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Abstract. Motivated by recent developments in the theory of quantum
groups, some classes of q-deformed operators (q-normal, q-quasinormal, q-
hyponormal operators) are introduced and investigated systematically, where
q is a positive deformation parameter. It turns out that many basic properties
of these q-deformed operators are different from that of the corresponding
undeformed operators (i.e., normal, quasinormal, hyponormal operators).
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1. INTRODUCTION

In the theory of quantum groups one often meets, in different situations, elements
x obeying the formal algebraic relation

(1.1) xx∗ = qx∗x,

where q is a positive real number. For instance, the q-deformed quantum plane C1
q

is a ∗-algebra with one generator x and defining relation (1.1). Another example
is the q-Heisenberg algebra in [33] which contains a generator x satisfying (1.1).
More generally, most quantum groups and quantum spaces contain the equation
xy = qyx as defining relation for certain generators x and y of the corresponding
algebras. Further information can be found in [16], [17], [18] and the references
cited in them.

The class of Hilbert space operators x fulfilling the relation (1.1) seems to
be important and of interest in itself. Such an operator is called q-normal. As
pointed out in [21] (see also [22]), a non-zero q-normal operator is always un-
bounded. The study of pairs of a selfadjoint operator x and a unitary operator y
such that xy = qyx can be always reduced to that of q-normal operators. On the
other hand, many variants of q-oscillators occur in quantum groups theory ([17],
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Chapter 5). One possible variety is based on the relation xx∗ − qx∗x = 1. Un-
der some domain assumption, all (irreducible) closed, densely defined operators
satisfying the above relation have been described in [8]. All such operators are
in fact weighted (backward) shifts and in particular their adjoints are deformed
hyponormal weighted shifts with deformation parameter q−1 (see Corollary 4.2
below).

The purpose of this paper is to begin a systematic investigation of q-normal
operators and various other related classes such as q-quasinormal and q-hypo-
normal operators in the context of operator theory in Hilbert space. Among
others, we show that a non-zero q-quasinormal operator with 0 < q < 1 must
be unbounded and, in contrast to the unbounded case, every bounded non-zero
q-quasinormal operator (and hence, with q > 1) has spectrum consisting only of
zero. Thus, the behavior of q-quasinormal operators depends essentially on the
parameter q. It is also shown that every non-zero q-normal operator T has suffi-
cient large spectrum and there exists an intertwining relation between T and qT .
This causes such an operator to have some special properties distinguished from
undeformed operators (e.g., [20], [38]).

The paper is organized as follows. In Section 2, the concepts of q-normality
and q-quasinormality are introduced and the q-quasinormality is characterized in
terms of the spectral measure of the absolute value in the polar decomposition.

In Section 3, q-hyponormality is introduced by inspired from the above men-
tion. It is shown that there exists a unique contraction attached to (and uniquely
determined by) each q-hyponormal operator. The relation between this attached
contraction and the partial isometry in the polar decomposition is established for a
class of q-quasinormal operators. Though the results and methods in this section
(and also in some parts in another section) are valid even for undeformed cor-
responding operators (hyponormal, normal and quasinormal operators), we shall
focus our attention on q-deformed operators.

In Section 4, bilateral and unilateral (possibly unbounded) weighted shifts
are treated as typical examples of q-deformed operators and their spectrum are
given in the case where they are q-normal and q-quasinormal.

In Section 5, we will see q-normality and q-quasinormality are characterized
by the property of their corresponding attached contractions. It is shown that
every q-quasinormal operator has a structure of the Brown type (for a bounded
quasinormal operator [7]) and, as a direct application, it has a q-normal extension
in a larger Hilbert space.

In Section 6, the relations between T and qT for q-normal and q-quasinormal
operators T are given by their attached partial isometries. As a consequence, it is
proved a non-zero q-quasinormal operator is unbounded provided that 0 < q < 1,
and it is shown in Section 9 every bounded q-quasinormal operator is nilpotent.

We investigate, in Section 7, the spectrum of a q-normal operator and show
that its spectrum is sufficient large in the sense of the planar Lebesgue measure.
Moreover, a list of the spectra is given.

In Sections 8 and 9, we shall present typical properties of q-normal operators,
which are, roughly speaking, very different from those of the undeformed opera-
tors. We first discuss in Section 8 about Cartesian decompositions of q-deformed
operators and show the real and imaginary parts are determined by the attached
contraction. Furthermore, it is shown that both parts of a non-zero q-normal op-
erator are always unbounded, closed. Secondly related to [14], it is shown the real
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and imaginary parts of q-quasinormal weighted shifts have their equal deficiency
indices (1, 1). It is known the powers of a closed, densely defined operator are
neither closable nor densely defined in general. It is, however, shown in Section
9 that the powers of q-normal and q-quasinormal operators are q-normal and q-
quasinormal, respectively. We also show the powers of the real and imaginary
parts of a q-normal operator are represented by the attached partial isometries
and the sets of their analytic elements coincide.

2. q-NORMAL AND q-QUASINORMAL OPERATORS

In this paper, all operators are assumed to be linear. For an operator T in a Hilbert
space H, the domain, the range and the kernel of T are denoted by D(T ),R(T )
and kerT , respectively. The usual inner product of H is denoted by 〈 · , · 〉. If M
is a subspace of H, M and M⊥ denote its closure and its orthogonal complement,
respectively and T |M denotes the restriction of T to M.

Let S and T be operators in H. Then the relation S ⊂ T means that
D(S) ⊆ D(T ) and Sη = Tη for all η ∈ D(S). If T is closable, then we denote its
closure by T̃ .

We shall denote by C, R, Z and N the set of complex numbers, the set of real
numbers, the set of integers and the set of positive integers, respectively. For a set
M ⊆ C and γ ∈ M, the complex conjugate of γ is denoted by γ and M means the
set {γ : γ ∈ M}.

Let us begin with the concept of q-deformed normality.

Definition 2.1. Let q be a positive number with q 6= 1. Let T be a closed,
densely defined operator in H. If T satisfies

(2.1) TT ∗ = qT ∗T,

then T is called a deformed normal operator with deformation parameter q.

We remark, as is easily seen, that the condition (2.1) is equivalent to

(2.2) |T ∗| = √
q |T |.

Lemma 2.2. Let T be a non-zero closed, densely defined operator in H and
let T = U |T | be the polar decomposition. Let γ be a complex number. Then the
relation

U |T | ⊂ γ|T |U
is equivalent to

U |T | = γ|T |U.

If this is the case, γ is a positive number.

Proof. Suppose that U |T | ⊂ γ|T |U. Since T ∗ = |T |U∗ ⊃ γU∗|T |, we have
D(T ) ⊆ D(T ∗). Take η ∈ H such that Uη ∈ D(|T |) = D(T ). Then, U∗Uη ∈
U∗D(T ∗). Using the general property of U∗; that is, U∗D(T ∗) ⊆ D(T ), we
have U∗Uη ∈ D(T ). Since 1 − U∗U is the orthogonal projection onto R(|T |)⊥ =
ker |T | = kerT , we have

η = U∗Uη + (1− U∗U)η ∈ D(T ).
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This means that U |T | = γ|T |U. We lastly show that γ is positive. Since U |T | =
γ|T |U, we have

γU∗|T |U = U∗U |T | = |T |.
Since T is non-zero, it follows that

〈|T |ξ, ξ〉 > 0.

for some ξ ∈ D(T ). Hence γ is positive.

Definition 2.3. Let q be a positive number with q 6= 1. Let T be a closed,
densely defined operator in H with polar decomposition T = U |T |. If T satisfies
the relation

U |T | ⊂ √
q |T |U,

then T is called a deformed quasinormal operator with deformation parameter q.

For a deformed normal (respectively deformed quasinormal) operator T with
deformation parameter q, we will simply say T is q-normal (respectively q-quasi-
normal).

Let T be a closed, densely defined operator in H. In the same way as in [38],
Theorem 5.40, p. 124, it is shown that the q-normality of T is equivalent to the
conditions:

D(T ) = D(T ∗) and ‖T ∗η‖ =
√

q ‖Tη‖, η ∈ D(T ).

We next show a q-normal operator is q-quasinormal. In fact, if T is q-normal, one
can easily check that

U |T |U∗ =
√

q |T |.
Since (1− U∗U) is the orthogonal projection onto ker |T |, for x ∈ D(|T |) = D(T )
we have

U∗Ux ∈ D(|T |) and U |T |x = U |T |U∗Ux.

Hence U |T | ⊂ √
q |T |U, so that T is q-quasinormal. If T is q-quasinormal, then

we obtained D(T ) ⊆ D(T ∗) in the proof of Lemma 2.2. Using the relation T ∗ ⊃√
q U∗|T |, we have

‖T ∗x‖ =
√

q ‖U∗|T |x‖ 6
√

q ‖Tx‖,
for all x ∈ D(T ). Thus, we proved the following:

Proposition 2.4. Let T be a closed, densely defined operator in a Hilbert
space H. Then the following statements hold:

(i) If T is q-normal, then T is q-quasinormal.
(ii) T is q-normal if and only if

D(T ) = D(T ∗), and ‖T ∗η‖ =
√

q ‖Tη‖, η ∈ D(T ).

(iii) If T is q-quasinormal, then

D(T ) ⊆ D(T ∗), and ‖T ∗η‖ 6
√

q ‖Tη‖, η ∈ D(T ).

Next we shall characterize the q-quasinormality in terms of the spectral mea-
sure of the absolute value of the polar decomposition.
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Theorem 2.5. Let T be a closed, densely defined operator in a Hilbert space
H and let T = U |T | be the polar decomposition. The following conditions are
equivalent:

(i) T is q-quasinormal.
(ii) For all t ∈ R,

Ueit|T | = ei
√

q t|T |U, i =
√
−1.

(iii) For all λ ∈ C with Im λ 6= 0,

U(λ− |T |)−1 = (λ−√q |T |)−1U.

(iv) For all Borel sets M,

E(
√

q −1M)U = UE(M),

where E( · ) is the spectral measure of |T |.
Especially, every q-quasinormal operator T satisfies the relation

Uf(|T |) = f(
√

q |T |)U
for any Borel function f.

Proof. If T is q-quasinormal, then we obtain U |T |n = q
n
2 |T |nU for all n ∈ N.

