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Abstract. Let A be a separable unital nuclear C∗-algebra and let B be a
unital C∗-algebra. Suppose that A satisfies the Universal Coefficient The-
orem and α, β : A → B are homomorphisms. We show that α and β are
stably approximately unitarily equivalent if they induce the same element in
KK(A,B) and either A or B is simple. In particular, an automorphism α on
A is stably approximately inner if [α] = [idE ] in KK(A,A). If B is simple and
A is “K-theoretically locally finite” then α and β are stably approximately
unitarily equivalent if and only if they induce the same element in KL(A,B).
In the case that A and B are separable purely infinite simple C∗-algebras and
A is nuclear and satisfies the UCT, then ϕ and ψ are approximately unitarily
equivalent if and only if [α] = [ψ] in KL(A,B).
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0. INTRODUCTION

We study homomorphisms from a C∗-algebra A to another C∗-algebra B. Con-
sider two homomorphisms ϕ, ψ : A → B. The question that we consider here
is when these two homomorphisms are equivalent (in some suitable sense). The
theory of C∗-algebras is often regarded as noncommutative topology. Continuous
maps between topological spaces are of fundamental importance in topology. As
noncommutative counterparts of continuous maps, homomorphisms are of funda-
mental importance in the theory of C∗-algebras. Classification of homomorphisms
is of great interest.

Let A = B and ϕ ∈ Aut(A) be an automorphism of A. A long-studied prob-
lem is when ϕ is (approximately) inner, i.e., when ϕ is (approximately) unitarily
equivalent to the identity. The study of automorphisms is very closely related to
group representations, crossed products, dynamical systems and the classification
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of type III factors. Results in early study state that, when the spectrum (the
usual spectrum, Borchers’, or Connes’ spectrum) of the automorphism is small,
the automorphism is inner (or approximately inner) (see [59]). With the recent
developments in theory of C∗-algebras, K-theory seems more popular and indeed
a more important invariant (at least for separable C∗-algebras). Therefore it is
quite appropriate to ask: is the automorphism ϕ (stably) approximately inner, if
[ϕ] = [id] in KK(A,A)?

If A = C(X), where X is a metric space and B is the Calkin algebra, the
BDF-theory classifies the monomorphisms from A to B ([8] and [9]). It shows that
two monomorphisms ϕ, ψ : A→ B are unitarily equivalent if and only if [ϕ] = [ψ]
in KK(A,B) (= KK1(A,K)). The BDF-theory is motivated by classification of
essentially normal operators on a separable Hilbert space. However it has profound
impact on many other areas of mathematics. The Calkin algebra is certainly a very
unique C∗-algebra and quite different from other interesting and more widely used
C∗-algebras. But we note that the Calkin algebra is a unital simple C∗-algebra
of real rank zero. It is not only natural but also important to replace it by more
common separable (simple) C∗-algebras.

We began to study homomorphisms in 1992 (see [41] and [43]). The results
in [41] and [43] led to the discovery that many simple C∗-algebras of real rank
zero have the property that every normal element with vanishing index can be
approximated by normal elements with finite spectra. It also leads to the solution
of a long standing open problem in linear algebra and operator theory: almost
commuting self-adjoint matrices can be approximated by commuting self-adjoint
matrices (see [45] and [25]). It turns out that these results have applications to
the classification theory of nuclear C∗-algebras. Several papers about the homo-
morphisms appeared later ([23], [48], [49], [54] and [12]). Dădârlat ([12]) shows
that, in the case that A = C(X), ϕ and ψ are stably approximately unitarily
equivalent if and only if [ϕ] = [ψ] in KL(A,B). These results play important roles
in the classification theory of nuclear C∗-algebras (see also [14]). More recently,
we have shown that the above holds for any unital C∗-algebra of continuous trace
A ([52]). With the explosion of the theory of classification of C∗-algebras, it is
increasingly important to handle homomorphisms from a general (nuclear) simple
C∗-algebra to another simple C∗-algebra. The main results of this paper classify
these homomorphisms (up to stable approximate unitary equivalence). In order
to use K-theory freely, however, we will assume that A is nuclear and satisfies the
Universal Coefficient Theorem (UCT) (see 2.1). It is known, for example, that
direct limits of type I C∗-algebras satisfy the UCT. It seems that all nuclear C∗-
algebras of interest satisfy the UCT. The main result of the paper is, assuming
that A is a separable unital simple nuclear C∗-algebra which satisfies the Universal
Coefficient Theorem (UCT), two homomorphisms ϕ and ψ from A to B are stably
approximately unitarily equivalent if [ϕ] = [ψ] in KK(A,B) (see 4.3). If A is the
closure of

⋃
n
An, where each An is nuclear and Ki(An) is finitely generated, and

B is a simple unital C∗-algebra then ϕ and ψ are stably approximately unitarily
equivalent if and only if [ϕ] = [ψ] in KL(A,B). The condition on A is certainly
satisfied by all separable C∗-algebras which are direct limits of type I. In the case
that both A and B are also assumed to be separable and purely infinite simple
C∗-algebras, then the main result implies that ϕ and ψ are in fact approximately
unitarily equivalent if (and only if) [ϕ] = [ψ] in KL(A,B).
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The strategy that we used in this paper is very different from that of [43]
(and [23], [48], [12] and [52]). We will briefly describe our approach. To avoid
certain ambiguity, we will only consider monomorphisms. Therefore we assume
that there is at least one monomorphism from A to B. For convenience, we will
assume that B is a unital C∗-algebra and A is a unital C∗-subalgebra of B.

Given a monomorphism ϕ : A → B we construct a “mapping torus” for ϕ.
Put

Mϕ(A,B) = {x ∈ C([0, 1], B) : x(0) ∈ A, x(1) = ϕ(x(0))}.

This gives an essential extension

0→ SB →Mϕ(A,B)→ A→ 0,

where SB = C0((0, 1), B). We let τϕ : A → M(SB)/SB be the extension deter-
mined by ϕ in the above. If we find a unitary U ∈M(SB) such that

π(U)∗τϕπ(U) = τψ,

where π : M(SB) → M(SB)/SB is the quotient map, then, for any a ∈ A, let
x ∈ C([0, 1], B) with x(0) = a and x(1) = ϕ(a), and let y ∈ C([0, 1], B) with
y(0) = a and y(1) = ψ(a); we have

U∗xU − y ∈ SB.

This implies that, for any finite subset F ⊂ A and ε > 0, there is t (close to 1)
such that

‖U∗(t)ϕ(a)U(t) − ψ(a)‖ < ε

for all a ∈ F . We might not be able to find such U in general. However, suppose
that [ϕ] = [ψ] in KK(A,B), then [τϕ] = [τψ] in Ext(A, SB). Thus, we obtain a
unitary U ∈M(SB ⊗K) such that

π(U)∗diag(ϕ, τ)π(U) = diag(ψ, τ)

for some trivial essential extension τ : A → M(SB ⊗ K)/SB ⊗ K. We will show
that, if B is simple, τ can be chosen to be τ∞, where τ∞ is the trivial extension
given by the diagonal map h∞ : a 7→ diag(a, a, . . . , a, . . .), for a ∈ A.

From the above, we will have, for any ε > 0 and any finite subset F ⊂ A,

‖U∗(t)diag(f(t), a, . . .)U(t)− diag(g(t), a, . . .)‖ < ε

and
U∗(t)diag(f(t), a, . . .)U(t)− diag(g(t), a, . . .) ∈ B ⊗K

for all a ∈ F , f, g ∈ C([0, 1], B) with f(0) = a, f(1) = ϕ(a), g(0) = a, g(1) = ψ(a)
and for some t close to 1. But diag(a, . . .) is in M(SB⊗K). So the above inequality
does not seem useful. However, if in the above inequality there are only finitely
many a′s in both diagonals and U(t) ∈ B ⊗Mn, then it will imply that ϕ and ψ
are stably approximately unitarily equivalent. Our next effort is to cut the “tail”
of τ∞.

Let E = D+B⊗K, where D = {(a, a, . . . , ) ∈M(SB⊗K) : a ∈ A}. Note that
D ∼= A. Then E is an essential extension of A by B⊗K. Define Γt(x) = U(t)∗xU(t)
for x ∈ E. Then Γt is an automorphism on E. Let π0 : E → E/B ⊗ K (∼= D ∼=
A). Then Γt induces the identity map on E/B ⊗ K. We will show that Γt is
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approximately inner. Once we have done that, for any ε > 0 and any finite subset
G ⊂ E, we obtain a unitary Wt ∈ E such that

‖W ∗t xWt − U(t)∗xU(t)‖ <
ε

4

for all x ∈ G. In particular, if G is large enough, for t close to 1, we have

‖W ∗t diag(ϕ(a), h∞(a))Wt − diag(ψ(a), h∞(a))‖ <
ε

2

for all a ∈ F .
Since Wt ∈ E, we may assume that Wt = W1 ⊕W2, where

W1 =
( n∑

i=1

eii

)
W

( n∑

i=1

eii

)
and W2 =

(
1−

n∑

i=1

eii

)
diag(u1, u1, . . .)

(
1−

n∑

i=1

eii

)

for some unitary u1 ∈ e11Ee11, with an error of no more than ε/2 (and n > 1).
Therefore we can cut the “tail”, i.e., we have

‖W ∗1 diag(ϕ(a), hn(a))W1 − diag(ψ(a), hn(a))‖ < ε,

where hn : a 7→ diag(a, a, . . . , a) (from A to Mn−1(M(SB))), for all a ∈ F .
This shows that ϕ and ψ are stably unitarily equivalent.
While the approximate unitary equivalence is stronger than stable approxi-

mate unitary equivalence, the latter is more available and therefore very useful, as
demonstrated in the classification theory (see [21], [23], [22], for example). Here
is a rather simple example which shows that stable approximate unitary equiv-
alence is a much more accessible relation than approximate unitary equivalence.
Let A = C([0, 1]) and ϕ(f)(t) = f(1 − t) with f ∈ [0, 1]. Of course, [ϕ] = [idA]
in KK(A,A). By considering the traces on A, one sees immediately that ϕ is not
approximately unitarily equivalent to idA. However, ϕ and idA are stably approx-
imately unitarily equivalent. When either A is simple or the target algebra B is
simple, the stably approximately unitarily equivalence becomes much more rigor-
ous. As we mentioned earlier, classification of homomorphisms is very important
in the theory of C∗-algebras. The results in this paper have many significant appli-
cations. Because of the length of this paper, these applications will not be included
here. In a subsequent paper, we will give applications of the main results of this
paper to the theory of classification of nuclear C∗-algebras. For example, we will
show, using the main results of this paper, that a separable unital nuclear simple
C∗-algebras of TAF with the right K-theory is isomorphic to the UHF-algebra
with rational K0-group (see [53]) and certain class of quasidiagonal nuclear sim-
ple C∗-algebras can be classified with their K-theoretical data (in particular, the
algebras are not assumed to be direct limits of (sub-)homogeneous C∗-algebras).
Since our main results do not assume that C∗-algebras have real rank zero, they
can also be applied to C∗-algebras having real rank other than zero. Furthermore,
in another subsequent paper, we will show that the results in Sections 4 and 5
can be used to classify C∗-algebra extensions of a separable nuclear C∗-algebra by
a simple C∗-algebra (up to unitary equivalence). Applications to automorphism
groups on nuclear simple C∗-algebras will also appear.

The paper is organized as follows. Section 1 shows that the trivial extension
τ∞ : A → M(B ⊗ K)/B ⊗ K given by the diagonal map d(a) = diag(a, . . .), for
a ∈ A, is absorbing if A or B is simple, where A is a nuclear C∗-subalgebra of
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B. We also point out that the condition that one of the C∗-algebras is simple is

crucial and can not be removed in general. In fact, we show that, in the case
that A = B, τ∞ is absorbing if and only if A is simple. Section 2 gives certain

K-theory computation which is needed in Section 3. Section 3 shows that certain

automorphisms are approximately inner. In Section 4 we prove the main result. In

Section 5, we show that a version of the main result also holds for approximately
multiplicative morphisms.

Throughout the paper, we will denote by M(A) the multiplier algebra of a

C∗-algebra A and by SA the suspension of A, C0((0, 1), A).

