemma 3.3. If w ∈ AX(Γ, t), then the function Vtw is regular and submul-
tiplicative.

This statement follows from [23], Lemma 1.6 (a) and [4], Lemmas 3.2 (a)
and 3.5 (a).

Under the assumptions of Lemma 3.3, in view of Theorem 2.3, for the weight
w, there exist the indices of powerlikeness:

µt := α(Vtw), νt := β(Vtw).

Clearly, for the power weight w(τ) = |τ − t|λt , indices of powerlikeness equal
µt = νt = λt.

Example 3.4. Let Γ be the curve as in Example 3.2. Define a weight w
on the curve Γ by w(τ) = ev(|τ−t|) where v(r) = g(log(− log r))(− log r), g(x) =
λ+ ε sin(ηx), and λ, ε, η, x ∈ R. Then indices of powerlikeness of w at t ∈ Γ equal

µt = λ− |ε|
√
η2 + 1, νt = λ+ |ε|

√
η2 + 1.

Moreover, if 1 < p 6 q < ∞ and 0 < 1/q + µt 6 1/p + νt < 1, then w belongs to
the Muckenhoupt classes Ap(Γ) and Aq(Γ).

This result follows from [4], Examples 3.24–3.28.

3.3. Indicator functions. Let Γ be a locally Carleson curve at t ∈ Γ. Put
ηt(τ) := e− arg(τ−t), where τ ∈ Γ \ {t}. From [4], Lemmas 1.15, 1.16 and Proposi-
tion 3.1 we see that the function Wtη

x
t is regular and submultiplicative and

(3.2)
α0

t (x) := α(Wtη
x
t ) = min{δ−t x, δ+t x},

β0
t (x) := β(Wtη

x
t ) = max{δ−t x, δ+t x}.

Consider the portion of the curve Γ in the annulus ∆(t, R) := Γ(t, R) \ Γ(t, R/2).
Let w : Γ → [0,∞] be a weight such that wχ∆(t,R) ∈ X(Γ) and w−1χ∆(t,R) ∈ X ′(Γ)
for every R ∈ (0, dt]. Define the following function (see [22]):

(Qtw)(x) := lim sup
R→0

‖wχ∆(t,xR)‖X(Γ)‖w−1χ∆(t,R)‖X′(Γ)

|∆(t, R)|
, x ∈ (0,∞).

For a complex number γ ∈ C, we define a continuous function ϕt,γ on
Γ \ {t} by

ϕt,γ(τ) := |(τ − t)γ | = |τ − t|Re γe−Im γ arg(τ−t) = |τ − t|Re γ(ηt(τ))Im γ .
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Suppose w ∈ AX(Γ, t). By analogy with [22], Lemma 7.2 and taking into
account [22], Lemma 5.2, one can prove that for every γ ∈ C the functionQt(ϕt,γw)
is regular and submultiplicative,

(3.3)
α(Qt(ϕt,γw)) = Re γ + α(Qt(η

Im γ
t w)),

β(Qt(ϕt,γw)) = Re γ + β(Qt(η
Im γ
t w)).

From [23], Lemma 1.6 (a) and [4], Corollary 3.18 it follows that for every γ ∈ C
the function Vt(ϕt,γw) is regular and submultiplicative,

(3.4)
α(Vt(ϕt,γw)) = Re γ + α(Vt(η

Im γ
t w)),

β(Vt(ϕt,γw)) = Re γ + β(Vt(η
Im γ
t w)).

Hence, in view of Theorem 2.3, the following indicator functions are well-defined
for every x ∈ R:

αt(x) = α(Vt(ηx
t w)), βt(x) = β(Vt(ηx

t w)),
α∗t (x) = α(Qt(ηx

t w)), β∗t (x) = β(Qt(ηx
t w)).

Lemma 3.5. For every x, y ∈ R we have:
(i) αt(x) + α0

t (y) 6 αt(x+ y) 6 min{αt(x) + β0
t (y), βt(x) + α0

t (y)},
βt(x) + β0

t (y) > βt(x+ y) > max{αt(x) + β0
t (y), βt(x) + α0

t (y)};
(ii) α∗t (x) + α0

t (y) 6 α∗t (x+ y) 6 min{α∗t (x) + β0
t (y), β∗t (x) + α0

t (y)},
β∗t (x) + β0

t (y) > β∗t (x+ y) > max{α∗t (x) + β0
t (y), β∗t (x) + α0

t (y)};
(iii) α∗t (x) 6 min{pX + βt(x), qX + αt(x)},

β∗t (x) > max{pX + βt(x), qX + αt(x)};
(iv) pX + µt 6 α∗t (0) 6 β∗t (0) 6 qX + νt.

