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Abstract. In this paper, a Fredholm theory for approximation sequences
is proposed. A sequence is called Fredholm if it is invertible modulo a cer-
tain ideal which plays the role of the ideal of the compact operators in the
Fredholm theory of operators. With every Fredholm sequence, there are as-
sociated three integers which are the analogues of the nullity, the deficiency
and the index of a Fredholm operator. The nullity of a Fredholm sequence
(An) is interpreted as a quantity which describes the asymptotic behaviour
of the small singular values of the matrices An as n → ∞, and an identity
is derived which allows the computation of this nullity in many situations.
Several examples and applications are discussed.
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1. INTRODUCTION

Approximation methods. Let H be a separable complex Hilbert space, L(H)
the C∗-algebra of the linear and bounded operators on H , and (Pn) a sequence of
orthogonal projections on H which converges strongly to the identity operator I
on H :

s-lim Pn = I ⇔ Pnx → x for all x ∈ H.

Assume that dim Im Pn = n; so Im Pn and L(Im Pn) can be identified with the
linear space Cn and with the algebra Cn×n = L(Cn), respectively. The n × n
identity matrix will be denoted by In.

Let A ∈ L(H). An approximation method for A is a sequence (An) of matrices
An ∈ Cn×n such that AnPn → A and A∗

nPn → A∗ strongly as n → ∞. This
method converges, or is applicable to A, if the equations

(1.1) Anx(n) = Pny
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possess unique solutions x(n) ∈ Im Pn for all sufficiently large n and all right hand
sides y ∈ H , and if these solutions converge in the norm of H to a solution of the
equation

(1.2) Ax = y.

By the Banach-Steinhaus theorem, the method (An) for A is applicable if and only
if the sequence (An) is stable in the sense that the matrices An are invertible for
all sufficiently large n and that

sup ‖A−1
n ‖ < ∞.

For another characterization of stability, introduce the set F of all bounded se-
quences (An) of matrices An ∈ Cn×n. Provided with elementwise operations and
the supremum norm, this set becomes a C∗-algebra with identity element (In),
and the set G of all sequences (An) ∈ F with lim ‖An‖ = 0 forms a closed two-
sided ideal in F . A Neumann series argument shows that the sequence (An) ∈ F
is stable if and only if its coset (An) +G is invertible in the quotient algebra F/G.

Standard algebras of approximation methods. One way to study the sta-
bility properties of a class of approximation methods is to describe the subalgebra
of F/G which is generated by the approximation sequences under consideration.
For several concrete approximation methods such descriptions were given, e.g., in
[3], [5], [10] and [11]. To mention at least one example, we recall the results per-
taining the polynomial collocation method for singular integral operators on the
unit circle obtained in [6] and [10].

Consider the operator of singular integration against the unit circle T,

(Su)(t) :=
1

πi

∫

T

u(s)

s − t
ds, t ∈ T,

and let a and b be piecewise continuous functions on T (i.e. a and b possess finite
one-sided limits at each point of T). The operator aI + bS is bounded on the
Lebesgue space L2(T). Let Πn stand for the subspace of L2(T) spanned by the
polynomials zj with −n 6 j 6 n. For Riemann integrable and bounded right hand
sides f , we seek approximate solutions u(n) ∈ Πn of the singular integral equation

(1.3) (aI + bS)u = f

by replacing (1.3) by the linear system

(1.4) a(zj)u(zj) + b(zj)(Su(n))(zj) = f(zj), j = −n, . . . , n,

where zj := exp(2πij/(2n + 1)). Introducing the orthogonal projection Pn from
L2(T) onto Πn as well as the interpolation projection Ln which associates with
every Riemann integrable function f the function Lnf in Πn such that f(zj) =
(Lnf)(zj) for j = −n, . . . , n, one can rewrite (1.4) as

Ln(aI + bS)Pnu(n) = Lnf.

Thus, what is crucial is the stability of the sequence (Ln(aI + bS)Pn).
Define operators Rn : L2(T) → Πn by

∑
ckzk 7→ c−1z

−n + · · · + c−nz−1 + c0z
n + · · · + cnz0,
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and let A stand for the smallest closed subalgebra of the algebra F which contains
all sequences (Ln(aI + bS)Pn) with piecewise continuous functions a and b as well
as all sequences (PnKPn + RnLRn + Gn) with K and L compact and with (Gn)
tending to zero in the norm. Actually, the algebra F consists of sequences (An)
of (2n + 1) × (2n + 1) matrices An, but this difference to the above definition
of F doesn’t matter. The algebra A is a C∗-algebra, and there are two natural

∗-homomorphisms W and W̃ from A into L(L2(T)):

W : (An) 7→ s-lim AnPn and W̃ : (An) 7→ s-lim RnAnRn.

In particular, W (Ln(aI + bS)Pn) = aI + bS and W̃ (Ln(aI + bS)Pn) = ãI + b̃S
with ã(t) := a(1/t). The following stability criterion is derived in [6] and [10].

Theorem 1.1. A sequence (An) ∈ A is stable if and only if both associated

operators W (An) and W̃ (An) are invertible.

Similar results hold for other approximation methods. The common struc-
ture of the C∗-algebras A ⊆ F associated with the approximation methods con-
sidered in the above cited papers can be summarized as follows:

1. There is a (possibly infinite) set T , and for every t ∈ T , there is a Hilbert
space Ht and a sequence (Et

n) of partial isometries Et
n : Ht → H such that

– the initial projections (Et
n)∗Et

n converge strongly to the identity on H t,
– the range projections Et

n(Et
n)∗ coincide with Pn, and

– the separation condition holds:

(Es
n)∗Et

n → 0 weakly for all s 6= t.

2. For every t ∈ T and every (An) ∈ A, there exists the strong limit

s-lim(Et
n)∗AnEt

n =: W t(An).

3. A is unital and contains all sequences (Et
nK(Et

n)∗) with K compact on
Ht as well as all sequences (Gn) ∈ F tending to zero in the norm. The closed
linear span of all of these sequences forms a closed ideal J of A.

4. A sequence (An) ∈ A is stable if and only if all associated operators
W t(An) are invertible on H t.

An algebra A which satisfies these axioms will be called a standard algebra
in what follows. The algebra of the polynomial collocation method for singular
integral operators is a standard algebra: choose T = {0, 1}, and set E0

n = Pn and
E1

n = Rn.

Fredholm theory in standard algebras. With every sequence (An) in a
standard algebra A, we associate the function t 7→ W t(An) which is defined on T
and takes a value in L(H t) at t ∈ T . A remarkable consequence of the C∗-property
of A and of axiom 4 of a standard algebra is that the mapping

(An) + G 7→ (t 7→ W t(An))

is an isometry from A/G into the algebra of all operator-valued functions on T :

‖(An) + G‖ = sup
t∈T

‖W t(An)‖.
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This isometry has been employed in [12] in order to establish a Fredholm theory for
approximation sequences in standard algebras. A sequence (An) ∈ A is Fredholm
in this sense if every operator W t(An) is a Fredholm operator. It turns out that,
for every Fredholm sequence, the quantities

(1.5) α(An) :=
∑

t∈T

dim KerW t(An) and β(An) :=
∑

t∈T

dim CokerW t(An)

are finite. This suggests to define the index of a Fredholm sequence by

ind(An) := α(An) − β(An).

The so-defined Fredholm sequences and the functionals α, β and ind obviously
satisfy all the properties which are known from common Fredholm theory for
operators: stability of the index under small perturbations as well as under per-
turbations belonging to the ideal J (which serves as a substitute for the ideal of
the compact operators), and

ind (An)∗ = −ind (An)∗, ind (AnBn) = ind (An) + ind (Bn)

for arbitrary Fredholm sequences (An), (Bn). Moreover, if (An) is a Fredholm
sequence and if both numbers α(An) and β(An) are zero, then the sequence (An)
is stable (which is a consequence of the 4th axiom of a standard algebra).

Furthermore, in [12] there is derived a characterization of the α-number of a
Fredholm sequence in terms of the asymptotic behaviour of the singular values of

An. Let 0 6 λ
(n)
1 6 · · · 6 λ

(n)
n denote the eigenvalues of A∗

nAn. If (An) ∈ A is a
Fredholm sequence, and if α(An) = k, then

(1.6) lim λ
(n)
k = 0 but lim inf λ

(n)
k+1 > 0.

Contents of this paper. The theory of Fredholm sequences as sketched above
has interesting consequences and applications (see [12] and [13] for a first discussion
of applications to the regularization of ill-posed approximation sequences and to
the asymptotic behaviour of the singular values of Cauchy-Toeplitz matrices), but
it is still unsatisfactory. The main point is that, so far, Fredholmness is defined
only for sequences in a standard algebra. Thus, at least formally, the Fredholmness
of a sequence (An) depends on the algebra as an element of which (An) is regarded.
Of course, the characterization (1.6) reveals that, actually, the quantities α(An)
and β(An) do not depend on the embedding of (An) into a standard algebra. But,
for example, the identity ind(AnBn) = ind(An)+ ind(Bn) can only be guaranteed
if both (An) and (Bn) are elements of one and the same standard algebra.