1. CERTAIN ABSORBING EXTENSIONS

1.1. Definition. Let A and B be C∗-algebras and let ϕ : A → B be a

contractive completely positive linear map. The map ϕ is called factorable if it

factors through Mn for some n, i.e., if there exist contractive completely positive

linear maps L1 : A → Mn and L2 : Mn → B such that ϕ = L2 ◦ L1. We say that
ϕ is nuclear if it is the pointwise limit of factorable maps.

It is known ([10]) that every contractive completely positive linear map from

A to B is nuclear if A or B is nuclear.

1.2. Lemma. ([37]) Let A be a simple C∗-algebra and let B be a separable
C∗-subalgebra of A. For every nuclear map ϕ : B → A, every compact subset

S ⊂ B and every ε > 0 there are a1, a2, . . . , an in A such that
∥∥∥

n∑
i=1

a∗i ai

∥∥∥ 6 1 and

∥∥∥ϕ(b)−
∑

a∗i bai

∥∥∥ < ε for all b ∈ S.

1.3. Lemma. Let A be a simple C∗-algebra and let B be a separable C∗-

subalgebra of A. For every nuclear map ϕ : B → SA, every compact subset S ⊂ B,
every ε > 0 and every integer N > 0, there are an integer n and a1, a2, . . . , am in

MN+n(SA) with
∥∥∥
m∑
i=1

a∗i ai

∥∥∥ 6 1 such that

∥∥∥ϕ(b)−
∑

a∗i dn(b)ai

∥∥∥ < ε for all b ∈ S,

where dn : B→MN+n(C([0, 1], B)) is defined by dn(b)=diag(0, 0, . . . , 0, b, b, . . . , b),
0 repeats N times and d repeats n times, b is identified with the constant function

in C([0, 1], B), and SA is identified with the first corner of MN+n(SA).

Proof. It suffices to consider the case when S is finite. Let ε > 0. There are

0 < t1 < t2 < · · · < tn < 1 such that

‖ϕ(b)(t)− ϕ(b)(t′)‖ <
ε

4
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for |t − t′| < max{ti+1 − ti : i = 1, . . . , n − 1} and ‖ϕ(b)(t)‖ < ε/3 if 0 < t 6 t1
or tn < t < 1 for all b ∈ S. By applying 1.2, since MN+n(A) is simple, there are

b
(j)
i ∈MN+n(A), i = 1, 2, . . . ,m(j), j = 1, 2, . . . , n such that

∥∥∥
∑
i

(b
(j)
i )∗b

(j)
i

∥∥∥ 6 1,

∥∥∥ϕ(b)(tj)−
∑

i

(b
(j)
i )∗(eN+j,1be1,N+j)b

(j)
i

∥∥∥ <
ε

4
,

for all b ∈ S, where we identify A with e1,1Mn(A)e1,1, and {ei,k} is a matrix unit for

MN+n. Without loss of generality, we may assume that b
(j)
i = eN+j,N+jb

(j)
i e11 and

m(j) = m (by adding zeros if necesary). So (b
(j)
i )∗bki′ = 0 and (b

(j)
i )∗dn(b)b

(k)
i′ = 0

if j 6= k for all b ∈ S. Define

ai(t) = [(tk+1 − t)/(tk+1 − tk)]
1/2b

(k)
i + [(t− tk)/(tk+1 − tk)]

1/2b
(k+1)
i

for t ∈ [tk, tk+1], ai(t) = (t/t1)
1/2b

(1)
i for t ∈ [0, t1] and ai(t) = [(1 − t)/(1 −

tn)]
1/2b

(n)
i for t ∈ [tn, 1], i = 1, 2, . . . .,m. Then ai ∈ C0((0, 1), A). It is also easy to

check that ∥∥∥
m∑

i=1

a∗i ai

∥∥∥ 6 1.

Furthermore, for t ∈ [tk, tk+1],

∥∥∥ϕ(b)(t)−
m∑

i=1

a∗i (t)dn(b)ai(t)
∥∥∥

6 [(tk+1 − t)/(tk+1 − tk)]
∥∥∥ϕ(b)(t)−

m∑

i=1

(b
(k)
i )∗bb

(k)
i

∥∥∥

+ [(t− tk)/(tk+1 − tk)]
∥∥∥ϕ(b)(t) −

m∑

i=1

(b
(k+1)
i )∗bb

(k+1)
i

∥∥∥

<
ε

4
+ [(tk+1 − t)/(tk+1 − tk)]

∥∥∥ϕ(b)(tk)−
m∑

i=1

(b
(k)
i )∗bb

(k)
i

∥∥∥

+
ε

4
+ [(t− tk)/(tk+1 − tk)]

∥∥∥ϕ(b)(tk+1)−
m∑

i=1

(b
(k+1)
i )∗bb

(k+1)
i

∥∥∥

<
ε

4
+
ε

4
+
ε

4
< ε

and for t ∈ [0, t1]

∥∥∥ϕ(b)(t)−
m∑

i=1

a∗i (t)dn(b)ai(t)
∥∥∥

6 ‖ϕ(b)(t)‖+ [1− t/t1]‖ϕ(b)(t1)‖+ (t/t1)
∥∥∥ϕ(b)(t1)−

m∑

i=1

(b
(1)
i )∗bb

(1)
i

∥∥∥

<
ε

4
+ [1− t/t1]

ε

4
+ (t/t1)

ε

4
< ε
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for all b ∈ S. Similarly, we also have

∥∥∥ϕ(b)(t)−
m∑

i=1

a∗i (t)dn(b)ai(t)
∥∥∥ < ε

for t ∈ [tn, 1] and b ∈ S. Thus

∥∥∥ϕ(b)−
m∑

i=1

a∗i dn(b)ai

∥∥∥ < ε

for all s ∈ S.

1.4. Let A be a unital C∗-subalgebra of a unital C∗-algebra B and let d :
A → M(B ⊗ K) be defined by d(a) = diag(a, a, . . . , ) for a ∈ A. By identifying
a with the constant function a(t) = a, for t ∈ [0, 1], we may also regard d as a
homomorphism from A to C([0, 1],M(B ⊗ K)). Note that C([0, 1], B) ⊂ M(SB)
and M(SB ⊗K) = Cb((0, 1),M(B ⊗K)σ), the C∗-algebra of bounded continuous
maps from (0, 1) (with the usual topology on (0, 1)) to M(B ⊗K) (with the strict
topology of M(B ⊗ K)) (see [2]). So we may also regard d as a homomorphism
from A to M(SB⊗K). These conventions will be used repeatedly without warning.

1.5. Lemma. Let A be a unital nuclear separable C∗-subalgebra of a unital
simple C∗-algebra B (1A = 1B) and let d : A→M(SB ⊗K) be defined by d(a) =
diag(a, a, . . . , a, . . .), where a ∈ C([0, 1], A) is the constant function with a(t) = a
for each t ∈ [0, 1]. Then for every unital contractive completely positive linear map
ϕ : A → M(SB ⊗ K) there exists a sequence {vn} of isometries in M(SB ⊗ K)
such that

ϕ(a)− v∗nd(a)vn ∈ SB ⊗K and ‖ϕ(a)− v∗nd(a)vn‖ → 0

for all a ∈ A.

Proof. As in the proof of Theorem 5 in [36] it suffices to show that there
is a sequence {sn} of contractions satisfying the above two conditions. Let C =
C∗(ϕ(A)), the C∗-subalgebra generated by ϕ(A). So C is separable. Note that
SB ⊗K is σ-unital. It is well known (see [1] and the proof of 3.12.15 of [59]) that
there is a countable approximate unit {en} for SB ⊗K which is quasi-central for
C. Since A is separable, we can choose a compact subset S ⊂ A such that the
linear span of S is dense in A. Set fn = (en − en−1)

1/2. Let ε > 0. Passing to a
subsequence if necessary, we may assume that

‖ϕ(a)fn − fnϕ(a)‖ < 2−nε for all , a ∈ S.

Define the maps ψn : A→ SB⊗K by ψn(a) = fnϕ(a)fn. Note that the infinite sum
∞∑
n=1

ψn(a) converges in the strict topology for every a ∈ A. Thus ψ : a→
∞∑
n=1

ψn(a)

defines a completely positive linear map from A to M(SB ⊗ K). Note also that
∞∑
n=1

f2
n = 1 and

∞∑
n=1

ϕf2
n = ϕ converge (in the strict topology). We have

‖ϕ(a)− ψ(a)‖ 6

∞∑

n=1

‖ϕ(a)fn − fnϕ(a)‖ ‖fn‖ < ε.
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Moreover ϕ(a)f2
n − fnϕ(a)fn ∈ SB ⊗ K for all n and a ∈ S. So it follows that

ϕ(a)− ψ(a) ∈ SB ⊗K.
Denote by {eij} a matrix unit for K.

Claim. for any ε > 0 there is a sequence of {xn} of elements in SB⊗K and
a sequence of integers {l(n)} such that:

(i) ‖ψn(a)− x∗nd(a)xn‖ < 2−nε, for a ∈ S;
(ii) ‖x∗nd(a)xm‖ = 0 for all a ∈ A and n 6= m;
(iii) ‖x∗nem‖ < 2−n for all m 6 n;

(iv) xn ∈
( l(n)∑
i=l(n−1)+1

eii

)
SB ⊗K

( l(n)∑
i=l(n−1)+1

eii

)
and ‖xn‖ 6 1.

We construct {xn} inductively. Assume that we have elements x1, x2, . . . , xn
satisfying (i)–(iv).

There is k(n) (> n) such that

‖(1− ek(n)k(n))fm‖ <
2−2n−2ε

1 + sup{‖s‖ : s ∈ S}

for m = 1, 2, . . . , n. Let ψ′n(a) = ek(n)k(n)ψn(a)ek(n)k(n) for all a ∈ A. Note that

‖ψ′n(a)− ψn(a)‖ < 2−n−1ε

for all a ∈ S. By Lemma 1.3, there are an integer j(n) > k(n) + l(n) + 1 and

a1(n), a2(n), . . . , am(n)(n) ∈
( j(n)∑
i=1

eii

)
SB⊗K

( j(n)∑
i=1

eii

)
such that

∥∥∥
∑
a∗i (n)ai(n)

∥∥∥
6 1 and ∥∥∥ψ′n(a)−

∑

i

a∗i (n)dn(a)ai(n)
∥∥∥ < 2−n−1ε

for all a ∈ S, where dn(a) = diag(0, . . . , 0, a, a, . . . , a) is diagonal in
( j(n)∑
i=l(n)+1

eii

)
SB⊗

K
( j(n)∑
i=l(n)+1

eii

)
(there are l(n) zeros and j(n)− l(n)−1 a’s). We may assume that

ai(n) =
( j(n)∑
i=l(n)+1

eii

)
ai(n), i = 1, 2, . . . ,m(n). Therefore

∑
i

a∗i (n)d(a)ai(n) =

∑
i

a∗i (n)dn(a)ai(n). Set xn+1 =
m(n)∑
i=1

Ei1ai(n), where Ei1 = 1Cn
⊗ei1 and 1Cn

is the

identity of
( j(n)∑
i=l(n)+1

eii

)
(SB ⊗K)

( j(n)∑
i=l(n)+1

eii

)̃
. Note that ‖xn‖ 6 1 and xn+1 ∈

( l(n+1)∑
i=l(n)+1

eii

)
SB⊗K

( l(n+1)∑
i=l(n)+1

eii

)
, where l(n+1) = l(n)+1+m(n)(j(n)−l(n)−1).

This gives (iv). We also have

x∗n+1d(a)xn+1 =
∑

a∗i (n)d(a)ai(n) =
∑

i

a∗i (n)dn(a)ai(n).
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Thus (i) follows. Clearly x∗n+1d(a)xm = 0 form 6 n and a ∈ A, and ‖x∗nem‖ 6 2−n

for m = 1, 2, . . . , n. Thus (ii) and (iii) follows.
Now we have a sequence satisfying (i)-(iv). Note that (i) implies that

∑
‖x∗nxn − ψn(1)‖ < ε.

Let x =
∑
xn. The sum converges strictly (by (iii) and (iv)) and ‖x‖ 6 1. Then

ϕ(a)− x∗d(a)x = (ϕ(a)− ψ(a)) + (ψ(a)− x∗d(a)x)

= (ϕ(a)− ψ(a)) +
∑

(ψn(a)− x
∗
nd(a)xn) +

∑

n6=m

x∗nd(a)xm.