Proof. Statement (i) follows from [23], Lemma 1.6 (a) and [4], Lemma 3.17
which is applied for the weights w := ηx

t w and ϕ := ηy
t . Statement (ii) follows from

[22], Lemmas 7.3(c) and 5.2. Statements (iii) and (iv) follow from Theorems 2.6
and 2.7 of [23], respectively, and from [22], Lemma 5.2.

Lemma 3.6. The functions αt and α∗t are concave, the functions βt and β∗t
are convex. In particular, these four functions are continuous on the whole R.

Proof. The concavity of αt and the convexity of βt is proved in [4], Propo-
sition 3.20. The concavity of α∗t and the convexity of β∗t is proved by analogy.
Here we essentially use [28], Section 2.2, Property 6 and argue as in the proof of
Lemma 2.2.

3.4. Disintegration condition. Given w ∈ AX(Γ, t) we define the indicator
set at t ∈ Γ by
(3.5) Nt :=

{
γ ∈ C : ϕt,γw ∈ AX(Γ, t)

}
.

Obviously, the indicator set is nonempty. From Lemma 2.2 it follows that the set
Nt is convex. We say that the indicator functions αt, βt and α∗t , β

∗
t satisfy the

disintegration condition (cf. [23], Section 7.2), if for every γ ∈ Nt,
(3.6) α∗t (Im γ) = αX + αt(Im γ), β∗t (Im γ) = βX + βt(Im γ).

If w = 1, then from [4], Proposition 3.23 it follows that αt(x) = α0
t (x) and

βt(x) = β0
t (x) for every x ∈ R. Hence, in the case w = 1 the disintegration

condition from [19] and [22] implies the disintegration condition considered here.
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Lemma 3.7. If the indicator functions αt, βt and α∗t , β
∗
t satisfy the disinte-

gration condition, then αX = pX and βX = qX .

Proof. Since w ∈ AX(Γ, t), conclude that 0 ∈ Nt due to (3.5). From Lem-
ma 3.5 (iv) and the disintegration condition we obtain

pX + µt 6 α∗t (0) = αX + αt(0) = αX + µt,

qX + νt > β∗t (0) = βX + βt(0) = βX + νt.

Hence, pX 6 αX 6 βX 6 qX . This and (2.5) imply αX = pX and βX = qX .

Lemma 3.8. If X(Γ) is an r.i. space of fundamental type and one of the
following two conditions is fulfilled:

(i) pX = qX ,
(ii) αt(Im γ) = βt(Im γ) for every γ ∈ Nt,

then the indicator functions satisfy the disintegration condition.

Proof. Due to [23], Theorem 2.7 and taking into account [22], Lemma 5.2,
we have for every γ ∈ Nt,

(3.7) pX + α(Vt(ϕt,γw)) 6 α(Qt(ϕt,γw)) 6 β(Qt(ϕt,γw)) 6 qX + β(Vt(ϕt,γw)).

From (3.4), (3.3) and (3.7) we get

pX + αt(Im γ) 6 α∗t (Im, γ) 6 β∗t (Im γ) 6 qX + βt(Im γ).

The latter inequalities and Lemma 3.5 (iii) give

(3.8)
pX + αt(Im γ) 6 α∗t (Im γ) 6 min{pX + βt(Im γ), qX + αt(Im γ)},
qX + βt(Im γ) > β∗t (Im γ) > max{pX + βt(Im γ), qX + αt(Im γ)}.

If one of the conditions (i) or (ii) holds, then inequalities (3.8) become equalities,
that is, the indicator functions satisfy the disintegration condition.

Lemma 3.9. If δ−t = δ+t =: δt and µt = νt =: λt, then

(3.9) αt(x) = βt(x) = λt + δtx for all x ∈ R.

Proof. From (3.2) we obtain α0
t (x) = β0

t (x) = δtx for all x ∈ R. Hence,
taking into account µt = αt(0) and νt = βt(0), from Lemma 3.5 (i) we get

αt(x) = µt + α0
t (x), βt(x) = νt + β0

t (x), x ∈ R.

Since µt = νt, the latter equalities imply (3.9).