The goal of the present paper is to propose a general Fredholm theory which
principally applies to every approximation sequence (An) ∈ F , and which reduces
to the above sketched theory in case of sequences in a standard algebra. In par-
ticular, the identities (1.5) (which are no longer definitions but consequences of
the theory) will be generalized to a much larger class of algebras which includes
standard algebras. Moreover, it will be pointed out how the Fredholm theory of
approximation sequences is related to the theory of Fredholm elements in Banach
and C∗-algebras as described, e.g., in [1]. And finally, a few new insights into the
structure of algebras of approximation sequences (i.e. of subalgebras of F) will be
derived.
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2. CENTRALLY COMPACT AND FREDHOLM SEQUENCES

Compact elements in C∗-algebras. Let B be a C∗-algebra. An element

k ∈ B is of rank one if, for every b ∈ B, there is a complex number µ(b) such that

kbk = µ(b)k. An element of B is of finite rank if it is the sum of a finite number

of elements of rank one, and it is compact if it lies in the closure of the set of all

finite rank elements. We denote the set of all compact elements in B by C(B). It

is easy to check that both the elements of finite rank and the compact elements

form two-sided ideals in B. In case B = L(H), an element b ∈ B is of rank one, of

finite rank, or compact if and only if the operator b has range dimension less than

or equal to one, finite range dimension, or is compact, respectively.

Proposition 2.1. Let A be a C∗-subalgebra of F which contains the ideal G.

Then C(A) = G.

Proof. Let (An) 6= 0 be a rank one element of F . Then Ak 6= 0 for a certain k.
Let A+

k denote the Moore-Penrose inverse of Ak, and consider the sequence

B := (0, . . . , 0, A+
k , 0, . . .) ∈ G

with the A+
k standing at the kth position. By assumption, there is a µ(B) ∈ C

such that

(An)B(An) = µ(B)(An),

whence µ(B) = 1 and

A1 = · · · = Ak−1 = Ak+1 = Ak+2 = · · · = 0.

Thus, every rank one sequence in F is necessarily of the form

(2.1) (0, . . . , 0, Ak, 0, . . .)

with some Ak ∈ Ck×k. Further, Ak must be a rank one element in Ck×k , that is,

it is zero or has one-dimensional range. It is clear that, conversely, all sequences

(2.1) with dim Im Ak 6 1 are elements of rank one in F . Now the assertion follows

immediately from the definitions.

Centrally compact elements. One might call a sequence (An) ∈ F Fredholm

if it is invertible modulo the ideal C(F) = G. This indeed yields a reasonable

Fredholm theory (see the following section), but it doesn’t give the desired notion

of Fredholmness, since Fredholmness of a sequence in this sense simply means

stability of that sequence. Here is a modified notion of compactness which fits

exactly to our purposes. Recall that the center of an algebra is the set of all

elements which commute with every element of the algebra.
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Definition 2.2. Let B be a unital C∗-algebra. An element k ∈ B is of
central rank one if, for every b ∈ B, there is an element µ(b) belonging to the
center of B, such that kbk = µ(b)k. An element of B is of finite central rank if it
is the sum of a finite number of elements of central rank one, and it is centrally

compact if it lies in the closure of the set of all elements of finite central rank.

We denote the set of all centrally compact elements in B by J(B). It is
again easy to check that both the elements of finite central rank and the centrally
compact elements form two-sided ideals in B.

In case B = L(H), the rank one, finite rank, and compact elements coincide
with their central analogues, since the center of L(H) consists of the scalar mul-
tiples of the identity operator only. On the other hand, the center of the algebra
F coincides with `∞ (where the number sequence (an) ∈ `∞ is identified with the
matrix sequence (anIn); see Lemma 4.1 below). Hence, the ideal J(F) should be
much larger than the ideal C(F) = G of the zero sequences.

Proposition 2.3. A sequence (An) ∈ F is centrally compact if and only if,

for every ε > 0, there is a sequence (Kn) ∈ F such that

sup
n

‖An − Kn‖ < ε and sup
n

dim Im Kn < ∞.

Proof. If (An) is of central rank one in F , then every matrix An is of rank
one in Cn×n, hence dim Im An 6 1.

Conversely, let (An) ∈ F be a sequence of matrices with dim Im An 6 1 for
every n, and let (Bn) ∈ F arbitrarily. Then there are numbers µn such that

(2.2) AnBnAn = µnAn.

The numbers µn are uniquely determined if An 6= 0; in case An = 0 we choose µn =
0. The so-defined sequence (µn) is bounded. Indeed, (2.2) implies |µn| ‖An‖ 6

‖An‖
2‖Bn‖ for every n whence |µn| 6 ‖An‖ ‖Bn‖ for every n with An 6= 0. This

observation identifies the elements of central rank one. It is clear now that the
elements of finite central rank are just the sequences (An) ∈ F with

sup dim Im An < ∞

which yields the assertion.

Observe that J(F) is a proper ideal of F . Indeed, suppose for contrary, that
there is a sequence (Kn) ∈ F such that

sup ‖In − Kn‖ <
1

2
and sup dim Im Kn < ∞.

Then every matrix Kn is invertible, hence, dim Im Kn = n, which contradicts the
second condition of the choice of (Kn).

Fredholm sequences. Based on the ideal of the centrally compact sequences in
F one can introduce an appropriate class of Fredholm sequences.
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Definition 2.4. A sequence (An) ∈ F is a Fredholm sequence if it is invert-
ible modulo the ideal J(F) of the centrally compact sequences.

The following properties of Fredholm sequences are obvious:

– every stable sequence is Fredholm;
– the adjoint of a Fredholm sequence is Fredholm;
– the product of Fredholm sequences is Fredholm;
– if (An) is Fredholm and (Kn) ∈ J(F), then (An + Kn) is Fredholm;
– the set of the Fredholm sequences is open in F .

For another characterization of Fredholm sequences, let 0 6 λ
(n)
1 6 · · · 6 λ

(n)
n

denote the eigenvalues of A∗
nAn and write σ

(n)
i := (λ

(n)
i )1/2 > 0 for the singular

values of An.

Theorem 2.5. Each of the following conditions is equivalent to the Fred-
holmness of a sequence (An) ∈ F :

(i) there is a sequence (Bn) ∈ F and a sequence (Jn) ∈ J(F) of central finite
rank such that

(2.3) BnA∗
nAn = In + Jn;

(ii) there is a k such that

(2.4) lim inf
n→∞

σ
(n)
k+1 > 0.

Proof. Let (An) be a Fredholm sequence. Then (A∗
nAn) is a Fredholm se-

quence and, by definition, there are sequences (Bn) ∈ F and (Jn) ∈ J(F) such
that

(2.5) (Bn)(A∗
nAn) = (In) + (Jn).

One can assume that sup dim Im Jn < ∞. Indeed, by Proposition 2.3, there exists
a sequence (Kn) ∈ F with ‖(Jn)− (Kn)‖ < 1/2 and sup dim Im Kn < ∞. Writing
(2.5) as

(Bn)(A∗
nAn) = (In) + (Jn − Kn) + (Kn)

and taking into account the invertibility of (In) + (Jn − Kn) in F , one gets

(In + Jn − Kn)−1(Bn)(A∗
nAn) = (In) + (In + Jn − Kn)−1(Kn)

with dim Im (In + Jn − Kn)−1Kn 6 dim Im Kn. Denoting (In + Jn − Kn)−1(Bn)
and (In + Jn − Kn)−1(Kn) by (Bn) and (Jn) again, we arrive at (2.3).

Let now the sequences (Bn) and (Jn) be as in (2.3) and let

A∗
nAn = U∗

nΛnUn with Λ := diag (λ
(n)
1 , . . . , λ(n)

n )

and with unitary matrices Un refer to the diagonalization of A∗
nAn. After mul-

tiplication by Un and U∗
n, the identity (2.3) becomes (UnBnU∗

n)(Λn) = (In) +
(UnJnU∗

n). Abbreviating Cn := UnBnU∗
n and Fn := UnJnU∗

n we get

(2.6) CnΛn = Cndiag (λ
(n)
1 , . . . , λ(n)

n ) = In + Fn for all n

where still sup dim Im Fn < ∞. Set

k := lim sup
n→∞

dim Im Fn.
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We claim that lim inf λ
(n)
k+1 > 0. Assume this is wrong. Then there is an infinite

subsequence (nl)l>1 of N such that lim
l→∞

λ
(nl)
k+1 = 0. Multiplying (2.6) from both

sides by Pk+1 = diag (1, . . . , 1, 0, . . . , 0) (with the 1 occurring k + 1 times) we get

Pk+1Cnl
Λnl

Pk+1 = Pk+1 + Pk+1Fnl
Pk+1,

and, since

‖Λnl
Pk+1‖ = ‖diag (λ

(nl)
1 , . . . , λ

(nl)
k+1, 0, . . . , 0)‖ = λ

(nl)
k+1 → 0,

lim
l→∞

‖Pk+1 + Pk+1Fnl
Pk+1‖ = 0. Thus, the matrices Pk+1Fnl

Pk+1 ∈ C(k+1)×(k+1)

are invertible for all sufficiently large nl. This is impossible because of

dim Im Pk+1Fnl
Pk+1 6 dim Im Fnl

6 k < k + 1

which proves the claim (ii).
Finally, for the proof that (ii) implies the Fredholmness of (An), let k be a

number such that
lim inf σ

(n)
k+1 > 0,

and let An = UnΣnV ∗
n with Σn = diag (σ

(n)
1 , . . . , σ

(n)
n ) and with unitary matrices

Un and Vn refer to the singular value decomposition of An. The choice of k
guarantees that the sequence (Σn + Pk)n>1 is stable. Then (An + UnPkV ∗

n )n>1 is
a stable sequence, too. Thus, there are sequences (Cn) ∈ F and (Gn) ∈ G such
that

(Cn)(An + UnPkV ∗
n ) = (In) + (Gn)

or, equivalently,
(Cn)(An) = (In) + (Gn) − (CnUnPkV ∗

n ).