The first term is in SB ⊗K and has norm less than ε for every a ∈ S. The second
term has norm less than ε and is in SB⊗K, since each ψn(a)−x

∗
nd(a)xn ∈ SB⊗K

and ‖ψn(a)− x∗nd(a)xn‖ < 2−nε, for every a ∈ S. The last term is zero by (ii). So
ϕ(a)− x∗d(a)x ∈ SB ⊗K and ‖ϕ(a)− x∗d(a)x‖ < 2ε for all a ∈ S. Note that the
linear span of S is dense in A. Therefore ϕ(a)−x∗d(a)x ∈ SB⊗K for all a ∈ A.

1.6. Lemma. Let A be a nuclear unital C∗-subalgebra of a unital separable
simple C∗-algebra B (1A = 1B) and let d : A → M(B ⊗K) be defined by d(a) =
diag(a, a, . . . , a, . . .). Then for every unital contractive completely positive linear
map ϕ : A→M(B ⊗K) there exists a sequence {vn} of isometries in M(B ⊗K)
such that

ϕ(a)− v∗nd(a)vn ∈ B ⊗K and ‖ϕ(a)− v∗nd(a)vn‖ → 0

for all a ∈ A.

Proof. The proof is exactly the same as that of 1.5 but we use 1.2 instead
of 1.3.

1.7. Remark. In the conditions of Theorem 1.5 put pn = vnv
∗
n. It is easy

to verify that if ϕ is a homomorphism, then pnd(a) − d(a)pn ∈ SB ⊗ K and
lim
n→∞

‖pnd(a)− d(a)pn‖ = 0. For example, given any self-adjoint a ∈ Asa, if ϕ is a

homomorphism, we have pnd(a)pnd(a)p−pnd(a)2pn ∈ SB⊗K for all a ∈ Asa. This
implies that pnd(a)(1− pn)d(a)pn ∈ SB ⊗K. Therefore pnd(a)(1− pn) ∈ SB ⊗K.
So pnd(a)− d(a)pn ∈ SB ⊗K for all a ∈ Asa.

1.8. Definition. Let E1 and E2 be Hilbert B-modules. Let L(E1), L(E2),
L(E1, E2) be the set of all bounded module maps with adjoints from E1 to E1, from
E2 to E2 and from E1 to E2, respectively. Let ϕ1 : A→ L(E1) and ϕ2 : A→ L(E2)
be two linear maps. Let ε > 0 and X be a subset of A. We write ϕ1

.
=ε ϕ2 on X,

if there is a unitary U ∈ L(E1, E2) such that

U∗ϕ1(a)U − ϕ2(a) ∈ K(E2), and ‖U∗ϕ1(a)U − ϕ2(a)‖ 6 ε

for all a ∈ X. Note that, by [36], if E = HB and B is σ-unital, then L(E) =
M(B ⊗K), K(E) = B ⊗K. Furthermore, if E1 = E2, we write ϕ1 ≡ε ϕ2 on X, if

ϕ1(a)− ϕ2(a) ∈ K(E1) and ‖ϕ1(a)− ϕ2(a)‖ 6 ε

for all a ∈ X.
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1.9. Let A and B be two C∗-algebras (with A unital). An extension of A
by B is absorbing if τ is unitarily equivalent to τ⊕σ for any trivial unital extension
σ (of A by B).

1.10. Theorem. Let A,B and d be as in Lemma 1.5 (or in Lemma 1.6).
Then the unital trivial essential extension of A by SB⊗K (respectively, by B⊗K)
given by d is absorbing.

Proof. We will show the case that A,B and d are in 1.5 by applying 1.5. The
case that A,B and d are in 1.6 is proved the exactly same way but by applying 1.6.

We will use the same argument as in the proof of Theorem 6 in [36]. Let
ϕ : A→M(SB⊗K) be a monomorphism. One can define a unital monomorphism

ϕ∞ =
∞⊕
1

ϕ : A→M(SB⊗K), by dividing the identity of M(SB⊗K) into (count-

ably) infinitely many copies of projections in M(SB ⊗K) which are equivalent to
the identity (of M(SB⊗K)). Fix an ε > 0 and a compact subset X. Applying 1.5,
we obtain an isometry s ∈ M(SB ⊗ K) such that ϕ∞ ≡ε s∗ds on X. As in Re-
mark 1.7, ss∗d(a)− d(a)ss∗ ∈ SB ⊗K and ‖ss∗d(a)− d(a)ss∗‖ < ε for all a ∈ X.
Let p = ss∗. Note that M(SB ⊗K) ∼= pM(SB ⊗K)p. We have sϕ∞s

∗ ≡ε pdp on
X. Therefore ϕ∞

.
=ε pdp on X. On the other hand, d ≡2ε pdp+ (1− p)d(1− p) on

X because pd(a)−d(a)p ∈ SB⊗K and ‖pd(a)−d(a)p‖ < ε for all a ∈ X. Denoting
(1 − p)d(1 − p) : A → pM(SB ⊗ K)p by d0, we conclude that d

.
=3ε ϕ∞ ⊕ d0 on

X and ϕ ⊕ d
.
=3ε ϕ ⊕ ϕ∞ ⊕ d0 on X. Since ϕ∞ ⊕ d0 is unitarily equivalent to

ϕ⊕ ϕ∞ ⊕ d0, it follows that d
.
=6ε ϕ⊕ d on X.

1.11. Lemma. Let A be a unital separable C∗-algebra, B and C be (non-
unital) σ-unital C∗-algebras. Suppose that d : A→M(B⊗K) is a monomorphism
which gives a unital trivial absorbing extension of A by B ⊗ K and suppose that
ϕ : B → C is a homomorphism such that ϕ maps a (countable) approximate
identity to an approximate identity of C. Let ϕ′ : M(B ⊗K) →M(C ⊗K) be the
extension of ϕ ⊗ idK. Then ϕ′ ◦ d gives a unital trivial absorbing extension of A
by C ⊗K.

Proof. Let h : A→ B(`2) be a unital faithful representation such that π ◦h :
A→ B(`2)→ B(`2)/`2 is injective. Note that such a unital faithful representation

always exists. If h(A)∩K 6= 0, replace h by j1 ◦
∞⊕
1
h, where j1 :

∞⊕
1
B(`2)→ B(`2)

is a monomorphism. Let j2 : B(`2) → M(B ⊗ K) and j3 : B(`2) → M(C ⊗ K)
be the monomorphisms by identifying B(`2) with scalar operators in M(B ⊗ K)
(= L(HB)) and with scalar operators in M(C ⊗ K) (= L(HC)), respectively. It
follows from Theorem 6 in [36] that d1 = j2 ◦ h gives an essential unital trivial
absorbing extension of A by B. So there is a unitary U ∈M(A⊗K) such that

U∗d1(a)U − d(a) ∈ B ⊗K

for all a ∈ A. Let W = ϕ′(U). Then

W ∗ϕ′ ◦ d1(a)W − ϕ
′ ◦ d(a) ∈ C ⊗K

for all a ∈ A. Since ϕ′ ◦ d1 = j3 ◦ h, by [36], ϕ′ ◦ d1 is absorbing. So is ϕ′ ◦ d.
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1.12. Theorem. Let A be a unital separable nuclear C∗-algebra which is

a unital C∗-subalgebra of a unital C∗-algebra B. Let d(a) = diag(a, a, . . . , a) be a

diagonal map from A to M(B ⊗K).

(i) Let τ1 be the unital essential trivial extension of A by B⊗K given by d.

If either A is simple or B is simple, then τ1 is absorbing.

(ii) Regard d as diagonal map from A to M(C([0, 1], B) ⊗ K (see 1.4) and

let τ2 be the unital essential trivial extension of A by C([0, 1], B)⊗K given by d.

If either A is simple or B is simple, then τ2 is absorbing.

(iii) Regard d as the diagonal map from A to M(SB ⊗ K) (see 1.4) and let

τ3 be the unital essential trivial extension of A by SB ⊗K given by d. If either A

or B is simple, then τ3 is absorbing.

Proof. For (iii), if A is simple, we view d as the diagonal map from A to

M(SA ⊗ K). Then, by 1.10, d gives an absorbing extension of A by SA ⊗ K. It

then follows from 1.11 that τ1 is absorbing.

If B is simple, it follows from 1.10 that τ3 is absorbing.

The same argument shows that (i) holds.

For (ii), consider the embedding from B to C([0, 1], B) which maps B to the

constant functions. Then (ii) follows from (i) and 1.11.

The following shows that, for general C∗-algebra, d does not give an absorb-

ing extension.

1.13. Theorem. Let A be a unital separable nuclear C∗-algebra. Suppose

that d : a→ diag(a, a, . . . , a, . . .) is the diagonal map from A to M(A⊗K). Then

the unital essential extension of A by A⊗K defined by d is an absorbing extension

if and only if A is simple.

Proof. The “if” part follows from (i) of 1.12.

To prove the “only if” part, we assume that A is not simple. Let γ : A→ D be

a unital surjective homomorphism which is not injective and γ1 = γ⊗1 : A⊗K →

D⊗K. Denote by γ1 : M(A⊗K)→M(D⊗K) the surjective extension (see [60]).
Consider a faithful representation π0 : A → B(`2). Let h : B(`2) → M(A ⊗ K)
be the map identifying B(`2) with the subalgebra of scalar (infinite) matrices

in M(A ⊗ K). Set π1 = h ◦ π0. Then π1 gives a strong unital essential trivial

extension of A by A⊗K. Note that γ1 ◦ π1 : A→M(D ⊗K) is a monomorphism

but γ1 ◦ d : A→M(D ⊗K) is not injective. So d can not be absorbing.
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2. SOME K-THEORETICAL COMPUTATION

2.1. Definition. Let A be a nuclear C∗-algebra. Let PK(A,B) be (the
equivalence classes of) those extensions in Ext(A,B) such that the six-term exact
sequences associated with these extensions breaks into two pure group extensions:

0→ K0(B)→ K0(E)→ K0(A)→ 0

and

0→ K1(B)→ K1(E)→ K1(A)→ 0.

Note that PK(A,B) is a subgroup of Ext(A,B).
Recall that by a pure extension of abelian groups

0→ G0 → G→ G1 → 0

we mean that every finitely generated subgroup of G1 lifts, or equivalently any
torsion element of G1 lifts to a torsion element of G of the same order (see [7]). We
identify Ext(A,B) with KK1(A,B) and set KL1(A,B) = KK1(A,B)/PK(A,B).
We will also identify KK(A,B) with KK1(A, SB) and define

KL(A,B) = KL1(A, SB).

A C∗-algebra A is said to have The Universal Coefficient Theorem (UCT),
if for any σ-unital C∗-algebra B, one has

0 −→ Ext1
Z
(K∗(A),K∗(B))

δ
−→KK∗(A,B)

γ
−→Hom(K∗(A),K∗(B)) −→ 0

where δ has degree 1 and γ has degree 0. All C∗-algebras in the so called “boot-
strap” class N of Rosenberg and Schochet satisfy UCT (see [67]). Let Cn be
a commutative C∗-algebra with K0(Cn) = Z/nZ and K1(Cn) = {0}. Following
Dădârlat and Loring ([15]), we let

K(A) = K0(A)⊕K0(A⊗ C(S1))
⊕

n>2

K0(A⊗ Cn ⊗ C(S1)).

If A satisfies the UCT, then A is KK-equivalent to a commutative C∗-algebra.
So by [15] if A satisfies the UCT, then A satisfies the Universal Multi-Coefficient
Theorem (UMCT), i.e., for any σ-unital C∗-algebra B, one has

0 −→ Pext1
Z
(K∗(A),K∗(B))

δ
−→KK(A,B)

Γ
−→HomΛ(K(A),K(B)) −→ 0

(see [15]), where Pext1
Z
(Ki(A),Ki(B)) is the subgroup of ext1

Z
(K∗(A),K∗(B)) of

all pure extensions of Ki(A) by Ki(B), i = 0, 1. So, if A satisfies the UCT, Γ
gives an isomorphism from KL1(A,B) to HomΛ(K(A),K(B)). In particular, if
ϕ, ψ : A → B are two homomorphisms such that ϕ ⊗ idFn

and ψ ⊗ idFn
induce

the same map from K0(A ⊗ Fn) to K0(B ⊗ Fn) for each n, where F1 = C(S1)
and Fn = C(S1 ×Cn )̃ with n = 1, 2, . . . ,, then [ϕ] = [ψ] in KL(A,B). Conversely,
if [ϕ] = [ψ] in KL(A,B), then ϕ ⊗ idFn

and ψ ⊗ idFn
induce the same map on

K0(A⊗ Fn) for all n. This fact will be used in the proof of 2.6.
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2.2. Definition. Let C be a C∗-algebra. We denote by Aut(C) the set
of automorphisms on C and by Aut0(C) the path connect component of Aut(C)
containing the idC .