In view of Lemmas 3.8 and 3.9, with the help of Examples 2.4, 3.2, and 3.4,
one can construct nontrivial examples of w.r.i. spaces satisfying the disintegration
condition. In particular, the disintegration condition is satisfied for Lebesgue
spaces Lp(Γ, w), 1 < p < ∞, with general Muckenhoupt weights over arbitrary
Carleson curves or for reflexive Orlicz spaces LΦ(Γ, w) with powerlike weights (i.e.,
with weights for which µt = νt at every t ∈ Γ) over logarithmic Carleson curves.
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4. SINGULAR INTEGRAL OPERATORS

4.1. Singular integral operators with measurable coefficients. Let
Γ be a Jordan Carleson curve. Assume the Cauchy singular integral generates the
bounded linear operator in a w.r.i. space X(Γ, w). Due to Theorem 2.1, w ∈ X(Γ)
and w−1 ∈ X ′(Γ). Hence, X(Γ, w) is a Banach function space. Suppose that this
space is reflexive. In that case S2 = I ([23], Lemma 3.2). Hence, the operators
P± := (I ± S)/2 are bounded projections in the reflexive w.r.i. space X(Γ, w).

Define the following subspaces

X+(Γ, w) := P+X(Γ, w), X−(Γ, w) := P−X(Γ, w)
·
+ C.

We denote by D+ and D− the bounded and unbounded component of C \ Γ,
respectively. Without loss of generality we will always assume that 0 ∈ D+. To
check whether a function belongs to X±(Γ, w), the following result is often useful.

Lemma 4.1. Suppose the functions f± are analytic in D± and continuous on
D± ∪Γ with the possible exception of finitely many points t1, . . . , tm ∈ Γ. Suppose
that f±|Γ ∈ X(Γ, w) and that f± admits the estimate

|f±(z)| 6 M |z − tk|−µ, k = 1, . . . ,m

with some M > 0 and µ > 0 for all z ∈ D± sufficiently close to tk. Then
f±|Γ ∈ X±(Γ, w).

Lemma 4.1 can be obtained literally from [4], Lemma 6.10 if we replace
Lp(Γ, w) and Lp

±(Γ, w) by X(Γ, w) and X±(Γ, w), respectively.
We say that a function a ∈ L∞(Γ) admits a factorization in X(Γ, w) if

a−1 ∈ L∞(Γ) and a can be written in the form

(4.1) a(t) = a−(t)tκa+(t) a.e. on Γ,

where κ ∈ Z,

(i) a− ∈ X−(Γ, w), a−1
− ∈ X ′

−(Γ, w−1), a+ ∈ X ′
+(Γ, w−1), a−1

+ ∈ X+(Γ, w);
(ii) the operator a−1

+ Sa+I is bounded in X(Γ, w).

One can prove that the number κ is uniquely determined.
Let a ∈ L∞(Γ). In view of (2.1), the operator aI is bounded in X(Γ, w).

Consider a singular integral operator Ra defined in X(Γ, w) by the formula

Ra = aP+ + P−.

Theorem 4.2. (see [23], Theorem 3.5) A function a ∈ L∞(Γ) admits a
factorization (4.1) in a reflexive w.r.i. space X(Γ, w) if and only if the operator
Ra is Fredholm in X(Γ, w). If Ra is Fredholm, then its index is equal to −κ.

This theorem goes back to I.B. Simonenko ([34], [35]) in the case of Lebesgue
spaces. For more about this topic we refer to [4], Section 6.12, [14], Section 8.3
in the case of weighted Lebesgue spaces and to [18], Theorem 5.6, [22], Theo-
rem 6.10 in the case of reflexive Orlicz and r.i. spaces, respectively. Since the set
of all rational functions without poles on Γ is dense in the spaces X(Γ, w) and
(X(Γ, w))∗ = X ′(Γ, w−1) ([23], Lemma 1.4), in the weighted case the proof is
developed by analogy.
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Two functions a, b ∈ L∞(Γ) are said to be locally equivalent at a point t ∈ Γ if
inf{‖(a− b)c‖∞ : c ∈ C(Γ), c(t) = 1} = 0.

Theorem 4.3. (see [23], Theorem 3.6) Let a ∈ L∞(Γ) and suppose for each
t ∈ Γ we are given a function at ∈ L∞(Γ) which is locally equivalent to a at t. If
the operators Rat

are Fredholm in X(Γ, w) for all t ∈ Γ, then Ra is also Fredholm
in X(Γ, w).