The sequence (CnUnPkV ∗
n ) is finite central rank, hence, (Gn) − (CnUnPkV ∗

n ) is a
centrally compact sequence. Thus, (An) is invertible modulo J(F) from the left
hand side, and its invertibility from the right hand side follows analogously.

The preceding theorem suggests to introduce the α-number of a Fredholm
sequence (An) (corresponding to the kernel dimension of a Fredholm operator) as
the smallest number k for which (2.4) is true. Equivalently, α(An) is the smallest
number for which there exists a sequence (Bn) ∈ F as well as a sequence (Jn) of
finite central rank such that BnA∗

nAn = In + Jn and lim sup
n→∞

dim Im Jn = α(An).

The index of a Fredholm sequence is the quantity

ind(An) := α(An) − α(A∗
n).

Observe that, in the case at hand, this index is always zero. This is a consequence of
the fact that the entries of the sequences under consideration are finite-dimensional
operators and, hence, the matrices A∗

nAn and AnA∗
n have the same eigenvalues

even with respect to their multiplicity. So the most interesting quantity associated
with a Fredholm sequence of matrices seems to be its α-number. On the other
hand, the vanishing of the index of (An) also has remarkable consequences, mainly
due to the identities (1.5), as it will be pointed out in Section 5.

Let (An) be a Fredholm sequence and k := α(An). Is there an analogue
of the splitting property (1.6) which holds for Fredholm sequences in standard
algebras? The following simple example says that the answer is NO.
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Example 2.6. Let (an) be an enumeration of the rational numbers in [0, 1],
and set

An := Pn(anP1 + (I − P1))Pn = diag (an, 1, . . . , 1).

Since

(Pn)(An) = (an)(P1) + (Pn(I − P1)Pn) = (Pn) − (1 − an)(P1),

and since (1 − an)(P1) is a sequence of central rank one, the sequence (An) is

Fredholm, but the smallest singular values σ
(n)
1 of the matrices An lie dense in

[0, 1].

Thus, one cannot expect that lim
n→∞

σ
(n)
k = 0 if (An) is a Fredholm sequence

with k = α(An), but one obviously has lim inf σ
(n)
k = 0. Hence, every Fredholm

sequence in F possesses an infinite subsequence which owns the splitting prop-
erty (1.6).

Finally, let us agree upon the following. The phrase Fredholm sequence is
reserved for sequences in F which are invertible modulo the ideal J(F). Occas-
sionally, we also will have to deal with sequences or elements which are invertible
modulo other ideals J of compact or centrally compact sequences or elements. To
these kind of Fredholmness we will refer as J-Fredholmness.

3. FREDHOLMNESS MODULO COMPACT ELEMENTS

In this section, a brief sketch of the Fredholm theory in a C∗-algebra A modulo
the ideal C(A) is given. Some of these results are well known (see [1]); they are
recalled here for the reader’s convenience with their (as a rule, short) proofs. As
mentioned before, a direct application of this Fredholm theory to the algebra F
does not yield anything of interest. But, as will be pointed out in the forthcoming
section, applying this Fredholm theory in case of a standard algebra A ⊆ F twice
(namely in the algebra A/C(A) modulo the ideal C(A/C(A))), one will exactly
obtain the Fredholm theory described in the introduction.

Ideals generated by elements of rank one. In what follows, H is a complex
separable Hilbert space, L(H) the C∗-algebra of the bounded linear operators on
H , and K(H) the ideal of the compact linear operators on H . We start with a
result on irreducible representations of the ideal J(A).

Theorem 3.1. Let A be a unital C∗-algebra and π : A → L(H) an irre-
ducible representation of A. Then π(J(A)) ⊆ K(H).

Proof. We will prove that, if k ∈ J(A) is of central rank one, then π(k) is an
operator with range dimension at most one. This clearly implies the assertion of
the theorem.

If π(k) = 0, then nothing is to prove. So let π(k) 6= 0. For every a ∈ A,
there exists an element µ in the center of A such that kak = µk. Then π(µ) is in
the center of π(A), and the identity

(3.1) π(k)π(a)π(k) = π(µ)π(k)
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shows that π(k) is a central rank one element of π(A). Since π(µ) is in the center
of π(A), the operator π(µ) is a scalar multiple of the identity operator due to the
irreducibility of π (Schur’s lemma; see [7], Section 5.4). Hence, the π(µ) in (3.1)
can be chosen as a complex number, and π(k) is a (common) rank one element
of π(A).

Let now x, x̃ be vectors in Im π(k) with x 6= 0, and choose vectors y, ỹ ∈ H
such that x = π(k)y and x̃ = π(k)ỹ. Again due to the irreducibility, π(A)x = H .
In particular, there is an a ∈ A such that π(a)π(k)y = π(a)x = ỹ. Multiplying
this identity by π(k) we get π(k)π(a)π(k)y = π(k)ỹ which, together with (3.1),
yields π(µ)π(k)y = π(k)ỹ or π(µ)x = x̃. Since π(µ) is a number, this shows that
Im π(k) = span{x}. In particular, π(k) has range dimension one.

Since K(H) has no proper closed ideals besides the zero ideal, this result
implies that π(J(A)) is either {0} or K(H).

Now we turn over to the ideal C(A) of the compact elements. For every
non-zero rank one element k of A, we denote by I(k) the smallest closed ideal of
A which contains this element. From Theorem 3.1 one immediately gets

Corollary 3.2. Let A be a unital C∗-algebra. Then, for every irreducible
representation π : A → L(H) and every rank one element k of A,

π(I(k)) ⊆ K(H).

Actually, much more can be shown.

Theorem 3.3. Let A be a unital C∗-algebra and k a non-zero rank one
element of A. Then there exists an irreducible representation π : A → L(H) such
that

π(I(k)) = K(H) and Ker (π|I(k)) = {0}.

In particular, every ideal I(k) is ∗-isomorphic to the ideal of the compact
operators on a Hilbert space. We split the proof into several steps. The first
partial result says that every ideal I(k) is generated by a rank one projection.

Proposition 3.4. Let A be a unital C∗-algebra and let k ∈ A \ {0} be a
non-zero rank one element. Then there exists a rank one projection p ∈ A such
that I(k) = I(p).

Proof. Let k be a non-zero rank one element of A, i.e. given A ∈ A there is
a complex number µ(a) such that kak = µ(a)k. Then the elements k∗, kk∗ and
k∗k are rank one and non-zero, too. Indeed, for every a ∈ A,

k∗ak∗ = µ(a∗)k∗, k∗kak∗k = µ(ak∗)k∗k and kk∗akk∗ = µ(k∗a)kk∗.

So, these elements are rank one, and moreover

0 6= ‖k‖2 = ‖k∗‖2 = ‖kk∗‖ = ‖k∗k‖.

In the next step we verify that I(k) = I(k∗k). The inclusion I(k∗k) ⊆ I(k) is
obvious. For the reverse inclusion, consider

(3.2) kk∗k = µ(k∗)k.
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Since k 6= 0, the number µ(k∗) is uniquely determined. Assume that µ(k∗) =
0. Then kk∗k = 0 and, consequently, ‖k‖4 = ‖k∗k‖2 = ‖k∗kk∗k‖ = 0 which
contradicts k 6= 0. Thus, µ(k∗) 6= 0, which implies

k = µ(k∗)−1kk∗k ∈ I(k∗k)

and hence, I(k) ⊆ I(k∗k). From (3.2) we further conclude

(3.3) k∗kk∗k = µ(k∗)k∗k.

Both sides of (3.3) are non-negative elements of A and µ(k∗) 6= 0. Thus µ(k∗) > 0,
and taking norms in (3.3) gives

‖k∗kk∗k‖ = ‖k∗k‖2 = µ(k∗)‖k∗k‖.

Since ‖k∗k‖ = ‖k‖2 6= 0, this implies µ(k∗) = ‖k∗k‖. Now it is evident from
(3.3) that p := ‖k∗k‖−1k∗k is a projection in A which is rank one and that
I(p) = I(k∗k) = I(k).

Proposition 3.5. Let A be a C∗-algebra with unit element e and let p ∈
A \ {0} be a non-zero rank one projection. Then the identity

pap = τ(a)p

defines uniquely a pure state τ of A.