If η is an analytic vector of |T |, then it is easily seen that Uη is also analytic for√
q |T | and

Ueit|T |η = ei
√

q t|T |Uη

for all t ∈ R. Since the set of analytic elements of |T | is dense in H, we obtain
Ueit|T | = ei

√
q t|T |U for all t ∈ R. Conversely, assume that condition (ii) holds. For

each η ∈ D(|T |),

1
t
(ei
√

q t|T |Uη − Uη) = U
(eit|T |η − η

t

)
−→ iU |T |η

as t → 0. Hence, Uη ∈ D(
√

q |T |) = D(|T |), and
√

q |T |Uη = U |T |η, so that
U |T | ⊂ √

q |T |U. Therefore T is q-quasinormal. Assume that condition (ii) holds.
We check condition (iii) for λ ∈ C with Im λ < 0. For η ∈ H and λ ∈ C with
Im λ < 0, by [30], VIII.9, p. 287, and condition (ii) we have

U(λ− |T |)−1η = i

∞∫
0

e−itλUeit|T |η dt = (λ−√q |T |)−1Uη.

We next show the implication (iii) ⇒ (iv). Let E( · ) and F ( · ) be the spectral
measures of |T | and

√
q |T |, respectively. For λ ∈ C with Im λ 6= 0 and η, ξ ∈ H

〈(λ−√q |T |)−1Uη, ξ〉 =
∫

1
λ− ν

d〈FνUη, ξ〉

and
〈U(λ− |T |)−1η, ξ〉 =

∫
1

λ− ν
d〈Eνη, U∗ξ〉.

Therefore, in view of [36], Lemma 5.2, condition (iii) implies 〈F (M)Uη, ξ〉 =
〈E(M)η, U∗ξ〉 for all Borel sets M. Since F (M) = E((

√
q )−1M) (for instance,
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[11], XII, 2.9), condition (iv) holds. Suppose that condition (iv) holds. By the
change of measure principle, we have

〈eit|T |η, U∗ξ〉 =
∫

eitν d〈Eνη, U∗ξ〉 =
∫

ei
√

q tν d〈EνUη, ξ〉 = 〈ei
√

q t|T |Uη, ξ〉,

which implies condition (ii). Finally, take a Borel function f . Then, by condition
(iv), we have

〈Uf(|T |)η, ξ〉 =
∫

f(ν) d〈Eνη, U∗ξ〉 =
∫

f(ν) d〈FνUη, ξ〉 = 〈f(
√

q |T |)Uη, ξ〉.

This completes the proof.

3. q-HYPONORMAL OPERATORS AND THEIR ATTACHED CONTRACTIONS

In this section we shall introduce a certain contraction uniquely determined by
each deformed operator, which will be a useful tool for the study of deformed
operators.

Taking account of Proposition 2.4, we introduce the concepts corresponding
to hyponormality and formal normality of unbounded operators (see, for example,
[15], [20], [23] and [25] and the references cited in them).

Let q be a positive number with q 6= 1. A densely defined operator T is called
q-hyponormal (or a deformed hyponormal operator with deformation parameter q)
if it satisfies

D(T ) ⊆ D(T ∗) and ‖T ∗η‖ 6
√

q ‖Tη‖
for all η ∈ D(T ). If a q-hyponormal operator T satisfies

‖T ∗η‖ =
√

q ‖Tη‖
for all η ∈ D(T ), then T is said to be q-formally normal. By Proposition 2.4, every
q-quasinormal operator is q-hyponormal. One can also check that a q-hyponormal
operator T is closable and that its closure T̃ is also q-hyponormal. Such an operator
with deformation parameter q is sometimes called a q-deformed operator as a
generic term.

Lemma 3.1. Let T be a densely defined operator in H. Then T is q-hypo-
normal if and only if there is a contraction K such that

T ∗ ⊃ √
qKT.

In this case, the contraction K is taken such that

(3.1) R(K∗) ⊆ R(T ), or equivalently ker K ⊇ ker T ∗.

Moreover, K is uniquely determined under this condition (3.1).

Proof. Suppose that T is q-hyponormal. Define an operator K0 from R(T )
to R(T ∗) by

K0Tη =
1
√

q
T ∗η

for η ∈ D(T ). Then K0 is a contraction on R(T ), so that K0 continuously extends
K̃0 on R(T ). Put K = K̃0 on R(T ) and K = 0 on R(T )⊥. Then K is a contraction
such that T ∗ ⊃ √

q KT and R(K∗) ⊆ R(T ). The converse and the uniqueness
of K are easily shown.
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Corollary 3.2. Let T be a q-hyponormal operator in H. Then R(T ) ⊆
R(T ∗). In particular, if T is q-normal, then

R(T ) = R(T ∗).

Proof. The first relation follows from T ⊂ √
q T ∗K∗. If T is q-normal, then

T ∗ is q−1-normal. Therefore, R(T ) = R(T ∗).

Definition 3.3. For each q-hyponormal operator T , we denote by KT the
contraction K in Lemma 3.1 uniquely determined by condition (3.1). KT is called
the attached contraction to T .

Proposition 3.4. Let T be a q-hyponormal operator in H. Then T is a q-
formally normal if and only if KT is a partial isometry with initial domain R(T ).

Proof. If T is q-formally normal,

‖KT Tη‖ =
1
√

q
‖T ∗η‖ = ‖Tη‖,

for η ∈ D(T ). Hence, by [13], p. 63, KT is a partial isometry with initial domain
R(T ). The converse is clear.

The following theorem contains a characterization of q-quasinormality in
terms of KT .

Theorem 3.5. Let T be a closed q-hyponormal operator in H and let T =
U |T | be the polar decomposition. Then T is a q-quasinormal if and only if

KT = (U∗)2.

Proof. Suppose that T is q-quasinormal. Since U∗U is the orthogonal pro-
jection onto R(|T |), we have

T ∗ = |T |U∗ ⊃ √
q U∗|T | = √

q (U∗)2T.

Since UU∗ is the orthogonal projection onto R(T ), it follows that U∗ = 0 on
R(T )⊥. Hence, by the uniqueness of KT , KT = (U∗)2. Assume, conversely KT =
(U∗)2. By the definition and the same way as mentioned above, we have |T |U∗ ⊃√

q U∗|T |. Hence, U |T | ⊂ √
q |T |U. Thus T is q-quasinormal.

Lemma 3.6. Let T be a q-formally normal operator. Then T satisfies the
relation

T ∗ ⊃ 1
√

q
TKT .

In particular, if T is q-normal, then the equality holds in this relation.

Proof. Take any η in D(TKT ). Noticing T ∗ ⊃ √
q KT T and (KT )∗KT is the

orthogonal projection onto R(T ) by Proposition 3.4, we have

〈Tξ, η〉 = 〈KT Tξ,KT η〉 =
〈 1
√

q
T ∗ξ, KT η

〉
=

〈
ξ,

1
√

q
TKT η

〉
for all ξ ∈ D(T ). Hence, η ∈ D(T ∗) and T ∗η =

(
1√
q

)
TKT η. If T is q-normal,

then by Theorem 3.5 KT = (U∗)2, where T = U |T |. By the property of the polar
decomposition, U∗D(T ∗) ⊆ D(T ) = D(T ∗). Thus, D(TKT ) = D(T ∗). Hence,
T ∗ = 1√

q TKT .
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Proposition 3.7. Let T be a q-quasinormal operator in a Hilbert space H.
Then KT is a partial isometry with final domain R(T ∗).

Proof. Let T = U |T | be the polar decomposition of T and put P ≡ UU∗ and
Q ≡ U∗U. By the relation ker T ⊆ ker T ∗, we have P 6 Q. By Theorem 3.5,(

(KT )∗KT

)2 = (UPU∗)2 = UPQPU∗ = UPU∗ = (KT )∗KT .

Therefore, KT is a partial isometry. On the other hand, we have

KT (KT )∗ = U∗QU,
(
KT (KT )∗

)2 = U∗QPQU = U∗PU.

Since KT is a partial isometry, KT (KT )∗ is also a projection, and hence U∗QU =
U∗PU. Since PU = UQ, it follows that

KT (KT )∗ = Q.

This shows that the final domain of KT is equal to R(T ∗).

Corollary 3.8. Let T be a q-normal operator in H. Then the following
statements hold:

(i) KT is a partial isometry such that the initial domain is R(T ) and the
final domain is R(T ∗)(= R(T )).

(ii) (KT )∗ = KT∗ .

Proof. Statement (i) is a direct consequence of Proposition 3.4 and Proposi-
tion 3.7. Since T ∗ is q−1-normal and T ∗ = U∗|T ∗| as the polar decomposition of
T ∗, it follows from Theorem 3.5

KT∗ = U2 = (KT )∗.

The following lemma follows immediately from Definition 3.3.

Lemma 3.9. Let T be a q-hyponormal operator. Then, the following relations
are valid:

K−T = KT , K
T̃

= KT and KiT = −KT .

The following proposition is a q-deformed version of Stampfli’s theorem.

Proposition 3.10. Let T be a q-hyponormal operator in H. If T has dense
range, then T is injective and the inverse T−1 is a q-hyponormal operator satisfying

KT−1 = (KT )∗.

Proof. In view of Corollary 3.2, R(T ) ⊆ (ker T )⊥, so that T is injective.
Take η ∈ R(T ). Since T ⊂ √

q T ∗(KT )∗, we have η =
√

q T ∗(KT )∗T−1η. Hence,
η ∈ R(T ∗) and (T ∗)−1η =

√
q (KT )∗T−1η. This means that

(T−1)∗ = (T ∗)−1 ⊃ √
q (KT )∗T−1.

Since (KT )∗ is a contraction and by Lemma 3.1, T−1 is q-hyponormal. Since
R(T−1) is dense in H and by the uniqueness of KT−1 , we have KT−1 = (KT )∗.
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4. WEIGHTED SHIFTS

In this section we shall treat (possibly unbounded) weighted shifts as typical ex-
amples of q-deformed operators and determine their spectra. Let Su be a closed,
densely defined operator in a separable Hilbert space H. If there are an orthonor-
mal basis {en}, n > 0, and a sequence {wn}, wn 6= 0, n > 0, of complex numbers
such that

D(Su) =
{ ∞∑

n=0

αnen ∈ H :
∞∑

n=0

|αn|2|wn|2 < ∞
}

and
Suen = wnen+1

for all n > 0, then Su is called a unilateral (injective) weighted shift with weights
{wn} (with respect to {en}). Let D{en} denote the linear span of a basis {en}.
One can easily check that D ≡ D{en} is a core for Su, that is, ˜(Su|D) = Su. The
adjoint S∗u is given by

D(S∗u) =
{ ∞∑

n=0

αnen ∈ H :
∞∑

n=0

|αn|2|wn−1|2 < ∞
}

,

and

S∗u

( ∞∑
n=0

αnen

)
=

∞∑
n=0

αnwn−1en−1,

where w−1 = 0 and e−1 = 0. Analogously, a bilateral (injective) weighted shift
Sb in H is defined in an obvious way. For the unilateral weighted shift Su, if
Su = U |Su| is the polar decomposition, then

Uen =
wn

|wn|
en+1 and |Su|en = |wn|en.