In the case of Lebesgue spaces this theorem is known as Simonenko’s local
principle. Since the operator aS − SaI is compact in the w.r.i. space X(Γ, w)
for every continuous function a ([23], Lemma 3.1), this local principle can be
obtained from the Gohberg-Krupnik local principle (see, e.g., [14], Chapter 6) as
in [4], Theorem 6.30.

4.2. Factorization of local representatives: necessity. We denote by
PC(Γ) the Banach algebra of all piecewise continuous functions on the curve Γ: a
function a ∈ L∞(Γ) belongs to PC(Γ) if and only if the finite one-sided limits

a(t± 0) := lim
τ→t±0

a(τ)

exist for every t ∈ Γ. Let GL∞(Γ) denote the set of all invertible functions in
L∞(Γ), i.e., the set of all functions a ∈ L∞(Γ) for which ess inf{|a(t)| : t ∈ Γ} > 0.

Fix t ∈ Γ. For a function a ∈ PC(Γ) ∩GL∞(Γ) we construct a “canonical”
function gt,γ which is locally equivalent to a at the point t ∈ Γ. The interior
and exterior of the unit circle can be conformally mapped onto D+ and D− of
Γ, respectively, so that the point 1 is mapped to t, and the points 0 ∈ D+ and
∞ ∈ D− remain fixed. Let Λ0 and Λ∞ denote the images of [0, 1] and [1,∞)∪{∞}
under this map. The curve Λ0∪Λ∞ joins 0 to ∞ and meets Γ at exactly one point,
namely t. Let arg z be a continuous branch of argument in C\(Λ0∪Λ∞). For γ ∈ C
define the function zγ := |z|γeiγ arg z, where z ∈ C \ (Λ0 ∪ Λ∞). Clearly, zγ is an
analytic function in C \ (Λ0 ∪Λ∞). The restriction of zγ to Γ \ {t} will be denoted
gt,γ . Obviously, gt,γ is continuous and nonzero on Γ \ {t}. Since a(t± 0) 6= 0, we
can define γ ∈ C by formulas

(4.2) Re γ :=
1
2π

arg
a(t− 0)
a(t+ 0)

, Im γ := − 1
2π

log
∣∣∣∣a(t− 0)
a(t+ 0)

∣∣∣∣ ,
where we can take any value of arg

(
a(t− 0)/a(t+0)

)
, which implies that any two

choices of Re γ differ by an integer only. Clearly, there is a constant c ∈ C \ {0}
such that a(t± 0) = cgt,γ(t± 0), which means that a is locally equivalent to cgt,γ

at the point t.

Theorem 4.4. (see [23], Theorem 4.1) Suppose the Cauchy singular integral
generates the bounded linear operator in a reflexive w.r.i. space X(Γ, w). If the
function gt,γ admits a factorization in the space X(Γ, w), then

−Re γ + θα∗t (−Imγ) + (1− θ)β∗t (−Imγ) 6∈ Z
for all θ ∈ [0, 1]. Moreover, there is an l ∈ Z such that ϕt,l−γw ∈ AX(Γ).

4.3. Factorization of local representatives: sufficiency. We start this
subsection with sufficient conditions for the boundedness of the Cauchy singular
integral operator in weighted rearrangement-invariant spaces.
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Theorem 4.5. Let X(Γ) be an r.i. space with nontrivial Boyd indices αX , βX .
If a weight w belongs to the Muckenhoupt classes A 1

αX

(Γ) and A 1
βX

(Γ), then the
operator S is bounded in the w.r.i. space X(Γ, w).

Proof. Due to [4], Theorem 2.31, there are p and q such that

(4.3) 1 < q <
1
βX

6
1
αX

< p <∞,

w ∈ Ap(Γ) and w ∈ Aq(Γ). By [4], Theorem 4.15, the operator S is bounded in
the weighted Lebesgue spaces Lp(Γ, w) and Lq(Γ, w). In that case the operator
A := wSw−1I is bounded in the Lebesgue spaces Lp(Γ) and Lq(Γ). Taking into
account (4.3), by the Boyd interpolation theorem ([7]), the operator A is bounded
in the r.i. space X(Γ). Consequently, the operator S is bounded in the w.r.i. space
X(Γ, w).