Consider an essential extension:

0→ B → E → A→ 0.

Let U ∈ M(B) be a unitary such that U∗xU ∈ E for all x ∈ E. Then α(x) =
ad(U)(x) = U∗xU , for x ∈ E, defines an automorphism on E. Moreover, the map
α, defined by α(π(x)) = ad(π(U))(π(x)) for x ∈ E, is an automorphism on A.
Denote by Eα and Aα the C∗-subalgebras generated by U and E, and by π(U)
and A, respectively. This also gives an extension σα : Aα →M(B)/B. We will use
these notation in the rest of this paper. It is also clear that B ×α Z is a (closed)
ideal of E×α Z. Furthermore, the quotient is isomorphic to A×α Z. Thus we have

0→ B ×α Z→ E ×α Z→ A×α Z→ 0.

2.3. Definition. Fix a C∗-algebra B and a nuclear C∗-subalgebra A of B.
Let α : A→ B be a monomorphism. Define

Mα(A,B) = {f ∈ C([0, 1], B) : f(0) ∈ A and f(1) = α(f(0))}.

Then we have the following short exact sequence:

0→ SB →Mα(A,B)→ A→ 0.

If A = B, we will denote Mα(A,A) by Mα(A).
Let τα : A→M(SB)/SB be the essential extension determined by the above

short exact sequence. Let [τα] be the element in Ext(A, SB) = KK1(A, SB) repre-
sented by τα. Identifying KK1(A, SB) with KK(A,B), we define [α] ∈ KK(A,B)
by the image of [τα]. Let also [τα] be the element in KL1(A, SB) which is the image
of τα. Identifying KL1(A, SB) with KL(A,B), we defined [α] ∈ KL(A,B) by the
image of [τα].

2.4. Remark. Let A be a C∗-algebra and α ∈ Aut(A), and B = A ×α Z.
There is an action β = α̂ of S

1 on B; we may regard β as an action of R on
B with Z acting trivially. By Takai duality we have B ×β S

1 ∼= A ⊗ K. By
10.3.2 of [4], B ×β R ∼= Mβ̂(B ×β S

1). Now the Connes’ Thom isomorphism gives

Ki(B ×β Z) ∼= K1−i(B) = K1−i(A ×α Z). Thus there is a natural ismorphism
from Ki(Mα(A)) to K1−i(A ×α Z). This isomorphism can be used to prove the
Pimsner-Voiculescu Exact Sequence for cross products (see 10.4 in [4]). We will
use this isomorphism to prove the following easy fact.

2.5. Lemma. Let E be an essential extension

0→ B → E → A→ 0

of A by B, where A and B are σ-unital C∗-algebras. Let U ∈ M(B) be a unitary
with U∗cU ∈ E, for all c ∈ E, and α(c) = U∗cU for all c ∈ E. Then the six-term
exact sequence in K-theory given by

0→ B ×α Z→ E ×α Z→ A×α Z→ 0

gives the following commutative diagram
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Figure 1.

where the top and bottom planes are the six-term exact sequence given by

0→ B → E → A→ 0

and the middle plane is the six-term exact sequence given by

0→ B ×α Z→ E ×α Z→ A×α Z→ 0

and all vertical columns are exact in the middle.

Proof. We have the following commutative diagram:

0 0 0
↓ ↓ ↓

0 → SB → Mα(B) → B → 0
↓ ↓ ↓

0 → SE → Mα(E) → E → 0
↓ ↓ ↓

0 → SA → Mα(A) → A → 0
↓ ↓ ↓
0 0 0

This commutative diagram gives the commutative diagram in Figure 2.

For any C∗-algebra C, let β : C → C be an automorphism. There is an

isomorphism ϕ from Ki(Mβ(C)) onto K1−i(C ×β Z) (see the previous remark and
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10.4 in [4]) such that the following diagram commutes

K0(C) −→ K1(Mβ(C)) −→ K1(C)
↘ ↓ ↙

K0(C) → K0(C ×β Z) → K1(C)
↑ ↑ ↓ ↓

K0(C) ← K1(C ×β Z) ← K1(C)
↗ ↑ ↖

K0(C) ←− K0(Mβ(C)) ←− K1(C)

for any C∗-algebra C. Then the diagram in the lemma follows (see also the proof
of Lemma 2.1 in [50] for some more detail).
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Figure 2.

2.6. Lemma. Let B be a unital C∗-algebra and A be a unital nuclear sep-
arable C∗-algebra with the UCT which is a unital C∗-subalgebra of B and let
α : A → B and β : A → B be two monomorphisms such that [α] = [β] in
KL(A,B). Suppose that there is a unitary U ∈ Cb(C(0, 1),M(B ⊗K)σ) (see 1.4)
such that

U∗diag(f, a, a, . . .)U − diag(g, a, a, . . .) ∈ SB ⊗K

for all a ∈ A and for all f ∈ Mα(A,B) and g ∈ Mβ(A,B) with f(0) = a, f(1) =
α(a), g(0) = a and g(1) = β(a). Then, for each t ∈ (0, 1), [Γt] = [idE] in KL(E,E),
where E = D+B⊗K, D = {diag(a, a, . . . , a, . . .) : a ∈ A} and Γt(x) = U(t)∗xU(t)
for x ∈ E.

Proof. It is easy to see that Γt is an automorphism on E for each t ∈ (0, 1).
We first show that (Γt)∗ = idK0(E). We want to show that, for any projection
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p ∈ Mm(E), [Γt(p)] = [p] in K0(E). To save notation, by replacing Mm(A) by A
and Mm(B) by B, we may assume that p ∈ E.

Fix t0 ∈ (0, 1). Since U(t0) ∈ M(B ⊗ K), Γt0(p) is equivalent to p in E, if
p ∈ B ⊗K. So we may assume that p 6∈ B ⊗K.

We claim that there is a projection q = diag(p1, p1, . . . ., ) ∈ D, where p1 ∈ A
is a projection, such that p− q ∈ B ⊗K. To see this, note that there is a positive
element a ∈ A such that

diag(a, a, . . .)− p ∈ B ⊗K.

Set c = diag(a, a, . . .). Then c2 − c ∈ B ⊗K. This implies that ‖a2 − a‖ → 0. This
happens only when a2 = a. The claim follows.

Thus there is N > 1 such that

‖(1− eN )(p− q)‖ <
1

8

where en =
n∑
j=1

1B ⊗ eii and {eij} is the matrix unit for K. Then, from a standard

computation, there is a projection p′ ∈ (1− eN )E(1− eN) and a projection p′′ ∈
eNEeN such that

‖(1− eN)q − p′‖ <
1

2
and ‖p′ + p′′ − p‖ <

1

2
.

So p is unitarily equivalent to p′ + p′′ and p′ is unitarily equivalent to (1 − eN)q
in E. Thus we may assume that p = (1− eN )q+ p′′. Since [U∗(t0)p

′′U(t0)] = [p′′],
it suffices to show that, in the group K0(E), [U∗(t0)(1− eN )qU(t0)] = [(1− eN)q].
Therefore, to save notation, we may further assume that p = (1 − eN)q. Define
f(t) ∈Mα(A,B) ⊂ C([0, 1], B) and g(t) ∈Mβ(A,B) ⊂ C([0, 1], B) such that

f(0) = p1, f(t) = α(p1) for t ∈ [t0, 1],

and
g(0) = p1, g(t) = β(p1), for t ∈ [t0, 1]

(f and g are not necessary projections). Therefore, using the fact that [α]|K0(A) =
[β]|K0(A), we have, in K0(E),

[U∗(t0)α(p1)U(t0)] = [α1(p1)], [α(p1)] = [β(p1)]

and
[U∗(t0)(eN − e1)qU(t0)] = [(eN − e1)q].

From these identities, in the group K0(E), to show [U∗(t0)(1 − eN)qU(t0)] =
[(1− eN )q], it suffices to show that

[U∗(t0)(1− eN )qU(t0)] + [U∗(t0)(eN − e1)qU(t0)] + [U∗(t0)α(p1)U(t0)]

= [(1− eN)q] + [(eN − e1)q(eN − e1)] + [β(p1)].

Set
c(p1, f, g)(t) = U∗(t)diag(f(t), p1, . . .)U(t)− diag(g(t), p1, . . .).

Then c(p1, f, g) ∈ SB ⊗K. Since diag(g(t), p1, p1, . . . , p1, . . .) ∈ C([0, 1], E),

U∗(t)diag(f(t), p1, . . . , )U(t) ∈ C([0, 1], E).
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Therefore, for all t ∈ [t0, 1), U∗(t)diag(f(t), p1, . . . , )U(t) are projections in E and
they are all equivalent in E. Since ‖c(p1, f, g)(t)‖ → 0 as t→ 1,

‖U∗(t)diag(α(p1), p1, . . .)U(t)− diag(β(p1), p1, . . .)‖ <
1

2

for all t > t1, where 1 > t1 > t0. This implies that, when 1 > t > t1,

[U∗(t)diag(α(p1), p1, . . .)U(t)] = [diag(β(p1), p1, . . .)]

in K0(E). Since, from the above, for t ∈ [t0, 1),

[U(t)∗diag(α(p1), p1, . . .)U(t)] = [U(t0)
∗diag(α(p1), p1, . . .)U(t0)],

we have
[U(t0)

∗diag(α(p1), p1, . . .)U(t0)] = [diag(β(p1), p1, . . .)]

in K0(E), or equivalently

[U(t0)
∗(1− e1)qU(t0)] + [U(t0)

∗α(p1)U(t0)] = [(1− e1)q] + [β(p1)]

in K0(E). By the above, this implies that

[U∗(t0)pU(t0)] = [p]

for any t0 ∈ (0, 1). This proves that (Γt)∗ = id|K0(E) for all t ∈ (0, 1).
Now let Fn be as in 2.1. Put An = A ⊗ Fn, Bn = B ⊗ Fn, En = E ⊗ Fn,

αn = α ⊗ idFn
, βn = β ⊗ idFn

, Wn(t) = U(t) ⊗ 1Fn
and Γt,n = Γt ⊗ idFn

. It is
clear that Mαn

(An, Bn) = Mαn
(A,B)⊗Fn and Mβn

(An, Bn) = Mβn
(A,B)⊗Fn.

Note that, since [α] = [β] in KL(A,B), [αn]|K0(An) = [βn]|K0(An). We also have
Γt,n(c) = Wn(t)∗cWn(t) for c ∈ En and

Wn(t)∗diag(fn, c, . . .)Wn(t)− diag(gn, c, . . .) ∈ S(Bn)⊗K

for all fn ∈ Mαn
(An, Bn), gn ∈ Mβn

(An, Bn) with fn(0) = gn(0) = c and for
all c ∈ En. Thus, by applying what we have proved, we conclude that (Γt,n)∗ =
idK0(En). Therefore, by the last part of 2.1, [Γt] = [idE ] in KL(E,E) for every
t ∈ (0, 1).

2.7. Proposition. Let A be a unital separable nuclear C∗-algebra with the
UCT and let E be a unital essential trivial extension of A by B ⊗K, where B is
σ-unital, let U ∈M(B⊗K) be a unitary with Ux−xU ∈ B⊗K for all x ∈ E and
let α = ad(U) ∈ Aut(E). Suppose that [α] = [idE ] in KL(E,E), Aα = A ⊗ C(S1)
and σα is the extension of A⊗C(S1) (given by α as in 2.2) by B⊗K. Then [σα] = 0
in KL1(C(S1)⊗A,B).

Proof. To save notation, we assume that B = B ⊗K. We note that there is
a continuous path of unitaries Ut ∈ M(B) (by [56])) such that U0 = 1M(B) and
U1 = U. Define αt(b) = U∗t bUt for b ∈ B. So α|B ∈ Aut0(B). In particular, α|B is
homotopy to idB . So, by 10.5.2 in [4],

Ki(B ×α Z) = K0(B)⊕K1(B).