Information about bounded weighted shifts can be founded in [10] and [34].

Proposition 4.1. The following statements hold:
(i) A unilateral weighted shift Su in H with weights {wn} is q-quasinormal

if and only if

(4.1) |wn| =
(

1
√

q

)n

|w0|

for all n > 0. In particular, a unilateral weighted shift cannot be q-normal.
(ii) A bilateral weighted shift Sb in H with weights {wn} is q-normal if and

only if the equation (4.1) is valid for all n ∈ Z.
(iii) A weighted shift Su (respectively Sb) is q-hyponormal if and only if

(4.2) |wn+1| >
1
√

q
|wn|

for all n > 0 (respectively n ∈ Z).
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Proof. Let Su be a unilateral shift with the weights {wn} and let Su =
U |Su| be the polar decomposition of Su. If Su is q-quasinormal, then U |Su|en =√

q |Su|Uen, and so √
q |wn+1| = |wn|

for all n > 0. Hence |wn| = q−
n
2 |w0|, n > 0. Conversely, suppose that the

equality (4.1) is valid for n > 0. It is clear U |Su|en =
√

q |Su|Uen for each n,
and so U |Su| =

√
q |Su|U on D{en}. For each η ∈ D(|Su|) = D(Su), there is a

sequence {ηn} in D{en} such that ηn → η and Suηn → Suη, as n → ∞. Since
Suηn = U |Su|ηn =

√
q |Su|Uηn, we have

√
q |Su|Uηn → Suη and Uηn → Uη,

as n → ∞. Since |Su| is closed, Uη ∈ D(|Su|) and
√

q |Su|Uη = Suη. Hence
U |Su| ⊂

√
q |Su|U . If Su is q-normal, then we have qS∗uSue0 = SuS∗ue0 = 0. Hence

wn = w0 = 0 for all n. Thus statement (i) holds. Next, let Sb be a bilateral
weighted shift with the weights {wn}. Then

SbS∗ben = |wn−1|2en and S∗bSben = |wn|2en

for all n ∈ Z. Hence, if Sb is q-normal, we have |wn| = q−
n
2 |w0|, for all n ∈ Z.

Conversely, assume that the equality (4.1) is valid for all n ∈ Z. Then it is easily
seen that

D(Sb) = D(S∗b).

By our assumption, SbS∗ben = qS∗bSben for all n ∈ Z. Hence,

‖S∗bξ‖ =
√

q ‖Sbξ‖

for all ξ ∈ D{en}. For each η ∈ D(Sb), there is a sequence {ξn} in D{en} such
that ξn → η and Sbξn → Sbη, as n → ∞. Since S∗b is closed, it follows that the
sequence{S∗bξn} converges S∗bη. Hence, ‖S∗bη‖ =

√
q ‖Sbη‖.

Finally, we have to prove statement (iii). It is verified by the same way as in
statement (ii).

Corollary 4.2. Let T be a (unilateral or bilateral) weighted shift with
weights {wn}, with respect to a basis {en}. If T satisfies

T ∗T − qTT ∗ = 1, q > 0, q 6= 1.

on D{en}, then T is q−1-hyponormal with D(T ∗) = D(T ).

Proof. The relation implies that

|wn+1|2 − q|wn|2 = 1.

It follows that D(T ∗) = D(T ). Clearly, |wn+1| >
√

q |wn| for all n. Hence, by (4.2)
in Proposition 4.1, T is q−1-hyponormal.

In what follows, we will often use the fact [10], Proposition 6.2: A weighted
shift with weights {wn} is unitarily equivalent to the weighted shift with weights
{|wn|}.

We denote the spectrum of T by σ(T ). The point spectrum, the continu-
ous spectrum and the residual spectrum are denoted by σp(T ), σc(T ) and σr(T ),
respectively.
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Lemma 4.3. If Su is q-quasinormal with 0 < q < 1, then

σp(S∗u) = C,

and the multiplicity of any eigenvalue of S∗u is equal to 1.

Proof. Upon applying a unitary transformation, we can assume without loss
of generality that all weights wn are positive. It is clear that 0 is an eigenvalue of
S∗u with eigenvector e0 and its multiplicity is 1. For λ ∈ C \ {0}, take some x0 and
put

xn ≡
λn

w0w1 · · ·wn−1
x0, n > 1, and xλ ≡

∞∑
n=0

xnen.

Then we show that xλ ∈ D(S∗u) (= D(Su)) and S∗uxλ = λxλ. Since wn = q−
n
2 w0,

it follows that
∞∑

n=0

(wn)2|xn|2 = |x0w0|2
∞∑

n=0

∣∣∣ λ

w0

∣∣∣2n

q
n(n−3)

2 .

Now we consider the series
∞∑

n=0
anbn(n−3) for constants a > 0, and 0 < b < 1.

Then there is a constant δ, 0 < δ < 1, such that a
1

n−3 b < δ, n > N for some

large N ∈ N. Since anbn(n−3) < δn2−3n < δn, n > N , the series
∞∑

n=0
anbn(n−3) is

convergent. Thus, since 0 < q < 1,
∞∑

n=0

|xn|2 6
1

(w0)2

∞∑
n=0

(wn)2|xn|2 < +∞.

Hence, xλ ∈ D(S∗u). Obviously, S∗uxλ = λxλ, by the definition of xλ. Therefore λ
is an eigenvalue of S∗u and we also showed that its multiplicity is equal to 1.

Lemma 4.4. If Su is q-quasinormal with q > 1, then Su is bounded and
quasinilpotent.

Proof. It is easily shown that Su is bounded with ‖Su‖ = |w0|. For m ∈ N,∥∥∥(Su)m
( ∞∑

n=0

αnen

)∥∥∥2

= |w0|2mq−
m2−m

2

∞∑
n=0

|αn|2q−mn.

Since q > 1, it follows that

‖(Su)m‖ 1
m 6 |w0|q−

m−1
4 → 0

as m →∞. Thus, Su is quasinilpotent.

Under the same assumption as in Lemma 4.3, σr(Su) = C. Indeed, for each
λ ∈ C, it is clear that Su + λ is one to one. By Lemma 4.3, R(Su + λ) 6= H.
On the other hand, if q > 1 then the spectral radius of a q-quasinormal Su is
equal to 0 by Lemma 4.4, and hence σ(Su) = {0}. Moreover, it is easily seen that
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0 /∈ σp(Su) and 0 /∈ σc(Su). Thus we obtain the following list for the spectrum of
a q-quasinormal Su:

σp σc σr σ

Su(0 < q < 1) ∅ ∅ C C

Su(q > 1) ∅ ∅ {0} {0}

We now turn to the study of spectrum of a q-normal, bilateral weighted shift
Sb. We first notice that the continuous spectrum of the q-normal Sb contains 0.
In fact, Sb and S∗b are injective and 0 ∈ σ(Sb) by Theorem 7.1, as we will see in
Section 7. Therefore, 0 ∈ σc(Sb).

Lemma 4.5. Suppose that Sb is q-normal with q > 1. Then we have

σp(Sb) = C \ {0},

and the multiplicity of any eigenvalue is equal to 1.

Proof. Without loss of generality, we can assume that all weights wn are
positive.

For λ ∈ C \ {0}, take some x0 and put

xn ≡
(w0w1 · · ·wn−1

λn

)
x0 for n > 1,

xn ≡
( 1

λnw−1w−2 · · ·wn

)
x0 for n 6 −1,

and

xλ ≡
∞∑

n=−∞
xnen.

Then we show that xλ ∈ D(Sb) and Sbxλ = λxλ. Since wn = q−
n
2 w0, we have

|xn| =
(w0

|λ|

)n

q−
n(n−1)

4 |x0|, n > 1

and

w−n|x−n| =
( |λ|

w0

)n

q−
n(n−1)

4 w0|x0|, n > 1.

For a > 0 and 0 < b < 1, the series
∞∑

n=0
anbn2−n converges by the same reason as

in the proof of Lemma 4.3. Hence,
∞∑

n=0
|xn|2 < +∞ and

∞∑
n=1

(w−n)2|x−n|2 < +∞.

Moreover, since q > 1,
∞∑

n=0

(wn)2|xn|2 6 (w0)2
∞∑

n=0

|xn|2 < +∞
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and
∞∑

n=1

|x−n|2 6
1

(w0)2

∞∑
n=1

(w−n)2|x−n|2 < +∞.

Thus,
∞∑

n=−∞
|xn|2 < +∞ and

∞∑
n=−∞

(wn)2|xn|2 < +∞. Therefore, xλ ∈ D(Sb). By

the definition of xλ, it is clear that Sbxλ = λxλ and we have also showed that the
multiplicity of λ is equal to 1.

Lemma 4.6. If Sb is q-normal with 0 < q < 1, then
σp(Sb) = ∅, and σp(S∗b) = C \ {0}.

The multiplicity of any eigenvalue of S∗b is equal to 1.
Proof. We can assume without loss of generality that all weights wn are

positive. Suppose that λ ∈ C \ {0} is in σp(Sb), Then there is a non-zero vector

yλ ∈ D(Sb) such that Sbyλ = λyλ. If yλ =
∞∑

n=−∞
ynen, then we have

yn =
(w0w1 · · ·wn−1

λn

)
y0 for n > 1,

yn =
( 1

λnw−1w−2 · · ·wn

)
y0 for n 6 −1.

On the other hand, since 0 < q < 1, it follows that
∞∑

n=0

|yn|2 = +∞ or
∞∑

n=1

(w−n)2|y−n|2 = +∞,

depending on the value (w0)−1|λ|. This is a contradiction to yλ ∈ D(Sb). Since
0 ∈ σc(Sb), we have σp(Sb) = ∅. We next show that σp(S∗b) = C \ {0}. Fix
λ ∈ C \ {0}, and take some x0. Define

xn ≡
( λn

w0w1 · · ·wn−1

)
x0 for n > 1,

xn ≡ w−1w−2 · · ·wnλnx0 for n 6 −1.

In view of the proof of Lemma 4.3, we have
∞∑

n=0

|xn|2 < +∞ and
∞∑

n=0

(wn)2|xn|2 < +∞.