Lemma 4.1 and the following result are the keys for finding sufficient condi-
tions for a factorizability of local representatives.

Lemma 4.6. Let X(Γ) be an r.i. space with nontrivial Boyd indices αX , βX .
Suppose a weight w belongs to the Muckenhoupt classes A 1

αX

(Γ) and A 1
βX

(Γ). If

(4.4) 0 < αX + Re γ + αt(Im γ) 6 βX + Re γ + βt(Im γ) < 1,

then the operator ϕt,γSϕ
−1
t,γI is bounded in the w.r.i. spaces X(Γ, w).

Proof. If (4.4) holds, then

0 < αX + Re γ + αt(Im γ) 6 αX + Re γ + βt(Im γ) < 1.

In that case, by [4], Theorem 3.21, the weight ϕt,γw belongs to the Muckenhoupt
class A 1

αX

(Γ). Analogously, ϕt,γw ∈ A 1
βX

(Γ). Due to Theorem 4.5, the operator

S is bounded in the space X(Γ, ϕt,γw). Hence, the operator ϕt,γSϕ
−1
t,γI is bounded

in X(Γ, w).

Now we are in a position to prove the main result of this subsection.

Theorem 4.7. Let X(Γ) be an r.i. space with nontrivial Boyd indices αX , βX .
Suppose a weight w : Γ → [0,∞] belongs to the Muckenhoupt classes A 1

αX

(Γ) and
A 1

βX

(Γ). Suppose the w.r.i. space X(Γ, w) is reflexive. If for all θ ∈ [0, 1],

κt(θ) := −Re γ + θ
(
αX + αt(−Im γ)

)
+ (1− θ)

(
βX + βt(−Im γ)

)
6∈ Z

then the integral part [κt(θ)] =: −k does not depend on θ, and

(4.5) gt,γ(τ) =
(
1− t

τ

)k−γ

τk(τ − t)γ−k, τ ∈ Γ \ {t},

is a factorization of gt,γ in the space X(Γ, w).

Proof. Obviously, [κt(θ)] is independent of θ. By the definition of k =
−[κt(θ)],

−k < −Re γ + θ
(
αX + αt(−Im γ)

)
+ (1− θ)

(
βX + βt(−Im γ)

)
< 1− k
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for all θ ∈ [0, 1]. Hence,

0 < Re (k−γ)+θ
(
αX+αt(Im (k−γ))

)
6 Re (k−γ)+(1−θ)

(
βX+βt(Im (k−γ))

)
< 1

for all θ ∈ [0, 1]. Consequently,
0 < Re (k − γ) + αX + αt(Im (k − γ)) 6 Re (k − γ) + βX + βt(Im (k − γ)) < 1.

By Lemma 4.6, the operator ϕt,k−γSϕt,γ−kI is bounded in the spaceX(Γ, w).
In view of Theorem 2.1, the weight ϕt,k−γw belongs to the class AX(Γ). In that
case ϕt,k−γ(τ) = |(τ−t)k−γ | ∈ X(Γ, w). By analogy with [4], Lemma 7.1 and with
the help of Lemma 4.1, one can prove that (τ − t)k−γ ∈ X+(Γ, w), (τ − t)γ−k ∈
X ′

+(Γ, w−1), (1− t/τ)k−γ ∈ X−(Γ, w), (1− t/τ)γ−k ∈ X ′
−(Γ, w−1). Thus, (4.5) is

a factorization of gt,γ in the space X(Γ, w).

4.4. Fredholm criterion. Further we will suppose the following. Let Γ be
a Jordan Carleson curve and X(Γ) be an r.i. space with nontrivial Boyd indices
αX , βX . Suppose a weight w : Γ → [0,∞] belongs to the Muckenhoupt classes
A 1

αX

(Γ) and A 1
βX

(Γ). In that case, in view of Theorem 4.5, the operator S is
bounded in the w.r.i. space X(Γ, w). Suppose that this space is reflexive. Due
to Theorem 2.1, w ∈ AX(Γ) ⊂ AX(Γ, t) for every t ∈ Γ. Hence, the indicator
functions αt, βt and α∗t , β

∗
t are well-defined for every t ∈ Γ. Let the indicator

functions αt, βt and α∗t , β
∗
t satisfy the disintegration condition at every point t ∈ Γ.