Since Ux − xU ∈ B, α = idA. Therefore A ×α Z = A ⊗ C(S1). Note that the
six-term exact sequence in K-theory given by the short exact sequence

0→ B → E → A→ 0
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yields two splitting short exact sequences

0→ K0(B)→ K0(E)→ K0(A)→ 0 and 0→ K1(B)→ K1(E)→ K1(A)→ 0.

Since α∗i = idKi(E), i = 0, 1, by the Pimsner-Voiculescu exact sequence, we have
the following short exact sequence:

0→ Ki(E)→ Ki(E ×α Z)→ Ki+1(E)→ 0, i = 0, 1.

Since [α] = [idE ] in KL(E,E), the above extensions are pure. This is because

0→ Ki(E)→ Ki+1(Mα(E))→ Ki+1(E)→ 0, i = 0, 1

is pure. Therefore, by performing a diagram chase in the big diagram of 2.5, we
see that the map from K0(E ×α Z) to K0(A×α Z) is surjective and the map from
K1(E ×α Z) to K1(A ×α Z) is also surjective. Hence the six-term exact sequence
in K-theory determined by the short exact sequence

0→ B ×α Z→ E ×α Z→ A×α Z→ 0

yields two short exact sequences

0→ K0(B)⊕K1(B)→ Ki(E ×α Z)→ K0(A)⊕K1(A)→ 0, i = 0, 1.

Furthermore, using the fact that

0→ Ki(E)→ Ki(E ×α Z)→ Ki+1(E)→ 0, i = 0, 1,

is pure, from the big diagram of 2.5, we conclude that the extension

0→ K0(B)⊕K1(B)→ Ki(E ×α Z)→ K0(A)⊕K1(A)→ 0, i = 0, 1

is pure.
Let h : E ×α Z→ Eα (see 2.2) be the surjective map. It is clear that h gives

the following commutative diagram:

0 → B ×α Z → E ×α Z → A×α Z → 0
↓ hJ ↓ h ↓ h

0 → B → Eα → Aα → 0.

Therefore, from the above, we have the following commutative diagram:

K0(B ×α Z) −→ K0(E ×α Z) −→ K0(A)⊕K1(A)
↘ ↓ ↙

K0(B) → K0(Eα) → K0(Aα)
↑ ↑ ↓ ↓

K1(Aα) ← K1(Eα) ← K1(B)
↗ ↑ ↖

K1(A)⊕K0(A) ←− K1(E ×α Z) ←− K1(B ×α Z).

Note, since A×α Z = A⊗ C(S1) and Aα = A⊗ C(S1), that h is an isomorphism.
Therefore the map from K0(A) ⊕ K1(A) to K0(Aα) in the above diagram is an
isomorphism. Since, in the above diagram, the map from K0(A) ⊕ K1(A) to
K1(B ×α Z) is zero, the map from K0(Aα) to K1(B) is also zero. Similarly, the
map from K1(Aα) to K0(B) is also zero. Thus, the six-term exact sequence given
by the extension

0→ B → Eα → Aα → 0
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breaks into
0→ Ki(B)→ Ki(Eα)→ Ki(Aα)→ 0, i = 0, 1.

Therefore, from the UCT, we know that [τα] ∈ ext1
Z
(K∗(Aα),K∗(B)). Since

0→ Ki(B ×α Z)→ Ki(E ×α Z)→ K1(A) ⊕K0(A)→ 0

is pure, from the above 12-term commutative diagram, one checks easily that

0→ Ki(B)→ Ki(Eα)→ Ki(Aα)→ 0, i = 0, 1

is also pure. We conclude that [τα] = 0 in KL1(A⊗ C(S1), B).

3. LIFTING AUTOMORPHISMS

3.1. Definition. Consider again the situation in 2.2. A is a unital C∗-
subalgebra of Aα. Let τ0 : A → M(B ⊗ K)/B ⊗ K be a unital trivial extension
of A by B ⊗ K. Define τ1(a) = diag(σα(a), τ0(a)) for all a ∈ A and τ1(π(U)) =
diag(π(U), 1). This gives a unital essential extension of Aα by B ⊗ K. We say
that σα absorbs any essential trivial extension of A (by B ⊗ K) if τ1 is unitarily
equivalent to σα for every such τ0. Note that, in the above, if τ0 is absorbing, then
τ1 always absorbs any trivial essential extensions of A. This fact will be used in
the proof of 3.4 and 4.3.

3.2. Theorem. Let A be a C∗-algebra. Then every automorphism α ∈
Aut0(A) is approximately inner.

Proof. The case that A is separable is proved in [44] which follows from a
result of Pedersen and a result of Kadison and Ringrose. Now we reduce the general
case to the separable case. Fix a finite subset F ⊂ A. Let αt (t ∈ [0, 1]) ∈ Aut(A)
be a continuous path of automorphisms such that α0 = α and α1 = idA. Let {tn}
be a dense subset of (0, 1). Let F1 = F , F2 = α(F1), F3 = α(F2) ∪ αt1(F2),
F4 = α(F3)∪αt1 (F3)∪αt2 (F3), F5 = α(F4)∪αt1 (F4)∪αt2 (F4)∪αt3 (F4), . . . Let
B be the C∗-subalgebra of A generated by {Fn}. Then B is a separable C∗-algebra
and α, αtn are invariant on B. This implies that α|B ∈ Aut0(B). It follows from
the separable case that, for any ε > 0, there is a unitary U ∈ B ⊂ A such that

‖α(x) − U∗xU‖ < ε

for all x ∈ F .

3.3. Theorem. (Theorem 1.4 in [69]) Let A be a separable nuclear C∗-
algebra which satisfies the Universal Coefficient Theorem and B be a σ-unital
C∗-algebra. Suppose that x ∈ Ext(A,B). Then x is in the closure of zero if and
only if x ∈ PK(A,B).

The statement in [69] is about (stably) quasidiagonal extensions. However,
the above statement is actually proved in 1.4 in [69]. By the definition, an essential
extension τ : A→M(B)/B, [τ ] is in the closure of zero if and only if the following
holds: For any essential trivial absorbing extension τ0 : A → M(B ⊗ K)/B ⊗ K,
there are trivial extensions τn : A→M(B ⊗K)/B ⊗K such that

lim
n→∞

τn(a) = τ(a) ⊕ τ0(a)

for all a ∈ A.
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3.4. Theorem Let A be a unital nuclear separable C∗-algebra which satisfies
the UCT and B be a σ-unital C∗-algebra. Let τ : A → M(B ⊗ K)/B ⊗ K be
a unital essential trivial absorbing extension of A by B ⊗ K, let E be the C∗-
algebra determined by this unital essential trivial extension, let U ∈ M(B ⊗ K)
with U∗x − xU ∈ B ⊗ K for x ∈ E and let α = ad(U) ∈ Aut(E). Suppose that
σα : Aα →M(B⊗K)/B⊗K induced by α (see 2.2) absorbs any trivial extensions
of A (see 3.1). Then α is approximately inner if [α] = [idE ] in KL(E,E).

Proof. (1) First, we show that there exists a continuous path of unitaries
Vt ∈M(B⊗K) (t ∈ [0, 1]) such that V0 = 1, Vtx−xVt ∈ B⊗K for all x ∈ E, and
if β = ad(V1) then Aβ = C(S1)⊗ A, and σβ : C(S1) ⊗A :→M(B ⊗K)/B ⊗K is
a unital essential trivial absorbing extension.

There is an absorbing unital trivial essential extension τ ′0 : C([0, 1]) ⊗ A →
M(B⊗K)/B⊗K. Let C = {f ∈ C([0, 1])⊗A : f(0) = f(1)}. Then C ∼= C(S1)⊗A.
Thus there is an absorbing unital trivial essential extension τ0 : C(S1) ⊗ A →
M(B ⊗ K)/B ⊗ K which satisfies the following: There is a continuous path of
unitaries Vt ∈M(B ⊗K) (t ∈ [0, 1]) such that [π(Vt), τ0(1⊗ a)] = 0 for all a ∈ A,
π(V1) = τ0(z ⊗ 1A) and V0 = 1, where z is the canonical unitary generator of
C(S1). To see the existence of τ ′0, we first obtain a unital monomorphism h1 :
C([0, 1])⊗ A → B(`2) such that h1(C([0, 1])⊗ A) ∩ K = ∅ (see the proof of 1.11)
and then let ϕ : B(`2) → M(B ⊗ K) be the map by identifying B(`2) with the
subalgebra of scalar matrices in M(B ⊗K). By Theorem 6 in [36], we know that
τ ′0 given by ϕ ◦ h1 is an absorbing unital trivial essential extension. Let E ′ be the
C∗-algebra given by the (splitting) short exact sequence determined by τ0|A

0→ B ⊗K → E′ → A→ 0.

Since τ0|A and τ are absorbing, they are unitarily equivalent. So, without loss of
generality, we may assume that E = E ′. This proves (1).

(2) There is an automorphism β : E → E such that β and α are in the same
path component in Aut(E), Aβ = C(S1)⊗A and σβ : C(S1)⊗A→M(B⊗K)/B⊗K
is trivial and absorbing.

Let V1 be as in (1) and let W = diag(U, V1). Note that Aα is a quotient of
C(S1)⊗A. There is a surjective map h : Aα → A such that h|A = idA (we regard
A as a unital C∗-subalgebra of Aα). Consider σ : Aα →M(B⊗K)/B⊗K defined
by σ(a) = diag(σα(a), h(a)) for a ∈ Aα (see 2.2 for σα). Since σα absorbs any
trivial extensions by A, there is a unitary Z ∈M(B⊗K) such that σα = ad(Z)◦σ.
So π(U) = ad(Z)(diag(π(U), 1)). Now set Wt = ad(Z)(diag(U, Vt)), where Vt is as
in (1). Let βt = ad(Wt) and β = ad(W1). By (1), we have Aβ = C(S1) ⊗ A and
σβ is trivial absorbing extension. Since β0 = α, we see (2) holds.

(3) Now we prove the theorem. By (2) and 3.2, we may further assume that
σα is a unital essential trivial absorbing extension of C(S1)⊗A by B⊗K. Now let
β be as in (1). Note that β = ad(V1) and ad(V1) ∈ Aut0(E). It follows from 2.7
that σβ and σα represent the same element in KL1(A ⊗ C(S1), B). Thus, by 3.3,
since both σβ and σα are absorbing, there are unitaries Zn ∈M(B⊗K) such that

‖Z∗nV1Zn − U + an‖ → 0

as n → ∞, where an ∈ B ⊗K. Set Wn = Z∗nV1Zn. For any 0 < δ < 1/2, suppose
that

‖Wn − U + an‖ < δ.
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Set W ′n = (Wn + an)[(Wn + an)
∗(Wn + an)]

−1/2. Note (Wn + an)
∗(Wn + an) is

invertible. Note also that

(Wn)∗W ′n − 1E ∈ B ⊗K.

For any ε > 0, with a sufficiently small δ,

‖W ′n − U‖ <
ε

2
.

Thus
‖ad(W ′n)− α‖ < ε.

Therefore, to show that α is approximately inner, it suffices to show that ad(W ′n)
is approximate inner (as an automorphism on E) for every such W ′n with suf-
ficiently large n. Let Y = (Wn)∗W ′n. Then Y is a unitary in 1 + B ⊗ K ⊂ E.
Note that ad(W ′n) = ad(Wn) ◦ ad(Y ) and ad(Wn) ∈ Aut0(E). By 3.2, ad(Wn) is
approximately inner. Therefore ad(W ′n) is approximately inner.

4. STABLE APPROXIMATE UNITARY EQUIVALENCE

For the rest of the paper, we will denote by B the class of all separable, nuclear,
C∗-algebras which satisfy the UCT.

4.1. Definition. Let A be a C∗-algebra and B be a unital C∗-algebra.
Two homomorphisms ϕ, ψ : A → B are said to be stably approximately unitarily
equivalent if, for any monomorphism h : A → B, ε > 0 and finite subset F ⊂ A,
there exists an integer n > 0 and a unitary U ∈Mn+1(B) such that

‖U∗diag(ϕ(a), h(a), h(a), . . . , h(a))U − diag(ψ(a), h(a), h(a), . . . , h(a))‖ < ε

for all a ∈ F , where h(a) repeats n times on the both diagonals.