Proof. The uniqueness follows from p 6= 0. For a = e one gets τ(e)p = pep =
p2 = p, hence τ(e) = 1. Since ‖p‖ = 1, one moreover has |τ(a)| = ‖τ(a)p‖ =
‖pap‖ 6 ‖a‖ for every a ∈ A, whence ‖τ‖ = 1. It is also clear that the functional
τ is linear, hence τ is a state of A. It remains to show that this state is pure. Let

Lτ := {a ∈ A : τ(a∗a) = 0}

denote the left kernel of τ . The state τ is a pure if and only if

(3.4) Ker τ = Lτ + L∗
τ

([7], Theorem 10.2.8). Since the inclusion Lτ + L∗
τ ⊆ Ker τ holds for every state,

it remains to check the reverse inclusion. Let a ∈ Ker τ , i.e. pap = τ(a)p = 0.
Since pap = 0, a = pa + qa = paq + qa with q = e − p. For b := paq one gets
τ(b∗b)p = pb∗bp = pqa∗paqp = 0, whence τ(b∗b) = 0 and b ∈ Lτ . Analogously, for
c := qa one finds

τ(cc∗)p = pcc∗p = pqaa∗qp = 0,

hence, τ(cc∗) = 0 and c ∈ L∗
τ . Consequently, a = b + c ∈ Lτ + L∗

τ , and τ is a pure
state.

Since τ(a∗a)p = pa∗ap = (ap)∗(ap), it is τ(a∗a) = 0 if and only if ap = 0.
Thus,

Lτ = Aq = {aq : a ∈ A},

and the Hilbert space associated via the GNS construction with the pure state τ
is H := A/Lτ = A/Aq with inner product

〈a + Aq, b + Aq〉 := τ(b∗a)

(it is not necessary to take the completion since τ is pure, cf. [7], Theorem 10.2.3).
The pureness of τ also guarantees that the representation

(3.5) π : A → L(H), a 7→ (b + Aq 7→ ab + Aq)

is irreducible. The following proposition finishes the proof of Theorem 3.4.
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Proposition 3.6. Let π as in (3.5). Then Ker (π|I(k)) = {0}.

Proof. Let r ∈ I(k) = I(p) and π(r) = 0. Then, by (3.5), rb + Aq = 0,
respectively rb ∈ Aq, respectively rbp = 0 for all b ∈ A. This implies rbpc = 0
for all b, c ∈ A and, consequently, r

∑
i

bipci = 0 for all bi, ci ∈ A. The elements
∑

bipci lie densely in I(p). Hence, rj = 0 for every j ∈ I(p). In particular,
rr∗ = 0, i.e. r = 0.

Since K(H) has no proper closed subideals besides {0}, one has the following
consequence of Theorem 3.4.

Corollary 3.7. Let k1, k2 be non-zero rank one elements of the unital C∗-
algebra A. Then either I(k1) = I(k2) or I(k1) ∩ I(k2) = {0}.

Lifting theorems. The preceding results suggest to introduce an equivalence
relation in the set of all non-zero rank one elements of a unital C∗-algebra A by
calling k1 and k2 equivalent if I(k1) = I(k2). Let T abbreviate the set of all
equivalence classes and, given t ∈ T , choose a representative pt of the coset t,
abbreviate the ideal I(pt) by It, and let πt : A → L(Ht) stand for the associated
irreducible representation (3.5). Thus, C(A) is generated by its minimal subideals
It where t ∈ T . With these notations, the following so-called lifting theorem holds.
The results of this subsection are taken from [11].

Theorem 3.8. (Lifting theorem, part 1.) Let A be a unital C∗-algebra and
T the set of the equivalence classes of the non-zero rank one elements of A. Then
an element a ∈ A is invertible in A if and only if the operators πt(a) are invertible
in L(Ht) for every t ∈ T and if the coset a + C(A) is invertible in the quotient
algebra A/C(A).

In other words: If a ∈ A is a C(A)-Fredholm element, then all operators
πt(a) are Fredholm, and the Fredholm element a is invertible if and only if all
Fredholm operators πt(a) are invertible.

Proof. If a is invertible, then coset a + C(A) and all operators πt(a) are
invertible. Conversely: If a + C(A) is invertible, then there are elements b ∈ A
and k ∈ C(A) such that ba = e + k. Since C(A) is the smallest closed ideal
which contains all ideals It, one finds an element j ∈ C(A) as well as finitely many
elements jti

∈ Iti
such that j = jt1 + · · · + jtm

and ‖k − j‖ < 1/2. Multiplying
the equation ba = e + k from the left hand side by (e + k − j)−1 and setting
c := (e + k − j)−1b and kti

:= (e + k − j)−1jti
, one arrives at

(3.6) ca = e + kt1 + · · · + ktm
with kti

∈ Iti
.

Since It is isomorphic to πt(It) = K(Ht), there are elements rti
∈ Iti

such that
πti

(rti
) = πti

(kti
)πti

(a)−1. Set ĉ := c − rt1 − · · · − rtm
. Then

ĉa = e + (kt1 − rt1a) + · · · + (ktm
− rtm

a).

The elements kti
−rti

a belong to Iti
and πti

(kti
−rti

a) = 0, hence kti
−rti

a = 0 and
ĉa = e. The invertibility of a from the right hand side can be checked analogously.

Together with the following separation property, the lifting theorem can be
essentially completed.
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Proposition 3.9. Let the notation be as before. Then
(i) Let t1, . . . , tm ∈ T and ti 6= tj for i 6= j. Then (It1 + · · ·+ Itm−1

)∩ Itm
=

{0}.
(ii) Let s, t ∈ T with s 6= t. Then πs(It) = {0}.

Proof. (i) Clearly, (It1 + · · · + Itm−1
) ∩ Itm

is an ideal in Itm
. Since Itm

is
isomorphic to K(Htm

), its only closed subideals are {0} and Itm
itself. Thus, if the

assertion would be wrong then, necessarily, Itm
⊆ It1 + · · · + Itm−1

. In this case,
let Itm

= I(p) with a rank one projection p, and choose elements kti
∈ Iti

such
that p = kt1 + · · · + ktm−1

. Multiplying this identity by p from both sides yields
p = pkt1p + · · ·+ pktm−1

p. If pkti
p = 0 for every i, then p = 0 which is impossible.

So pkti
p 6= 0 for some i. Since p is rank one, there is a complex number µ such

that µp = pkti
p ∈ Iti

. Hence, p ∈ Iti
which contradicts Iti

∩ Itm
= {0}.

(ii) Let r ∈ πs(It), i.e. r = πs(kt) for a kt ∈ It. By Theorem 3.1, r belongs
to K(Hs), and by Theorem 3.3, there exists a ks ∈ Is such that π(ks) = r∗. Then
πs(kskt) = r∗r. On the other hand, since Is ∩ It = {0}, one has kskt = 0 which
implies πs(kskt) = 0. Thus, r = 0.

Theorem 3.10. (Lifting theorem, part 2) Let the situation be as in Theo-
rem 3.8, and let a ∈ A be a C(A)-Fredholm element. Then all operators πt(a) are
Fredholm, and there are only finitely many t ∈ T for which πt(a) is not invertible.

Proof. Apply the representation πt to both sides of identity (3.6) to obtain
the invertibility of πt(a) from the left hand side for all t 6∈ {t1, . . . , tm}.

The rank of an element. Let k ∈ C(A) be a non-zero element of finite rank.
We say that k has rank r, if k is the sum of r elements of rank one, but not a
sum of r − 1 rank one elements. The rank of k will be denoted by rank k. Further
define rank 0 = 0.

Proposition 3.11. Let k ∈ C(A) be of finite rank. Then, for every t ∈ T ,
there exist finite rank elements kt ∈ It with kt = 0 for all but a finite number of t
such that k =

∑
t∈T

kt. The kt are uniquely determined, and

rankk =
∑

t∈T

rank kt.

Proof. Let k ∈ C(A) be the sum of the rank one elements k1, . . . , kr. Every
kj belongs to exactly one of the ideals It (namely to I(kj)). So one gets a de-
composition of k as a sum

∑
t∈T

kt with only finitely many non-vanishing elements

kt ∈ It of finite rank.
The uniqueness of this decomposition can be checked as follows: let h1 +

· · · + hm = 0 for certain elements hi ∈ Iti
with ti 6= tj for i 6= j. Then ht1 =

−ht2 − · · · − htm
, i.e. ht1 ∈ It1 ∩ (It2 + · · ·+ Itm

). By Proposition 3.9 (i), ht1 = 0.
It remains to show the rank identity. Let k =

∑
kt with kt ∈ It and let

rank kt = rt. Then every kt is the sum of rt rank one elements, hence, k is the
sum of

∑
rt rank one elements. Consequently,

rank k 6
∑

rt =
∑

rank kt.
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Conversely, let k be the sum of r = rank k elements k1, . . . , kr of rank one. For
every t ∈ T and every rank one element h, define nt(h) to be 1 if h ∈ It and set

nt(h) = 0 if h 6∈ It. Further let kt :=
r∑

i=1

nt(ki)ki. Then every kt is the sum of rt

rank one elements where rt is the number of the ki which lie in It. Since every ki

belongs to exactly one of the ideals It, one has
∑

rt = r. Thus,
∑

rank kt 6
∑

rt = r = rankk

which verifies the rank identity.