Theorem 4.8. The operator Ra, where a ∈ PC(Γ), is Fredholm in the space
X(Γ, w) if and only if a ∈ GL∞(Γ) and

(4.6)
κt(θ) := − 1

2π
arg

a(t− 0)
a(t+ 0)

+ θ

(
αX + αt

(
1
2π

log
∣∣∣∣a(t− 0)
a(t+ 0)

∣∣∣∣ ))
+ (1− θ)

(
βX + βt

(
1
2π

log
∣∣∣∣a(t− 0)
a(t+ 0)

∣∣∣∣ ))
6∈ Z

for all t ∈ Γ and all θ ∈ [0, 1].

Proof. Let a ∈ PC(Γ) ∩ GL∞(Γ). For every t ∈ Γ, define γ = γt ∈ C by
(4.2). In that case the function a is locally equivalent to the function at = ctgt,γt

at the point t, where ct ∈ C \ {0} is some constant.
Necessity. If the operator Ra is Fredholm, then as in the proof of necessity

from [22], Theorem 7.8 and taking into account Theorem 4.4, one can prove that
(4.7) κt(θ) = −Re γt + θα∗t (−Im γt) + (1− θ)β∗t (−Im γt) 6∈ Z
for every θ ∈ [0, 1] and every t ∈ Γ. Besides, for every t ∈ Γ there is an l ∈ Z
such that ϕt,l−γt

w ∈ AX(Γ). In that case l − γt ∈ Nt (see (3.5)). Note that
Im (l − γt) = −Im γt. Hence, from (4.7) and the disintegration condition of the
indicator functions it follows that (4.6) holds for every θ ∈ [0, 1].

Sufficiency. From (4.2) and (4.6) it follows that

κt(θ) = −Re γt + θ
(
αX + αt(−Im γt)

)
+ (1− θ)

(
βX + βt(−Im γt)

)
6∈ Z

for all t ∈ Γ and all θ ∈ [0, 1]. By Theorem 4.7, the function gt,γt
admits a

factorization in the space X(Γ, w) for every t ∈ Γ. Clearly, the function at also
admits a factorization for every t ∈ Γ. Due to Theorem 4.2, the operators Rat ,
where t ∈ Γ, are Fredholm in the space X(Γ, w). By Theorem 4.3, the operator
Ra is Fredholm too.
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4.5. Leaves and essential spectrum. Following [4], Section 7.3, we describe
the essential spectrum of the operator Ra. Let α, β : R → R be continuous
functions such that α(x) 6 β(x) for every x ∈ R. Consider the set

Y (α, β) :=
{
γ = x+ iy ∈ C : α(x) 6 y 6 β(x)

}
.

Given z1, z2 ∈ C, put

L(z1, z2;α, β) := {z1, z2} ∪
{
ξ = Mz1,z2(e

2πγ) : γ ∈ Y (α, β)
}
,

whereMz1,z2(ξ) :=(z2ξ−z1)/(ξ−1) is the Möbius transform. The set L(z1, z2;α, β)
is called the leaf between z1 and z2.

Fix t ∈ Γ and consider the leaf generated by the indicator functions αX +αt

and βX + βt. From [4], Theorem 3.31 it follows that Y (αX + αt, βX + βt) is
a simply connected set which contains points with arbitrary real parts. Hence,
the set

{
e2πγ : γ ∈ Y (αX + αt, βX + βt)

}
is simply connected and contains points

arbitrarily close to the origin and to infinity. The Möbius transform Mz1,z2 maps 0
to z1 and ∞ to z2. Consequently, the leaf L(z1, z2;αX + αt, βX + βt) is a simply
connected set containing z1 and z2.

For a ∈ PC(Γ), denote by R(a) the essential range of a, that is, the set

R(a) :=
⋃
t∈Γ

{a(t− 0), a(t+ 0)} =
⋃

t∈Γ\Ja

{a(t)} ∪
⋃

t∈Ja

{a(t− 0), a(t+ 0)}

where Ja is the set of all points of Γ at which a has a jump (as we know, this set
is at most countable).

The essential spectrum of an operator A in a Banach space E is the set of all
numbers λ ∈ C for which the operator A−λI is not Fredholm in E. The essential
spectrum of the operator A is denoted by spessA.

The main goal of this subsection is to reformulate the Fredholm criterion for
Ra, where a ∈ PC(Γ), which is contained in Theorem 4.8, in geometric language,
that is, in terms of the essential range of a and leaves filled in between the endpoints
of jumps.