4.2. Let A be a separable unital nuclear C∗-subalgebra of a unital C∗-algebra
B (we assume that 1A = 1B). We will denote by τ∞ the unital trivial extension
of A by SB ⊗K defined by the unital map d(a) = diag(a, a, . . . , a, . . .) from A to
M(SB ⊗ K). Here we identify B with constant functions in C([0, 1], B). If either
A is simple or B is simple, then by 1.10, d gives an absorbing trivial extension of
A by SB ⊗K.

4.3. Theorem Let B be a unital C∗-algebra and let A be a unital C∗-
algebra in B which is a unital C∗-subalgebra of B. Let α : A→ B and β : A→ B be
two homomorphisms. Then α and β are stably approximately unitarily equivalent
if [α] = [β] in KK(A,B) and if either A is simple or B is simple.

Proof. For any unital monomorphism h : A→ B, to simplify notation, with-
out loss of generality, we may assume that the monomorphism is the embedding.
By replacing α and β by α ⊕ h and β ⊕ h, without loss of generality, we may
assume that α and β are injective. Let τ1 = τα and τ2 = τβ be the extensions
of A by SB as in 2.3 and let τ∞ be as in 4.2. Then, if either A is simple or B
is simple, by the Universal Coefficient Theorem ([67]) and 1.10 there is a unitary
U ∈M(SB ⊗K) = Cb((0, 1),M(B ⊗K)σ) (see 1.4) such that

π(U)∗diag(τ1, τ∞)π(U) = diag(τ2, τ∞),
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where π : M(SB)⊗K)→M(SB⊗K)/SB⊗K is the quotient map. For any a ∈ A,
let f ∈ Mα(A,B) and g ∈ Mβ(A,B) with f(0) = a, f(1) = α(a), g(0) = a and
g(1) = β(a). Set

c(a, f, g)(t) = U∗(t)diag(f(t), a, a, . . .)U(t)− diag(g(t), a, a, . . .), t ∈ (0, 1).

Then we have c(a, f, g) ∈ SB ⊗ K. In particular, ‖c(a, f, g)(t)‖ → 0 as t → 1 or
t→ 0.

Let
D = {diag(a, a, . . . , a, . . .) : a ∈ A},

where a repeats infinitely many times. Let E = D + B ⊗ K. For each t ∈ (0, 1)
define Γt(x) = U∗(t)xU(t) for x ∈ E. Then Γt is an automorphism on D. It
follows from Lemma 2.6 that [Γt] = [idE ] in KL(E,E)) for each t ∈ (0, 1). Let
π0 : E → E/B ⊗K. Then π0 ◦ Γt = π0. By 1.11, π0 ◦ d gives an absorbing trivial
extension of A by B ⊗ K. We now apply Theorem 3.4. Note U(t) ∈ M(B ⊗ K)
for each t ∈ (0, 1) and also note that E is a C∗-subalgebra of M(B ⊗ K) given
by the diagonal map d from A to M(B ⊗K). Furthermore, by replacing U(t) by
diag(U(t), 1) and τ∞ by diag(τ∞, τ∞), we may assume that σΓt

absorbs any trivial
essential extensions of A (by B⊗K); see 3.1. So, by 3.4, Γt is approximately inner.
Thus, for any ε > 0, any finite subset G ⊂ E and for each t ∈ (0, 1), there is a
unitary Wt ∈ E such that

‖W ∗t gWt − U
∗(t)gU(t)‖ <

ε

32

for all g ∈ G. Since Wt ∈ E, there is W ′t ∈ E such that

‖Wt −W
′
t‖ <

ε

32

and

[
1−

(
1B⊗

k∑

i=1

eii

)]
W ′t = W ′t

[
1−

(
1B⊗

k∑

i=1

eii

)]
= diag(0, . . . , 0, w, w, . . . , w, . . .),

where the diagonal element has k zero for some integer k > 0 and w ∈ A is a
unitary (and {eij} is a matrix unit for K).

Now fix a finite subset F = {a1, a2, . . . , al} in the unit ball of A. Let fi ∈
C([0, 1], B) such that fi(0) = ai and fi(1) = α(ai), and gi ∈ C([0, 1], B) such
that gi(0) = ai and gi(1) = β(ai), i = 1, 2, . . . , l. We also use ai for the constant
functions in C([0, 1], B). Choose t close to 1 so that

‖fi(t)− fi(1)‖ <
ε

4
, ‖gi(t)− gi(1)‖ <

ε

4

and
‖c(ai, fi, gi)(t)‖ <

ε

16
, i = 1, 2, . . . , l.

With sufficiently large G, we have

‖(W ′t )
∗diag(fi(t), ai, ai, . . . , ai, . . .)W

′
t − U(t)∗diag(fi(t), ai, ai, . . . , ai, . . .)U(t)‖

<
ε

8
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for i = 1, 2, . . . , l. Then

‖(W ′t )
∗diag(fi(t), ai, ai, . . .)W

′
t − diag(gi(t), ai, ai, . . . , )‖ 6

ε

8
+ ‖c(ai, fi, gi)(t)‖

< 3
ε

16

for i = 1, 2, . . . , l. Let w1 =
(
1B ⊗

k∑
i=1

eii

)
W ′t

(
1B ⊗

k∑
i=1

eii

)
. Note that w1 is a

unitary in Mk(B). We have

‖w∗1diag(fi(t), ai, ai, . . . , ai)w1 − diag(gi(t), ai, ai, . . . , ai))‖ < 3
ε

16

for i = 1, 2, . . . , l, where ai repeats k − 1 times on both diagonals.
Finally,

‖w∗1diag(α(ai), ai, ai, . . . , ai)w1 − diag(β(ai), ai, ai, . . . , ai)‖ <
ε

4
+ 3

ε

16
+
ε

4
< ε

for i = 1, 2, . . . , l.
From the first sentence of this proof, we conclude that α and β are stably

approximately unitarily equivalent.

4.4. Proposition. (cf 5.4 in [66]) Let B be a unital C∗-algebra and let A
be a unital C∗-algebra in B which is a unital C∗-subalgebra of B. Let α : A → B
and β : A → B be two unital homomorphisms. Suppose that α and β are stably
approximately unitarily equivalent. Then [α] = [β] in KL(A,B).

Proof. We assume that

‖u∗ndiag(α(a), a, . . . , a)un − diag(β(a), a, · · · , a)‖ → 0

for all a ∈ A as n → ∞, where a repeats Kn times and un ∈ MKn+1(B) are
unitaries. Set αn : A → MKn+1(B) by αn(a) = ad(un) ◦ diag(α(a), a, . . . , a) and
βn : A→MKn+1(B) by βn(a) = diag(β(a), a, . . . , a). Let ταn

and τβn
be the exten-

sion of A by SB⊗K determined by Mαn
(A,MKn+1(B)) and Mβn

(A,MKn+1(B)),
respectively. Let fn(t) ∈ Mαn

(A,MKn+1(B)) and gn(t) ∈ Mβn
(A,MKn+1(B))

with fn(0) = gn(0); then

‖fn(1)− gn(1)‖ = ‖αn(f(0))− βn(fn(0))‖ → 0

(as n → ∞). This implies that (view ταn
and τβn

as maps from A to M(SB ⊗
K)/SB ⊗K))

‖ταn
(a)− τβn

(a)‖ → 0

for all a ∈ A. Set γ : A → M(B ⊗ K) by γ(a) = diag(a, a, . . .) for a ∈ A and
τ∞ = π ◦ γ, where π : M(SB ⊗K)→M(SB ⊗K)/SB ⊗K is the quotient map.

From the above, we obtain unitaries vn ∈M(SB ⊗K) such that

lim
n→∞

ad(vn) ◦ diag(τα(a), τ∞(a)) = diag(τβ(a), τ∞(a))

for all a ∈ A. Let τ−1
∞ and τ−1

β be extension such that [τ−1
∞ ] = −[τ∞] and [τ−1

β ] =

−[τβ ] in Ext(A, SB ⊗K). Then

lim
n→∞

ad(vn) ◦ diag(τα(a), τ∞(a)) ⊕ τ−1
∞ (a)⊕ τ−1

β (a)

= diag(τβ(a), τ∞(a))⊕ τ−1
∞ (a)⊕ τ−1

β (a)
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for all a ∈ A. Since [τ∞⊕τ−1
∞ ] = 0 and [τβ⊕τ∞]+[τ−1

∞ ⊕τ
−1
β ] = 0 in Ext(A, SB⊗K),

by [69] (see 3.3), [τα+τ−1
β ] = 0 in KL1(A, SB⊗K), or [τα] = [τβ ] in KL1(A, SB⊗K).

So [α] = [β] in KL(A,B).

4.5. Theorem. Let A be a unital C∗-algebra in B and let B be a unital
simple C∗-algebra which contains A as a unital C∗-subalgebra. Suppose that there
are C∗-subalgebras An ⊂ A with finitely generated Ki(An) with i = 0, 1 such

that each An satisfies the UCT and
∞⋃
n=1

An is dense in A. Let α, β : A → B be

homomorphisms. Then α and β are stably approximately unitarily equivalent if
and only if [α] = [β] in KL(A,B).

Proof. The “only if” part follows from 4.4. Let αn = α|An and βn = β|An.
Since A is unital, 1A ∈ An for all large n. So without loss of generality we may
assume that 1A ∈ An for all n. From the surjective map

KL(A,B)→ lim
←

KL(An, B)

(see [15] for example), since [α] = [β] in KL(A,B), we know, for all sufficiently
large n, [αn] = [βn] in KL(An, B). Since Ki(An) is finitely generated and An has
UCT, we conclude that [αn] = [βn] in KK(An, B) for all large n. By 4.3, αn and
βn are stably approximately unitarily equivalent for all large n. It follows that α
and β are stably approximately unitarily equivalent.

The above actually holds if we assume that A is simple without assuming
that B is simple. This is because the map from An to B factors through A so the
corresponding diagonal map is in fact absorbing.

4.6. Definition. Now we introduce a class of C∗-algebras which has certain
“bounded K-theoretical stable rank”. Fix l > 1, b > π and M > 1. We say a unital
C∗-algebra A ∈ C(l,b,M), if

(a) for any projections p, q ∈MK(A) with [p] = [q] in K0(A), p⊕ 1MKL(A) is
Murry-von Neumann equivalent to q ⊕ 1MKL(A) for all K;

(b) the canonical map U(Ml(A))/U0(Ml(A)) → K1(A) is surjective;
(c) the exponential length of Mm(A), cel(Mm(A)) 6 b for all m;
(d) if k > 0 and −l[1A] 6 kx 6 l[1A], then −lMk[1A] 6 x 6 lMk[1A] for all

x ∈ K0(A).

Every purely infinite simple C∗-algebra is in C(l,b,M). By some results of
Rieffel ([64]), all C∗-algebras of stable rank one satisfy (a) and (b). Every C∗-
algebra A of real rank zero has exponential length bounded by π, i.e., cel(A) 6 π
(see [47], also 6.7 in [61]). It is easy to see that if K0(A) is weakly unperforated,
then A satisfies (d). Therefore every unital C∗-algebra with real rank zero, stable
rank one and weakly unperforated K0 is in C(l,b,M), for any l > 1, b > π and

M > 1. Fix l > 1, b > π and M > 1. Let Bn ∈ C(l,b,M) and C =
∞∏
n=1

(Bn). Then

K0(C) =
∏
b

K0(Bn) and K1(C) =
∏

K1(Bn), where

∏

b

K0(Bn) = {{xn} : xn = [pn]− [qn], pn, qn ∈Mk(Bn) projections

with k independent of n}.
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(see [31] for example and [32]). Therefore, it is easy to see that C satisfies (a),
(b) and (d) with the same l and M. It is also easy to see that C satisfies (c)
with the same b (see [31]). Therefore C ∈ C(l,b,M). Let C0 =

⊕
n
Bn and let

π : C → C/C0 be the quotient map. Since every projection, partial isometry and
unitary in C/C0 can be lifted to a projection, partial isometry and unitary, it is
rather easy to check that that C/C0 ∈ C(l,b,M). For example, if p, q ∈ MK(C/C0)
and [p] = [q] in K0(C/C0). Then, there are projections {pn}, {qn} ∈MK(C) such
that π({pn}) = p, π({qn}) = q and [pn] = [qn] in K0(Bn) for n > N and for some
integer N > 0. So we may assume that pn = qn if n < N. Then pn ⊕ 1MKL(Bn) is
equivalent to qn⊕ 1MKL(Bn). Therefore C/C0 satisfies (a) for l. In the special case
that each Bn has real rank zero and stable rank one, it is known that both

∏
Bn

and C/C0 have stable rank one and real rank zero. It is also easy to see that if
each K0(Bn) is weakly unperforated so are K0(C) and K0(C/C0).