Since

|x−n| =
(w0

|λ|

)n(1
q

)−n(n+1)
4 |x0| and w−n < w0, n > 1,

it follows from the proof of Lemma 4.5 that
∞∑

n=1

|x−n|2 < +∞ and
∞∑

n=1

(w−n)2|x−n|2 < +∞.

Define

xλ ≡
∞∑

n=−∞
xnen.

Then xλ ∈ D(Sb) = D(S∗b) and, by the construction of {xn}, S∗bxλ = λxλ. We
also proved that the multiplicity of λ is equal to 1.
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We summarize the above in a list:

σp σc σr σ

Sb(0 < q < 1) ∅ {0} C \ {0} C

Sb(q > 1) C \ {0} {0} ∅ C

5. q-NORMAL EXTENSIONS AND REDUCING SUBSPACES

Let us begin this section by recalling the notion of a reducing subspace for an
unbounded operator. For a densely defined operator T in H and a closed subspace
M of H, we say that M reduces T if the following two conditions are satisfied:

(i) PMD(T ) ⊆ D(T ),
where PM is the orthogonal projection onto M;

(ii) T (M∩D(T )) ⊆M and T (M⊥ ∩ D(T )) ⊆M⊥.

For a reducing subspace M of T, define the parts T1 and T2 of T on Hilbert spaces
PMH and (1− PM)H by

T1 ≡ T |M and T2 ≡ T |M⊥

respectively, and we write its decomposition as
T = T1 ⊕ T2.

It then follows that M reduces also T ∗ and the following relations hold:
(T1)∗ = (T ∗)1 and (T2)∗ = (T ∗)2.

Moreover, if T is closed, then its part T1 and T2 are closed. For the above facts
we refer to e.g., [5] and [26].

We next recall the strong commutant of an operator. Let T be a closable,
densely defined operator in H. Define

Cs(T ) ≡ {X ∈ B(H) : XT ⊆ TX}.
Here, B(H) means the algebra of all bounded operators on H. Then Cs(T ) is a
subalgebra of B(H). If T is a self-adjoint operator with spectral decomposition T =∫

λ dET (λ), then Cs(T ) is a von Neumann algebra and moreover, the commutant
of the von Neumann algebra Cs(T ) is generated by the spectral projections {ET (·)}
(e.g., [27]). Cs(T ) is called the strong commutant of T . Let M be a closed subspace
in H. It is well-known that M reduces T if and only if
(5.1) PM ∈ Cs(T ).

Lemma 5.1. Let T be a closed q-hyponormal operator. Then ker T reduces T .

Proof. In view of Corollary 3.2, kerT ⊆ (R(T ))⊥. It follows that
P ∈ Cs(T ),

where P denotes the orthogonal projection onto ker T . Hence, condition (5.1) is
satisfied.
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One can easily check that, for a q-hyponormal operator, a q-formally nor-
mal operator and a q-normal operator, their parts (that is, their restrictions to
a reducing subspace) are q-hyponormal, q-formally normal and q-normal, respec-
tively. Before indicating the q-quasinormality of parts of q-quasinormal operators,
we present the following lemma. It seems to be of interest in itself from the view
point of operator theory.

Lemma 5.2. Let T be a closed, densely defined operator with polar decom-
position T = U |T |. Let M be a reducing subspace of T . Then M reduces U

and |T |.

Proof. By (5.1), PMT ⊂ TPM. Hence, PMT ∗T ⊂ T ∗PMT ⊂ T ∗TPM. On
the other hand, it follows that

Cs(|T |) ⊇ Cs(T ∗T ).

Hence, PM ∈ Cs(|T |), which implies that M reduces |T |. Since PM ∈ Cs(T ) ∩
Cs(|T |), for all ξ ∈ D(T ) we have

PMU(|T |ξ) = PMTξ = U |T |PMξ = UPM|T |ξ.

Hence, UPM = PMU on R(|T |). Take ξ ∈ (R(|T |))⊥ = ker |T |. It is clear that
PMUξ = 0. Since PM ∈ Cs(|T |), we have |T |PMξ = 0, so that

PMξ ∈ ker T = kerU.

Therefore, UPMξ = PMUξ = 0. Hence, UPM = PMU and so M reduces U .

Corollary 5.3. Let T be a q-quasinormal operator in H. Suppose that M
is a closed subspace of H which reduces T . If T1 and T2 are the parts of T on M
and M⊥, respectively, then T1 and T2 are q-quasinormal.

Proof. It suffices to show that T1 is q-quasinormal. Let T = U |T | be the
polar decomposition of T . By the above lemma, M reduces |T | and U . Let |T |1
and U1 be the parts of |T | and U on M, respectively. If T1 = V1|T1| is the
polar decomposition of T1 in M, it then follows from the uniqueness of the polar
decomposition that

|T1| = |T |1 and V1 = U1.

Therefore, we have

V1|T1| = U1|T |1 = (U |T |)|M =
√

q (|T |U)|M =
√

q |T |1U1 =
√

q |T1|V1.

Thus T1 is q-quasinormal.
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Proposition 5.4. If a closed subspace M reduces a q-hyponormal opera-
tor T , then M reduces KT and

(KT )|M = K(T |M).

Proof. By (5.1), PM ∈ Cs(T ) ∩ Cs(T ∗) and by the definition of KT , we get

PMKT Tξ =
1
√

q
PMT ∗ξ =

1
√

q
T ∗PMξ = KT TPMξ = KT PMTξ

for all ξ ∈ D(T ). Thus, KT PM = PMKT on R(T ). Since PM ∈ Cs(T ∗), we
obtain that PM(ker T ∗) ⊆ ker T ∗. On the other hand, KT satisfies (3.1). Hence,
KT PM = PMKT = 0 on (R(T ))⊥. Therefore, KT PM = PMKT , and hence M
reduces KT . Since T is q-hyponormal, we have

(T |M)∗ = (T ∗)|M ⊃ √
q (KT T )|M =

√
q
[
(KT )|M

][
T |M

]
.

For each ξ ∈ ker
(
(T |M)∗

)
, T ∗PMξ = ((T ∗)|M)ξ = (T |M)∗ξ = 0. Hence, by

(3.1),
((KT )|M)ξ = 0

Thus,
ker

(
(KT )|M

)
⊇ ker

(
(T |M)∗

)
.

Hence, by the uniqueness of K(T |M), (KT )|M = K(T |M).

Proposition 5.5. A q-quasinormal operator T in a Hilbert space H is q-
normal if and only if

R(T ) = R(T ∗), namely, ker T = kerT ∗.

Especially, if T has polar decomposition T = U |T | with unitary U , then T is
q-normal.

Proof. Let T = U |T | be the polar decomposition of T. By Lemma 5.1, ker T
is a reducing subspace of T . Let T2 be the part of T on (ker T )⊥. Then T2

is q-quasinormal by virtue of Corollary 5.3, and T = 0 ⊕ T2 with respect to
H = kerT ⊕ (ker T )⊥. Suppose that R(T ) = R(T ∗). Then, we clearly have

R(T2) = R(T2
∗) = (ker T )⊥.

Thus we may assume that T = U |T | is injective and U is unitary. Since U |T | =√
q |T |U, we have |T |U∗ =

√
q U∗|T |. Hence, using general property of the polar

decomposition, we get

|T ∗| = U |T |U∗ =
√

q UU∗|T | = √
q |T |.

Therefore, T is q-normal. Since every q-normal operator satisfies the equality
R(T ) = R(T ∗) by Corollary 3.2, the assertion follows.

Now we present the converse to statement (i) of Corollary 3.8 in terms of KT .



Some classes of q-deformed operators 167

Proposition 5.6. Let T be a q-quasinormal operator in a Hilbert space H.
If the initial domain of KT is R(T ), then T is q-normal.

Proof. Let T = U |T | be the polar decomposition of T and put P ≡ UU∗and
Q ≡ U∗U . It follows from our assumption and Theorem 3.5 that

P = UPU∗.

By P 6 Q, we have U∗PU = U∗(UPU∗)U = P. On the other hand, U∗PU =
(U∗U)2 = Q. Therefore, P = Q and, by Proposition 5.5, T is q-normal.

Proposition 5.7. Let T be a q-quasinormal operator in a Hilbert space H.
If KT is normal, then T is q-normal.

Proof. Using the same notation as in the above proof, we have

(KT )∗KT = KT (KT )∗ 6 P.

Thus, R(T ∗) ⊆ R(T ). Since R(T ) ⊆ R(T ∗) and by Proposition 5.5, T is q-
normal.

The following theorem gives some information about the structure of q-
quasinormal operators, which is similar to that in the case of a bounded quasinor-
mal operator ([7]; see also [10], Chapter II, Theorem 3.2). Before describing the
theorem, we present some terminology: Let L be a Hilbert space and put

`2+(L) ≡
∞⊕

n=0

Ln, Ln ≡ L,

that is, `2+(L) =
{

(xn)∞n=0 : xn ∈ L,
∞∑

n=0
‖xn‖2 < +∞

}
. We will introduce a kind

of weighted shift in `2+(L). Let {wn} be a sequence of complex numbers and define
an operator S on `2+(L) by

D(S) ≡
{
(xn)∞n=0 ∈ `2+(L) : xn = 0 except for a finite number n

}
,

S((xn)∞n=0) ≡ (yn)∞n=0, yn ≡ wn−1xn−1

where n > 0, x−1 = w−1 = 0. Clearly, S is closable. Its closure is called a unilateral
weighted shift with weights {wn} defined by L, and is denoted by SL,wn

. For a
densely defined operator T , define T (∞) by

D(T (∞)) ≡
{

(xn)∞n=0 ∈ `2+(L) :
∞∑

n=0

‖Txn‖2 < +∞
}

,

T (∞)((xn)∞n=0) ≡ (yn)∞n=0, yn ≡ Txn.

The outline of the proof in the following theorem is essentially based on that of
the classical result of [7] (see also the corresponding part in [10]). The proof of
this theorem, however, contains some more delicate aspects which come from the
unboundedness of the operators. It also needs more technical facts related to
q-deformed operators.
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Theorem 5.8. Every q-quasinormal operator is unitarily equivalent to the
direct sum

some q-normal operator⊕ Sq.

Here, Sq is a q-quasinormal operator in `2+(L) for some Hilbert space L such that

Sq = SL,wn
·K(∞), wn =

( 1
√

q

)n

,

where K is an injective positive, selfadjoint operator in L. Thus every q-quasi-
normal operator has a q-normal extension in a larger Hilbert space.