We proceed with relations between the rank of an element and the range
dimension of its image under irreducible representations.

Proposition 3.12. If k ∈ It is of finite rank then rank k = dim Im πt(k).

Proof. Recall from the proof of Theorem 3.1 that the irreducible represen-
tation πt of A maps elements of rank one onto operators with range dimension at
most one. Hence, if k is the sum of r rank one elements, then πt(k) is the sum of
r operators of rank one, whence

dim Im πt(k) 6 r = rankk.

Conversely, suppose πt(k) is a compact operator with range dimension r. Choose
an orthonormal basis e1, . . . , er in Im πt(k), let Pi stand for the orthogonal pro-
jection from Ht onto Cei, and let pi denote the (uniquely determined) element in
It such that π(pi) = Pi. Since

∑
Pi is the orthogonal projection from Ht onto the

range of πt(k), one has

πt(k) =

r∑

i=1

Piπt(k) =

r∑

i=1

πt(pik) = πt

( r∑

i=1

pik
)
.

Due to Proposition 3.6, this implies k =
∑

pik. One easily checks that every pik
is a rank one element. Thus, k is the sum of r rank one elements whence the
estimate rankk 6 dim Im πt(k).

Fredholmness modulo C(A). Now we will have a closer look at the Fredholm
theory associated with the ideal C(A) of the compact elements. The remainder
of this section is not needed in what follows. Recall that a ∈ A is C(A)-Fredholm
if the coset a + C(A) is invertible in the quotient algebra A/C(A). If a is C(A)-
Fredholm then a∗a and aa∗ are C(A)-Fredholm, too, and there exist elements
b, c ∈ A as well as elements k1, k2 of finite rank such that

ba∗a = e + k1 and aa∗c = e + k2.

Let α(a) stand for the smallest non-negative integer which owns the following
property: there are a finite rank element k1 with rank k1 = α(a) and an element
b ∈ A such that ba∗a = e + k1. Analogously, β(a) is defined as the smallest
possible rank of k2. Finally, define the index of a by ind a := α(a) − β(a). In case
A = L(H), one has C(L(H)) = K(H) and

α(A) = KerA and β(A) = dim CokerA

for every Fredholm operator. Here is a generalization of these results to arbitrary
C(A)-Fredholm elements.
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Theorem 3.13. Let a ∈ A be a Fredholm element modulo C(A). Then

α(a) =
∑

t∈T

dim Kerπt(a) and β(a) =
∑

t∈T

dim Cokerπt(a).

Observe that the occurring sums are actually finite thanks to Theorem 3.10.

Proof. We will verify the first assertion only. Let a ∈ A be a Fredholm
element, and let b ∈ A and k ∈ C(A) be elements such that

ba∗a = e + k and rank k = α(a).

Write k as
∑

kt with kt ∈ It (which can be done uniquely). By Proposition 3.11,
ba∗a = e+

∑
kt and α(a) =

∑
rank kt. The separation property Proposition 3.9 (ii)

implies that πt(b)πt(a
∗)πt(a) = et+πt(kt) with et referring to the identity operator

on Ht. Hence, Kerπt(a) = α(πt(a)) 6 rankπt(kt), whence
∑

Kerπt(a) 6
∑

rankπt(kt) =
∑

rankkt = rankk = α(a).

For the reverse inequality, let Pt stand for the orthogonal projection from Ht

onto Kerπt(a), and write pt for the (uniquely determined) element in It such that
πt(pt) = Pt. Consider the element â := a∗a +

∑
pt (again this sum contains

only a finite number of non-zero terms due to Theorem 3.10). Since a is a Fred-
holm element modulo C(A), also â is a C(A)-Fredholm element. Moreover, the
operators

πt(â) = πt(a
∗)πt(a) + Pt

are invertible for every t ∈ T . The lifting theorem implies that â is an invertible
element of A. In particular, there exists a b ∈ A such that bâ = e respectively

ba∗a = e − b
∑

pt = e −
∑

bpt.

Hence,

α(a) 6 rank
∑

bpt 6
∑

rank bpt 6
∑

rankpt

=
∑

rankPt =
∑

dim Im Pt =
∑

Kerπt(a),

yielding finally the desired kernel dimension identity.

Let us mention a consequence of the kernel dimension identity. Clearly, the
Fredholm element a determines its α-number uniquely, but the finite rank element
k in ba∗a = e + k is not determined uniquely by a (it depends on the choice of
b also). Thus, it is a priori not evident whether a uniquely determines the ranks
of the elements kt (only their sum rank k is determined by a). The preceding
theorem states that a also determines the “local” ranks rank kt uniquely since
rank kt = Kerπt(a).

Corollary 3.14. Let a ∈ A be a Fredholm element modulo C(A). Then

ind a =
∑

t∈T

ind πt(a).

With this corollary it becomes obvious that the introduced functionals α, β
and ind for C(A)-Fredholm elements satisfy all the common properties one knows
for the functionals dim Ker, dim Coker and ind in case of Fredholm operators.
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4. FREDHOLM SEQUENCES IN STANDARD ALGEBRAS

In this section we return to Fredholm sequences (i.e. sequences which are invertible
modulo the ideal J(F) of the centrally compact sequences in F). The main goal
is to single out a class of subalgebras A of F such that, for sequences belonging to
A, their Fredholmness coincides with the invertibility modulo an ideal of compact
elements as considered in the previous section. This makes the lifting theorem
and its consequences (the dim Ker identity) available to the determination of the
α-number of Fredholm sequences. Let us agree upon reserving the notation α(An)
for the α-number of a Fredholm sequence (An) (i.e. modulo J(F)). If we want to
consider α-numbers with respect to other ideals of compact or essentially compact
sequences, we will mention this explicitely.

Algebras with center c. Let A be a unital C∗-subalgebra of the algebra F ,
and throughout what follows suppose that the ideal G = C(F) belongs to A. Then
G is a closed ideal of A, and it is easy to check that C(A) coincides with G.

Lemma 4.1. If G ⊆ A ⊆ F and A is unital, then the center of A is isomor-
phic to a subalgebra of `∞ which contains c.

Proof. Let In denote the n×n identity matrix, and let (an) ⊂ C be a sequence
in c with limit a. Then

(anIn) = a(In) + ((an − a)In).

The sequence a(In) belongs to A since this algebra is unital, and the sequence
((an − a)In) tends to zero in the norm whence ((an − a)In) ∈ G ⊆ A. Clearly,
(anIn) belongs to the center of A.

Conversely, let the sequence (Cn) be in the center of A. Since G ⊆ A, every
matrix Cn commutes with every other matrix in Cn×n, hence, Cn = anIn with a
sequence (an) ∈ `∞.

We say that the center of the algebra A ⊆ F is c if this center consists exactly
of the sequences (cnIn) with (cn) ∈ c. Here are two instances of algebras A with
center c.

Suppose there is a separable infinite-dimensional Hilbert space H as well
as a sequence (Pn) of orthogonal projections Pn from H onto an n-dimensional
subspace of H such that (Pn) converges strongly to the identity operator on H .
Assume further that all sequences (An) in A possess the following property: If the
matrix An is identified with an operator on Im Pn, then the strong limit s-lim AnPn

exists. If, in particular, An = cnIn with complex numbers cn, then this strong
convergence implies that (cn) ∈ c.

Fractal algebras. Another class of algebras with center c is constituted by the
fractal algebras. This class has been introduced and studied in [11] and [9]. Here
are the definition as well as an important property of fractal algebras as stated in
[11] and [9].

Given a strongly monotonically increasing sequence η : N → N, let Fη refer to

the C∗-algebra of all bounded sequences (An) with An ∈ Cη(n)×η(n), and write Gη

for the ideal of all sequences (An) ∈ Fη which tend to zero in the norm. Further,
let Rη stand for the restriction mapping Rη : F → Fη, (An) 7→ (Aη(n)). This
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mapping is a ∗-homomorphism from F onto Fη which moreover maps G onto Gη .
Given a C∗-subalgebra A of F , let Aη denote the image of A under Rη which is
a C∗-algebra again.

Definition 4.2. Let A be a C∗-subalgebra of the sequence algebra F .
(a) A ∗-homomorphism W : A → B of A into a C∗-algebra B is fractal if, for

every strongly monotonically increasing sequence η, there is a ∗-homomorphism
Wη : Aη → B such that W = WηRη .

(b) The algebra A is fractal if the canonical homomorphism π from A onto
A/(A ∩ G) is fractal.

Thus, given a subsequence (aη(n)) of a sequence (an) which belongs to a
fractal algebra A, it is possible to reconstruct the original sequence (an) from
this subsequence modulo sequences in A ∩ G. This assumption is very natural
for sequences arising from discretization procedures. It is, for example, not hard
to show that the algebra of the polynomial collocation method examined in the
introduction is fractal. On the other hand, the algebra F of all bounded sequences
fails to be fractal.

Theorem 4.3. A C∗-subalgebra A of F is fractal if and only if the following

implication holds for every element (an) ∈ A and every strongly monotonically

increasing sequence η:

Rη(an) ∈ Gη ⇒ (an) ∈ A ∩ G.