Though for most applications the C∗-algebra A has the “K-theoretically
locally finite” condition in 4.5, we would like to include the following theorem
which does not require A to be “K-theoretically locally finite”. We believe however
that 4.7 holds without these additional conditions (condition (d) is not used in the
proof of 4.7 but used in 4.8 and 5.3).

4.7. Theorem. Let l > 1, b > π and M > 1. Let B be a unital C∗-algebra
in C(l,b,M) and let A be a unital simple C∗-algebra in B which is a unital C∗-
subalgebra of B. Let α : A → B and β : A → B be two homomorphisms. Then α
and β are stably approximately unitarily equivalent if [α] = [β] in KL(A,B).

Proof. Let σ : A→M(SB⊗K)/SB⊗K) such that [σ] = −[β] in KK(A,B) (=
Ext(A, SB)) and γ = α ⊕ σ. In KK(A,B), [γ] gives an element in⊕
i=0,1

Pext(Ki(A),Ki+1(B)) which is represented by the following pure extensions:

0→ Ki+1(B)→ Hi
p
→ Ki(A)→ 0, i ∈ Z/2Z.

Let K1(A) be generated by g1, g2, . . . , gn, . . . and let G
(1)
n = (g1, g2, . . . , gn) the

subgroup generated by g1, . . . , gn. There is an injective homomorphism jn : G
(1)
n →

H1 such that p ◦ jn = id
G

(1)
n

. Note that jn(gk)− ji(gk) ∈ K0(B) for any n, i > k.

Suppose that jn(gk) − jk(gk) is represented by a difference of two projections in
Ml(k,n)(B). Denote by L(n) = max{l(k, n) : k 6 n}. Let BL =

∏
ML(n)(B). Since

B ∈ C(l,b,M), it is easy to check (using (a)) that

K0(B
L) = {{xn} : xn = [pn]− [qn], where pn, qn ∈MKL(n)(B)

for some integer K > 0}.

From the definition of L(n), we conclude that, for any g ∈ G
(1)
k ,

(0, . . . , 0, jk+1(g)− jk(g), jk+2(g)− jk(g), . . . , jn(g)− jk(g), . . .) ∈ K0(B
L).

Let α∞ = {α}, β∞ = {β} : A →
∏
n
ML(n)(B) = BL with {α} = (α, α, . . .). Note

α∞ and β∞ give essential extensions of A by S(BL) by the “mapping tori” as
before. Let σ̃ : A→M(SB⊗K) be a completely positive map such that π ◦ σ̃ = σ,
where π : M(SB⊗K)→M(SB⊗K)/SB⊗K. It is easy to check that {σ̃} maps A
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to M(S(BL)⊗K) (note that
∏
M((SML(n)(B))⊗K) 6= M(S(BL)⊗K) in general,

but the image of {σ̃} is in M(S(BL)⊗K)). This shows that σ∞ : A→M(SBL ⊗
K)/SBL ⊗ K. It is then clear that [σ∞] = −[β∞] in KK(A,BL). Furthermore,
we have γ∞ = {γ} : A → M(SBL ⊗ K)/SBL ⊗ K and [γ∞] = [α∞] − [β∞] in
KK(A,BL). In fact, [γ∞] give the following pure extension

0 −→ Ki+1(B
L) −→ Fi

p
−→ Ki(A) −→ 0,

where Fi = {{g}+ {gn} : g ∈ Hi, {gn} ∈ Ki+1(B
L)}. Let κn : K1(A) → H1 be a

map (not necessary additive) such that (κn)|G
(1)
n = jn. By the construction above,

{κn} maps K1(A) into F1. Let Π : BL → BL/
⊕
n
ML(n)(B) be the quotient map.

Then [Π ◦ α∞]− [Π ◦ β∞] = [Π ◦ γ∞] ∈
⊕
i=0,1

Pext(Ki(A),Ki+1(B
L/

⊕
n
ML(n)(B)).

It is easy to check that

Ki

(
BL/

⊕

n

ML(n)(B)
)

= Ki(B
L)/

⊕
Ki(B), i = 0, 1.

Note that (Π)∗◦({κn}) is an injective homomorphism from K1(A) into F1/⊕K0(B).
This implies that [Π ◦ γ∞] gives a trivial element in Pext

(
K1(A),

K0

(
BL/

⊕
n
ML(n)(B)

))
. On the other hand, since B ∈ C(l,b,M), every unitary

in U0(Mn(B)) is connected to the identity by a continuous path of unitaries with
length no more than b. From this, one checks easily (also using (b) in 4.6) that

K1(B
L) =

∏
K1(B).

Thus, a similar but easier argument shows that [Π◦γ∞] gives also a trivial element
in Pext

(
K0(A),K1

(
BL/

⊕
n
ML(n)(B))

)
(we do not need to worry about the size of

jn(g)− gk(g) as in the K0 case, since K1(B
L) =

∏
K1(B)). This implies that

[Π ◦ α∞] = [Π ◦ β∞]

in KK
(
A,BL/

⊕
n
ML(n)(B)

)
.

Note also that if E : A→ B is a unital embedding, then En : A→ML(n)(B)

defined by sending a to diag(E(a), . . . , E(a)) gives a unital embedding Ẽ : A→ BL

and a unital embedding E = Π ◦ Ẽ : A → BL/
⊕
ML(n)(B). From 4.3, for any

ε > 0 and any finite subset F ⊂ A, we obtain a unitary U ∈ BL/
⊕
ML(n)(B)

and an integer k > 0 such that

‖U∗diag(Π ◦ α∞(a), E(a), . . . , E(a))U − diag(Π ◦ β∞(a), E(a), . . . , E(a))‖ <
ε

2

for all a ∈ F (where E(a) repeats k times). It is easy to see (see 1.3 in [46]) that
there are unitaries Un ∈ MK(ML(n)(B)) such that Π({Un}) = U. We have, for
sufficiently large n,

‖U∗ndiag(α(a), E(a), . . . , E(a))Un − diag(β(a), E(a), . . . , E(a))‖ < ε

for all a ∈ F (where E(a) repeats K(L(n)) times). This implies that α is stably
approximately unitarily equivalent to β.
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In the proof of 4.7, in fact Pext
(
· ,

∏
n

K1(B)/⊕K1(B)
)

= 0 (see [34]).

The main point of the following theorem is that the integer n does not depend
on ϕ, ψ or B.

4.8. Theorem. Let A be a unital simple C∗-algebra in B. Let l > 1,
b > π and M > 1. For any ε > 0 and any finite subset F ⊂ A there exists an
integer n > 0 satisfying the following: for any unital C∗-algebra B ∈ C(l,b,M) if
ϕ, ψ, σ : A → B are homomorphisms with [ϕ] = [ψ] in KL(A,B), i = 0, 1, where
σ is unital, then there is a unitary u ∈Mn+1(B) such that

‖u∗diag(ϕ(a), σ(a), . . . , σ(a))u− diag(ψ(a), σ(a), . . . , σ(a))‖ < ε

for all a ∈ F , where σ(a) repeats n times.

Proof. Suppose that the theorem is false. Then there are ε0 > 0 and a
finite subset F ⊂ A satisfying: for any n, there are unital C∗-algebras Bn and
monomorphisms ϕn, ψn, σn : A→ Bn with [ϕn] = [ψn] in KL(A,Bn) such that

inf{sup
F

{‖u∗diag(ϕ(a), σn(a), . . . , σn(a))u− diag(ψn(a), σn(a), . . . , σn(a))‖} > ε0

where the infimum is taken over all unitaries u ∈Mn(Bn), and where σn(a) repeats
n times.

Set C0 =
∞⊕
n=1

Bn and C =
∞∏
n=1

Bn. Define Φ, Ψ, Σ : A → C by Φ(a) =

{ϕn(a)}, Ψ(a) = {ψn(a)} and Σ(a) = {σn(a)} for a ∈ A. Since Bn ∈ C(l,b,M), one
computes (see 2.7 in [32] and also 2.9 in [31]),

K0

( ∏
Bn

)
=

∏

b

K0(Bn), (see also 4.6); K1

(∏
Bn

)
=

∏
K1(Bn),

Ki

(∏
Bn,Z/kZ

)
⊂

∏
Ki(Bn,Z/kZ), k > 0, i = 0, 1.

From [15], two homomorphisms h1, h2 : A → B induce the same element in
KL(A,B) if and only if they induce the same homomorphisms from Ki(A,Z/kZ)
into Ki(B,Z/kZ), i = 0, 1, k = 0, 1, . . . .

From this we conculde, since [ϕn] = [ψn] in KL(A,Bn), that [Φ] = [Ψ] in
KL(A,

∏
Bn). It follows that [Φ] = [Ψ] in KL(A,C). Let π : C → C/C0 be the

quotient map and set Φ = π ◦ Φ, Ψ = π ◦ Ψ and Σ = π ◦ Σ. So [Φ] = [Ψ] in
KL(A,C/C0).

From 4.6, C/C0 ∈ B(l,b,M). Thus, by 4.7, there exists an integer N > 0 and
a unitary u ∈MN+1(C/C0) such that

‖u∗diag(Φ(a),Σ(a), . . . ,Σ(a))u− diag(Ψ(a),Σ(a), . . . ,Σ(a))‖ <
ε0
3

for all a ∈ F , where Σ(a) repeats N times. It is easy to see (see 1.3 in [46]) that
there is a unitary U ∈ C such that π(U) = u. Therefore, for each a ∈ F , there
exists ca ∈MN+1(C0) such that

‖U∗diag(Φ(a),Σ(a), . . . ,Σ(a))U − diag(Ψ(a),Σ(a), . . . ,Σ(a)) + ca‖ <
ε0
3
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where Σ(a) repeats N times. Write U = {un}, where un ∈ MN+1(Bn) are uni-

taries. Since ca ∈MN+1(C0) and F is finite, there is N0 > 0 such that

‖u∗ndiag(ϕn(a), σn(a), . . . , σn(a))un − diag(ψn(a), σn(a), . . . , σn(a))‖ <
ε0
2

for all a ∈ F , where σn repeats N times, provided that n > N0. So, if n >

max(N,N0), we have

‖v∗ndiag(ϕn(a), σn(a), . . . , σn(a))vn − diag(ψn(a), σn(a), . . . , σn(a))‖ <
ε0
2
< ε0

for all a ∈ F , where σn(a) repeats n times and v = un ⊕ 1Mn−N0
is a unitary in

Mn(Bn), a contradiction.

4.9. Corollary. Let A be a unital simple C∗-algebra in B which satisfies

the “K-theoretically locally finite” condition in 4.5, or A ∈ C(l,b,M) for some l > 1,
b > π and M > 1, and let α : A → A be an endomorphism. Then α is stably

approximately unitarily equivalent to idA if and only if [α] = [id] in KL(A,A).

In the special case where C∗-algebras are purely infinite simple, we have the

following.

4.10. Theorem. Let A and B be unital separable nuclear purely infinite

simple C∗-algebras with the UCT and ϕ, ψ : A → B be two homomorphisms.

Then ϕ and ψ are approximately unitarily equivalent if and only if [ϕ] = [ψ] in

KL(A,B).

Proof. By repeated application of 2.4 in [62], we may write, for any integer

n > 0,

ϕ = diag(ϕ1, ϕ2, ϕ3, . . . , ϕn+1) and ψ = diag(ψ1, ψ2, ψ3, . . . , ψn+1),

where ϕi and ψi are homomorphisms from A to B, and ϕi and ψi have “trivializing

factorization” (see 2.1 in [62]) for i = 2, 3, . . . , n+1. It follows from 2.2 in [62] that

all ϕi and ψi with i > 2 are approximately unitarily equivalent. So without loss

of generality we may write

ϕ = diag(ϕ1, ϕ2, ϕ2, . . . , ϕ2) and ψ = diag(ψ1, ϕ2, ϕ2, . . . , ϕ2),

where ϕ2 repeats n times. Note also, since ϕ2 has trivializing factorization, [ϕ2] =

0 in KL(A,B). This implies that [ϕ1] = [ψ1] in KL(A,B). Then we see that 4.8

applies.