Theorem 4.9. Suppose the following five conditions are fulfilled:
(i) Γ is a Jordan Carleson curve;
(ii) X(Γ) is an r.i. space with nontrivial Boyd indices;
(iii) a weight w belongs to the Muckenhoupt classes A 1

αX

(Γ) and A 1
βX

(Γ);
(iv) the w.r.i. space X(Γ, w) is reflexive;
(v) the indicator functions αt, βt and α∗t , β

∗
t satisfy the disintegration con-

dition (3.6) at every point t ∈ Γ.
Then the essential spectrum of the operator Ra, where a ∈ PC(Γ), is given by

spessRa = R(a) ∪
⋃

t∈Ja

L(a(t− 0), a(t+ 0);αX + αt, βX + βt) ∪ {1}.

This theorem is proved by analogy with [4], Theorem 7.4.
Put σt(x) := (αX + αt(x) + βX + βt(x))/2 for x ∈ R, and for arbitrary

z1, z2 ∈ C, consider the leaf Lt(z1, z2) := L(z1, z2;σt, σt). Suppose a ∈ PC(Γ). It
is easy to see that the set

a# := R(a) ∪
⋃

t∈Ja

Lt(a(t− 0), a(t+ 0))
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is a closed, continuous, and naturally oriented curve.
Let γ be a closed continuous oriented curve which does not contain the

origin. Denote by wind γ the winding number of γ about the origin. The index of
a Fredholm operator A is denoted by IndA.

Theorem 4.10. Suppose the conditions (i)–(v) of Theorem 4.9 are fulfilled.
If an operator Ra, where a ∈ PC(Γ), is Fredholm, then 0 6∈ a#, and

IndRa = −wind a#.

This theorem can be proved by analogy with [4], Theorem 7.14.

5. THE ALGEBRA OF SINGULAR INTEGRAL OPERATORS

5.1. Symbol calculus for singular integral operators. Let Xn(Γ, w)
stand for the direct sum of n copies of the reflexive w.r.i. space X(Γ, w). We
denote by B := B(Xn(Γ, w)) the Banach algebra of all bounded linear operators
in Xn(Γ, w) and by K := K(Xn(Γ, w)) the two-sided ideal of compact operators
in B. Let I be the identity operator and let the operator S be defined in Xn(Γ, w)
elementwise by the formula (2.2). Let PCn(Γ) denote the set of all n× n matrix
functions with entries in PC(Γ). Consider the smallest Banach subalgebra U
of B containing the operator S and the operators of multiplication by piecewise
continuous matrix-valued functions.

As in [18], Lemma 9.1, one can prove that K is the closed two-sided ideal of U .
Therefore, since we can calculate the essential spectrum of the operator Ra, where
a ∈ PC(Γ) (in the scalar case!), we can derive a symbol calculus for operators
A ∈ U (in the matrix case!). The main industrial and now standard tools for
obtaining this result are the Allan-Douglas local principle (see [4], Theorem 8.2)
and the two projections theorem (see [11], [15], and [4], Sections 8.3 and 8.4). For
the details of establishing a symbol calculus, see [4], Section 8.5 and [18].

Theorem 5.1. Suppose the conditions (i)–(v) of Theorem 4.9 are fulfilled.
Define the “leaves bundle”

M := MX(Γ,w) :=
⋃
t∈Γ

(
{t} × L(0, 1;αX + αt, βX + βt)

)
.

Then
(a) for each point (t, µ) ∈M, the map

σt,µ : {S} ∪ {aI : a ∈ PCn(Γ)} → C2n×2n,

given by

(5.1) σt,µ(S) =
(
E O
O −E

)
,

(5.2) σt,µ(aI)=
(

a(t+0)µ+a(t−0)(1−µ) (a(t+0)−a(t−0))
√

µ(1−µ)

(a(t+0)−a(t−0))
√

µ(1−µ) a(t+0)(1−µ)+a(t−0)µ

)
,

where O and E are the zero and identity n×n matrices, respectively, extends to a
Banach algebra homomorphism σt,µ : U → C2n×2n with the property that σt,µ(K)
is the zero 2n× 2n matrix for every compact operator K;
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(b) an operator A ∈ U is Fredholm in Xn(Γ, w) if and only if

detσt,µ(A) 6= 0 for all (t, µ) ∈M;

(c) the quotient algebra U/K is inverse closed in the Calkin algebra B/K, i.e.,
if an arbitrary element A+K ∈ U/K is invertible in B/K, then (A+K)−1 ∈ U/K.