Proof. Let T be a q-quasinormal operator in a Hilbert space H. Considering
the restriction of T to the reducing subspace (ker T )⊥ (Lemma 5.1), we assume
without loss of generality that T is injective . Let T = U |T | be the polar decom-
position. Then U is an isometry. We consider the Wold decomposition of U (e.g.,
[3], [10]). Define

H1 ≡
∞⋂

n=0

UnH, and H2 ≡ H1
⊥.

Then H1 reduces U , the part U |H1 is unitary on H1 and U |H2 is an isometry such

that
∞⋂

n=0
(U |H2)nH2 = {0}. Let Q be the orthogonal projection of H onto H1. We

will show that
Q ∈ Cs(|T |) ∩ Cs(T ).

Since |T | is selfadjoint, it follows that Cs(|T |) coincides with the commutant of the
von Neumann algebra generated by {eit|T | : t ∈ R}. In view of Theorem 2.5,

eit|T |Unη = Un
(
ei(
√

q )−nt|T |)η,

for all η ∈ H and t ∈ R. Hence, eit|T |H1 ⊆ H1, so that Qeit|T |Q = eit|T |Q, for all
t ∈ R. Therefore, Q ∈ Cs(|T |). Using this relation, we have

QT = UQ|T | ⊂ U |T |Q = TQ.

Thus Q ∈ Cs(T ), and hence H1 reduces T and |T |. Let T1 and T2 be the parts of
T on H1 and H2, respectively. Then we have

T = T1

⊕
T2 with respect to H = H1

⊕
H2.

Suppose that T1 = U1|T1| and T2 = U2|T2| are the polar decompositions of T1 and
T2. By the uniqueness of the polar decomposition, we conclude that

U1 = U |H1, U2 = U |H2, and |T1| = |T | |H1, |T2| = |T | |H2.

By Corollary 5.3, T1 and T2 are q-quasinormal. Since U1 is unitary, it follows from
Proposition 5.5 that T1 is q-normal in H1. Clearly, U2 is an isometry on H2 such

that
∞⋂

n=0
(U2)nH2 = {0}. Put

L ≡ H2 ∩ (U2H2)⊥.
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Then H2 =
∞⊕

n=0
(U2)nL, and `2+(L) ≡

∞⊕
n=0

Ln, Ln ≡ L is carried onto H2 by the

unitary transformation Γ defined by

Γ
(
(xn)∞n=0

)
≡

∞∑
n=0

(U2)nxn

for (xn)∞n=0 ∈ `2+(L). Define operators on `2+(L) corresponding to T2 and U2 by

(T2)′ = Γ−1T2Γ and (U2)′ = Γ−1U2Γ.

It is clear that (U2)′ is a unilateral shift on `2+(L). Take (xn)∞n=0 in D((T2)′).
Then, it follows from the q-quasinormality of T2 that

Γ
(
|(T2)′|

(
(xn)∞n=0

))
=

∞∑
n=0

q−
n
2 (U2)n|T2|xn.

Therefore,

|(T2)′|
(
(xn)∞n=0

)
=

(
|T2|x0, q−

1
2 |T2|x1, q−1|T2|x2, q−

3
2 |T2|x3, . . .

)
,

so that,
(T2)′

(
(xn)∞n=0

)
=

(
0, |T2|x0, q−

1
2 |T2|x1, q−1|T2|x2, . . .

)
.

In view of the above form of (T2)′, one can easily check that every q-quasinormal
operator is unitarily equivalent to the desired form in the statement of the theorem.
The unilateral shift U2 on `2+(L) is naturally extended to the bilateral shift U0 on

`2(L) ≡
∞⊕

n=−∞
Ln, Ln ≡ L.

Define T0 and L on `2(L) by

T0

(
(xn)∞n=−∞

)
≡

(
. . . , q

3
2 |T2|x−3,

−1
^

q|T2|x−2,

0
^

q
1
2 |T2|x−1,

1
^

|T2|x0, q−
1
2 |T2|x1, . . .

)
and

L
(
(xn)∞n=−∞

)
≡

(
. . . , q|T2|x−2,

−1
^

q
1
2 |T2|x−1,

0
^

|T2|x0,

1
^

q−
1
2 |T2|x1, q−1|T2|x2, . . .

)
for (xn)∞n=0 ∈ `2(L). Then T0 on `2(L) extends (T2)′ and |(T2)′| is also extended
to a positive selfadjoint operator L in `2(L). Clearly, L = |T0|, so that T0 = U0|T0|
is the polar decomposition of T0. By a simple computation, we obtain U0|T0| =√

q |T0|U0. Since U0 is unitary, T0 is q-normal by Proposition 5.5.

Remark 5.9. The q-quasinormal part Sq in the above theorem can be rep-
resented as follows:

Sq =



0 0 0 0 0 · · ·
K 0 0 0 0 · · ·
0 q−

1
2 K 0 0 0 · · ·

0 0 q−1K 0 0 · · ·
0 0 0 q−

3
2 K 0 · · ·

...
...

...
...

...
. . .


in `2+(L).
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6. INTERTWINING RELATIONS

We begin this section with an illustration of the attached contraction KS to a
unilateral weighted shift S ≡ Su with weights {wn}. It is easy to see that, if S is
q-hyponormal, the contraction KS is given by

KSe0 = KSe1 = 0 and KSen =
( 1
√

q

)wn−2

wn−1
en−2, n > 2.

Since Su is unitarily equivalent to the unilateral weighted shift with weights {|wn|},
we assume that all wn > 0. Then if S is q-quasinormal, we have KSe0 = KSe1 = 0
and KSen = en−2, n > 2. Moreover, it follows that

(KS)∗en = en+2, n > 0.

As we have seen in Lemma 4.4 of Section 4, every q-quasinormal, unilateral
weighted shift Su is bounded for q > 1. Related to this, we will show in the
following there is no non-zero bounded q-quasinormal operator for 0 < q < 1.

Theorem 6.1. Let T be a q-quasinormal operator in a Hilbert space H.
Then, there is a coisometry K such that

KTK∗ =
1
q
T.

Especially for 0 < q < 1, every non-zero q-quasinormal operator must be un-
bounded.

Proof. Let T = U |T | be the polar decomposition of T . Then by Theorem 3.5
we have

(KT )∗T =
√

q U2|T |U = qU |T |U2 = qT (KT )∗.

By virtue of Corollary 3.2 and Proposition 3.7, KT (KT )∗ is the orthogonal projec-
tion onto R(T ∗) containing the range of T and hence the above equality implies
the relation KT T (KT )∗ = q−1T . In view of Section 5, kerT reduces T and we
have T = 0⊕ T2 with respect to H = kerT ⊕ (ker T )⊥. Since T2 is injective (and
hence R((T2)∗) = (kerT )⊥) and q-quasinormal on (ker T )⊥, (KT2)

∗ is isometry.
Noticing that KT2 coincides with the part of KT on (ker T )⊥ by Proposition 5.4,
define

K ≡ ι⊕KT2 ,

where ι denotes the identity on kerT . Then K∗ is an isometry on H. It follows
that

KTK∗ =
1
q
T.

We next consider the linear transformation on B(H) defined by Γ(T ) = KTK∗,
T ∈ B(H). It then follows that σ(Γ) ⊆ {µ ∈ C : |µ| 6 1} . This means that the
operator equation

Γ(X) =
1
q
X

has no non-trivial solution X in B(H) for 0 < q < 1. Therefore, every non-zero
q-quasinormal operator with 0 < q < 1 is always unbounded.
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Corollary 6.2. Every non-zero q-normal operator is always unbounded.
A q-normal operator T satisfies the relation

(6.1) (KT )∗TKT = qT, or equivalently TKT = qKT T.

In particular, T is unitarily equivalent to qT.

Proof. The first assertion is a direct consequence of Theorem 6.1. Keep the
same notation as in the above proof. Since T is q-normal, (KT )∗KT is the orthogo-
nal projection onto (kerT )⊥(= R(T )) and ker T reduces KT by Proposition 5.4. It
follows from the equality in Theorem 6.1 that TKT = qKT T. Since T2 is injective
and q-normal, KT2 is unitary. Therefore, K = ι⊕KT2 is also unitary on H. Since
(KT )∗TKT = qT , we obtain K∗TK = qT .

Remarks 6.3. (1) The first part of Corollary 6.2 was proved in [21] as stated
in Introduction.

(2) A non-zero q-quasinormal operator T is not always unitarily equivalent
to qT . In fact, a q-quasinormal, unilateral weighted shift with q > 1 is such
an example. Furthermore, using the observation made at the beginning of this
section, one can easily check that any q-quasinormal, unilateral weighted shift can
not satisfy condition (6.1) of Corollary 6.2.

(3) There is no non-zero bounded solution for the operator equation K∗XK =
qX where K is unitary and q ∈ R, q 6= 1. In the case that K is isometric, however,
the operator equation K∗XK = qX can be solved with some bounded solution
depending on the parameter q. When H is the classical Hardy space H2(T) and K
is the unilateral shift on H, Shunhua Sun in [37] gave explicit bounded solutions
depending on the parameter q.

7. SPECTRUM

Throughout this section we assume q-normal operators are non-zero. We shall
present some general aspects of the spectrum of a q-normal operator.

Theorem 7.1. The spectrum of a q-quasinormal operator must contain {0}.
In particular, for every q-normal operator T the spectrum has the property that

|σ(T )|2 = ∞,

where | · |2 denotes the planar Lebesgue measure.

Proof. Let T be a q-quasinormal operator in a Hilbert space H with polar
decomposition T = U |T |. Assume 0 /∈ σ(T ). Then U is unitary, and hence T is
q-normal by Proposition 5.5. Since TT ∗ = qT ∗T , it follows that

T−1(T ∗)−1 = q(T ∗)−1T−1,

so that T−1 is also q-normal. Therefore, T−1 is unbounded by Corollary 6.2,
which is a contradiction to 0 /∈ σ(T ). Therefore, σ(T ) 3 0. Next suppose that T is
q-normal in H. It suffices to show |σ(T )|2 = ∞ in the case where σ(T ) 6= C. Since
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σ(T ) contains 0, there is a number λ /∈ σ(T ) with λ 6= 0. Since T is unbounded,
it follows that

(7.1) σ
(
(λ− T )−1

)
=

{ 1
λ− ν

: ν ∈ σ(T )
}
∪ {0}.