This property also implies that the center of a fractal unital C∗-subalgebra
of F which contains the ideal G is c.

Fredholm inverse closed subalgebras. If A is a unital subalgebra of F
which contains G and has center c, then every central rank one sequence in A is
also a central rank one sequence in F , hence, J(A) ⊆ J(F).

Definition 4.4. The subalgebra A of F is called Fredholm inverse closed if

(4.1) J(A) = A ∩ J(F).

Thus, if A is Fredholm inverse closed, and if (An) ∈ A is a Fredholm sequence
(i.e. invertible modulo J(F)), then (An) is invertible modulo A ∩ J(F) (due to
the common inverse closedness of (A+J(F))/J(F) ∼= A/(A∩ J(F))) and, hence,
(An) is invertible modulo J(A).

It will be pointed out that, for Fredholm sequences (An) which belong to
a fractal and Fredholm inverse closed subalgebra A of F , their α-number can be
determined by an analogue of the kernel dimension identity in Theorem 3.13.

Sequences of essential rank one. Let A be a unital C∗-subalgebra of F
which contains the ideal G and has center c. A central rank one sequence of A
is said to be of essential rank one if it does not belong to the ideal G. For every
essential rank one sequence (Kn), let J(Kn) refer to the smallest closed ideal of A
which contains the sequence (Kn) and the ideal G.
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Since A has center c, it is obvious that, for every essential rank one sequence
(Kn) of A, the coset (Kn) + G is a rank one element of the quotient algebra A/G
and that

J(Kn)/G = I((Kn) + G)

(with the notation I as in the previous section). This shows that Fredholmness
of a sequence (An) ∈ A is closely related to the common Fredholm theory (as
described in the previous section) in the algebra A/G. In particular, if T refers to
the set of all equivalence classes of rank one elements in A/G, then there exists a
t ∈ T such that

(4.2) J(Kn)/G = It.

Let Tess stand for the set of all t ∈ T for which there is an essential rank one
sequence (Kn) ∈ A such that (4.2) holds. Further, write Gess(A/G) for the smallest
closed ideal of A/G which contains all ideals It with T ∈ Tess. It is easy to check
that the lifting theorems (Theorems 3.8 and 3.10) and their consequences (in
particular, Theorem 3.13) remain valid if the set T and the invertibility modulo the
ideal C(A/G) are replaced by the set Tess and by invertibility modulo Gess(A/G).
In particular, the coset (An) + G is invertible in A/G if and only if the operators
πt((An) + G) are invertible for all t ∈ Tess and if (An) + G is invertible modulo
Gess(A/G). Moreover, if the coset (An) + G is invertible modulo Gess(A/G), then

αGess(A/G)((An) + G) =
∑

t∈Tess

dim Kerπt((An) + G).

For t ∈ Tess, abbreviate the homomorphism

A → L(Ht), (An) 7→ πt((An) + G)

by Wt. The homomorphism Wt is an irreducible representation of the algebra A
([4], Proposition 2.11.2) which maps the ideal G to zero. With these notations and
identifications we have

J(A)/G = Gess(A/G),

and the following version of the lifting theorem holds.

Theorem 4.5. Let A be a unital and Fredholm inverse closed C∗-subalgebra
of F which contains the ideal G and has center c. A sequence (An) ∈ A is stable if
and only if (An) is a Fredholm sequence and if the operators Wt(An) are invertible
for all t ∈ Tess.

Fredholm sequences in fractal and Fredholm inverse closed alge-
bras. Now we are going to formulate and prove the main result of this section:
a relation between the α-number of a Fredholm sequence (An) and the kernel di-
mensions of the operators Wt(An). This result is a generalization of the identity
(1.5) which served in [12] as a basis to define Fredholm sequences and their α-
number. In particular, it is not needed for this generalization that the underlying
algebra is standard (cf. the introduction; the point is that the fourth axiom of the
definition of a standard algebra is not required, and also the explicit form of the
homomorphisms Wt as strong limits is not assumed in what follows).
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Theorem 4.6. Let A be a unital, fractal and Fredholm inverse closed C∗-

subalgebra of F which contains the ideal G, and let (An) ∈ A be a Fredholm

sequence. Then

(4.3) α(An) =
∑

t∈Tess

dim KerWt(An).

The remainder of this section is devoted to the proof of this result. Let (An) ∈

A be a Fredholm sequence. Since A is Fredholm inverse closed, (An) is invertible

modulo J(A). Then, by Theorem 3.1, the operators Wt(An) are Fredholm for

every t ∈ Tess and, by Theorem 3.10, there are only finitely many operators Wt(An)

which are not invertible. Let PKer Wt(An) denote the orthogonal projection from
Ht onto the kernel of Wt(An) (only a finite number of these projections are not

zero). Decompose each of these projections into a sum of KerWt(An) orthogonal

projections of range dimension one:

PKer Wt(An) =

dimKer Wt(An)∑

i=1

Pi,t

such that Pi,tPj,t = Pj,tPi,t = 0 whenever i 6= j (for example, by choosing an
orthonormal basis in KerWt(An) and by defining Pi,t as the orthogonal projection
onto the ith element of this basis). Since πt is an isomorphism between It and

K(Ht), every projection Pi,t corresponds uniquely to a coset pi,t ∈ It. Clearly,
pi,tpj,t = pj,tpi,t = 0 if i 6= j. Since Is ∩ It = {0} for all s, t ∈ T with s 6= t, one

has moreover

(4.4) pi,tpj,s = pj,spi,t = 0 whenever (i, t) 6= (j, s).

The next results say that projections in A/G can be lifted.

Proposition 4.7. Let p ∈ F/G be a projection. Then there exists a se-

quence of projections (Pn) ∈ F such that (Pn) + G = p.

A proof of this well-known result is in [12].
In particular, Proposition 4.7 guarantees the existence of sequences (P i,t

n ) ∈
F of projections such that (P i,t

n ) belongs to the coset pi,t. Observe that (P i,t
n ) ∈ A

since A contains G. Moreover, since (P i,t
n ) +G belongs to It and t is in Tess, every

sequence (P i,t
n ) belongs to an ideal of the form J(Kn) with an essential rank one

sequence (Kn). In particular, (P i,t
n ) ∈ J(A).

We claim that the lifting of the projections pi,t to the sequences (P i,t
n ) can

be done in such a way that all projections P i,t
n have one-dimensional range and

that

(4.5) P i,t
n P j,s

n = P j,s
n P i,t

n = 0 whenever (i, t) 6= (j, s)

for all sufficiently large n.
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Proposition 4.8. Let A be as in Theorem 4.6 and (P i,t
n ) the lifting of a

rank one projection pi,t ∈ A/G. Then the projections P i,t
n can be chosen in such a

way that their range dimension is one.

Proof. Let (Kn) ∈ A be an essential rank one sequence such that (P i,t
n ) ∈

J(Kn). Then the operator K := Wt(Kn) has rank one (see the proof of Theo-
rem 3.1), and Pi,t = Wt(P

i,t
n ) is a projection operator with one-dimensional range

by construction of (P i,t
n ). Choose compact operators E, F ∈ L(Ht) such that

EKF = Pi,t, and let (En) and (Fn) be pre-images of E and F under the mapping
Wt in J(Kn), respectively. Then

EnKnFn = P i,t
n + Gn

with a sequence (Gn) tending to zero in the norm (recall that the mapping Wt is
a homomorphism from J(Kn) onto K(Ht) with kernel G due to its definition and
Proposition 3.6). Multiplying this equality from both sides by P i,t

n yields

(4.6) P i,t
n EnKnFnP i,t

n = P i,t
n + P i,t

n GnP i,t
n .

Consider the operators occuring in (4.6) as acting on Im P i,t
n . Then the right hand

side of (4.6) is invertible for n large enough (say, for n such that ‖Gn‖ < 1/2),
whereas the left hand side of (4.6) has range dimension at most one for every n.
In case dim Im P i,t

n > 2, this is a contradiction.
Assume that dim Im P i,t

n = 0 for infinitely many n. Then the fractality of A
implies via Theorem 4.3 that (P i,t

n ) belongs to G which contradicts the definition
of pi,t 6= 0. Hence, dim Im P i,t

n 6 1 for all n, and this range dimension is zero
for at most finitely many n. Modifying the sequence (P i,t

n ) by adding a sequence
which tends to zero one can obviously reach that all projections P i,t

n have range
dimension one.

Proposition 4.9. Let A be as in Theorem 4.6 and (P i,t
n ) the lifting of a

rank one projection pi,t ∈ A/G such that dim Im P i,t
n = 1 for all n. Then the

sequences (P i,t
n ) can be modified by adding sequences in G in such a way that the

modified sequences still consist of rank one projections and that the orthogonality
condition (4.5) is satisfied for all sufficiently large n.

Proof. We proceed by induction. For one lifted sequence there is nothing to
prove. Assume that already k of the sequences (P i,t

n ) are modified such that (4.5)
holds. Let (Pn) abbreviate the sum of these k sequences, and let (Qn) be a further
sequence of rank one projections Qn. The orthogonality condition (4.5) implies
that the operators Pn are projections for n large enough.