We remark that in (5.2) we understand by
√
µ(1− µ) any (complex) number

whose square is µ(1− µ).
Theorem 5.1 was obtained by I. Gohberg and N. Krupnik in the case of

Lebesgue spaces on Lyapunov curves with power weights ([13]) with the help of
other methods. This theorem in the case of piecewise smooth curves and general
Muckenhoupt weights was got in [11] and [16]. For Lebesgue spaces on arbitrary
Carleson curves with general Muckenhoupt weights this theorem was established
by A. Böttcher and Yu. I. Karlovich ([4], Chapter 8). For further generalizations
to reflexive Orlicz spaces and reflexive r.i. spaces, see [18], [19], [22].

5.2. Index formula. Unfortunately, the two projections theorem and the Allan-
Douglas local principle do not allow us to calculate the index of operators from U .
In this subsection we obtain an index formula for an arbitrary operator A ∈ U .

The matrix function A(t, µ) = σt,µ(A), (t, µ) ∈ M, is said to be the symbol
of the operator A ∈ U . We can write the symbol in the form

A(t, µ) =
(
A11(t, µ) A12(t, µ)
A21(t, µ) A22(t, µ)

)
, (t, µ) ∈M,

where Aij(t, µ) are n× n matrix functions.
In general, the family of homomorphisms σt,µ is not uniformly bounded with

respect to (t, µ) ∈M. But the functions detA, detAii (i = 1, 2) have this property
(see [21], Theorems 2 and 3).

Theorem 5.2. Suppose the conditions (i)–(v) of Theorem 4.9 are fulfilled.
If an operator A ∈ U is Fredholm in Xn(Γ, w), then the function

A(t, µ) :=
detA(t, µ)

detA22(t, 0) detA22(t, 1)
, (t, µ) ∈M

has the following properties:
(i) A(t, µ) 6= 0 for all (t, µ) ∈M;
(ii) A( · , 0) ∈ PC(Γ);
(iii) the set

A# := R(A( · , 0)) ∪
⋃

t∈JA

{z = A(t, µ) : µ ∈ Lt(0, 1)},

where JA is the set of all points t ∈ Γ at which the function A(t, · ) is not constant,
is a closed, continuous, and naturally oriented curve, which does not contain the
origin. In that case

IndA = −windA#.

The proof is developed by analogy with [21] and [22], Section 8.2 in sev-
eral steps using the scheme of [13]. As it is pointed out by Yu.I. Karlovich and
E. Ramirez de Arellano ([24], p. 464), the index formulas in [4], Section 10.2 and
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[22], Section 8.2 are not correct. We need to replace in [4], Section 10.2 and [22],
Theorem 8.4 the set of discontinuities of the function A( · , t) by the greater set JA,
because it is possible a situation when the function A( · , t) is continuous at some
point t0 but the non-constant function A(t0, · ) generates a nontrivial loop

{z = A(t0, µ) : µ ∈ Lt0(0, 1)}

with the common endpoint A(t0, 0) = A(t1, 0). The origin may lie as inside as well
as outside of the domain bounded by this loop. Hence the index of the operator A
depends on such loops.
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Birkhäuser Verlag, 1998, pp. 201–218.

34. I.B. Simonenko, The Riemann boundary value problem for n pairs functions with
measurable coefficients and its application to the investigation of singular



Algebras of singular integral operators with PC coefficients 323

integral operators in the spaces Lp with weight, [Russian], Izv. AN SSSR
Ser. Matem. 28(1964), 277–306.

35. I.B. Simonenko, Some general questions in the theory of the Riemann boundary
value problem, [Russian], Izv. Akad. Nauk SSSR Ser. Matem. 32(1968), 1138–
1146; English transl.: Math. USSR Izv. 2(1968), 1091–1099.

36. I. Spitkovsky, Singular integral operators with PC symbols on the spaces with
general weights, J. Funct. Anal. 105(1992), 129–143.

37. M. Zippin, Interpolation of operators of weak type between rearrangement invariant
spaces, J. Funct. Anal. 7(1971), 267–284.

ALEXEI YU. KARLOVICH
Department of Mathematics and Physics
South Ukrainian State Pedagogical Univ.

Staroportofrankovskaya str. 26
65020, Odessa

UKRAINE

Current address:

Departamento de Mathemática
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