4.11. Remark. A similar version of 4.10 is contained in Section 4 of [63].

It is the key “uniqueness theorem” for the classification of nuclear purely infinite

simple C∗-algebras. For further discussion, see 5.5 and 5.6.
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5. APPROXIMATELY MULTIPLICATIVE MORPHISMS

Recent developments in C∗-algebra theory require the study of maps that are only
approximately multiplicative. In this section, we show that a version of 4.7 holds
for maps which are approximately multiplicative.

5.1. Definition. Let A and B be C∗-algebras, let L : A → B be a con-
tractive completely positive linear map, let ε > 0 and let F ⊂ A be a subset. L is
said to be F-ε-multiplicative, if

‖L(xy)− L(x)L(y)‖ < ε

for all x, y ∈ F .

5.2. Definition. Let A be a unital C∗-algebra and Cn be as in 2.1. One
can choose Cn to be the mapping cone of a degree n map of C0(R). Let P(A) be

the set of all projections in
⋃

m,n=1
Mm(A⊗ C̃n⊗C(S1)). For a finite subset P ⊂ P ,

as in 1.4 in [46], there are a finite subset G(P) ⊂ A and δ(P) > 0 such that if
B is any unital C∗-algebra and L : A → B is a contractive completely positive
linear map which is G(P)-δ(P)-multiplicative, then L defines a map [L] from P

into K(B). Note if p, q ∈ P , p, q ∈ Mm(A ⊗ C̃n ⊗ C(S1)) and [p] = [q], there is a

partial isometry v ∈Mm+k(A⊗ C̃n ⊗ C(S1)) such that

v∗v = diag(p, 1A ⊗ 1k) and vv∗ = diag(q, 1A ⊗ 1k).

We require that G(P) is so large that v ∈Mm+k(G(P)) and

‖L⊗id(v∗v)−(L⊗id(v)∗)(L⊗id(v))‖ and ‖L⊗id(vv∗)−(L⊗id(v))(L⊗id(v)∗)‖

are sufficiently small so that [L] is well defined on P, where P is the image of P
in K(A). It is worth noting that, if Ki(A) is torsion free (i = 0, 1), then one only
needs to consider the projections in

⋃
m=1

Mm(A⊗ C(S1)).

5.3. Theorem. Let A be a unital simple C∗-algebra in B, l > 1, b > π and
M > 1. For any ε > 0 and any finite subset F ⊂ A there exist a positive number
δ > 0, a finite subset G ⊂ A, a finite subset P ⊂ P(A) and an integer n > 0
satisfying the following: for any unital C∗-algebra B ∈ C(l,b,M) if ϕ, ψ, σ : A→ B
are three G-δ-multiplicative contractive completely positive linear maps with

[ϕ]|
P

= [ψ]|
P

and σ is unital, then there is a unitary u ∈Mn+1(B) such that

‖u∗diag(ϕ(a), σ(a), . . . , σ(a))u− diag(ψ(a), σ(a), . . . , σ(a))‖ < ε

for all a ∈ F , where σ(a) repeats n times.

Proof. Suppose that the theorem is false. Then there are ε0 > 0 and a finite
subset F ⊂ A such that there are a sequence of positive numbers {δn} with δn ↓ 0,
an increasing sequence of finite subsets {Gn} which is dense in the unit ball of A, a

sequence of finite subsets {Pn} of P(A) with
∞⋃
n=1
Pn = P(A), a sequence of {k(n)}
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of integers and sequences {ϕn}, {ψn} and {σn} of Gn-δn-multiplicative positive
linear maps from A to Bn with [ϕn]|Pn = [ψ]|Pn satisfying the following:

inf{sup{‖u∗diag(ϕn(a), σn(a), . . . , σn(a))u− diag(ψn(a),σn(a), . . . , σn(a))‖

: a ∈ F} > ε0

where σn(a) repeats k(n) times and the infimum is taken over all unitaries in
Mk(n)+1(Bn).

Set C0 =
∞⊕
n=1

Bn and C =
∞∏
n=1

Bn. Define Φ, Ψ, Σ : A → C by Φ(a) =

{ϕn(a)}, Ψ(a) = {ψn(a)} and Σ(a) = {σn(a)} for a ∈ A. Let π : C → C/C0 be
the quotient map and set Φ = π ◦ Φ, Ψ = π ◦ Ψ and Σ = π ◦ Σ. Note that Φ,Ψ
and Σ are monomorphisms. Given an element p ∈ Pk, for some k, we claim that

[Φ(p)] = [Ψ(p)].

As in 4.8 (see 2.7 in [32] and also 2.9 [31]), we have

K0

( ∏
Bn

)
=

∏

b

K0(Bn), K1

( ∏
Bn

)
=

∏
K1(Bn),(5.1)

Ki

(∏
Bn,Z/kZ

)
⊂

∏
Ki(Bn,Z/kZ), k > 0, i = 0, 1.(5.2)

We also have

K0(C/C0) =
(∏

b

K0(Bn)
)
/

⊕
K0(Bn),

K1(C/C0) =
(∏

K1(Bn)
)
/

⊕
K1(Bn)

and

Ki(C/C0,Z/kZ) ⊂
( ∏

Ki(Bn,Z/kZ)
)
/

⊕
Ki(Bn,Z/kZ), i = 0, 1.

It is rather easy to see that
[Φ(p)] = [Ψ(p)]

if p is a projection in Mm(A) (see below). If p is represented by an element in
K1(A) or in

⊕
Ki(A,Z/kZ) with k > 0, let z = [Φ(p)] and y = [Ψ(p)]. Then, there

are {zn} and {yn} in
∏

K1(Bn) or in
∏

Ki(Bn,Z/kZ) such that π∗i({zn}) = z
and π∗i({yn}) = y, where π∗i is the corresponding quotient map. Since

[ϕn]|Pn = [ψn]|Pn,

we have
[ϕn]([p]) = [ψn]([p]) = xn

for all sufficiently large n.
From (5.1) and (5.2) above, we have

π∗i({yn}) = π∗i({xn}) = π∗i({zn}).

Thus, [Φ(p)] = [Ψ(p)] in K1(C/C0) or in Ki(C/C0,Z/kZ). It follows that

[Φ] = [Ψ] in KL(A,C/C0) (= HomΛ(K∗(A),K∗(C/C0))).
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From 4.6, C/C0 ∈ C(l,b,M). Applying 4.8, we obtain an integer N and a unitary
u ∈MN+1(C/C0) such that

‖u∗diag(Φ(a),Σ(a), . . . ,Σ(a))u− diag(Ψ(a),Σ(a), . . . ,Σ(a))‖ <
ε0
3

for all a ∈ F , where Σ(a) repeats N times. As in the proof of 4.8, there is a unitary
U ∈MN+1(C) such that π(U) = u and for each a ∈ F there exists ca ∈MN+1(C0)
such that

‖U∗diag(Φ(a),Σ(a), . . . ,Σ(a))U − diag(Ψ(a),Σ(a), . . . ,Σ(a)) + ca‖ <
ε0
3

where Σ(a) repeats N times. Write U = {un}, where un ∈ MN+1(Bn) are uni-
taries. Since ca ∈MN+1(C0) and F is finite, there is N0 > 0 such that

‖u∗ndiag(ϕn(a), σn(a), . . . , σn(a))un − diag(ψn(a), σn(a), . . . , σn(a))‖ <
ε0
2

for all a ∈ F , where σn repeats N times. The proof concludes as in the proof
of 4.8.

5.4. Remark. If in 5.3 Ki(A) is torsion free, i = 0, 1, then, clearly from the
proof, we can replace P(A) by the set of projections in

⋃
m=1

Mm(A⊗ C(S1)), and

if further K1(A) = 0, we can replace P(A) by the set of projections in
⋃
m=1

Mm(A)

and the condition that B ∈ C(l, b,M) can be replaced by (a) in 4.6 only.

5.5. Theorem. Let A be a unital separable nuclear purely infinite simple
C∗-algebra with the UCT. For any ε > 0 and any finite subset F ⊂ A there exist
a positive number δ > 0, a finite subset G ⊂ A and a finite subset P ⊂ P(A)
satisfying the following: for any unital purely infinite simple C∗-algebra B if ϕ, ψ :
A→ B are G-δ-multiplicative contractive completely positive linear maps with

[ϕ]|
P

= [ψ]|
P

then there is a unitary u ∈ B such that

‖u∗ϕ(a)u− ψ(a)‖ < ε.

Proof. The proof is similar to that of 4.10. We sketch it as follows. For
any η > 0, any finite subset G1 ⊂ A and any integer n > 0, by 2.4 in [62], idA
and diag(h0, h1, h1, . . . , h1) are approximately the same within η on G1, where
h0 : A → pAp is a monomorphism, p is a projection in A, h1 : A → C is also a
monomorphism, C is a C∗-subalgebra of A which is isomorphic to O2 and h1 re-
peats n times. One should note that a G1-η-multiplicative contractive completely
positive linear map from O2 to another unital C∗-algebra is close to a monomor-
phism, if G1 is sufficiently large and η is sufficiently small. From [65], we also know
that two homomorphisms from O2 are approximately unitarily equivalent. So, as
in 4.10, without loss of generality, we may assume that

ϕ = diag(ϕ1, h2, h2, . . . , h2) and ψ = diag(ψ1, h2, h2, . . . , h2),

where ϕ1, ψ1 : A→ qBq are two G-δ-multiplicative completely positive linear maps
and h2 : eBe are unital homomorphisms with [h2] = 0 in KL(A,B). Therefore 5.3
applies.
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5.6. Remark. The condition that B is purely infinite simple can be eased
a bit. It suffices to assume that B ∈ C(l,b,M) with the additional condition
that U(B)/U0(B) = K1(B). The last condition is used in [65] to show that two
homomorphisms from O2 are approximately unitarily equivalent. Theorem 5.5
could serve as the key “uniqueness theorem” for classifying nuclear purely infi-
nite simple C∗-algebras. In [63] (see also [38]), a different uniqueness theorem is
used. Theorem 5.5 together with an “existence theorem” (i.e. given an element
α ∈ KL(A,B) and a finite subset P ⊂ P(A), there is an almost multiplicative
morphism L : A → B such that [L]|P = α|P) will give the classification theorem
of Kirchberg and Phillips: two (unital) separable nuclear purely infinite simple C∗-
algebras with the UCT and with the same K-theory are isomorphic. A stronger
version of this “existence theorem” is included in Section 3 of [63].

Evidently, our main results also apply to the case in which the simple C∗-
algebras are stable rank one. Applications of the results in Sections 4 and 5 to
simple C∗-algebras of stable rank one will appear in subsequent papers. In the
first subsequent paper we give a characterization of rational simple AF-algebras
(see [53]).

First note added in proof. George A. Elliott pointed to the author that in fact
the assumption that B is simple in 1.5 can be replaced, for example, by the assumption
that the embedding from A to B is full. It was also brought to the author’s attention
by Marius Dădârlat and Soren Eilers that the above fact can be used to replace the
assumption that A or B is simple in Section 4 by the assumption that the embedding
(from A to B) is full.
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Second note added in proof. This article was first written in 1997 and reported
in December 1997 at Victoria Canadian Winter meeting. Since then there have been
several developments related to this paper. The main theorem had been applied to the
classification of simple nuclear C∗-algebras which have tracial rank zero (or, equivalently,
tracially AF C∗-algebras) (see, for example, in the appended list of references, [2a], [1a],
[3a] and [4a]) It was observed (by M. Dădârlat and S. Eilers) that simplicity conditions in
Theorem 4.3 can be replaced by the condition that A is embedded “fully” in B. They also
show that A does not need to require to satisfying the UCT. A rather elementary proof
of Theorem 4.3 can be found in [5a]. It is recently showed by the author that [α] = [β] in
KK(A,B) can be replaced by [α] = [β] in KL(A,B) which is also a necessary condition.
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