Consider the operators (In − Pn)Qn(In − Pn) =: Q̂n with In referring to
the n × n identity matrix again, and let p and q denote the cosets (Pn) + G and

(Qn) + G, respectively. Since dim Im Qn = 1, the Q̂n are operators with range
dimension at most one, and

(4.7) Q̂2
n = (In−Pn)Qn(In−Pn)Qn(In−Pn) = µn(In−Pn)Qn(In−Pn) = µnQ̂n

with an `∞-sequence (µn). Since the operators Q̂n are self-adjoint and non-
negative, the numbers µn can be assumed to be real and non-negative. Further,
since pq = qp = 0, one has (e − p)q(e − p) = q and, consequently,

‖(In − Pn)Qn(In − Pn) − Qn‖ → 0 respectively ‖(In − Pn)Qn(In − Pn)‖ → 1
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as n → ∞. Together with (4.7), this shows that lim µn = 1. Hence, µn 6= 0 for
sufficiently large n, and the operators

1

µn
Q̂n =

1

µn
(In − Pn)Qn(In − Pn)

are projections with rank one which are orthogonal to Pn. Modifying a finite

number of entries of the sequence ((1/µn)Q̂n) one gets a sequence all entries of
which are projections.

Now we can finish the proof of Theorem 4.6. By the preceding propositions,
we can assume that all sequences (P i,t

n ) consist of projections with range dimension
one and that (4.5) holds for all large n. Let (Pn) stand for the sum of all these
sequences. The orthogonality (4.5) ensures that the operators Pn are projections
and that

dim Im Pn =
∑

t∈Tess

KerWt(An)

for all sufficiently large n (the term on the right hand side is just the number of
the different sequences (P i,t

n )). Furthermore,

(4.8) (An)∗(An) + (Pn) is a stable sequence, and (An)∗(An)(Pn) ∈ G.

Indeed, the sequence (An) is Fredholm by assumption and the sequence (Pn)
belongs to the ideal J(A) by construction. Thus, (An)∗(An) + (Pn) is a Fredholm
sequence. Further, all operators

Wt((An)∗(An) + (Pn)) = Wt(An)∗Wt(An) + PKer Wt(An)

are invertible, and the lifting theorem (Theorem 4.5) implies stability of the se-
quence (An)∗(An) + (Pn). Similarly, the sequence (An)∗(An)(Pn) belongs both to
the ideal J(A) and to the kernels of all representations Wt with t ∈ Tess. Again by
the lifting theorem and due to the semi-simplicity of C∗-algebras, the intersection
of J(A) with all these kernels is the ideal G whence the second assertion of (4.8).

Sequences (An) and (Pn) as in (4.8) are called a Moore-Penrose sequence and
the sequence of the associated Moore-Penrose projection in [12]. It is further shown
in [12] that, for every Moore-Penrose sequence (in particular, for every Fredholm
sequence), there is a sequence (Πn) of projections such that every projection Πn

belongs to the C∗-algebra generated by A∗
nAn and by the identity matrix In and

that (4.8) holds with Πn in place of Pn. Moreover, since Moore-Penrose projections
are uniquely determined modulo the ideal G, ‖Pn − Πn‖ → 0.

The latter convergence implies that dim Im Pn = dim Im Πn for sufficiently
large n, and it remains to verify that the range dimension of the Πn for large n
(which is independent of n and equal to the sum of the kernel dimensions of the
operators Wt(An) as we have already checked) coincides with the α-number of
the sequence (An). The property Πn ∈ alg (A∗

nAn, In) ensures that the matrices
A∗

nAn and Πn can be diagonalized simultaneously:

U∗
nA∗

nAnUn = diag(a
(n)
1 , a

(n)
2 , . . . , a(n)

n ),

U∗
nΠnUn = diag(p

(n)
1 , p

(n)
2 , . . . , p(n)

n )
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with 0 6 a
(n)
1 6 a

(n)
2 6 · · · 6 a

(n)
n . Let k = α(An), i.e. lim inf

n→∞
a
(n)
k = 0 and

lim inf
n→∞

a
(n)
k+1 > 0. The stability of the sequence (An)∗(An) + (Πn) requires that

lim inf
n→∞

(a(n)
r + p(n)

r ) > 0 whence lim
n→∞

p(n)
r = 1 for r 6 k,

and the condition ‖A∗
nAnΠn‖ → 0 implies

lim
n→∞

a(n)
r p(n)

r = 0 whence lim
n→∞

p(n)
r = 0 for r > k

since the numbers p
(n)
r can take the values 0 and 1 only. Here we also used the

fact that the range dimension of the projections Πn stabilizes as n → ∞. This
observation finishes the proof of the dim Ker-formula (4.3) and of Theorem 4.6.

Remarks. 1. The following example shows that, without the hypothesis of frac-
tality, one cannot expect that the ideals J(Kn)/G are isomorphic to K(H) for
essential rank one sequences (Kn). Let k ∈ F be the sequence (P1, P2, P3, . . .)
where every Pn is a projection from Cn onto a one-dimensional subspace of Cn.
This sequence has essential rank one. The ideal J(k) contains the sequence

k′ := (P1, 0, P3, 0, P5, . . .) = (P1, P2, P3, P4, P5, . . .) (I1, 0, I3, 0, I5, . . .)

which, on its hand, is essential rank one, too, and generates a proper ideal J(k′)
of J(k) which is strictly larger that G. Since K(H) has no proper non-zero ideals,
the quotient J(k)/G cannot be isomorphic to K(H) for some Hilbert space H .

2. It turns out that the Fredholm inverse closedness of the algebra A is
also necessary for the dim Ker -formula. To be more precise, let A ⊆ F be a unital
algebra with center c which contains the ideal G. Suppose that, for every Fredholm
sequence (An) ∈ A (i.e. for every sequence in A which is invertible modulo J(F)),
the operators Wt(An) are Fredholm, only a finite number of these operators is not
invertible, and the identity

α(An) =
∑

t∈Tess

dim KerWt(An)

holds. Then, necessarily, A is Fredholm inverse closed. Indeed, let (An) ∈ A
be a Fredholm sequence, let PKer Wt(An) denote the orthogonal projection onto

the kernel of Wt(An), and choose sequences (P t
n) in J(A) such that Wt(P

t
n) =

PKer Wt(An) (which can be done due to Proposition 4.7). Then the sequence

(Bn) :=
(
A∗

nAn +
∑

t∈Tess

P t
n

)

is a Fredholm sequence, too (since (An)∗(An) is Fredholm and J(A) ⊆ J(F)).
Furthermore,

KerWt(Bn) = 0 for all t ∈ Tess.

From the dim Ker -formula we conclude that α(Bn) = 0, hence (Bn) is a stable
sequence. This implies the invertibility of the sequence (An)∗(An) modulo J(A).
Similarly, one gets the invertibility of (An)(An)∗ modulo this ideal. But then, the
sequence (An) itself is invertible modulo J(A). Thus, every sequence in A which is
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invertible modulo J(F) in F (and, hence, modulo J(F)∩A in A), is also invertible
modulo J(A). So, A is Fredholm inverse closed.

3. In case of a standard algebra A, its Fredholm theory reduces to the theory
sketched in the introduction. Indeed, it is clear from the definition that A is unital
and contains the ideal G. Further, all homomorphisms W t(An) = s-lim(Et

n)∗AnEt
n

are fractal, hence, A is a fractal algebra (see [11]). Finally, the fourth axiom ensures
the Fredholm inverse closedness of A (actually, this axiom guarantees much more:
It requires that a sequence (An) is stable if all operators W t(An) are invertible,
whereas Fredholm inverse closedness essentially means that (An) is stable if all
operators W t(An) are invertible and if (An) is a Fredholm sequence).

It is also easy to identify the ideals It and J(A) in case of a standard algebra,
namely

It = {(Et
nK(Et

n)∗) + G : K ∈ K(Ht)}

and J(A) = J . The irreducible representations Wt are just the strong limit
homomorphisms W t, and the dim Ker -formula (4.3) reduces exactly to the iden-
tity (1.5).

5. EXAMPLES AND APPLICATIONS

We finish with a brief discussion of several examples and applications of Fredholm
approximation sequences.

Splitting of the singular values of Toeplitz matrices. Given an L∞(T)
function a with kth Fourier coefficient ak, let T (a) denote the Toeplitz opera-
tor generated by a, i.e. the operator which is defined by its matrix representa-
tion (ai−j)

∞
i,j=1 with respect to the standard basis of `2. Toeplitz operators with

bounded generating function are bounded. Further write Pn for the projection
operator on `2 which maps the sequence (xi)

∞
i=1 to (x1, x2, . . . , xn, 0, 0, . . .), and

consider the sequence (PnT (a)Pn)n>1 of the finite sections of T (a). The operators
PnT (a)Pn can be identified with finite Toeplitz matrices acting on Cn.

Let A stand for the smallest closed subalgebra of the algebra F which con-
tains all sequences (PnT (a)Pn)n>1 with a a piecewise continuous function on T. Fi-
nally, write Rn for the reflection operators on `2, (xi) 7→ (xn, xn−1, . . . , x1, 0, 0, . . .).
It has been shown in [2] that A is a standard algebra with the set T consisting of
two elements and with associated strong limits

(5.1) W (An) := s-lim An and W̃ := s-lim RnAnRn.