We recall that a densely defined operator T is called hyponormal if D(T ) ⊆ D(T ∗)
and ‖T ∗η‖ 6 ‖Tη‖ for η ∈ D(T ) (see, e.g., [15], [20] and [25] for more information).

It is obvious that T is hyponormal if 0 < q < 1 and T ∗ is also hyponormal if
q > 1. Replacing T by T ∗, we may assume that 0 < q < 1. Then, it is easy to see
that (λ− T )−1 is a bounded hyponormal operator ([28],[35]). If |σ(T )|2 = 0, then
by the equality (7.1) we have ∣∣σ(

(λ− T )−1
)∣∣

2
= 0.

Since the bounded operator (λ − T )−1 is hyponormal, (λ − T )−1 is normal by
Putnam’s Inequality ([29]). It follows that T is normal, which is a contradiction
to q 6= 1. Therefore, |σ(T )|2 > 0. Moreover, by Corollary 6.2, the spectrum of a q-
normal operator T has the property that qnσ(T ) = σ(T ) for all n ∈ Z. Therefore,
we obtain

|σ(T )|2 = ∞.

Remark 7.2. Applying the same methods as above, it is verified that for
every non-zero q-quasinormal operator T with 0 < q < 1 one has

|σ(T )|2 > 0.

On the contrary, in case q > 1 there exists a q-quasinormal (bounded) operator
T with σ(T ) = {0}. Indeed, as we have seen in Section 4 (Lemma 4.4), the
q-quasinormal weighted shift Su is such an example. It will be shown later (in
Section 9) that every bounded, q-quasinormal operator is quasinilpotent and hence
its spectrum coincides with {0}.

Lemma 7.3. Let T be a q-normal operator. Then, for all λ ∈ C \ {0},
(i) if q > 1, R(T − λ) = H;
(ii) if 0 < q < 1, R(T ∗ − λ) = H.

Proof. For any λ ∈ C, it follows that

(7.2) ‖T ∗η − λη‖2 = ‖Tη − λη‖2 + (q − 1)‖Tη‖2

for all η ∈ D(T ).
Assume q > 1 and λ 6= 0. Then R(T ∗ − λ) is closed. In fact, take any

sequence {ηn} in D(T ∗) = D(T ) such that the sequence {(T ∗ − λ)ηn} converges
to some γ in H. In virtue of the equality (7.2), both {(T − λ)ηn} and {Tηn} are
Cauchy sequences. Since λ is non-zero, there is some η0 ∈ H such that ηn → η0,
and so the sequence {T ∗ηn} converges. Hence, η0 ∈ D(T ∗) and γ = (T ∗ − λ)η0.
Using (7.2) once again, it follows that

ker(T ∗ − λ) = {0}.
On the other hand, according to [5], Theorem 10, p. 72, R(T−λ) is closed. Hence,
R(T − λ) = H.

If 0 < q < 1, then T ∗ is q−1-normal. Therefore, the above argument for the
case q > 1 can apply to that in the case of T ∗. Thus we have R(T ∗ − λ) = H.
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Lemma 7.4. Let T be a q-normal operator. Then,

σc(T ) ⊆ {0}.
Moreover,

(i) if q > 1, σr(T ) = ∅;
(ii) if 0 < q < 1, σp(T ) ⊆ {0}, σr(T ) 6= ∅ and 0 /∈ σr(T ).

Proof. Take any λ ∈ C \ {0}. It is clear by the above lemma that λ /∈ σc(T )
if q > 1. Since T ∗ is q−1-normal and by σc(T ∗) = σc(T ), we have λ /∈ σc(T )
if 0 < q < 1. Thus σc(T ) ⊆ {0}. If 0 ∈ σr(T ), then T is injective, and so
R(T ) = R(T ∗) = (ker T )⊥ = H. This is a contradiction. Hence, 0 /∈ σr(T ).

Assume that q > 1. Then, by the above lemma, we have λ /∈ σr(T ) for any
λ ∈ C \ {0}. Therefore, σr(T ) = ∅.

Next suppose that 0 < q < 1. For any λ ∈ C \ {0}, since T − λ is injective,
we have

σp(T ) ⊆ {0}.
Since σ(T ) properly contains {0} by Theorem 7.1, σr(T ) 6= ∅.

The following proposition indicates a certain property of the point spectrum
of a q-normal operator.

Proposition 7.5. Let T be a q-quasinormal operator with polar decompo-
sition T = U |T |. Suppose that λ is a non-zero eigenvalue of T with eigenvector ξ.
Then (

√
q )−nλ is an eigenvalue with eigenvector Unξ for each n ∈ N. In addition,

if T is q-normal, then (
√

q )nλ is an eigenvalue with eigenvector (U∗)nξ for each
n ∈ N.

Proof. Since ξ is an eigenvector corresponding to λ,

|T |Uξ = (
√

q )−1Tξ = (
√

q )−1λξ

and
TUξ = U(|T |U)ξ = (

√
q )−1λUξ.

Since λ is non-zero, Uξ 6= 0, and hence (
√

q )−1λ is an eigenvalue with eigenvector
Uξ. Furthermore, we have

|T |U2ξ = (
√

q )−1TUξ = (
√

q )−2λUξ

and
TU2ξ = U(|T |U2)ξ = (

√
q )−2λU2ξ.

Since λ 6= 0 and Uξ 6= 0, we have U2ξ 6= 0, and so (
√

q )−2λ is an eigenvalue with
eigenvector U2ξ. Repeating this argument, we obtain (

√
q )−nλ is an eigenvalue

with eigenvector Unξ for each n ∈ N.
If T is q-normal, then ker T ∗ = ker T (= ker |T |) by Corollary 3.2, and hence

1− UU∗ is the orthogonal projection onto ker |T |. Therefore, we have

TU∗ξ =
√

q |T |UU∗ξ =
√

q |T |ξ =
√

q U∗Tξ =
√

q λU∗ξ.

Since TU∗ξ =
√

q |T |ξ, it follows that U∗ξ 6= 0. Analogously, we have

T (U∗)2ξ =
√

q |T |U∗ξ = (
√

q )2λ(U∗)2ξ,

and (U∗)2ξ 6= 0. Repeating the argument mentioned above, the proposition fol-
lows.
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Now we are in a position of describing the whole spectrum of a q-normal
operator.

We will make a list of the spectrum of a q-normal operator.

I. The case: q > 1
1. T is one-to-one

σp σc σr

T M1 {0} ∅

T ∗ ∅ {0} M1

Here, M1 is a subset of C with
∣∣M1

∣∣
2

= ∞.

2. T is not one-to-one

σp σc σr

T M2 ∅ ∅

T ∗ {0} ∅ M2 \ {0}

Here, M2 is a subset of C such that M2 3 0 and
∣∣M2

∣∣
2

= ∞.

II. The case: 0 < q < 1
1. T is one-to-one

σp σc σr

T ∅ {0} N1

T ∗ N1 {0} ∅

Here, N1 is a subset of C with
∣∣N1

∣∣
2

= ∞.

2. T is not one-to-one

σp σc σr

T {0} ∅ N2

T ∗ N2 ∪ {0} ∅ ∅

Here, N2 is a subset of C with
∣∣N2

∣∣
2

= ∞.
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8. CARTESIAN DECOMPOSITIONS

We first recall a Cartesian decomposition for an unbounded operator (e.g., [24]).
For a densely defined operator T in H with D(T ) ⊆ D(T ∗), there exists uniquely
a pair of symmetric operators T1 and T2 such that

T = T1 + iT2, i =
√
−1 and D(T1) = D(T2),

which is called the Cartesian decomposition of T . In fact, the Cartesian decompo-
sition T = T1 + iT2 is given by

T1 =
1
2
(T + T ∗) and T2 =

1
2i

(T − T ∗).

Symmetric operators T1 and T2 are called the real and imaginary part of T and
are denoted by Re (T ) and Im (T ), respectively.

Proposition 8.1. Let T be a closed, q-hyponormal operator in a Hilbert
space H. Then Re (T ) and Im (T ) are given by

(8.1) Re (T ) =
1
2
(1 +

√
q KT )T and Im (T ) =

1
2i

(1−√q KT )T.

If 0 < q < 1, then they are necessarily closed. Moreover, there is a bounded
operator L on H with i /∈ σ(L) such that

Im (T ) = L · Re (T ) and KT =
1
√

q
(i + L)(i− L)−1.

Proof. In view of the definition of KT , we have Re (T ) ⊃ 1
2 (1 +

√
q KT )T

and Im (T ) ⊃ 1
2i (1−

√
q KT )T . Since D(Re (T )) = D(Im (T )) = D(T ), the relation

(8.1) follows. Assume that 0 < q < 1. Since KT is a contraction ,

(8.2)
∥∥∥1− 1

2
(1±√q KT )

∥∥∥ 6
1
2
(1 +

√
q ) < 1.

Hence, the bounded operators 1
2 (1±√q KT ) are boundedly invertible. Because of

the closedness of T , the symmetric operators Re (T ) and Im (T ) are closed. Define
a bounded operator L on H by

(8.3) L ≡ i
{

1−
(1 +

√
q KT

2

)−1}
.

Since 1
2 (1 +

√
q KT ) has a bounded inverse,

(
1+
√

q KT

2

)−1

Re (T ) = T, and hence

(8.4) Im (T ) =
(1−√q KT

2i

)(1 +
√

q KT

2

)−1

Re (T ) = L · Re (T ).

Moreover, it follows from the definition (8.3) that

i /∈ σ(L) and KT =
1
√

q
(i + L)(i− L)−1.

Theorem 8.2. Let T be a non-zero q-normal operator in H. Then the
following statements hold:
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(i) The real and imaginary parts Re (T ) and Im (T ) are necessarily closed
and unbounded.

(ii)

(8.5) ker(Re (T )) = ker(Im (T )) = ker(Re (T )∗) = ker(Im (T )∗) = kerT,

that is,

R(Re (T )) = R(Im (T )) = R
(
Re (T )∗

)
= R

(
Im (T )∗

)
= R(T ).

(iii) σ(Re (T )) ∩ σ(Im (T )) 3 0.

Proof. In view of Proposition 8.1, if 0 < q < 1 then Re (T ) and Im (T ) are
closed. In case q > 1, T ∗ is q−1-normal and it is easy to see that its Cartesian
decomposition is given by

T ∗ = Re (T ) + i(−Im (T )).