Theorem 5.1. ([3]) A sequence (An) ∈ A is stable if and only if the opera-

tors W (An) and W̃ (An) are invertible.

In particular, Theorem 4.6 implies that

(5.2) α(An) = KerW (An) + Ker W̃ (An)

for every Fredholm sequence (An) ∈ A. In Figures 2 and 4, there are plotted the
singular values of the Toeplitz matrices PnT (a)Pn and PnT (b)Pn with n between
1 and 150 for

a(t) = 5t−3 + t−2 + 3t−1 + 1 + 4t + 7t2 + t3 and b(t) = 0.7t + t5
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respectively. The generating functions a and b have winding numbers 1 and 4
(Figures 1 and 3), and Figures 2 and 4 show exactly the predicted splitting of
the singular values. These computations were done by F. Meyer using standard
matlab.

Thus, the singular value splitting is an effect which can be observed numeri-
cally. On the other hand, the generating functions a and b are polynomials which
might be the reason for the excellent convergence in Figures 2 and 4. There is an
example (due to Tyrtyshnikov; [14]) of a piecewise continuous function c such that
the smallest singular value of PnT (c)Pn decays to zero as (ln n)−1.

Numerical determination of the kernel dimension. In case of a Fredholm
Toeplitz operator T (a) with continuous generating function, the kernel dimen-
sion of T (a) is simply the maximum of 0 and of the negative winding number of
the curve a(T) around the origin (where this curve is provided with the orien-
tation which is naturally inherited from the counterclockwise orientation of the
unit circle). A similar simple geometric argument applies to the determination of
KerT (a) if a is piecewise continuous. The geometric interpretation of the kernel
dimension of Toeplitz operators is mainly a consequence of Coburn’s theorem (see
[3], Theorem 1.10).

In contrast to this, the determination of the kernel dimension of a compactly
perturbed Toeplitz operator T (a) + K can prove to be a serious problem even
in case of a nice generating function a. An application of identity (5.2) to the
sequence (An) where An = Pn(T (a) + K)Pn with a piecewise continuous and K
compact yields

α(An) = Ker (T (a) + K) + KerT (ã)

where again ã(t) := a(1/t). The kernel dimension of T (ã) can be determined
via the winding number. Thus, if one is able to observe the α-number of (An)
numerically (by consideration of the singular values of An for large n as in Figures 2
and 4 above), then this identity yields the desired kernel dimension of T (a) + K.

Sufficient stability conditions. Let T stand for the smallest closed subalge-
bra of L(`2) which contains all Toeplitz operators T (a) with piecewise continuous
generating function a. Again we consider the finite section method (PnAPn), but
now for operators A in T . Accordingly, let B refer to the smallest closed sub-
algebra of F which contains all sequences (PnAPn) with A ∈ T . It is not hard

to prove that the strong limits W (An) and W̃ (An) (defined as in (5.1)) exist for
every sequence (An) ∈ B. Thus, the invertibility of the operators W (An) and

W̃ (An) is a necessary condition for the stability of the sequence (An). Assume
the invertibility of these operators is also sufficient for the stability of (An). Then
(and under the preliminary assumption that B is a standard algebra) the index
identity

0 = ind (An) = ind W (An) + ind W̃ (An)

should hold for every Fredholm sequence (An) ∈ B, i.e. for every sequence (An)

for which W (An) and W̃ (An) are Fredholm operators.
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There are simple examples showing that this identity cannot be true for
arbitrary Fredholm sequences in B. Indeed, let

a(eix) :=





1 if x ∈ (0, 2π/3),
e5iπ/6 if x ∈ (2π/3, 4π/3),
e7iπ/6 if x ∈ (4π/3, 2π).

Then

ã(eix)2 :=





eiπ/3 if x ∈ (0, 2π/3),
e−iπ/3 if x ∈ (2π/3, 4π/3),
1 if x ∈ (4π/3, 2π),

hence, for An = PnT (a)2Pn, the operator W (An) = T (a)2 has index −2 whereas

the index of W̃ (An) = T (ã2) is 0.
Thus, the index identity predicts that the invertibility of the operators W (An)

and W̃ (An) cannot be sufficient for the stability of a sequence (An) ∈ B in general.
(In a similar way, the kernel dimension identity implies that the invertibility of
the operator W (An) is not sufficient for the stability of a sequence (An) ∈ A in
general, although it is sufficient for sequences of the form (PnT (a)Pn).)

A detailed analysis (performed by Werbitzky, Rathsfeld, Böttcher, Silber-
mann and the author) yields the following stability result for sequences in B where,

besides the invertibility of W (An) and W̃ (An), certain local stability conditions oc-
cur. Let Sn refer to the subspace of the Hilbert space L2([0, 1]) which is spanned
by the functions

ϕk,n(x) :=

{
1 if x ∈ (k/n, (k + 1)/n),
0 if x ∈ (0, k/n) ∪ ((k + 1)/n, 1);

with k = 0, . . . , n − 1, write En for the operators

En : Im Pn → Sn, (x1, . . . , xn, 0, . . .) 7→

n∑

k=1

xkϕk,n,

and define E−n : Sn → Im Pn by E−n := (En)−1. Finally, for τ ∈ T, let Yτ stand
for the operator

Yτ : `2 → `2, (xk)∞k=1 7→ (τ−kxk)∞k=1.

One can show that, for every sequence (An) ∈ B and for every τ ∈ T, the strong
limit

W τ (An) := s-lim
n→∞

EnYτ−1AnYτE−n

exists and that it defines a bounded linear operator W τ (An) on L2([0, 1]).

Theorem 5.2. A sequence (An) ∈ B is stable if and only if the operators

W (An), W̃ (An) and W τ (An) are invertible for every τ ∈ T.

For a proof see, e.g., [5], Theorem 4.1. This proof also shows that B is a
standard algebra.

Global versus local stability conditions. For a more refined version of
Theorem 5.2, let X stand for a closed subset of the unit circle T and denote by PCX

the C∗-algebra of all piecewise continuous functions on T which are continuous at
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the points of T \ X . Accordingly, let TX stand for the smallest closed subalgebra
of L(`2) which contains all Toeplitz operators T (a) with generating function a ∈
PCX , and let BX refer to the smallest closed subalgebra of F which contains all
sequences (PnAPn) with A ∈ TX . A closer look at the proof of Theorem 5.2 reveals
the following.

Theorem 5.3. A sequence (An) ∈ BX is stable if and only if the operators

W (An), W̃ (An) and W τ (An) are invertible for every τ ∈ X ⊆ T.

Of particular interest is the case when X is a singleton, say X = {1}. For
A ∈ T{1}, Theorem 5.3 says that the sequence (PnAPn) is stable if and only if

the three operators W (PnAPn) = A, W̃ (PnAPn) and W 1(PnAPn) are invertible.
Actually, the invertibility of W 1(PnAPn) proves to be redundant in this special
setting which is again a consequence of the index identity.

Theorem 5.4. Let A ∈ T{1}. Then the sequence (PnAPn) is stable if and

only if the operators W (PnAPn) = A and W̃ (PnAPn) are invertible.

Proof. The index identity, specified to the setting of Theorem 5.3 with X =
{1}, yields

ind W (An) + ind W̃ (An) + ind W 1(An) = 0

for every Fredholm sequence (An) ∈ T{1}. Let, in particular, An = PnAPn with

A ∈ T{1}, and suppose W (PnAPn) and W̃ (PnAPn) are invertible. It is not hard

to check (using the Gohberg/Krupnik symbol calculus) that then W 1(PnAPn) is
a Fredholm operator. Hence, (PnAPn) is a Fredholm sequence, and the index
identity yields ind W 1(PnAPn) = 0. Further, the special form of the sequence
(An) = (PnAPn) implies that W 1(PnAPn) is a Mellin operator, which is subject
to Coburn’s theorem. Hence, W 1(PnAPn) is invertible.

Regularization of non-stable sequences. Let us finally mention a further
potential application of Fredholm sequences to the regularization of non-stable
approximation sequences which has been discussed in detail in [12].

Let (An) be an approximation sequence for an invertible operator A (i.e.
the An converge to A in the ∗-strong operator topology). Assume that this se-
quence is not stable but Fredholm with α-number k (which can be determined
numerically or via the dim Ker -formula in case of a standard algebra, say). Fi-
nally, let An = UnΣnV ∗

n refer to the singular value decomposition of An with

Σn := diag(σ
(n)
1 , . . . , σ

(n)
n ) and with 0 6 σ

(n)
1 6 · · · 6 σ

(n)
n denoting the sin-

gular values of An. For n > k, set Σ′
n := diag(0, . . . , 0, σ

(n)
k+1, . . . , σ

(n)
n ) and

A′
n := UnΣ′

nV ∗
n . Then (A′

n) is also an approximation sequence for A, and this
sequence is Moore-Penrose stable in the sense that the Moore-Penrose inverses
of the matrices A′

n are uniformly bounded. Consequently, the Moore-Penrose in-
verses of the A′

n converge strongly to the inverse of A. In other words, the least
square solutions of the equations A′

nxn = Pny converge to the solution of Ax = y.
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