It follows that the symmetric operators Re (T ) and Im (T ) are closed. Since T
is unbounded and D(Re (T )) = D(Im (T )) = D(T ), both Re(T ) and Im (T ) are
unbounded. Thus, statement (i) holds. Substituting T ∗ for T as mentioned above,
we have only to show statement (ii) in the case 0 < q < 1. Thus we assume that
0 < q < 1, and use the same notation as in the proof of Proposition 8.1. Since the
relations (8.1) and (8.2) are valid, we have ker(Re (T )) = ker(Im (T )) = ker T . By

(8.2),
(

1+
√

q KT

2

)−1

can be expanded as Neumann series, that is,
(

1+
√

q KT

2

)−1

=
∞∑

n=0

(
1−√q KT

2

)n

, so that

iL =
∞∑

n=1

(1−√q KT

2

)n

.

In view of (6.1) in Corollary 6.2, for all n ∈ N Re (T )(KT )n = qn(KT )nRe (T ). It
follows that (1−√q KT

2

)n

Re (T ) ⊂ Re (T )
(1− q−1√q KT

2

)n

for all n ∈ N. Therefore,

Im (T ) = L · Re (T ) ⊂ 1
i

∞∑
n=1

Re (T )
(1− q−1√q KT

2

)n

.

This implies that R(Im (T )) ⊆ R(Re(T )). By (8.2),
(

1−√q KT

2

)−1

has also a
bounded inverse. One can easily check that L is boundedly invertible such that

L−1 = i
{(1−√q KT

2

)−1

− 1
}

and Re (T ) = L−1 · Im (T ).

Repeating the argument mentioned above, we have R(Im (T )) = R(Re (T )), or
equivalently ker(Re (T )∗) = ker(Im (T )∗). To prove the rest of statement (ii), we
notice that

(8.6) D(Re (T )∗) ∩ D(Im (T )∗) = D(T ).
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In fact, the above relation follows from the equations:

D(Re (T )∗) = {η : η +
√

q (KT )∗η ∈ D(T )},
and

D(Im (T )∗) = {η : η −√q (KT )∗η ∈ D(T )}.
Combining the relation (8.6) and the equations

ker(Re (T )) = ker(Im (T )) and ker(Re (T )∗) = ker(Im (T )∗),

it follows that
ker(Re (T )) = ker(Re (T )∗).

Thus statement (ii) is valid.
Finally, we will show statement (iii). If 0 < q < 1, as was seen in the proof of

Proposition 8.1, 1
2 (1 +

√
q KT ) is boundedly invertible and

(
1+
√

q KT

2

)−1

Re (T ) =
T. Therefore, by Theorem 7.1 we have σ(Re (T )) 3 0. Similarly, we have σ(Im (T ))
3 0. In case q > 1, we obtain σ(Re (T ))∩ σ(Im (T )) 3 0, by replacing T by T ∗.

Let us recall that the deficiency indices (n+(T ), n−(T )) of a symmetric op-
erator T in H are defined by

n±(T ) ≡ dim ker(T ∗ ± i).

If T has equal deficiency indices, then T has a selfadjoint extension in H.
In [33] (see also [14] and [32]), a variant of a q-deformed Heisenberg algebra

was introduced and studied. It was shown in [14] that the imaginary part of
a q-normal, bilateral weighted shift (q > 1), which derives from the generators,
has equal deficiency indices (1,1). For a unilateral weighted shift, we present the
following proposition.

Proposition 8.3. Let Su be a unilateral weighted shift with weights {wn}
in a Hilbert space H. Suppose that Su is q-quasinormal and 0 < q < 1. Then
both Re (Su) and Im (Su) are closed symmetric operators and have equal deficiency
indices such that(

n+(Re (Su)), n−(Re (Su))
)

=
(
n+(Im (Su)), n−(Im (Su))

)
= (1, 1).

Proof. Upon applying a unitary transformation (see the remark before
Lemma 4.3), we can assume without loss of generality that all weights wn are
positive. Define a transformation J by

J
( ∞∑

n=0

αnen

)
≡

∞∑
n=0

αnen.

Then, it is clear that J is a conjugation on H such that JSu ⊂ SuJ.
Put S1 ≡ Re (Su) and S2 ≡ Im (Su). It then follows that JS1 ⊂ S1J and

JS2 ⊂ S2J . Namely, both S1, S2 are real with respect to J, and hence the defi-
ciency indices of each Si, i = 1, 2 equal each other. It is easy to see that

D((S1)∗) =
{ ∞∑

n=0

αnen ∈ H :
∞∑

n=0

|wnαn+1 + wn−1αn−1|2 < +∞
}

,
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(S1)∗
( ∞∑

n=0

αnen

)
=

1
2

∞∑
n=0

(wnαn+1 + wn−1αn−1)en,

where w−1 = 0, α−1 = 0. Suppose that a non-zero vector
∞∑

n=0
xnen belongs to

ker((S1)∗ − i). Clearly, the following recurrence relation holds:

wn−1xn−1 + wnxn+1 = 2ixn, w0x1 = 2ix0.

Therefore, by the same argument as in [4], VII, there is a sequence {pn} of complex
numbers such that xn = x0pn, p0 = 1 for all n > 0 and wn−1pn−1+wnpn+1 = 2ipn.
On the other hand, since wn = q−

n
2 w0 and 0 < q < 1, we have

wn−1wn+1 = (wn)2, and
∞∑

n=0

1
wn

< +∞.

Applying the above relation to [4], VII, Theorem 1.5, we have
∞∑

n=0
|pn|2 < +∞.

Hence,
∞∑

n=0
‖xn‖2 < +∞. This shows that

dim ker(S∗1 − i) = 1.

Hence, S1 has equal deficiency indices and n+(S1) = n−(S1) = 1.
Repeating the argument mentioned above and by a slight modification of the

proof of [4], VII, Theorem 1.5 (see also [1], p. 27), we obtain analogously

dim ker(S∗2 − i) = 1.

Furthermore, we have proved in Proposition 8.1 that S1 and S2 are closed.

9. POWERS OF q-NORMAL OPERATORS

In this section we will investigate powers of q-normal operators. In general the
powers of a closed, densely defined operator are neither closable nor densely de-
fined.

Proposition 9.1. Let T be a q-quasinormal operator in a Hilbert space.
Then Tn, n ∈ N is q(n2)-quasinormal with

|Tn| =
( 1
√

q

)n(n−1)
2 |T |n .

Proof. Let T = U |T | be the polar decomposition of T . Then, for n ∈ N,

(9.1)

Tn = U(|T |U)n−1|T | =
( 1
√

q

)n−1

U(U |T |)n−1|T |

=
( 1
√

q

)n−1

U2(|T |U)n−2|T |2 =
( 1
√

q

)n(n−1)
2

Un|T |n.
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Thus, Tn is densely defined with D(Tn) = D(|T |n). On the other hand,

(9.2)
Tn = (

√
q )n|T |(U |T |)n−1U = (

√
q )(n+(n−1))|T |2(U |T |)n−2U2

= (
√

q )
n(n+1)

2 |T |nUn.

Hence, by virtue of the closedness of |T |n, Tn is closed. For each n ∈ N, let
Tn = Vn|Tn| be the polar decomposition of Tn. By U2 = (KT )∗ (by Theorem 3.5)
and Proposition 3.7, U2 is a partial isometry with initial domain R(T ∗); that is,

(U∗)2U2 = U∗U.

Hence, by induction, Un, n ∈ N, is also a partial isometry with initial domain
R(T ∗). For η ∈ ker(Tn), noticing

ker(|T |n) = ker(|T |),

Unη ∈ ker T by (9.2). By Corollary 3.2, kerT ⊆ ker T ∗, and hence Unη ∈ (R(T ))⊥.

Clearly, Unη ∈ R(T ), so that Unη = 0. Hence,

ker(Tn) ⊆ ker(Un).

The converse inclusion follows immediately from (9.2). Therefore,

ker(Tn) = ker(Un).

Combining the argument mentioned above, it follows from the uniqueness of the
polar decomposition that

(9.3) Vn = Un, |Tn| =
( 1
√

q

)n(n−1)
2 |T |n.

Using (9.3), we have

Vn|Tn| = (
√

q )
n(n+1)

2 |T |nUn =
(√

q
)n(n+1)

2 +
n(n−1)

2 |Tn|Un

=
√

q(n2)|Tn|Vn,

which implies the proposition.

The following corollary was already noted in Remark 7.2.

Corollary 9.2. Every bounded, q-quasinormal operator T is quasinilpo-
tent, so that σ(T ) = {0}.

Proof. Let T be a non-zero bounded, q-quasinormal operator. Then, by
virtue of Theorem 6.1, we have q > 1. By the equation (9.3),

‖Tn‖ = ‖|Tn|‖ 6
( 1
√

q

)n(n−1)
2 ‖T‖n.

Since q > 1,

‖Tn‖ 1
n 6

( 1
√

q

)n−1
2 ‖T‖ → 0

as n →∞. Hence, T is quasinilpotent and hence σ(T ) = {0}.



180 Schôichi Ôta

Theorem 9.3. Let T be a q-normal operator in a Hilbert space. Then Tn,
n ∈ N is q(n2)-normal with

KT n = (KT )n, and (Tn)∗ = (T ∗)n.

Proof. We first notice that

U∗|T | =
( 1
√

q

)
|T |U∗.

Indeed, T is also q-quasinormal, which implies |T |U∗ ⊃ √
q U∗|T |. Since the left

side of this relation is nothing but T ∗, we have |T |U∗ =
√

q U∗|T |. For n ∈ N,
repeating this relation, we get

(T ∗)n = (|T |U∗)n = |T |(U∗|T |)n−1U∗

=
( 1
√

q

)n−1

|T |2(U∗|T |)n−2(U∗)2 =
( 1
√

q

)n(n−1)
2 |T |n(U∗)n.

Hence, by (9.1) we obtain (Tn)∗ = (T ∗)n.
Recall that T ∗ is q−1-normal. Substituting T ∗ for T in (9.3), we obtain

|(Tn)∗| = |(T ∗)n| =
(√

q
)n(n−1)

2 |T ∗|n.

Combining the equality (2.2) mentioned after Definition 2.1 and (9.3), we have

|(Tn)∗| =
(√

q
)n(n+1)

2 |T |n =
√

q(n2)|Tn|.

This means that Tn is q(n2)-normal. On the other hand, using the equation (6.1)
repeatedly, we get

(9.4)
(Tn)∗ = (T ∗)n = (

√
q KT T )n

= (
√

q )nKT (TKT )n−1T = (
√

q )n2
(KT )nTn.

Hence, by Lemma 3.1 we have KT n = (KT )n.

We next consider the powers of the real and imaginary parts of q-normal
operators.

Lemma 9.4. Let T be a q-normal operator with 0 < q < 1. Then, the
bounded operators 2−1

(
1± qn√q KT

)
are boundedly invertible such that(1± qn√q KT

2

)−1

D(T ) ⊆ D(T )

and, for all η ∈ D(T ),

T
(1± qn√q KT

2

)−1

η =
(1± q(n+1)√q KT

2

)−1

Tη,

where n ∈ N ∪ {0}.
Proof. For each n ∈ N ∪ {0}, by our assumption we have∥∥1− 2−1

(
1± qn√q KT

)∥∥ < 1.
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Hence,(1± qn√q KT

2

)−1

=
∞∑

k=0

1
2k

(
1∓ qn√q KT

)k (uniform convergence).

Using T (KT )k = qk(KT )kT by (6.1) in Corollary 6.2,

T
(
1∓ qn√q KT

)k ⊃
(
1∓ q(n+1)√q KT

)k
T

for all k ∈ N.
Take η ∈ D(T ). Then,

∞∑
k=0

T
( 1

2k

(
1∓ qn√q KT

)k
)
η =

∞∑
k=0

1
2k

(
1∓ q(n+1)√q KT

)k
Tη

=
(1± q(n+1)√q KT

2

)−1

Tη.

Thus, the series
∞∑

k=0

T
(

1
2k

(
1∓ qn√qKT

)k
)
η converges. Since T is closed,

(1± qn√q KT

2

)−1

η ∈ D(T ),

and

T
(1± qn√q KT

2

)−1

η =
(1± q(n+1)√q KT

2

)−1

Tη.

Theorem 9.5. Let T be a q-normal operator in a Hilbert space H and let
T = Re (T ) + i Im (T ) be its Cartesian decomposition. Then, for each n ∈ N the
powers (Re (T ))n and (Im (T ))n are closed symmetric operators in H such that

D((Re (T ))n) = D((Im (T ))n) = D(Tn).

Furthermore, the powers of Re (T ) and Im (T ) are given by

(9.5) (Re (T ))n =
( n−1∏

k=0

1 + qk√q KT

2

)
Tn,

and

(9.6) (Im (T ))n =
( n−1∏

k=0

1− qk√q KT

2i

)
Tn.

Proof. Using Corollary 6.2 repeatedly,

(9.7)

(Re (T ))n =
(1 +

√
q KT

2

) [
T

(1 +
√

q KT

2

)]n−1

T

⊃
(1 +

√
q KT

2

)(1 + q
√

q KT

2

) [
T

(1 + q
√

q KT

2

)]n−2

T 2

⊃
( n−1∏

k=0

1 + qk√q KT

2

)
Tn.
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We will show that D((Re (T ))n) = D(Tn). We first prove it in the case 0 < q < 1.
Clearly, D(Re (T )) = D(T ). Assume that D((Re (T ))n−1) = D(Tn−1) and take
η ∈ D((Re (T ))n). Then, by the hypothesis 0 < q < 1 and the relation (9.7),

(Tn−1)η =
( n−2∏

k=0

(1 + qk√q KT

2

)−1)
(Re (T ))n−1η.

Since (Re (T ))n−1η ∈ D(Re (T )) = D(T ) and by the above lemma, Tn−1η ∈ D(T ).
Thus, by induction, we have D((Re (T ))n) = D(Tn), and hence, the equality (9.5)
holds.

The Cartesian decomposition of iT is given by iT = (−Im (T ))+ iRe (T ) and
iT is q-normal with KiT = −KT by Lemma 3.9. Therefore, applying the above
argument to the operator iT we have

D((Im (T ))n) = D((iT )n) = D(Tn)

and

(−Im (T ))n =
( n−1∏

k=0

1 + qk√q KiT

2

)
(iT )n,

so that the equality (9.6) is valid. Moreover, by Lemma 9.4, the bounded operators
n−1∏
k=0

1+qk√q KT

2 and
n−1∏
k=0

1−qk√q KT

2i are boundedly invertible. Hence the closedness

of Tn implies that (Re (T ))n and (Im (T ))n are closed. It is clear, by induction,
that they are symmetric.

Now suppose that q > 1. Then T ∗ is q−1-normal and

(9.8) Re (T ∗) = Re (T ) and Im (T ∗) = −Im (T ).

Applying the argument mentioned above to T ∗, it follows that (Re (T ∗))n and
(Im (T ∗))n are closed symmetric operators and

(9.9) (Re (T ))n = (Re (T ∗))n =
( n−1∏

k=0

1 + (q−1)k
√

q−1KT∗

2

)
(T ∗)n

and

(Im (T ))n = (−1)n
( n−1∏

k=0

1− (q−1)k
√

q−1KT∗

2i

)
(T ∗)n.

By (9.8), (Re (T ))n and (Im (T ))n are closed symmetric. Moreover, D((T ∗)n) =
D((Re (T ∗))n) = D((Re (T ))n). On the other hand, Tn is q(n2)-normal by Theorem
9.3. Consequently,

(9.10) D(Tn) = D((Tn)∗) = D((T ∗)n).

Hence, D((Re (T ))n) = D(Tn). By Corollary 3.8 and Theorem 9.3, the equality
(9.9) implies that

((Re (T ))n)∗ = Tn
( n−1∏

k=0

1 + (q−1)k
√

q−1KT

2

)
.
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Since TnKT = qnKT Tn by Corollary 6.2,

((Re (T ))n)∗ ⊃
( n−1∏

k=0

1 + qk√q KT

2

)
Tn.

Since (Re (T ))n is symmetric and D((Re (T ))n) = D(Tn), the equality (9.5) fol-
lows. Analogously, one can easily check that D((Im (T ))n) = D(Tn) and the
equality (9.6) is valid.

Let T be a densely defined operator in H. Set D∞(T ) ≡
⋂

n∈N
D(Tn). A vector

ξ in D∞(T ) is called an analytic vector of T if there is a positive number γ such
that

∞∑
n=1

‖Tnξ‖
n!

γn < +∞,

and ξ is called a quasi-analytic vector of T if
∞∑

n=1

‖Snξ‖− 1
n = +∞.

The sets of all analytic vectors of T and of all quasi-analytic vectors of T are
denoted by A(T ) and by Q(T ), respectively.

We remark that a q-normal operator T has the property that D∞(T ) =
D∞(T ∗).

Proposition 9.6. Let T be a q-normal operator in H. It then follows that:
(i) If 0 < q < 1, then A(T ) ⊆ A(T ∗) and Q(T ) ⊆ Q(T ∗);

A(Re (T )) = A(Im (T )) = A(T ), Q(Re (T )) = Q(Im (T )) = Q(T ).

(ii) If q > 1, then A(T ) ⊇ A(T ∗) and Q(T ) ⊇ Q(T ∗);

A(Re (T )) = A(Im (T )) = A(T ∗), Q(Re (T )) = Q(Im (T )) = Q(T ∗).

Thus, if Re (T ) is selfadjoint then so is Im (T ), that is, Re (T ) and Im (T ) are
selfadjoint simultaneously.

Proof. Since kerT is a reducing subspace of T and the restriction of T on
(ker T )⊥ is also q-normal, we may assume that T is injective and hence KT is
unitary.

Assume that 0 < q < 1. In view of (9.4) of the proof in Theorem 9.3, it is
clear that A(T ) ⊆ A(T ∗) and Q(T ) ⊆ Q(T ∗). Since KT is unitary, it follows that∥∥∥∥( n−1∏

k=0

1 + qk√q KT

2

)
ξ

∥∥∥∥ >
( n−1∏

k=0

1− qk√q

2

)
‖ξ‖

for all ξ ∈ H. Since 0 < q < 1, we have∥∥∥∥( n−1∏
k=0

1 + qk√q KT

2

)
ξ

∥∥∥∥ >
(1−√q

2

)n

‖ξ‖
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for all ξ ∈ H. Hence, by (9.5) in Theorem 9.5 we obtain

‖(Re (T ))nη‖ >
(1−√q

2

)n

‖Tnη‖

for all η ∈ D(Tn) = D((Re (T ))n) = D((Im (T ))n) and all n ∈ N. Analogously,

‖(Im (T ))nη‖ >
(1−√q

2

)n

‖Tnη‖

for all η ∈ D(Tn) and all n ∈ N. On the other hand, since 0 < q < 1, we have∥∥∥∥( n−1∏
k=0

1 + qk√q KT

2

)∥∥∥∥ < 1 and
∥∥∥∥( n−1∏

k=0

1− qk√q KT

2i

)∥∥∥∥ < 1.

Therefore, for all η ∈ D(Tn) and all n ∈ N, we have

‖Tnη‖ > ‖(Ti)nη‖ >
(1−√q

2

)n

‖Tnη‖, i = 1, 2,

where T1 = Re (T ) and T2 = Im (T ). Statement (i) follows immediately from this
relation.

Next suppose that q > 1. Replacing T by T ∗ and applying the above argu-
ment to T ∗, it is easy to check that statement (ii) holds.

By virtue of Nelson’s theorem, if Re (T ) is selfadjoint then so is Im (T ).

Remark 9.7. A(T ) and A(T ∗) (respectively Q(T ) and Q(T ∗)) do not co-
incide in general, as we will see in the proof of the following proposition.

Proposition 9.8. The following statements are valid:
(i) Let T be a q-quasinormal operator with q > 1. Then the set of analytic

vectors is a core for T .
(ii) There is a q-normal operator with 0 < q < 1 for which the set of analytic

vectors is not dense.

Proof. Let T = U |T | be the polar decomposition. By q > 1 and (9.1), we
have

A(T ) ⊇ A(|T |).

This implies the assertion (i).
Let T be a q-normal operator with 0 < q < 1. By the above proposition, if

T has a dense set of analytic vectors, then the closed symmetric operators Re (T )
and Im (T ) have dense sets of analytic vectors, respectively. By Nelson’s theorem,
they are selfadjoint. Hence, the real and imaginary parts of T ∗ are also selfadjoint.
Now, let 0 < q < 1 and let Sb be the bilateral weighted shift with the weights
wn =

(√
q
)n, n ∈ Z. Then Sb is q−1-normal and its imaginary part has deficiency

indices (1, 1) by [14] as mentioned just before Proposition 8.3. Define T = (Sb)∗.
Then T is q-normal and has no dense set of analytic vectors. In fact, otherwise,
the imaginary part of Sb would be selfadjoint by the above observation. This is a
contradiction.
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